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In order to demonstrate the potential advantages of high-order spatial and temporal
discretizations, implicit large-eddy simulations of the Taylor-Green vortex flow and transi-
tional flow over an SD7003 wing are computed using a variable-order finite-difference code
on multi-block structured meshes. The spatial operators satisfy the summation-by-parts
property, with block interface coupling and boundary conditions enforced through simul-
taneous approximation terms. The solution is integrated in time with explicit-first-stage,
singly-diagonally-implicit Runge-Kutta methods. Simulations of the Taylor-Green vortex
show the clear advantage of high-order spatial discretizations in terms of accuracy and effi-
ciency. The higher-order methods are better able to delay excessive dissipation on coarser
grids and are better able to capture the details of the flow on finer grids. Similar dissipa-
tion and enstrophy profiles are obtained with a second-order spatial discretization, and a
fourth-order spatial discretization with half the number of grid points in each direction, half
the number of time steps, and approximately 85% less CPU time. Temporal convergence
studies demonstrate the relatively high efficiency of the fourth-order explicit-first-stage,
singly-diagonally-implicit Runge-Kutta method, except for simulations requiring only a
minimum level of accuracy. Results of the simulation of transitional flow over the SD7003
wing show good agreement with experiment and other computations, despite a relatively
coarse grid. The use of high-order discretizations is shown to be essential in obtaining
this accuracy efficiently. These results give a clear picture of the benefits of high-order
discretizations, along with the advantages of the novel parallel Newton-Krylov-Schur algo-
rithm presented, for high-accuracy unsteady flow simulation.

I. Introduction

The simulation of large-scale, complex unsteady flows is becoming more prevalent due to advances in
computer architecture, parallel computing, and numerical methods. However, these simulations remain very
expensive, in terms of both computational resources and time. High-order methods present one means of
reducing the cost of these simulations. Despite being more computationally expensive per node or per time
step, significantly coarser simulations can be used to obtain the same level of accuracy. As the required
accuracy becomes more stringent, the reduction in mesh and time step requirements outweighs the increased
cost of the methods, thus providing greater efficiency.

Summation-by-parts (SBP) spatial operators are a robust and efficient way of extending finite-difference
schemes to higher-order. The SBP property imposes specific constraints on block boundaries to ensure
time stability using the energy method. As a result, each block is independently time stable, provided
appropriate boundary values are available. An efficient way of providing these values is through simultaneous
approximation terms (SATs). Only a single halo node is required for the SBP-SAT approach, regardless of
order, keeping inter-block communication to a minimum. Mesh generation is also simplified by the minimal
requirement of C0 continuity at block boundaries. This requirement can be further relaxed, provided a
suitable interpolant can be found on each block face.34 The merits of the SBP-SAT approach have been
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demonstrated with a variety of steady19,40 and unsteady25,26,40,43,44 simulations, as well as having being
applied in the context of aerodynamic shape optimization.20,21,31

Implicit Runge-Kutta methods have excellent high-order stability characteristics which are essential for
simulating stiff differential equations with stringent accuracy requirements. Particularly, Explicit-first-stage
Singly-Diagonally-Implicit Runge-Kutta (ESDIRK) methods have been shown to perform very well.3,7, 24,40,48

Stiff-accuracy and stage-order two, resulting from the explicit first stage, help minimize the effects of order
reduction. A balance between accuracy, stability and computational cost are obtained by the semi-implicit
form and the constant diagonal coefficient. All the methods of this class are unconditionally stable (A-stable)
and furthermore have perfect damping at infinity (L-stability). These characteristics make methods of this
class a robust and efficient choice for complex unsteady flow simulations.

The use of high-order spatial and temporal discretizations is of particular interest in high-resolution
simulations such as direct numerical simulation (DNS), and large-eddy simulation (LES). The objective is
to characterize the performance of the methods used, namely high-order SBP-SAT finite-difference schemes,
high-order semi-implicit Runge Kutta schemes, and a Newton-Krylov-Schur algorithm, in the computation
of complex unsteady flows. Prediction of transition and turbulence in the Taylor-Green vortex flow and
low-Reynolds number flow over the SD7003 wing are chosen for this investigation.

The Taylor-Green vortex flow was originally developed to study the dynamics of turbulence numerically.49

The initial conditions are smooth, but the flow quickly transitions to turbulence. In the inviscid limit the
flow is thought to become singular very rapidly as the vortices stretch and smaller structures are created
which are not dissipated.5 In the viscous case, however, energy is naturally dissipated. Therefore, once the
flow has transitioned to turbulence, it immediately begins to decay, mimicking homogeneous non-isotropic
turbulence. The simplicity of this case and its wide range of scales and dynamics have made it an attractive
case to compare LES and ILES techniques against direct numerical simulation (DNS).14

A more practical test case is the simulation of transition in laminar separation bubbles (LSBs) on low-
Reynolds-number wings. An LSB can form in a laminar boundary layer when it is subject to an adverse
pressure gradient. Once the boundary layer separates, Kelvin-Helmholtz (KH) instabilities become dominant
and vortex shedding begins. As the vortices grow downstream, they begin to break down into smaller scale
structures. This may be exacerbated by small turbulent structures moving upstream in the recirculation
bubble or by acoustic waves generated at the trailing edge. The breakdown continues until the flow is fully
turbulent. This increases momentum transport and allows the boundary layer to reattach as a turbulent
boundary layer. Evidence of the KH-vortices remains in the turbulent boundary layer as slow moving vortical
packets which propagate downstream much more slowly than the bulk flow.56 LSBs are often classified as
long or short. It is common to refer to bubbles having only a small effect on the potential flow as short and
those that noticeably alter the pressure distribution as long.1 Short bubbles do not dramatically alter the
performance characteristics of an airfoil, but long bubbles can, often causing rapid changes in lift, drag, and
pitching moment.

II. Numerical methods

The Navier-Stokes equations are discretized in space by high-order Summation-By-Parts (SBP) operators
and solved on structured multi-block grids. Simultaneous-Approximation-Terms (SATs) are used to enforce
block-interface coupling and boundary conditions, while matrix artificial dissipation is used to maintain
numerical stability. The resulting system of ordinary differential equations is advanced in time with Explicit-
first-stage, Singly-Diagonally-Implicit Runge-Kutta (ESDIRK) methods. A Newton-Krylov algorithm is used
to drive the non-linear residual equations to zero. Finally, the linear system is solved with FGMRES with a
parallel approximate-Schur preconditioner.

II.A. Summation-By-Parts operators

Summation-by-parts operators are centered finite-difference operators which are constructed to mimic integra-
tion-by-parts. Using an energy method, this allows statements to be made about the time-stability of the
discretization. For example, the linearized Navier-Stokes equations have been shown to be time-stable,36

conditional on the use of diagonal norms in curvilinear coordinate systems. In this section we provide a brief
description of the operators used in this work, without derivation. For more information on the derivation
and analysis of SBP-SAT schemes, see Refs. 12,13,29,30,33–37,45–47.
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The operator D1 is a first derivative SBP operator if it approximates the first derivative and has
the form D1 = H−1θ, where H, called the norm, is a positive-definite diagonal matrix, and θ + θT =
diag(−1, 0, . . . , 0, 1). As an example, the second-order accurate first derivative SBP operator defined as:

D1 = H−1θ (1)

where

H = h



1
2

1
. . .

1
1
2

 , and θ =
1

2


−1 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 1

 (2)

and h = ∆ξ,∆η, or ∆ζ for the appropriate coordinate direction.
In the Navier-Stokes equations, these are used to approximate the inviscid flux derivatives and the viscous

cross and double-derivatives, for example:

∂ξE ≈ D1,ξE, (3)

and,

∂ξ(ϕ∂ηq) ≈ D1,ξϕD1,ηq, (4)

where E is the inviscid flux, ϕ is a spatially varying coefficient and q is some flow quantity. Double-derivatives
obtained with the application of first derivative twice do not produce operators with the minimum stencil
width or minimum local error.

Compact-stencil second-derivative SBP operators have the form D2(ϕ) = H−1{−M + EBDb}.12 Here,
H is the norm, which must be consistent with the norm of first derivative to guarantee time stability,
M = DT

1 HBD1 + R is symmetric positive definite, as is R, the correction term which reduces the stencil
width and lowers the truncation error coefficient, E = diag(−1, 0, . . . , 0, 1), B = diag(ϕ0, ϕ1, . . . , ϕN ), where
ϕi > 0, and Db is an approximation to the first derivative at the boundaries. These operators also mimic
integration-by-parts, but for second derivatives.

As an example, the second-order accurate compact-stencil SBP operator defined as:12

D2(ϕ) = H−1

−DT
1 HBD1︸ ︷︷ ︸
Term1

− 1

4h
D̃T

2 CBD̃2︸ ︷︷ ︸
Term2

+EBDb︸ ︷︷ ︸
Term3

 (5)

where Term1 is the application of the first derivative twice, Term2 = R is the correction term where D̃2 is
a centered undivided difference operator:

D̃2 =


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2 1

 , C =


0

1
. . .

1

0

 , (6)

and h = ∆ξ,∆η, or ∆ζ for the appropriate coordinate direction. Finally, Term3 modifies the boundary
closure:

EBDb =
1

h



3ϕ1

2 −2ϕ1
ϕ1

2

0 0 0
. . .

. . .
. . .

0 0 0
ϕN+1

2 −2ϕN+1
3ϕN+1

2

 . (7)
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II.B. Simultaneous Approximation Terms

Simultaneous approximation terms are penalty terms which provide a weak imposition of block-interface
coupling and boundary conditions in conjunction with the SBP operators.

II.B.1. Inviscid terms

The SATs corresponding to the inviscid fluxes terms, E for example in the ξ-direction, have the form:19,40

SATinv = ∓ 1

J
A±

ξ (Q−Qexternal), (8)

where Q is the vector of conserved variables, Qexternal takes on the values of the coincident node on the
adjoining block or boundary target values, J is the metric Jacobian of the curvilinear coordinate transfor-
mation, the ± is to account for the difference the high and low sides of the blocks respectively, and A±

ξ is
the modified flow Jacobian defined by:

A±
ξ =

Aξ ± |Aξ|
2

, Aξ =
∂E

∂Q
, |Aξ| = X−1

ξ |Λξ|Xξ, (9)

where Xξ is the right eigenmatrix of Aξ, and Λξ is a matrix with the eigenvalues of Aξ as its diagonal. A
small modification to this SAT is required at the outflow in viscous simulations:40

SATinv = ∓ 1

J
A±

ξ (Qb −Qb−1) (10)

where Qb is the boundary node and Qb−1 is the node one in from the boundary. This modification is not
applied when the zonal acoustic boundary treatment is used, described below.

II.B.2. Viscous terms

Block-interface SATs associated with the viscous flux terms have a very similar form to the inviscid SATs:

SATvis1 = ∓ σν

ReJ
Bν,ξ(Q−Qexternal), (11)

where 0 ≤ σν ≤ 0.5, and Bν,ξ is related to the viscous flux Jacobian. In addition, a second SAT is required
to account for the increased derivative order:

SATvis2 = ∓ 1

Re
(Eν − Eν,external), (12)

where Eν,external is the viscous flux of the coincident node on the adjoining block or the target boundary flux
value. At the farfield boundary, this is set to zero. This SAT is also modified at solid boundaries to enforce
adiabatic or isothermal no-slip conditions. The alternate form at the wall is:

SATviswall = ∓σν,wall

Re
(Q−Qwall), (13)

where

σν,wall ≤
ξ2x + ξ2y + ξ2z

J

µ

2ρ
max

(
γ

Pr
,
5

3

)
, Qwall =

[
ρ1, 0, 0, 0,

ρ1T∗

γ(γ − 1)

]
, (14)

ρ1 is the density at the boundary node, and T∗ is the temperature one node away from the wall for adiabatic
conditions or the wall temperature for isothermal conditions.
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II.C. Characteristic boundary zones

Characteristic boundary conditions are often used to minimize spurious reflections. The amplitude of in-
coming waves, Li, is set to zero at the boundary. However, only linear waves propagating normal to the
boundary are completely eliminated. Numerical dissipation often overwhelms the influence of the waves
which do get partially reflected, but in simulations which require stringent-accuracy, especially aeroacoustic
simulations, these errors can have a significant impact.

A relatively simple technique has been developed by Sandberg and Sandham,43 who employ characteristic
boundary conditions, but non-locally in a buffer zone. The characteristics, λi, of the hyperbolic terms are
determined along with their amplitudes, Li. Within the buffer zone, the amplitudes of the incoming waves
are ramped to zero,

L̃i = g(x)Li, g(x) = 0.5

[
1 + cos

(
π(x− xs)

xout − xs

)]
, (15)

where xs is the onset location of the buffer zone, and xout is the location of the outflow boundary. Notice that
the full local characteristic conditions are recovered at the boundary. This non-local boundary scheme has
been shown to reduce the reflection of large non-linear structures and of linear waves propagating at incidence
to the boundary.43 It has also been applied with success to a number of aeroacoustic DNS simulations.25,26,43

The present implementation follows many of the ideas of Kim and Lee.28

II.D. Explicit-first-stage, Singly-Diagonally-Implicit Runge-Kutta methods

General s-stage Runge-Kutta methods are described by:

Yi = y(n−1) + h
∑s

j=1 AijF (Yj , t
(n−1) + cih) for i = 1, . . . , s,

y(n) = y(n−1) + h
∑s

j=1 bjF (Yj , t
(n−1) + cih),

(16)

where Yi are the individual stage values, y(n) the solution at time step n, h = t(n+1) − t(n) is the step size,
and Aij , bj and ci are the coefficients of the given method, often presented in a Butcher tableau:

ci Aij

bj
.

II.D.1. Explicit-first-stage and stiff-accuracy

Often the order of the internal stages in a Runge-Kutta method is lower than the global order predicted by
classical order theory. Asymptotically, global order convergence is always guaranteed and is also practically
realized for relatively non-stiff problems; however, when implicit Runge-Kutta methods are applied to very
stiff or differential algebraic problems with finite step sizes, the local error of these internal stages can
dominate. This is known as order reduction.

In CFD applications, order reduction is not observed in inviscid or laminar problems; however, order
reduction can manifest in URANS simulations.3,7 Forcing the first stage of ESDIRK methods to be explicit,
allows the internal stages to have order two. The local error can be further reduced by enforcing stiff-
accuracy, namely cs = 1, and therefore bj = Asj . These conditions imply that the minimum convergence of
an ESDIRK method for a stiff ODE will be at least third order. The conditions for stiff-accuracy also mean
that the explicit stage needs only to be computed once.

II.D.2. Singly-Diagonally-Implicit methods and stability

Fully implicit Runge-Kutta methods can be generated which have order 2s, where s again is the number of
stages. This is very attractive for lowering the local truncation error and for increasing convergence with
step size. However, fully implicit RK methods require an implicit solution to a system of size (s×n)2, where
n is the number of unknowns. For large systems of equations, this can be very expensive in terms of both
CPU time and memory. In contrast, diagonally-implicit methods only require the solution to s systems of
size n2. Despite requiring more implicit stages to achieve the same order, diagonally-implicit methods are
often more efficient than fully implicit methods.
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Letting the diagonal entries of Aij be constant, except A11, which is zero, means that the temporal
component of the Jacobian (20) is constant. This can be exploited during the solution process to reduce
computational costs. More information can be found in Section II.E.3.

Methods in the ESDIRK class of time-integrators are unconditionally stable (A-stable) and provide
complete damping of modes at infinity (L-stable). This is particularly advantageous when the governing
equations are stiff. The size of the time steps are, therefore, only limited by accuracy and not stability.

II.D.3. Runge-Kutta methods and order of accuracy

It is well known that A-stable implicit Linear Multistep Methods (LMMs) are limited to second-order.11

However, this restriction does not apply to implicit Runge-Kutta methods; arbitrarily high-order methods
can be generated which are A-stable. High-order methods are desired since they have the potential be be
more efficient, especially for simulations which require stringent accuracy.

II.D.4. ESDIRK methods and local truncation error

Incorporating these ideas, the Butcher tableau of an ESDIRK method is of the form:

0 0 0 0 . . . 0

2λ̃ λ̃ λ̃ 0 . . . 0

c3 a31 a32 λ̃ . . . 0
...

...
. . .

...

1 as1 as2 as3 . . . λ̃

as1 as2 as3 . . . λ̃

.

A final advantage of ESDIRK methods is the relatively small local truncation error coefficients, as seen
in Table 1, which compares some common time integration methods. Taking into account the increased
number of implicit stages, if the cost of one implicit solve is assumed to be approximately constant, it is easy
to see that ESDIRK methods of a given order are very efficient.

II.E. Solution methodology

The semi-discrete form of the Navier-Stokes equations is,

dQ

dt
= −R̃(Q), (17)

where R̃(Q) represents the spatially discretized equations, including the numerical dissipation model, and
Q represents the solution vector at all points. Using an ESDIRK scheme with s stages, the fully discrete
system of non-linear equations becomes,

R
(n)
k (Q

(n)
k , . . . , Q

(n)
1 , Q(n−1)) =

Q
(n)
k −Q(n−1)

λ̃∆t
+

1

λ̃

s∑
j=1

AkjR̃(Q
(n)
j ) = 0, k = 2, . . . , s, (18)

where R(Q) is the residual. The residual equations are solved by applying Newton’s method with iteration
counter p:

A(p)
k ∆Q

(p)
k = −R̂(n)(Q

(p)
k , Q

(n)
k−1 . . . , Q

(n)
1 , Q(n−1)), k = 2, . . . , s, (19)

where ∆Q
(p)
k = Qk −Q

(p−1)
k and A is the Jacobian:

A(p)
k =

I
λ̃∆t

+
∂R(Q

(p)
k )

∂Q
(p)
k

, k = 2, . . . , s. (20)

6 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

av
id

 Z
in

gg
 o

n 
Ja

nu
ar

y 
8,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

38
3 



Method Global External Total Implicit Stability |LTE|
Order Steps Stages Stages

BDF2 2 2 1 1 L-Stable ≈ 0.33z3

BDF2OPT(0.5)52 2 2 1 1 L-Stable ≈ 0.16z3

ESDIRK2/TRBDF2 2 1 3 2 L-Stable ≈ 0.04z3

BDF3 3 3 1 1 L(86.03◦)-Stable 0.25z4

ESDIRK3 3 1 4 3 L-Stable ≈ 0.0259z4

RK4 4 1 4 0 Conditional ≈ 0.0083z5

BDF4 4 4 1 1 L(73.35◦)-Stable 0.2z5

MEBDF410 4 3 3 3 L-Stable ≈ 0.0892z5

SDIRK4 4 1 3 3 L-Stable ≈ 0.1644z5

ESDIRK4 4 1 6 5 L-Stable ≈ 0.0008z5

Table 1. List of time marching methods and associated characteristics, z = λh, where λ comes from the linear test
equation y′ = λy.

II.E.1. Inexact Newton’s Method

Newton’s method requires a Jacobian; however, the use of a Krylov method means that only the Jacobian-
vector products need to be computed. These are evaluated with first-order forward differences:

A(p)v =
R(Q(p) + ϵv)−R(Q(p))

ϵ
, (21)

where

ϵ =

√
Nuδ

vTv
, (22)

Nu is the number of unknowns, and δ = 10−12.
An approximate first-order Jacobian is constructed for the approximate-Schur preconditioner described

by Saad and Sosonkina42 and Hicken and Zingg.19 The inviscid fluxes are evaluated to second-order along
with a second-difference dissipation model. The viscous terms are also modified to reduce their stencil width.
They are similarly evaluated to second order, but in addition, the cross derivate terms are dropped and the
viscous SATs are modified to neglect tangential derivatives. The final modification is to the viscosity term,
which is treated as constant. This reduces the order of the Jacobian to first-order, and more significantly,
reduces the number of matrix entries, and therefore, memory requirements.

Finally, the linear system is not solved exactly; rather it is only solved so far as to satisfy the inequality:

||R(p) +A(p)∆Q(p)||2 ≤ ηn||R(p)||2 (23)

where ηn is a specified forcing parameter. A larger value can reduce simulation time by preventing the
linear-system from being over-solved; however, if it is too large, the non-linear convergence will be hindered.
A typical value is 0.01.

II.E.2. Polynomial extrapolation

The performance of Newton’s method can be improved by providing better initial iterates. Previous solution
information can be used to generate low-order inexpensive approximations of the next time step.

Consider a sequence of solution values u(n−1), . . . , u(n−k) at times t(n−1), . . . , t(n−k). These times do not
have to be equally spaced or monotonic. The solution u(n) at time t(n) is then approximated by:

u(n) =
k∑

i=1

ln−i(t
(n−i))u(n−i), (24)

where
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ln−i(t
(n−i)) =

k+1∏
j=1,j ̸=i

(
t(n) − t(n−j)

t(n−i) − t(n−j)

)
. (25)

Increasing the number of past solutions increases the accuracy of the approximation. In this work, three
past solutions are used as a balance between accuracy and memory usage.

II.E.3. Delayed preconditioner updates

The temporal component of the Jacobian (20) is constant and is often significantly larger than the change in
the spatial Jacobian over a stage or an entire time step. Therefore, it is possible to freeze the preconditioner
over a stage or time step without a significant impact on the convergence of the system. This reduces CPU
time and thus increases the efficiency of the solution algorithm. Current results were obtained by freezing
the preconditioner over each time step.

II.E.4. Termination of non-linear iterations

The temporal integration has a certain level of truncation error associated with it. The convergence of
the residual equations can, therefore, be terminated when the residual is less than this error. This reduces
computational cost and is done without any loss in global accuracy. In this work, termination is based
on a preset reduction from the initial residual value. The necessary relative tolerance is fairly step size
independent since a reduction in step size will result in a better initial iterate from polynomial extrapolation
and therefore a lower initial residual. A typical relative tolerance is 10−6,48 requiring between 5 and 15
Newton iterations.

III. Results and Discussion

All results in this section, unless explicitly stated otherwise, were obtained with the fourth-order non-
compact-stencil spatial discretization and the ESDIRK4 time-marching method.

III.A. Taylor-Green vortex flow

The first case is the Taylor-Green vortex flow. It was originally developed to study vortex stretching, the
creation of small eddies from larger ones, believed to be an important mechanism in turbulent flows.49 The
flow is initialized with a smooth two-dimensional uni-modal velocity field. As the solution develops, higher
frequency modes are generated, eventually mimicking homogeneous non-isotropic turbulence. Finally, the
turbulence decays as the smallest modes are dissipated due to viscous effects. The initial conditions are:

u = M◦ sin(x) cos(y) cos(z),

v = −M◦ cos(x) sin(y) cos(z),

w = 0,

p = p◦ +
ρ◦M

2
◦

16 (cos(2x) + cos(2y)) ,

ρ = p/p◦,

where ρ◦ = 1 and p◦ = 1
γ . To minimize the effects of compressibility and to be consistent with the AIAA’s

1st International Workshop on High-Order CFD Methods, the free-stream Mach number is set to 0.1. The
Reynolds number is 1600, which corresponds to a peak Taylor microscale Reynolds number of about 22, and
the Prandtl number is 0.71. The convective time unit is defined as tc =

1
M◦

and the simulation is advanced
to tfinal = 20tc. The simulation domain is a periodic box, −π ≤ x, y, z ≤ π. The reference for this study is
the incompressible dealiased spectral DNS of van Rees et al.51 which contained 5123 modes. This reference
is denoted as ‘Spectral’ in the Figures.

III.A.1. Basic Definitions

In this study, kinetic energy is defined as:
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Figure 1. Taylor-Green flow: Inviscid solutions compared with exact incompressible solution (kinetic energy) and
semi-analytic solution of Brachet et al.5 (enstrophy).

Ek =
1

2V

∫
V

ρv · vdV,

where V is the volume, v is the velocity vector and ρ is the density. The dissipation rate can then be
computed as ϵ = −dEk

dt . Enstrophy is defined as,

ε =
1

2V

∫
V

ρω · ωdV,

where ω is the vorticity vector. Finally, the Courant (CFL) numbers quoted are global maximums defined
based on the initial conditions. The CFL number at any node is:

CFL = κ∗
inv,max∆t

(
|U (α)|+ a|∇α|

)
,

where a is the speed of sound, U is the contravariant velocity, and α = {ξ, η, ζ}, and κ∗
inv,max is the maximum

value of the Fourier symbol corresponding to the derivative operator of the inviscid flux; in this case it is
also the maximum value of the modified wave number.

III.B. Inviscid Simulations

Initially the Taylor-Green flow is computed in the inviscid limit. Figure 1 shows the evolution of kinetic
energy on a 643 grid for different spatial orders of accuracy, along with a fourth-order fine grid solution.
These simulations are advanced with a time step of ∆t = 0.2. Also shown is the incompressible solution, for
which kinetic energy is preserved exactly. The present simulations are slightly compressible and have the
addition of numerical dissipation to maintain stability, leading to the deviation viewed in the figure. The
figure shows a greater improvement from third to fourth-order than from second to third, a result of the
increased order of the dissipation model required to maintain global order four.

Figure 1 shows a similar result for the evolution of normalized enstrophy (ϵ/ϵ◦). Brachet et al.
5 suggest

that a singularity exists in the inviscid limit around tc ∼ 5.2, which means that the normalized enstrophy
should go to infinity. The fine grid solution matches the semi-analytic solution of Brachet et al.5 up to
tc ∼ 4; however, with finite resolution and the inclusion of numerical dissipation, the enstrophy eventually
peaks, and then decays.

III.C. High-Order SBP Integration

Preliminary high-order inviscid results were stable and converged; however, integration of the total kinetic
energy initially increased in time before decaying as shown in Figure 2. Also, integration of the conserved
quantities showed large variations in time, phenomena not present in second-order solutions. After the
code and initial conditions were verified, attention turned to the quadrature used to obtain the results,
the classical second-order trapezoidal rule. High-order quadratures were sought to eliminate the influence
of the spatial discretization order on the results. Hicken and Zingg22 showed that the norm of an SBP
operator, H, is related to the trapezoidal rule, but with end corrections to match the order of the operator.
Using the diagonal norm associated with the spatial discretization to perform the integration, alleviated the
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Figure 2. Taylor-Green flow: Fourth-order inviscid solutions comparing second-order trapezoidal and fourth-order SBP
quadratures.
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Figure 3. Taylor-Green flow: effect of the numerical dissipation coefficient, κ. Second-order (upper), and fourth-order
(lower) spatial discretization with ESDIRK4 time marching and ∆t = 0.25.

above problems. The variation of conserved quantities over time becomes negligible and the kinetic energy
monotonically decreases in time, as seen in Figure 2. The original second-order solutions did not show these
deviations because the diagonal norm associated with the second-order spatial discretization, is the classical
trapezoidal rule.

III.C.1. Numerical Dissipation

The amount of numerical dissipation is a critical factor in high-resolution simulations, especially in ILES
simulations. Too much numerical dissipation will damp important information being computed, too little
will admit spurious modes. The amount of numerical dissipation applied in the present simulations is
controlled by a coefficient, κ, and the grid density. Larger values of κ correspond to more dissipation, of
both high-frequency and low-frequency modes.

A study investigating the optimal κ value is undertaken using the 1283 grid for both second and fourth-
order spatial discretizations. The order of accuracy of the dissipation model is set equal to or greater than
the global order of the spatial discretization, and solutions are advanced with a non-dimensional time step
of ∆t = 0.25. The evolution of the spatially integrated quantities is displayed in Figure 3.

Enstrophy is taken as an indication of the resolving power of the discretization. As the flow transitions
to turbulence, smaller scales are generated; increasing the small-scale vorticity content of the closed system
leads to an increase in enstrophy. As mentioned in Section III.B, the Taylor-Green vortex flow is thought
to become singular in the inviscid limit, driving enstrophy to infinity.5 Viscous effects in Navier-Stokes
simulations dissipate the smallest scales giving the enstrophy profile presented by van Rees et al.51 In
addition to viscous effects, the present simulations introduce numerical dissipation as a function of grid
density, damping the small scale content of the flow to maintain numerical stability. This also limits the
maximum enstrophy when the numerical dissipation is active above the viscous scale.
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Order Grid Avg Newton iters./ Avg GMRES iters./ Walltime Walltime ×
size ESDIRK stage ESDIRK stage (sec.) CPUs (sec.)

2 323 12.0 13.1 6822 6822

2 643 11.5 12.5 16707 133654

2 1283 11.3 12.5 36389 2328895

2 2563 10.5 12.1 82875 42431820

4 323 10.9 19.0 15930 15930

4 643 10.7 16.2 43326 346607

4 1283 10.6 16.6 92404 5913834

4 2563 10.8 16.8 219496 112381866
Table 2. Taylor-Green flow: Computational details of grid convergence study.

As the dissipation coefficient is lowered, the maximum enstrophy increases, indicating more modes are
being well-resolved. Lowering the dissipation coefficient also results in better capture of the location and
rate of energy dissipation. All of this is expected. However, the lowest dissipation value also results in slight
oscillations in the dissipation rate and an over prediction of the peak dissipation rate in the fourth-order
simulation. This may be an indication that spurious modes are being admitted to the solution. Therefore,
a value of κ = 0.0125 is selected for the rest of the Taylor-Green simulations.

III.C.2. Grid convergence studies

A grid convergence study is conducted for second and fourth-order spatial discretizations on four successively
finer grids: 323, 643, 1283 and 2563 nodes. Each grid is decomposed into blocks of 323 nodes with a one-
to-one distribution of blocks to processors, keeping the workload per processor constant. The time step is
chosen to be constant across simulation of equal grid density and to maintain a constant maximum CFL
number across simulations of equal spatial order, ∼ 31 for second-order and ∼ 50 for fourth-order. The
discrepancy is due to the difference in the maximum value of the modified wave number between the second
and fourth-order discretizations.

The computational details of the simulations are displayed in Table 2, and simulation results are presented
in Figure 4. In all cases, the coarsest grids were not able to accurately capture the decay of kinetic energy. The
higher-frequency modes cannot be represented on these grids and are damped by the numerical dissipation
in order to maintain stability. As a consequence, less energy is transferred to the higher frequency modes,
and this is believed to be the cause of the lower dissipation rate and the higher kinetic energy later in the
simulation. The fourth-order simulations do not dissipate as early as the second-order simulations; however,
there is still a noticeable deviation from the DNS results.

The finer-mesh simulations, both second and fourth-order, more accurately capture the decay of kinetic
energy. These simulations are isolated in Figure 5. The second-order solution simulated on the 1283 grid still
dissipates too early, and only the finest fourth-order simulation lies on top of van Rees’ DNS results. However,
the accuracy of the evolution of kinetic energy is somewhat surprising considering the large deviation in
enstrophy from the DNS results, which suggests that even the finest simulation is under resolved. The
second-order 2563 and fourth-order 1283 results are similar, accurately capturing the initial dissipation, but
under predicting the final dissipation rate later in the simulation. The difference is the CPU time; the
fourth-order simulation required approximately 85% less CPU time than the finer second-order simulation.

Contours of the vorticity norm at one of the periodic faces, x = π, are shown in Figure 6 for the fourth-
order result obtained on the finest grid. The structures presented by van Rees et al.51 are recovered; however,
extra structures are visible in the present simulations. These structures are fairly large, but are formed by
the lowest vorticity contour lines. Analytically, the y and z-components of vorticity should be identically zero
at this face. Removing these components and showing only the x-component of the vorticity, the structures
then match very well. The deviation is likely due to the difference in spatial resolution or the effects of
compressibility in the present simulation. Figure 7 shows contours of the x-component of vorticity of the fine
grid simulations for both second and fourth-order. The high-vorticity component of the second-order 1283

result is weak and very concentrated. There is indication of an annular structure, but it is only formed by the
lowest contour lines. Increasing the order of the simulation, increases maximum vorticity, which now becomes
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Figure 4. Taylor-Green flow: grid convergence. Legend entries denote spatial resolution in each coordinate direction,
i.e. the number of nodes.
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Figure 5. Taylor-Green flow: fine mesh simulation results. (upper) non-compact-stencil discretization, and (lower)
compact-stencil discretization. Legend entries denote spatial resolution in each coordinate direction, i.e. the number
of nodes, and subscripts denote spatial order of accuracy.

part of the annular structure. It remains less defined than the DNS result, and there are some erroneous
artifacts. Increasing the spatial resolution to 2563, the second-order result becomes more well-defined than
the fourth-order result on the coarser grid, and is able to removes the erroneous artifacts. The former may
be a result of the interpolation used to create the contour being computed from a finer grid. Regardless, the
location and strength of the vorticity is only marginally closer to the DNS results. The structure now has a
good likeness to the DNS result, though it remains slightly compressed. Finally, the fourth-order result on
the finest grid has the high maximum vorticity, is even more decompressed, and is very similar to the DNS
result.
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|ω| |ωx| |ω| - van Rees et al.51

Figure 6. Taylor-Green flow (2563 grid): vorticity norm and x-component of vorticity of the present study compared
with vorticity norm from van Rees et al.51 ( 1

M◦ |ω|, 1
M◦ |ωx| = 1, 5, 10, 20, 30)

1283 grid - Second-order 1283 grid - Fourth-order 2563 grid - Second-order 2563 grid - Fourth-order

Figure 7. Taylor-Green flow: x-component of vorticity ( 1
M◦ |ωx| = 1, 5, 10, 20, 30).

III.C.3. Temporal convergence studies

The temporal accuracy and efficiency of a few common time integration methods are evaluated in a tem-
poral convergence study with time steps ∆ = 0.003125, . . . , 0.2; corresponding to CFL ≈ 3, . . . , 195. These
simulations, along with a reference solution obtained with the classical fourth-order Runge-Kutta (RK4)
method and a time step of 0.00078125, CFL ≈ 0.76, were computed on a 1283 grid. The use of a reference
case, computed on the same grid, eliminates the influence of the spatial discretization error, thus isolating
the temporal error. The error is computed as the root-mean-square of the difference in kinetic energy:

erms =

√∑m
i=1(Ek,i − Ek,i,ref )2

m

where m is the number of time steps.
The temporal convergence and efficiency of the methods are shown in Figure 8. Not shown in the figure

is BDF3, which was not able to produce a stable result. The design order of every other method is recovered;
however, the main result is the efficiency of the ESDIRK methods: the CPU time required to obtain a preset
level of error. While the trapezoidal method is more efficient than ESDIRK2, the trapezoidal method is
not L-stable and its stability contour lies on the imaginary axis which could lead to stability issues in other
cases. Regardless, the second-order methods are efficient only for simulations requiring a minimum level
of temporal accuracy. As the required accuracy becomes more stringent, ESDIRK4 quickly and decidedly
becomes more efficient.

III.D. SD7003 Wing

A major concern with low-Reynolds number flows over wings is the formation of laminar separation bubbles.
At moderate angles of attack, the laminar boundary layer becomes susceptible to adverse pressure gradients,
causing the formation of the Laminar Separation Bubbles (LSBs). The focus for this paper is to examine
the ability of the numerical methods to efficiently predict separation, transition in the separated shear layer,
and turbulent reattachment. In future studies we hope to further examine the resulting turbulent boundary
layer, the acoustic field, and different passive flow control devices.
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Figure 8. Taylor-Green flow: temporal convergence and efficiency

The SD7003 airfoil is chosen for this study and extruded to a rectangular unswept wing. The flow is
simulated with periodic boundary conditions in the spanwise direction to emulate an infinite wing. The
parameters for these studies are a Reynolds number of 60, 000, a Mach number of 0.2, and angles of attack
4◦ and 8◦. Each simulation is initialized with a fully developed two-dimensional flow field. The solution is
extruded to three-dimensions and allowed to develop for 10− 20 convective time units before averaged data
is collected. The data is averaged over 4 convective time units and over the span.

III.D.1. Definitions

The point of separation is defined as the time-averaged location along the chord line that the friction
coefficient becomes negative. Similarly, the reattachment point is the time-averaged location along the chord
where the friction coefficient becomes positive again. Defining a point for transition is more difficult since
transition occurs over a whole region; however, for the sake of comparison, the time-averaged location at
which the normalized Reynolds stress, τxy = −u′v′/u2

∞, reaches the critical value of 0.001, is defined as the
transition point.56

III.D.2. Grids

The SD7003 geometry is modified with a rounded trailing edge to facilitate the use of O-grids. This is
not necessary, but is done to be consistent with the 1st AIAA International Workshop on High-Order CFD
methods. The grid is generated in two dimensions and then extruded to three dimensions, with the farfield
placed at 15 chords, and the spanwise extent set to 0.2 chords. 126 grid points are placed in the off-wall
direction, 251 on the upper surface, and 101 on the lower surface and in the spanwise direction. The acoustic
boundary zone comprises the 6 outermost nodes in the farfield. The off-wall spacing is 10−6, corresponding
to an average y+ ∼ 5, and the farfield spacing is set to 1, all measured in chord units. In total, the two and
three-dimensional grids have approximately 47, 000 and 4.9 × 106 grid points respectively. Figure 9 shows
every 5th node of the complete SD7003 grid, and Figure 10 shows a close-up of the near-wall region (denoted
as “Baseline”).

The performance of the SD7003 grid is evaluated with a series of three finer grids. The first grid has a
refined the near-wall region (shown in Figure 11), increasing the number of streamwise nodes on the upper
surface and the number of nodes in the off-wall direction by 50 and 25 nodes respectively. The second
grid extends the refinement to the rest of the grid, further increasing the number of nodes by 50 and 25
in the circumferential and off-wall directions. The final grid contains 701, 301, and 201 grid points in the
circumferential, off-wall, and spanwise directions respectively. This provides a very fine reference against
which to evaluate the performance of the other grids. Close-ups of the grids are shown in Figure 10.

This study is carried out at 4◦ angle of attack with a time step of ∆t = 10−2. Table 3 compares the
time-averaged lift and drag coefficients, and Figure 12 presents the pressure and skin friction coefficient
distributions for the grids. The points of separation and transition are all nearly identical across the grids.
Up until this point the flow is considered to be laminar, so it is not surprising that the results are consistent.
There is small variation in the reattachment point; however it does not significantly affect the time-averaged
lift and drag values.
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Figure 9. SD7003: Full grid with every 5th node shown.

Baseline Grid 1 Grid 2 Grid 3
Figure 10. SD7003: Grids for grid refinement study

Figure 11. SD7003: Near-wing boundary region definition.

Separation Transition Reattachment cl cd

Baseline 21% 51% 64% 0.6009 0.0222

Grid 1 21% 48% 65% 0.5970 0.0224

Grid 2 21% 49% 66% 0.5991 0.0228

Grid 3 22% - 64% 0.5958 0.0217
Table 3. SD7003: Time-averaged locations of separation, transition, and reattachment along with time-average lift and
drag coefficients for the grid refinement study.

III.D.3. Order

A comparison of results obtained with second and fourth-order spatial discretizations are found in Figure 13,
overlaid with results from Galbraith and Visbal15 and Zhou and Wang.56 The results are obtained with the
baseline grid at an angle of attack of 4◦, and a time step of 10−2. At this grid resolution, the second-order
solution deviates significantly from the published results. The pressure recovery after the pressure plateau
occurs noticeable sooner and is much shallower. The flow separates slightly further downstream, and reat-
taches noticeable upstream. The fourth-order results are significantly closer to the published results shown
and to those presented in Table 5. Furthermore, the fourth-order simulation only requires approximately
2.5 times more CPU time. If we assume perfect scaling, this would only allow approximately 35% more
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Figure 12. SD7003: time averaged pressure and friction coefficients for grid study.

Figure 13. SD7003: order comparison. Legend entries denote spatial order of accuracy with ‘c’ marking results obtained
with the compact stencil spatial discretization.

cl cd

∆t = 0.08 0.6008 0.0222

∆t = 0.04 0.6010 0.0223

∆t = 0.02 0.6007 0.0222

∆t = 0.01 0.6009 0.0222

∆t = 0.005 0.6005 0.0222

∆t = 0.0025 0.6005 0.0222
Table 4. SD7003: Time averaged lift and drag for time step study.

nodes to be used in each direction of the second-order simulation to have the same computational cost. It
is unlikely that with this increased resolution, the accuracy of the second-order simulation competitive with
the fourth-order result.

III.D.4. Temporal Integration

The temporal discretization plays a large role in the efficiency of the overall solution process. To determine
the most efficient time step size, an investigation using the baseline grid is undertaken, evaluated by the
accuracy of time-averaged lift and drag coefficients. The results of the study are shown in Table 4. Within
the accuracy of the approximations, the lift and drag coefficients appear to be step size independent. The
Courant number of the simulation with largest step size is on the order of 104, and while the simulation
converges and is stable, the solution of the linear system becomes difficult. The parameters required to
ensure convergence of the simulations with the largest step sizes, render them inefficient. Therefore, the step
size chosen for the rest of the simulations is ∆t = 0.01.

III.D.5. Angle of Attack

Angles of attack of 4◦ and 8◦ are common test conditions for the simulation of the SD7003. These were
the subject of investigation at the 1st AIAA International Workshop on High-Order CFD Methods. Using
the baseline grid, Table 5 compares the time-averaged results with previously published values, and Figure
14 shows the distribution of the force coefficients. The results for the 4◦ case match very well to other

16 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

av
id

 Z
in

gg
 o

n 
Ja

nu
ar

y 
8,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

38
3 



Study Type Separation Transition Reattachment cl cd

4◦ Angle of Attack

TU-BS41 Exper. 30% 53% 62% - -

HFWT38 Exper. 18% 47% 58% - -

Carton de Wiart and Hillewaert8 DNS 21% - 65% 0.60 0.022

Uranga et al.50 XFoil 26% 57% 60% 0.58 0.018

Uranga et al.50 ILES 24% 51% 60% 0.60 0.022

Castonguay et al.9 ILES 23% 52% 65% - -

Zhou and Wang56 ILES 22.7% 52.1% 68.5% - -

Galbraith and Visbal15 ILES 23% 55% 65% - -

Galbraith16 ILES 23% 55% 65% 0.59 0.021

Present (2nd-order) ILES 23% 42% 60% 0.590 0.019

Present (4th-order) ILES 21% 51% 64% 0.601 0.022

8◦ Angle of Attack

Garmann and Visbal17 ILES 2.3% - 26% 0.970 0.039

Zimmerman and Wang57 ILES 4% - 31% 0.916 0.049

Galbraith16 ILES 4% 18% 28% 0.92 0.043

Present ILES 3.7% 10.5% 20% 0.968 0.034
Table 5. SD7003: Experimental and Computational results for transitional flow over the SD7003 wing.
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Figure 14. SD7003: Averaged pressure and friction coefficient distributions. Angle of attack 4◦ (upper), and 8◦ (lower).

numerical simulations, and discrepancies with experimental results are thought to be caused by low intensity
free-stream turbulence not present in the numerical simulations. At angle of attack 8◦, the general form of
the force distributions match very well with the literature, as well as the lift coefficient. The location of
separation is also very good; however, transition and reattachment occur upstream of the locations seen in
the other computations.
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IV. Conclusions

Investigation of high-order methods, using the Taylor-Green vortex flow, shows the clear advantage in
efficiency of high-order methods when stringent accuracy is required. The fourth-order spatial discretization
obtains a similar evolution of dissipation rate and enstrophy to the second-order discretization, but with
half as many grid points and time steps. The reduction in mesh and time step requirements translates to
an 85% reduction in CPU time. The second-order solution on the finer mesh is slightly better at capturing
the strength and structure of the vorticity, but does not warrant the significant increase in computational
cost. The evaluation of the temporal discretization shows a clear advantage to the higher-order ESDIRK4
method for simulations requiring more than a basic level of accuracy.

Results from the simulation of transitional flow over the SD7003 are in good agreement with experimental
and computational results, even with fairly coarse spatial and temporal resolution. The high-order spatial
discretization accurately captures the separation, transition in the separated shear layer, and finally turbulent
reattachment. This is not the case with the second-order discretization when the same simulation parameters
are used; the force distribution profiles significantly deviate from published results.

These results give a clear picture of the benefits of high-order discretizations along with the advantages
of the novel parallel Newton-Krylov-Schur algorithm for high-accuracy unsteady fluid simulation.
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36Mattsson, K., Svärd, M. and Shoeybi, M., “Stable and accurate schemes for the compressible Navier-Stokes equations”,
Journal of Computational Physics, Vol. 227, No. 4, 2008, pp 2293-2316.
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