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Amultipoint optimization approach is used to solve aerodynamic design problems encompassing a broad range of

operating conditions in the objective function and constraints. The designer must specify the range of on-design

operating conditions, the objective function to be minimized, a weighting function based on the mission or fleet

requirements, and a set of performance and geometric constraints. Based on this designer input, a weighted-integral

objective function is developed. The numerical optimization problem is then formulated as a constrained multipoint

problem with the weight assigned to each operating condition determined by a quadrature rule. The approach is

illustrated with several design problems for transonic civil transport aircraft and is extended to the formulation of

aircraft range and endurance objective functions for use in the design of an unmanned aerial vehicle. The results

demonstrate that the approach enables the designer to design an airfoil that is precisely tailored to the problem

specification. Pareto fronts are presented as ameans of providing the designer with information on tradeoffs that can

be used to guide the problem specification.

Nomenclature

Cd = coefficient of drag
Cl = coefficient of lift
C�l;max = lower bound on maximum lift coefficient constraint
E = endurance
E = endurance factor
E 0 = endurance factor, inverted integrand
h = altitude
J = objective function
M = Mach number
Mks = estimate of maximum Mach number in the flowfield

given by the KS function
Mmax = maximum Mach number in the flowfield
M�max = upper bound on maximum Mach number constraint
R = range
R = range factor
R 0 = range factor, inverted integrand
s = sound speed
T = quadrature rule weights for integral approximation
W = aircraft weight
Z = designer priority weighting function

I. Introduction

D ESIGN of an aerospace vehicle is a complex multidisciplinary
problem. There are an enormous number of different operating

conditions that must be accounted for. With experience, the required
number of operating conditions can be reduced, but it remains
extremely large. Some of these operating conditions contribute to the
overall objectives of the design, while others primarily impose
constraints. The design problem is further complicated by the fact
that the aircraft will fly a variety of missions, and the fleet profile
cannot be precisely known. There are many other uncertainties, for
example in the analyses, that necessitate a robust design and an
understanding of tradeoffs. An additional challenge is due to the fact

that many of the operating conditions in the full flight envelope are
expensive and time-consuming to simulate accurately.
Based on the preceding description, it is clear that powerful tools

will be needed to tackle such design problems and thatwe do not have
such tools at present. Some of the desired properties of a design
system include the following:
1) It must efficiently find an optimal solution and be robust enough

to allow a thorough exploration of the design space.
2) It should be automated when designer intervention is not

required and easy to interact with when designer input is needed.
3) It should provide the designer with feedback regarding tradeoffs

and the implications of choices.
4) It must produce robust designs such that performance is

insensitive to expected variance from optimal geometry and
operating conditions.
5) It must be capable of incorporating the designer’s priorities into

the design.
We do not expect the design process based on such tools to proceed

linearly from a well defined problem specification to a final design.
Rather, we expect the feedback from the design process to influence
the problem formulation such that several iterations may be required.
A brute force approach is unlikely to be feasible, and considerable
ingenuity and expertise will be required to formulate the problem
such that it is tractable.
In this paper,we take a step toward the development of an approach

to optimization problems in which the objective function and
constraints involve awide range of operating conditions.We consider
only one discipline, aerodynamics, and restrict our interest to two
dimensions (i.e., airfoil design). Moreover, we consider only a small
subset of operating conditions in the flight envelope and only a single
configuration, a clean geometry. For a practical design, there are
numerous further considerations, including high lift, aerostructural
tradeoffs, aeroelasticity, and three-dimensional effects. Our objective
is to apply our approach to sample problems of sufficient complexity
to demonstrate its suitability for more complex problems.
Multipoint aerodynamic shape optimization can be used for a

variety of purposes [1–7]. For example, Huyse and Lewis [4], Huyse
et al. [5], and Li et al. [6] have written a series of papers addressing
robust design and design under uncertainty using aweighted-integral
approach based on probability density functions. However, there has
been little research on the formulation of optimization problems that
address a comprehensive set of design requirements, constraints, and
operating conditions, which is the focus of this paper. Zingg andElias
[3] presented an automated technique for selecting sampling points
and weights to achieve specified performance over a range of
Mach numbers. Buckley et al. [7] took this a step further, solving an
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18-point optimization problem including eight on-design operating
conditions and 10 off-design operating conditions. Here,we present a
significant improvement over our previous approach using a
weighted integral to handle a broad range of on-design operating
conditions in combination with several constraints based on off-
design operating conditions. We apply the new approach to three
design problems to demonstrate its effectiveness. Finally, we
demonstrate how Pareto fronts can be used to provide the type of
feedback the designer needs to reformulate the design problem if
necessary.

II. Overview of Optima2D

Optima2D is a code for aerodynamic shape optimization
developed by Nemec et al. [8,9] that employs a two-dimensional
turbulent flow solver. The compressible Reynolds-averaged Navier–
Stokes equations are solved at each design iteration with a Newton–
Krylov method in which the linear system arising at each Newton
iteration is solved using the generalized minimal residual method
(GMRES) preconditioned with an incomplete lower–upper
factorization with limited fill. Spatial derivatives in the governing
equations are discretized using second-order centered finite
differences with added scalar numerical dissipation. Eddy viscosity
is computed using the one-equation Spalart–Allmaras turbu-
lence model.
The airfoil geometry is parametrized usingB-spline control points.

The vertical coordinates of these control points are design variables,
thus allowing alterations to the baseline shape. For lift-constrained
drag-minimization problems, the design variables are B-spline
control points, and the angle of attack is computed as part of the flow
solution to meet the lift constraint. For lift-maximization problems,
the angle of attack is a design variable in addition to the B-spline
control points.
Gradients of objective and constraint functions that are dependent

on the flow solution are calculated using the discrete-adjoint method;
the adjoint equation is solved using preconditioned GMRES.
Function and gradient evaluations are passed to the optimization
algorithm, which determines how to modify the design variables to
solve the optimization problem. At each design iteration, the grid
around the updated airfoil shape is perturbed using a simple algebraic
grid-movement technique. The constrained optimization algorithm
SNOPT developed by Gill et al. [10] uses a sequential quadratic
programming method that obtains search directions from a sequence
of quadratic programming (QP) subproblems. Each QP subproblem
minimizes a quadratic model of a Lagrangian function, which is used
to represent the objective function subject to linearized constraints.

III. Description of Aircraft Design Problems

A. Design Problem 1

1. Objective Function at On-Design Operating Conditions

A design problem considered previously by Buckley et al. [7] was
based on a design specification for a hypothetical aircraft intended to
be used as a transonic civil transport vehicle. In this work, we revisit
this design problem and use theweighted-integral approach to obtain
optimal solutions for several test cases. Regions of the flight envelope
considered for this design problem include cruise, dive, and low-

speed conditions. These flight-envelope regions span a range of
values for Mach number, aircraft weight, and altitude. The
performance goal for the optimization is to minimize mean fuel
consumption for the aircraft over the cruise flight envelope. It is
achieved by minimizing an objective function defined as the integral
of Cd over the range of specified cruise operating conditions. The
aircraft weight ranges from 60,000 to 100,000 lb, its cruise Mach
number ranges from 0.78 to 0.88, and its cruise altitude ranges from
29,000 to 39,000 ft. Cl values corresponding to these operating
conditions range from 0.27 to 0.58. The wings of the aircraft are
swept at 35 deg and have an area of 1000 ft2. Because of the
wing sweep angle, the effective Mach number range is from 0.64
to 0.72.

2. Constraints at Off-Design Operating Conditions

In addition to optimizing performance over a range of cruise
conditions, a set of constraints at dive and low-speed operating
conditions is specified. Table 1 summarizes this set of off-design
operating conditions and corresponding constraints. Off-design
points 1–8 are associated with a safety requirement for maneu-
verability under dive conditions. The dive-conditionMach number is
0.93, making the effective Mach number 0.76 accounting for the
sweep angle. The endpoints of the range of aircraft weights and
altitudes are considered together with two load factors, 0.7 and 1.3 at
each combination of aircraft weight and altitude for a total of eight
dive conditions. At each extreme of the aircraft weight range, the load
factors produce two lift requirements. In turn, these lift requirements
taken at each extreme of the altitude range are used to compute
corresponding lift coefficients for the dive conditions. Similarly, the
dive-condition Reynolds numbers correspond to the two extremes of
the altitude range. The dive maneuverability requirement is achieved
by keeping shock strengths modest under these conditions. This is
imposed by requiring that the Mach numbers upstream of shocks are
less than or equal to 1.35.
The final two operating points reflect a requirement to be able to

achieve an adequate maximum lift coefficient at low-speed
conditions. For operating condition 9, the altitude is sea level, the
weight is 60,000 lb, and the effective Mach number is 0.16. For
operating point 10, the weight is 100,000 lb, and the effective Mach
number is 0.20. The low-speed requirement specifies that the
maximum attainable lift coefficient under these conditions is at
least 1.778.‡

B. Design Problem 2

Asecond design problem is considered for a faster, heavier aircraft.
For design problem 2, the aircraft weight ranges from 100,000
to 160,000 lb, its cruise Mach number ranges from 0.88 to 0.94, and
its cruise altitude ranges from 29,000 to 39,000 ft. Cl values
corresponding to these operating conditions range from 0.40 to 0.72.

Table 1 Off-design constraints and operating conditions for design problem 1

Design point Reynolds number Mach number Lift coefficient Operating condition Off-design constraint

1 28.88 × 106 0.76 0.20 Dive Mmax ≤ 1.35
2 28.88 × 106 0.76 0.11 Dive Mmax ≤ 1.35
3 28.88 × 106 0.76 0.33 Dive Mmax ≤ 1.35
4 28.88 × 106 0.76 0.18 Dive Mmax ≤ 1.35
5 19.62 × 106 0.76 0.32 Dive Mmax ≤ 1.35
6 19.62 × 106 0.76 0.17 Dive Mmax ≤ 1.35
7 19.62 × 106 0.76 0.52 Dive Mmax ≤ 1.35
8 19.62 × 106 0.76 0.28 Dive Mmax ≤ 1.35
9 11.8 × 106 0.16 — — Low-speed Cl;max ≥ 1.60
10 15.0 × 106 0.20 — — Low-speed Cl;max ≥ 1.60

‡The optimization procedures applied to the test cases in this work are
demonstrated on a mesh of moderate density. Using a lower target lift
coefficient of 1.60 on this mesh yields a lift coefficient of at least 1.778 on a
fine mesh used for accurate performance evaluation. See the appendix for
further explanation of the off-design constraint values usedwithmoderate grid
densities suitable for optimization problems.

BUCKLEYAND ZINGG 1973

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

N
ov

em
be

r 
10

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
22

68
 



The aircraft wings are swept at 35 deg and have an area of 1000 ft2.
Taking into account the wing sweep, the effective Mach number
range is from 0.72 to 0.77. As with design problem 1, the
performance goal is to minimize average fuel consumption for the
aircraft. This is achieved by minimizing the integral of Cd over the
range of specified cruise operating conditions.
While the two off-design constraints at low-speed operating

conditions are the same as for design problem 1, the eight off-design
constraints at dive operating conditions correspond to the increased
aircraft weight, a higher dive-condition Mach number of 0.98, and
load factors of 0.7 and 1.3. The effective dive-condition Mach
number is 0.80 accounting for the sweep angle. Table 2 summarizes
the off-design constraints and operating conditions for design
problem 2.

C. Design Problem 3

Design problem 3 is a departure from the first two design
problems. Here, we consider the design of an unmanned aerial
vehicle (UAV). The design specifications are based on a UAV
intended for high-altitude long-endurance missions. The aircraft
weight ranges from 13,349 to 26,751 lb. The aircraft has an unswept
wing spanning 115 ft and a wing area of 1000 ft2. It is expected to fly
over a range of subsonic speeds fromMach 0.35 to 0.50 at an altitude
of 60,000 ft. Reynolds numbers at these operating conditions range
from 4 to 6 million. Design objectives for this type of aircraft differ
significantly from those applicable to a transonic civil transport
aircraft exemplified by design problems 1 and 2. For this aircraft,
endurance is a significant design consideration as well as range. The
two competing goals of maximizing range and endurance
performance will be considered. Given that aircraft range and
endurance are defined as integrals of aerodynamic quantities over a
range of aircraft weights, the integral approach used to quantify these
performance attributes as objective functions described in Sec. IV is
well suited to this design problem.

IV. Integral Formulation of Objective Functions

A. Minimizing Fuel Consumption at Prescribed Cruise Conditions

Given the design objective of reducing fuel burn over a range of
cruise operating conditions, an objective function may be defined as
the integral of Cd over the range of interest. Huyse and Lewis [4]
proposed a weighted-integral approach for the purpose of solving
robust optimization problems where the design objective is to
desensitize aerodynamic performance of a shape to variability about
some operating condition. In their approach to robust optimization, a
weighting function represents the statistical variance of the
prescribed operating condition. We apply the concept of a weighted
integral to design problems in which a range of Mach numbers M,
aircraft weightsW, and cruise altitudes h are considered. Aweighting
function is used that allows the designer to prioritize the importance
of operating conditions, e.g., based on mission requirements of the
aircraft. The weighted integral is defined as

Z
h2

h1

Z
W2

W1

Z
M2

M1

Cd�M;W; h�Z�M;W; h� dM dW dh (1)

whereCd is a function ofM,W, and h, andZ is a weighting function
based on the priorities of the designer that may also be a function of
M, W, and h. To demonstrate the use and impact of Z, test cases
presented in thiswork use two differentweighting functions. The first
is simply Z1 � 1 (i.e., all conditions are equally weighted). The
second weighting function is a function ofM only, given by

Z2�M� � ea�M−M1� with a � ln �20�
M2 −M1

(2)

This function is defined such that Z2�M1� � 1 and Z2�M2� � 20
withM1 < M2, which places 20 timesmoreweight on the high end of
the Mach range than the low end. This weighting function is an
example of one that would be suitable for the design of an aircraft or
fleet of aircraft that will fly predominantly at M � M2. We wish to
emphasize that the choice of weighting function Z is dictated by the
intended mission of the aircraft.
The objective function to be minimized is an approximation of the

weighted integral (1) given by

J �
XNM
i�1

XNW
j�1

XNh
k�1

T i;j;k Cd�Mi;Wj; hk�Z�Mi;Wj; hk�ΔMΔWΔh

(3)

whereNM,NW , andNh are the numbers of quadrature points used in
M, W, and h, respectively, and ΔM, ΔW, and Δh are the
corresponding spacings between quadrature points. The T i;j;k are the
weights used to approximate the integral using a quadrature rule. At
each quadrature point, dragminimization is subject to a lift constraint
�Cl � C�l �i;j;k. The accuracy of the integral approximation is
dependent on the number of quadrature points used in its evaluation
and the quadrature rule used. The trapezoidal rule is used in the
present examples. To clarify the definition of T , the trapezoidal
quadrature weights used to approximate the integral of a single-
variable function are T � �1

2
; 1; :::; 1; 1

2
�. For functions of more than

one variable, as in our case, the trapezoidal quadratureweights have a
similar form corresponding to the number of function variables.

B. Maximizing Aircraft Range and Endurance

Aircraft range is the maximum distance that can be traversed for a
given payload weight. Similarly, aircraft endurance refers to the
maximum amount of time that an aircraft can remain aloft carrying a
specified payload. Considerations such as labor costs and passenger
comfort associated with flight time place importance on faster
operating speeds for civil transport aircraft, whereas time available
for data collection and area coverage, often without regard for
operating speed, can be typical considerations when designing a
UAV. In the absence of constraints on operating speed, the designer is
free to choose an operating speed that best achieves the goal of
maximizing either range or endurance. It should be noted that, for a
given aircraft, maximum range and endurance occur at different
speeds. It follows that, in addition to geometric design variables
which enable manipulation of an aerodynamic shape, the Mach
number must also be treated as a design variable when either aircraft
range or endurance are to be optimized.

Table 2 Off-design constraints and operating conditions for design problem 2

Design point Reynolds number Mach number Lift coefficient Operating condition Off-design constraint

1 30.45 × 106 0.80 0.30 Dive Mmax ≤ 1.35
2 30.45 × 106 0.80 0.16 Dive Mmax ≤ 1.35
3 30.45 × 106 0.80 0.47 Dive Mmax ≤ 1.35
4 30.45 × 106 0.80 0.26 Dive Mmax ≤ 1.35
5 21.39 × 106 0.80 0.48 Dive Mmax ≤ 1.35
6 21.39 × 106 0.80 0.26 Dive Mmax ≤ 1.35
7 21.39 × 106 0.80 0.76 Dive Mmax ≤ 1.35
8 21.39 × 106 0.80 0.41 Dive Mmax ≤ 1.35
9 11.8 × 106 0.16 — — Low-speed Cl;max ≥ 1.60
10 15.0 × 106 0.20 — — Low-speed Cl;max ≥ 1.60
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The equations for range and endurance, respectively, of an aircraft
with jet propulsion can be expressed in integral form as

R �
Z
W2

W1

�sM�
TSFC

Cl
Cd

dW

W
(4)

E �
Z
W2

W1

1

TSFC

Cl
Cd

dW

W
(5)

whereTSFC is the thrust-specific fuel consumption of the jet engines,
s is the speed of sound,W2 is the aircraft maximum takeoff weight,
and W1 is the maximum takeoff weight minus fuel weight. The
evaluation of these integrals to obtain analytic expressions for range
and endurance is dependent on which quantities inside the integral
varywith aircraft weightW. For example, the Breguet range equation
can be derived from Eq. (4) if one assumes thatM, TSFC, andCl∕Cd
are constant over the duration of the flight. In practice, for this set of
assumptions to hold, an aircraft must employ a cruise–climb flight
schedule such that the plane gains altitude as its fuel weight decreases
over the duration of the flight to maintain constant Cl∕Cd. By
assuming that the UAV flies at a constant altitude and speed, and
TSFC is constant, simplified integrals that are proportional to range
and endurance are obtained:

R �
Z
W2

W1

MCl
Cd

dW (6)

E �
Z
W2

W1

Cl
Cd

dW (7)

R and E are referred to as range and endurance factors, respectively.
This requires that Cl∕Cd remain inside the integral because, at
constant speed and altitude, Cl and Cd vary with W. To maximize
range or endurance, wewish tominimizemodified versions ofR or E
with inverted integrands given by

R 0 �
Z
W2

W1

Cd
MCl

dW (8)

E 0 �
Z
W2

W1

Cd
Cl

dW (9)

For a range-optimization problem, the objective function is defined as
an approximation of the integralR 0 given by

J � ΔW
M

XNW
j�1

T j

�
Cd
Cl

�
j

(10)

whereΔW is the spacing between quadrature points over the range of
aircraft weights W2 −W1. Note that, while M is assumed to be
constant in the calculation of range, it is treated as a design variable in
the formulation of the range- and endurance-maximization opti-
mization problems. The objective function for an endurance
optimization problem is derived in a similar fashion.
Integral formulations of the range and endurance objective

functions are special cases of the more general weighted-integral
objective function described in the previous section. In particular, the
assumptions of constant speed and altitude required for evaluation of
integrals (6, 7) leave only a range of aircraft weights to consider in the
objective function. Also, the use of a designer-priority weighting
function is not applicable under these circumstances as preference
should not be given to any specific aircraft weight.

V. Multipoint Optimization Problem Setup

This description of optimization setup parameters applies to the
cases presented in subsequent sections. The airfoil geometry is
parametrized using 15 B-spline control points. One control point is
frozen at the leading edge and two at the trailing edge. The remaining
12 control points are designated as design variables and are split
evenly between the top and bottom airfoil surfaces. Thickness
constraints of 1% chord and 0.2% chord are imposed at 95% chord
and 99% chord, respectively, to prevent trailing-edge crossover. The
latter is typically inactive once convergence is achieved. The area of
the optimal geometry is constrained to be at least the area of the initial
geometry. For design problems 1 and 3, the RAE 2822 airfoil is used
as the initial geometry. For design problem 2, an airfoil with a
thickness-to-chord ratio of 10.5% is used as the initial geometry. In
all cases, the base grid has a C topology with 289 nodes in the
streamwise direction and 65 nodes in the normal direction; the off-
wall spacing is 2 × 10−6 chord. It was created using the RAE 2822
airfoil geometry. See the appendix for details on the impact of the
number of design variables and grid size.
For design problems 1 and 2, off-design points described in

Tables 1 and 2 representing dive conditions are subject to the
constraint that the maximum Mach number in the flowfield not
exceed 1.35. ThemaximumMach number function is not continuous
with respect to the design variables and therefore cannot be handled
directly by SNOPT. To address this issue, we use the Kreisselmeier–
Steinhauser (KS) function [11] as ameans to aggregateMach number
constraints evaluated at all nodes in the flowfield into a single
composite function that is continuously differentiable. Mks

represents a conservative estimate of the maximum Mach number
in the flowfield based on the KS function. Therefore, Mmax

constraints defined asM�max −Mmax > 0, where the upper bound on
the constraint isM�max � 1.35, translate toM�ks −Mks > 0, where the
upper bound on the constraint is M�ks � 1.50. This value of M�ks
producesMmax < 1.35 at the optimal solution. An explanation of the
determination ofM�ks is provided in the appendix.Off-design points 9
and 10 in Tables 1 and 2 represent constraints at low-speed operating
conditions such that Cl;max − C�l;max > 0, where the lower bound on
the constraint isC�l;max � 1.60. The optimization procedures applied
to the test cases in this work are demonstrated on a mesh of moderate
density. Using a lower target lift coefficient of 1.60 on this mesh
yields a lift coefficient of at least 1.778 on a fine mesh used for
accurate performance evaluation. See the appendix for further
explanation of the off-design constraint values used with moderate
grid densities suitable for optimization problems.
The flow solver described in Sec. II is used to evaluate airfoil

performance in all cases. Given studies of the flow solver’s accuracy
performed by Zingg [12] and Zingg et al. [13], the grids used can be
expected to predict lift coefficients accurate to within 1% and drag
coefficients to within 5% for attached and mildly separated flows,
including both numerical and physical model error.

VI. Results

A. Comparison of Weighting Functions

The weighted-integral approach described in Sec. IV.A is applied
to design problems 1 and 2 described in Secs. III.A and III.B.
Optimizations are performed with the two weighting functions
described in Sec. IV.A to illustrate their influence on the design-
problem solution. The first assigns equal weight to all operating
conditions, and the second prioritizes operating conditions such that
weight increases exponentially with Mach number. For each design
problem, two additional optimizations are performed using the
weighting functions described previously but excluding the off-
design constraints summarized in Tables 1 and 2. This demonstrates
the extent to which on-design performance is penalized as a result of
the need to satisfy the off-design constraints. To simplify the test
cases and reduce computational expense, a constant cruise altitude of
39,000 ft is used for design problems 1 and 2; however, a range of
altitudes can be easily accommodated by the weighted-integral
approach. For each case, the integral is approximated using the
trapezoidal rule with 25 integration points evenly spaced over the
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range of cruise Mach numbers and aircraft weights. The solutions to
design problems 1 and 2 satisfy the Karush–Kuhn–Tucker [14]
optimality conditions for a constrained optimization problem to
within a tolerance of 1 × 10−6. Measures of optimization
convergence versus SNOPTmajor iterations for the equal-weighting
case are shown in Fig. 1. The SNOPTmerit function is an augmented
Lagrangian of the constrained optimization problem. In Fig. 1, it is
normalized by its initial value. Figure 2 gives a comparison of
aerodynamic performance between the optimal solutions obtained
with each weighting function. It shows the averageCd over the range
of aircraft weights as a function of Mach number, where each data
point represents the integral of Cd over the range of aircraft weights
divided by �W2 −W1�, i.e., the average value of Cd over the
associated range of lift coefficients at a fixed Mach number. A
comparison of the optimal airfoil geometries obtained in each case is
shown in Fig. 3.
For design problem 1, independent of the presence of off-design

constraints, prioritizing the on-design operating conditions with a
Mach-number-dependent weighting function has a negligible impact
on the optimal solution. As seen in Fig. 2a, the performance of the
optimal solutions obtained with each weighting function are almost
identical for cases with and without off-design constraints. For this
design problem with a Mach number range peaking at the low end of
the transonic regime, the optimizer obtains shock-free solutions over
the entire range of cruise operating conditions represented by Fig. 2a.
Once the shocks are eliminated, the optimal shape is driven by
considerations of viscous drag, which is not sensitive to Mach

number. This explains why the weighting function that is dependent
on Mach number has little effect on the optimal solution in this case.
Moreover, for this design case, the off-design constraints have only a
small impact on on-design performance, on average less than one
count of drag.
In contrast, the Mach-number-dependent weighting function has

an impact on the performance of the optimal solution to design
problem 2. For this design problem, Mach numbers and lift
coefficients are higher, and shocks cannot be completely eliminated
for the operating conditions associated with cruise. Under these
circumstances, placing more weight on higher Mach numbers does
have a significant impact on the optimal solution. The cost of better
performance at high Mach numbers is inferior performance over the
low-to-mid-range Mach numbers compared to the equal-weighting
result. For this design problem, the weighting function gives the
designer precise control over the performance of the airfoil. This
enables the designer to prioritize based on the intended use of the
aircraft (e.g., the proportion of time flown at specificMach numbers).
Furthermore, the weighted-integral objective function, which
represents performance over a range of expected operating
conditions, inherently produces robust designs. As shown in Fig. 2,
the average Cd performance over the range of Mach numbers varies
smoothly (i.e., there is no evidence of point optimization for all
cases). For this design problem, a substantial performance penalty
is paid to satisfy the off-design constraints. It is also evident that
the impact of the weighting function is reduced when the off-
design constraints are included. In this case, the optimization is
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Fig. 1 Optimization convergence histories for the equal-weighting case.
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Fig. 2 Comparison of average Cd over the range of aircraft weights vs Mach number obtained using different designer-priority weighting functions.
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predominantly driven by the requirement to satisfy these constraints,
thus reducing the design flexibility available to alter on-design
performance.
An examination of optimized drag values over the range of on-

design operating conditions shows that the maximum change in
friction drag for all cases does not exceed 1.2% compared to
performance for the initial airfoil geometry. Relatively small changes
to friction drag are expected for airfoil optimization problems with
transonic operating conditions and an assumption of fully turbulent
flow. In contrast, changes to pressure drag over the course of an
optimization for these cases are generally higher, with the maximum
change in pressure drag exceeding 21%.

B. Range and Endurance Optimization

A series of test cases are executed to optimize the range and
endurance performance of the UAV described in Sec. III.C and to
demonstrate the advantage of using Mach number as a design
variable when considering these particular performance goals. For
both range and endurance objective functions, the corresponding
integrals given by Eqs. (6) and (7) are approximated using five
quadrature points equally spaced over the range of aircraft weights.
For each objective, three test cases are executed. The first is an
optimization performed using only Mach number as a design
variable. The optimal Mach number from the first test case is
specified as a fixed value for the second test case where only
geometric design variables are used. Finally, an optimization is
performed where both Mach number and geometric design variables
are used. A comparison of airfoil geometries optimized for range and
endurance performance using both Mach number and geometric
design variables is shown in Fig. 4. The RAE 2822 airfoil shown on
this figure is used for the test cases with only Mach number as a
design variable.

Figure 5 shows a comparison of the optimized range performance
obtained using the progression of design variable test cases described
previously. The range factor integrand is shown on the vertical axis
versus the aircraft weight on the horizontal axis. The area underneath
a curve in this figure represents the total range factor integral given in
Eq. (6). Table 3 gives a comparison of the optimal values of the range
factor integral in each case.With respect to the casewhere onlyMach
number is used as a design variable, aircraft range is improved by
1.9% for the test casewhere only geometric design variables are used
and 2.1% for the casewhere bothMach number and geometric design
variables are used. When using only Mach number as a design
variable, the optimal Mach number M� is 0.460 compared to 0.435
for the casewhere bothMach number and geometric design variables
are used. For this design problem, the majority of improvement in
aircraft range is achieved via the geometric design variables. In this
case, optimizing with only geometric design variables achieves a
significant improvement in range performance provided that the
fixed value of Mach number used is near its optimal value. A very
small additional improvement in range performance is realized by
matching an optimal Mach number with an optimal shape. For this
case, the average changes in pressure and friction drag when
comparing performance at the optimal solution to that of the initial
airfoil geometry are −11.8% and −1.7%, respectively.
In a similar fashion to the range-optimization cases, Fig. 6 shows a

comparison of the optimized endurance performance obtained from
the design variable test cases. Table 3 gives a comparison of the
optimal values of the endurance factor integral in each case. With
respect to the case where only Mach number is used as a design
variable, a dramatic improvement in endurance performance of 17%
is achieved by optimizing with both Mach number and geometric
design variables whereas a relatively modest improvement of 5% is
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Fig. 3 Comparison of optimal airfoil geometries obtained using different designer-priority weighting functions.
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achieved using only geometric design variables. For the endurance
optimization cases, the difference between optimalMach numbers in
each case is larger than for the range-optimization cases. The fixed
Mach number of 0.425 used for the case with only geometric design
variables limits the improvement in endurance. For this case, the
average changes in pressure and friction drag when comparing
performance at the optimal solution to that of the initial airfoil
geometry are �14.1% and −33.7%, respectively.
For both range and endurance optimizations, using Mach number

and geometric design variables together produces the greatest
performance improvement. Using Mach number as a design variable
eliminates the need to guess an appropriate fixed value for Mach
number.

C. Pareto Fronts

Design via aerodynamic shape optimization can be considered an
iterative process. The optimization process is capable of producing
more information than simply the optimal shape. It can also provide
the designer with information on various tradeoffs that can be used to

reformulate the objectives and constraints. The problem specification
may evolve over several iterations until the final solution is a suitable
compromise between all design objectives and constraints. In certain
cases, for example design problem 2, experimenting with different
weighting functions not only allows the designer to tailor the solution
to suit mission requirements but also provides knowledge of
performance tradeoffs associated with prioritizing on-design
operating conditions. Similarly, Pareto fronts can be used to probe
the design space to yield information on any competing objectives
that are of interest.

1. On-Design Performance Versus Off-Design Constraints

When considering design problems 1 and 2 given in Sec. III, a
designer may be interested in the tradeoff between on-design
performance and off-design constraints. For design problem 2, the
off-design constraint associated with dive conditions shown in
Table 2 isMmax ≤ 1.35. Setting the upper bound onMks � 1.52will
achieve satisfaction of this constraint at all dive operating conditions
(Mks is described in Sec. V). The Pareto front shown in Fig. 7 consists
of a set of optimal solutions generated by incrementally relaxing the
upper bound on theMks constraint from 1.52 to 1.56. The measure of
performance shown in Fig. 7 is the average value of the drag
coefficient over the range of Mach numbers and lift constraints for
design problem 2 described in Sec. III.B. A large degradation in on-
design performance is observed as the constraint upper bound
becomes more restrictive. This provides the designer with precise
information with respect to the impact of the off-design constraint
that can be helpful if there exist alternative means of achieving the
requirement addressed by the constraint. For design problem 1, the
off-design constraint associated with low-speed conditions requires
that the aircraft be capable of achieving Cl;max ≥ 1.60, as shown in
Table 1. The Pareto front given in Fig. 8 shows the tradeoff between
performance at cruise conditions and the lower bound on the Cl;max

constraint at low-speed conditions. The measure of performance in
this case is the average value of the drag coefficient over the range of
Mach numbers and lift constraints for design problem 1 described in
Sec. III.A. It can be seen that cruise performance is significantly
penalized as the Cl;max constraint is increased. The maximum drag
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Fig. 6 Comparison ofUAVendurance performance optimizedwith and

without Mach number as a design variable. GDVs: geometric design

variables, MDV: Mach number design variable, M�: optimal Mach

number.
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Table 3 Optimal UAV range and endurance integral values for test cases with and without Mach

number as a design variable

Design variables Optimal Mach number Range factor integral, lb Endurance factor integral, lb

Mach number only 0.460 291,323 — —

Geometric only 0.460 (fixed) 296,978 — —

Geometric and Mach number 0.435 297,520 — —

Mach number only 0.425 — — 667,267
Geometric only 0.425 (fixed) — — 699,346
Geometric and Mach number 0.347 — 778,219
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coefficient at each point on the Pareto front shown in Fig. 8 occurs at
the highestCl andMach number combination and varies in a manner
consistent with the averageCd. Again, such quantitative information
can be helpful in formulating the optimization problem.

2. Range Versus Endurance

Range and endurance are competing objectives. The range and
endurance objectives are represented by two separate integrals given
in Eqs. (6) and (7) taken over the same range of aircraft weights. Two
Mach number design variables are required, one for each objective.
The point identified as ω � 1.0 on the Pareto front shown in Fig. 9
represents a design optimized for range performance. The furthest
right point identified as ω � 0.0 represents a design optimized for
endurance performance. The intermediate designs are obtained by
varying the relative weightings on the range and endurance integrals.
This figure shows the tradeoff in performance between range and
endurance.

VII. Conclusions

Optimization performed using an objective function based on a
weighted integral is an effective technique for design over a range of
operating conditions. The weighted-integral approach affords the
designer a formal way of prioritizing based on mission requirements
and leads to robust designs. Design considerations for an unmanned
aerial vehicle such as aircraft range and endurance require objective
functions formulated as integrals of aerodynamic quantities over a
range of aircraft weights. When performing range and endurance
optimizations in the absence of constraints on speed, using Mach
number as a design variable in addition to geometric design variables
is demonstrated to produce optimal performance. Examples of Pareto
fronts are given that provide the designer with helpful information
that can be used in understanding and formulating the optimization
problem.

Appendix A: Selection of Parameters for Practical
Aerodynamic Design Problems

A preliminary study of a design problem similar to the one
described in Sec. III.A used an airfoil geometry parametrized by 15
B-spline control points, 12 of which were used as geometric design
variables, and a grid size of 18,785 nodes. These values have been
revisited to study their effect on the optimal solution to the design
problem. Given that computational effort increases with grid size and
number of design variables, a study of these parameters aims to
determinevalues thatminimize computational effortwhile attaining a
satisfactory solution to the design problem.

A1. Design Variable Study

Optimizations were performed with number of design variables
ranging from 12 to 30. Figure A1 shows a slight trend toward on-

design performance improvement as the number of design variables
are increased. The difference between the best and worst on-design
performance, at 30 design variables and 12 design variables,
respectively, is approximately 0.6%. A comparison of the optimized
airfoil geometries obtained with 30 design variables and 12 design
variables is shown in Fig. A2. The main differences in airfoil
geometry are observed at the trailing edge as shown in Fig. A3. The
trailing edge at 30 design variables presents manufacturing and
structural difficulties because it is extremely thin. The additional
design variables create a requirement for some additional thickness
constraints, which will reduce the already small benefit of increasing
the number of design variables. Table A1 shows the number of
function evaluations (where a function evaluation requires one
computation of a flow solution) required as the number of design
variables increases. It can be seen that the computational effort
increases significantly with the number of design variables. When
weighing the benefit of modest performance improvements achieved
with greater number of design variables against increased
computational effort and infeasible airfoil geometry with respect to
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Fig. A2 Comparison of optimized airfoil geometries with 12 and 30
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Table A1 Number of function evaluations vs number

of design variables

Number of design variables Number of function evaluations

12 47
14 41
20 141
22 133
24 134
26 152
28 164
30 232
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Fig. 9 Tradeoff between UAV range and endurance performance.

BUCKLEYAND ZINGG 1979

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

N
ov

em
be

r 
10

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
22

68
 



manufacturing and structural concerns, using 12–14 design variables
is recommended, as values in this range provide a sufficiently optimal
solution to this design problem and will likely be suitable for design
problems with similar operating conditions.

A2. Grid-Density Study

To investigate the effect of grid size on the optimal solution,
optimizations are performed using the coarse and fine grids described
in Table A2. Performance of the optimal solution at each grid size is
evaluated using the evaluation grid, which is extremely fine and
produces very accurate lift and drag coefficients. Design problem 1
described in Sec. III.A is used as the test case.
An iterative optimization procedure is required to ensure that

active off-design constraints are comparably satisfied at optimal
solutions for each grid size when evaluated on the evaluation grid.
This is because the values of the constraint bounds at each grid that
will satisfy the constraints when evaluated on the evaluation grid are
not known beforehand. Design problem 1 described in Sec. III.A
specifies that the maximum Mach number at dive conditions 1–8
must not exceed 1.35 and that Cl;max ≥ 1.778 at high-lift conditions
9–10. It is known that our flow solver will underpredict these
constraint values in proportion to the grid size. To address this issue,
an initial guess for the constraints is used at each grid size. The initial
guess is based on evaluation of the constraints at the initial geometry
using both the coarse grid and the evaluation grid. A converged
optimal solution is obtained using the initial guess for the constraint
bounds. The constraints are evaluated using the optimal solution on
the evaluation grid. The constraint bounds are updated according to
the following formulas and used for the next optimization iteration:

�C�l;max�n�1�C� � �C
�
l;max��E� − ��Cl;max�n�E� − �Cl;max�n�C�� (A1)

�M�max�n�1�C� � �M�max��E� − ��Mmax�n�E� − �Mmax�n�C�� (A2)

SubscriptsC andE denote constraint evaluations on coarse grids and
the evaluation grid, respectively, and the superscript is the index of
optimization iterations. �C�l;max�n�C� is the lower bound on the high-lift
constraint used on the coarse grid at optimization iteration n.
�C�l;max��E� is the lower bound on the high-lift constraint used on the
evaluation grid. This is the constraint value we are trying to achieve
(i.e., Cl;max ≥ 1.778). �Cl;max�n�E� is the value of the high-lift
constraint evaluated on the evaluation grid at optimization iteration n.
�Cl;max�n�C� is the value of the high-lift constraint evaluated on the
coarse grid at optimization iteration n. An analogous naming
convention is used in theMmax constraint-bound update formula.
After three optimization iterations, the constraints for optimal

solutions at each grid are satisfied to within a tolerance of �0.005
when evaluated on the evaluation grid. Table A3 shows a comparison
of the sum of drag coefficients at on-design operating conditions
evaluated using the evaluation grid with the optimal solution at each
grid size. A comparison of the active off-design constraints evaluated

using the evaluation grid with the optimal solution at each grid size is
also given in Table A3. Figure A4 shows a comparison of the optimal
geometries at each grid size. A 1% performance improvement in the
optimal solution has been achieved using the fine grid versus the
coarse grid. A slight difference in the optimal geometries is visible.

A3. Determination of Maximum Mach Number
Constraint BoundM�ks

As described by Buckley et. al. [7] and reviewed in Sec. V, the KS
function provides a conservative estimate of the maximum Mach
number in the flowfield that is used as the basis for the maximum
Mach number constraint associated with dive conditions. At dive
conditions, Mmax ≤ M�max. M

�
ks is defined as the bound on the

conservative estimate of maximum Mach number based on the KS
function.M�max is the actual bound onmaximumMach number in the
flowfield. Mmax is the maximum Mach number evaluated at the
optimal solution. At an optimal solution, SNOPTensures thatMks at
all dive conditions does not exceedM�ks. It is not known beforehand
what value of M�ks will produce Mmax ≤ M�max. The iterative
procedure described next is used to obtain the appropriate value of
M�ks for a given design problem:
1) Start with an initial guess forM�ks∶ M�ks � M0

ks.
2) Run the optimization until a converged solution is obtained.
3) Calculate the discrepancy inMmax∶ ΔMmax � M�max −Mmax.
4) Update guess forM�ks∶ M�ks � M1

ks � M0
ks � ΔMmax.

5) Restart the optimization using updated value forM�ks.
6) Repeat steps 2–5 untilMmax ≃ M�max at the converged solution

to within some specified tolerance.
The maximum Mach number constraint can be satisfied to within
�1 × 10−4 in five iterations.
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Table A2 Grids used to study the effect of

grid density on the optimal solution

Grid name Size Off-wall spacing (chord)

Coarse 289 × 65 2.0 × 10−6

Fine 401 × 89 2.0 × 10−6

Evaluation 917 × 193 7.5 × 10−7

Table A3 Optimal UAV performance for cases with and without Mach

number design variable

Grid name Sum of on-design Cd �Cl;max��E� �C�l;max��C� �Mmax��E� �M�max��C�
Coarse 0.06632 1.778 1.5706 1.355 1.281
Fine 0.06566 1.779 1.628 1.352 1.301
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