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Abstract

We present our recent progress using the Newton-Krylov method to solve three-dimensional aerodynamic flows. An
unstructured-grid approach is utilized to handle complex geometries that arise in practical industrial designs. The
Spalart and Allmaras turbulence model is used to calculate turbulent eddy viscosities. We employ Newton’s method to
obtain the steady-state flow solution for a potentially fast convergence rate, with the linear system that arises solved
by a preconditioned Krylov method. Issues with regard to preconditioning of the viscous operator in three dimensions
are addressed. An incomplete factorization preconditioner applied to a matrix involving only the nearest neighboring
terms is chosen based on numerical experiments. The capability of the current solver is demonstrated by numerical
studies over the ONERA M6 wing as well as the DLR-F6 wing-body configuration.

1 Introduction Mavriplis [7] developed an unstructured approximate-
Newton algorithm. The linear system is solved by a
After many years of development, computational fluid preconditioned generalized minimum residual (GMRES)
dynamics (CFD) has become an important tool in aeromethod. Different preconditioners as well as orderings
dynamic analysis [1, 2]. It provides a reliable alter- of the unknowns were studied. The algorithm was found
native to wind-tunnel and flight tests at a lower cost.to be competitive with a multigrid algorithm. Barth and
The current technology is capable of performing Navier-Linton [8] presented a Newton solver on unstructured
Stokes calculations over complete three-dimensional airmeshes. Matrix-free GMRES is used to solve the linear
craft configurations. These calculations require the usgystem. The work is extended to parallel computations as
of a fine grid to capture the geometry, which leads towell as three-dimensional applications. Nielsen et al. [9]
intensive memory usage as well as high computationafieveloped an unstructured Newton-Krylov algorithm for
times. Two drag-prediction workshops have been orgathe Euler equations in two and three dimensions. The
nized to assess the capabilities of current solvers whemethod is found to provide a fast asymptotic conver-
applied to such flows [3, 4, 5]. With parallelization, flow gence rate. Mesh sequencing is found to be an effec-
solutions can be obtained within a day using a grid uptive startup strategy for the method. Anderson et al. [10]
to three million nodes. However, it is inevident that grid compared the performance of a Newton-Krylov method
convergence is achieved. Moreover, code-to-code variawith a multigrid algorithm. Fast convergence was ob-
tions are observed. It is believed that accurate drag prerained using an inexact linear solve. They concluded that
diction may require futher improvement in grid density the performance of GMRES can greatly depend on the
and quality. As a result, research continues to develoghoice of parameters.
more efficient and accurate algorithms to apply to these
engineering geometries for routine industrial use. Blanco and Zingg [11] performed a study comparing
The Newton-Krylov method is an efficient method to quasi-Newton, standard Newton, and matrix-free New-
solve the Navier-Stokes equations [6]. This method hason methods. They developed a fast solver on triangu-
the potential for rapid convergence. Venkatakrishnan andar grids using a matrix-free inexact-Newton approach
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together with an approximate-Newton startup strategy. pu pv
Pueyo and Zingg [12] performed a parametric study of an pu® +p ) puv )
inexact preconditioned matrix-free Newton-Krylov al- F = pUV i+ > +p |
gorithm. Their optimized algorithm is found to con- puw pyw
verge faster and more reliably than an approximate New- | u(pE +p) v(pE +p)
ton algorithm and an approximately-factored multigrid M pw
algorithm. Geuzaine et al. [13, 14] studied mesh se- puw
guencing as well as multigrid preconditioning with the + pow k (3)
Newton-Krylov method. Nemec and Zingg [15] applied pw? +p
the Newton-Krylov method to numerical optimization. w(pE + p)
The same approach is applied to solve the flow equations B
as well as the adjoint equations to calculate the objec- 0 0 0
tive function gradients. Their work is extended to multi- - e .
block structured grids using the Spalart-Allmaras (S-A) G=| . |i+ 7':11 j+ ok

. . Ty vy 2y
turbulence model. Chisholm and Zingg [16, 17] devel- . . ..
oped a strategy which provides effective and efficient f 3 h
startup with the Newton-Krylov algorithm. Their work
is also extended to multi-block structured grids using the [ = UTpy + 0Ty + WTh — Qo
S-A turbulence model. Manzano et al. [18] applied the
Newton-Krylov algorithm to three-dimensional inviscid g = UTyg + UTyy + WTy> — Gy
flows using unstructured grids.

h=uT,p + U7y + W2, — @2 (4)

The purpose of this work is to extend the algorithm
of Manzano et al. to turbulent flows using the S-A tur- For a Newtonian fluid in local thermodynamic equilib-
bulence model on hybrid unstructured grids. The goakium, Stokes relation is valid. The viscous stress tensor
is to develop an efficient and robust algorithm for three-7 can be related to the dynamic viscositand the strain
dimensional aerodynamic flows. Different aspects of therate tensor using:
algorithm are studied and discussed in the paper, includ-

ing preconditioning and startup strategy. The perfor- 2uy Uy + Vg Uz + Wy
mance of the algorithm is demonstrated over awingas T = | Uz +1Uy 2vy Uy + Wy
well as a wing-body configuration. Wy + Uy Wy + Uy 2w,
2
2 Governing Equations wherel is the unit tensor, and, denotesju/dz and
so forth. The heat flux vector is given by Fourier’s
The governing equations are the Navier-Stokes equd®W 4 = —KVT. The thermal conductivity is related

tions. These equations describe the conservation of mas® the dynamic viscosity through the Prandtl number

momentum and total energy for a viscous compressibld " = ¢pit/k. Sutherland's law is used to calculate the
flow. For an arbitrary control volum@, the integral form ~ dynamic viscosity. Assuming the fluid behaves as a ther-

of the equations can be written as: mally and calorically perfect gas, the pressprean be
written in terms of the flow variables to close the system:
0 / ' . . 1
— de+/ F-ndS = G- -ndS (1) — (v — — 2o (u? 4+ 02 2
ot Jo, . 0 p= =1 |pE=5p (W +v* +v’) (6)

with @ the set of conservative flow variables (density
p, momentum components., pv, pw, and total energy
pE). F is the inviscid flux tensor, an€@ is the flux ten-
sor associated with viscosity and heat conduction. Thes
guantities can be written as:

3 Turbulence Modeling

XVe solve the Reynolds-averaged Navier-Stokes equa-
tions for turbulent flows. The Reynolds-stress tensor
is modeled using the Boussinesq approximation and in-
troducing an eddy-viscosity term. The turbulent eddy
Q=[p pu pv pw pE ]T (2)  viscosity is modeled with the one-equation Spalart and



Allmaras turbulence model [19]. In differential form the Az is the grid spacing at the trip. The flow can be as-

model is written as: sumed to be fully-turbulent by settinfg, andf;» to zero.

o R This assumes transition occurs at the leading edge. Clo-

5 +(v- V)P =cp (1l — fra)SD sure coefficients are given by:

1 cp1 = 0.1355, o0 =2/3, cp2 =0.622,

[V +2)V7) + (V)] " 3 o
2 k=041, cp1=cp/k>+ (1 +c)/o,
_ [ fo— Ly } v
CwlJw K2 t2 cw2 =03, cw3=2, cp1=T71,
+ft1AU (7) Ct1 — 1, Cig = 2, Ct3 — 1.2, Ctq = 0.5

wherev is the velocity vector. The model is solved in Note thatc;; andc,4 are updated with values from newer
a form fully-coupled with the mean-flow equations. The versions of the model [20]. The wall boundary condition
terms on the right-hand side of the equation are the prois 7 = 0. A value ofv.,/10 is used as the free-stream
duction term, the diffusion term, the destruction term, condition for, wherev, is the kinematic viscosity in
and the trip term respectively. The eddy viscosifyis  the free stream.

calculated from the working variabig using: Ashford [21] proposed a modification ®in the pro-
% 5 duction term:
=Ufo1, vl = T5 3 = - 8
ve =0fo1,  fur N X o 8

-3
S =St + 2d2fu2, fuo = (1 + X)
andv denotes the kinematic viscosity. The vorticity-like Cv2

term S in the production term is calculated using:

(1 + val) (1 — fv2)

. D X fo3 = . (12)
S=5+—575fe fo=1-— (9 . T
k*d L+ xfun with ¢,» = 5. The modification is found to produce better
wheres = |V x v| is the magnitude of the vorticityi is numerical properties [16] and is adopted in the current
the distance to the closest wall, ands the von Karman work.
constant. The destruction term governs the dissipation of
the eddy viscosity due to blocking effects of the wall. It 4 Spatial Discretization
contains a functiorf,, that models near-wall effects. The
function is calculated by: The spatial discretization follows that used by Mavriplis
and Venkatakrishnan [22] for hybrid unstructured grids.
148, \"° A cell-vertex approach is utilized with centroidal-
Jw (M> median-dual control volumes constructed around source-
grid vertices. A finite-volume discretization is obtained
g=T+cua(rS —71), == v (10) by integrating the fluxes over the boundary of the con-
Sk2d? trol volume. The value of the flux at each control volume

The model includes a trip term that models laminar-to-face is computed by averaging the fluxes in the two con-
turbulent flow transition. Transition locations are not trol volumes on either side of the face:
predicted and are specified by the user. The trip term

1 -
includes two functions that are given by: fiv =5 [F(Q:) + F(Qr)] - tix + Dy (13)
fi1 = Cr1gs exp {CQ (d + g dz)] where f;; is the inviscid numerical flux on the facé
AU2 with neighboring cells andk, ni;; is the area-weighted

9 normal of the facék, andD,;, is the dissipation operator.
frz = erg exp(—cax”) Numerical dissipation is added for stability and resolv-
. AU ing shocks. A matrix-dissipation scheme is used to dis-
ge = (O b wiAz ) (11) cretize the convective flux [23]. Itis constructed from the

whereAU is the norm of the velocity difference between Undivided Laplacian and biharmonic operators:
a field point and the tripy; is the magnitude of the vor- @
ticity at the trip,d; is the distance to the closest trip, and ~ Dix = —*\ALH [ (@ — Qi) — el (Li — Ly)

3



= Z Qr — whereV is a diagonal matrix of cell volumes, ansit”
k is the timestep. When the timestep is increased towards
infinity, Newton’s method is approached.

where
(2) Z |pk - pz )
— " .+ pi 5.2 The linear system
and The linear system that arises every Newton iteration is
@ _ nax (0 Ky — 5(2)) (14) large and sparse for practical problems. In addition, the

matrix is non-symmetric due to the hyperbolic nature of
wheree;, is calculated by averaging the values from thethe Navier-Stokes equations. Krylov subspace methods
two neighboring cells andk. Two parameters, andr, can be used to solve this class of problems. In particu-
control the addition of second- and fourth-difference dis-lar, the generalized minimum residual method (GMRES)
sipation. A pressure switch selects the second-differencdeveloped by Saad and Schultz [24] is found to be effec-
operator in the presence of shocks, while the fourthdive for aerodynamic applications. This method has the
difference operator is used in areas of smooth flow. Theroperty of minimizing the 2-norm of the residual over
Laplacian operator is denoted Asand|A| is the abso-  all vectors in the Krylov subspace. A new search direc-
lute value of the inviscid flux Jacobian. Small eigenval-tion is constructed every iteration and is added to the sub-
ues in the Jacobian may occur near stagnation points argpace, thus progressively improving the solution. On the
sonic points using this approach. This affects converother hand, more search directions incur extra memory
gence and can be avoided by introducing two parametergnd computational costs. We found a non-restarted GM-
V; andV,, [23]. Values ofky =2,k4 =0.1,V, =V, = RES with 50 search directions to be sufficient for most
0.25 are used in the current work. A centered scheme isases.
utilized for the diffusive-flux term. The convective terms  Complete solving of the linear system is found to be
in the turbulence model are discretized using a first-ordetinnecessary to obtain quadratic convergence [25]. An in-
scheme, as suggested by Spalart and Allmaras [19].  exact Newton method can be utilized which leads to ef-
Boundary conditions are enforced by extrapolating theficient algorithms by avoiding oversolving of the linear
solution to boundary faces and imposing the appropisystem. The linear system is solved until the solution
ate boundary conditions. They are handled in a fully-satisfies a tolerance specified by a paramgter
implicit manner in order to obtain fast convergence using

Newton’s method. ||R(Qn) + A(Qn)AQnH < nnHR(Qn)H (17)
The GMRES algorithm allows a matrix-free imple-
5 Newton-Krylov Algorithm mentation; the matrix of the linear system is not required
] ) explicitly. The matrix-vector product can be calculated
5.1 Newton iterations using finite differences:
After spatial discretization the steady-state governing R(Q+ev)—R(Q) V
equations become a system of nonlinear algebraic equa- Av ~ : + 550 (18)

tionsR(Q) = 0. We use Newton’s method to obtain a .
solution of these equations. At each Newton iteration, This allows quadratic convergence of Newton's method

we need to solve a linear system for the solution updatePecause the matrix of the linear system is a complete lin-
earization of the residual vector. Moreover, this approach

OR\" AQ" — _R(O" reduces memory usage and avoids some difficulties dur-
Fle) Q" =-R(Q") ing linearization. We use a matrix-free stepsize of:

ontl — Q" 4 AQ" (15) eljv]| = V10~10 (29)

This procedure is repeated until the solution satisfiedollowing recent results from Chisholm and Zingg [17].
some convergence tolerance. Robustness of the method

can be improved by including a timestep and applying arb.3  Preconditioning

implicit-Euler approach. The matrix of the linear system

now becomes: Preconditioning transforms the linear system (written as

Ax =b) to one which has the same solution, but is eas-
1% OR\" ier to solve by an iterative solver. This reduces the num-
Atn + 200 (18) " per ofinner iterations required. The right-preconditioned

AQ") =



inclusion of these terms in the preconditioner causes ex-
pensive ILU factorization and is found to be inefficient
for three-dimensional cases. The baseline viscous term
is calculated by:

( G~f1dS) ~> " Gip - i (22)
o0 1

? ik

S
8
S
S
‘,. k
.
.
.
.

. _ . o ~ whereGy;, = G(Qix,VQix) is the viscous flux on a face
Figure 1: Calculation of the spatial derivatives by inte- i, with neighboring cells andk. VQ is the gradient of
gration over (a) a diamond path, (b) a source-grid cell. the flow variables. This is calculated using:

1
GMRES algorithm is based on solving VQir = 5 (VQi + VQx) (23)
AM = b, u = Mz (20)  where
1
with M as the preconditioner. The mattikM ~! should VQi = > Qirtiik (24)
have a better condition number than the original matrix " ik

A. In practice, an iterative solver will perform efficiently gng
if the eigenvalues oA M ~! are clustered around unity. 1

. " i ik = = (Q; 25
An effective preconditioneiM is chosen so that—! @i 2 (Qi+ Q) (25)

approximatesA™', while M~ is easy to compute. This \hereV; is the volume of celi. Thus the viscous term
operation is performed every outer iteration. involves next-to-nearest neighboring terms.

Pueyo and Zingg [12] have constructed a precondi- A study of several viscous operators that lead to a re-
tioner which works well for many aerodynamic flows. It gyced stencil is performed. The first approach uses a

is based on an incomplete-LU factorization (IL)Xof  truncated linearization in the preconditioning matrix, by
an approximate Jacobian after the reverse Cuthill-McKeegsgtting:

(RCM) reordering of the unknowns. The parameter OR;
controls the amount of fill. Increasing its value results OQms
in more accurate factors with extra storage and computa- . . . :
tional costs. The approximate Jacobian is constructed b herekk is a rjext-to-nearest nelghb(_)r of cgJI This
a linearization of the flow equations with only second- pproach only“m_volves the nearest pelgh?qung terms. It
difference dissipation. This improves the diagonal dom-S referred as “distance-1 preconditioning” in the rest of
inance of the matrix, and was found by Pueyo and ZinggIhe study. . . .
to be more effective than the complete Jacobian. The co- The sec_ond approach approximates the grad|e_nt using
efficient of the dissipation term is calculated using an approximate-difference formula as suggested in refer-
ences [26, 27]:

(26)

51(,2) =@ 4 ge® (21)
. , VQik - Dy =~ @ = (27)
with a parametetr, wheres(?) ande™) are the coeffi- Lik

cients of the dissipation term as defined in (14). The . ) . ]
subscriptp denotes the preconditioner. Chisholm andWherélix is the distance between the centroids of cells
Zingg [16] have extended the approximate Jacobian fron?nd 4. This approach is efficient, and it has the same
Pueyo and Zingg to incorporate the matrix-dissipationSteNncil as distance-1 preconditioning. However, this
scheme. They suggest two parameters and V,, , method is prone to inaccuracy on |rregule_1r grids when
to avoid overly small diagonal elements in the matrix. he line joining the centroids of celisandk is not per-
Hence the blend of scalar and matrix dissipation can b&endicular to the facé.

altered in the approximate Jacobian used to form the pre- 'N€ third approach calculates the gradient on a face
conditioner. Values typically used a¥&,, = V,, , = 0.6. by integrating over a diamond-shaped control volume as
P P developed by Coirier [28]. Flow variables at face ver-

tices are approximated by averaging the surrounding grid
nodes. This approach leads to the same stencil on trian-
The discretization of the viscous term produces a stengular grids, but it has a larger stencil on structured grids

cil involving the next-to-nearest neighboring terms. Thewhen compared to the previous two methods.

5.4 Preconditioning of the viscous term
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The fourth approach calculates the gradient on a Case M, a Re

face by integrating over control volumes on the source 1 0.8395 3.06 11.% 10°
grid [28]. This approach has the same stencil as the 2 0.8395 3.06 11.% 1(°
diamond-path approach. The last two approaches are il- 3 0.5 0.0 3.0x 10°

lustrated in Figure 1. Extension of the viscous calcula-

tions to hybrid unstructured grids in three dimensions is N
straightforward. Table 1: Flow conditions.

Case Geometry  Grid size
1 ONERA M6 179,000
Our startup strategy utilizes an implicit-Euler approach 2 ONERA M6 480,000
by introducing a timestep as given in (16). This improves 3 DLR-F6 431,000
both the stability of the nonlinear iterations and the con-
ditioning of the linear system and thus results in a more
robust procedure. On the other hand, the timestep affects Table 2: Geometry and grid size.
the convergence rate. Therefore, itis important to choose
a timestep that is both robust and efficient.
For the mean-flow equations, the local timestep fol-
lowing Pulliam [29] is utilized:

5.5 Time-stepping strategy

whereJp is the Jacobian ang is the right-hand side of
the turbulence equation. The limiting timestep is calcu-
lated by:

\%4
28 N 32
( ) (Atlimit + JD) R ( )

Aty
L+vV—t

whereV is the local cell volume. One way to calculate Further details about the local timestep can be found in
the reference timestept,..; is to follow the switched the original work by Chisholm and Zingg [17].

evolution relaxation (SER) approach from Mulder and
van Leer [30]:

Atflow =

6 Results
Atres = a|R[l;” (29) _ _

Three turbulent cases are studied. The first two are tran-
where||R||2 is the residual norm. The idea is to increasesonic flows over a wing. The third case is a subsonic
the timestep inversely proportional to the residual normflow over a wing-body configuration. Flow conditions
thus approaching Newton’s method as the residual conare summarized in Table 1. The cases are assumed to
verges to zero. Other choices include the use of a conbe fully turbulent. All cases are run on a 1 GHz alpha
stant value or a geometric series. These seem to be bettEN68 processor at the high-performance advanced com-
choices for the startup stages due to their flexibility. puting facility in the University of Toronto Institute for

A spatially-varying timestep is used in the turbu- Aerospace Studies.

lence model following the approach of Chisholm and

Zingg [16]. This'approach Prevents unstable. solutionsell Grid generation

caused by negative values ofby locally reducing the

timestep. It allows larger timesteps to be used elsewherghe ICEMCFD grid generator is utilized to generate the

in the domain. Moreover, this approach allows the useyrids for the test cases. Prism layers are generated by

of a matrix-free implementation in the algorithm. The extruding 15 layers of prism elements from the surface

timestep is summarized as follows: mesh using a growth ratio of 1.5. The offwall spacing

is 1076 times the chord at the wing root. The far-field

boundary is specified at 12 wing-root chords from the

wing. It is located at 12 times the length of the fuselage

from the wing-body configuration.

wheres, is an estimate of the solution update, afg The geometry and grid size are summarized in Table 2.

= ri7 is the maximum allowable change specified by a” 9rid with 179,000 nodes is generated for the first case.

parameter-. We use a value of = 0.3. The estimate is Figure 2 shows the grid for the second case, with a close-

determined using: up of the leading edge at the wing root. It is a finer grid
with 480,000 nodes consisting of both tetrahedral and

Jpbe = —R (31) prismatic cells. The wing surface as well as the volume

Atflmu if |5e| < 6m
Atturb = (30)
|Atyimic| otherwise
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Figure 4: Case 1 convergence histories using different
viscous-term calculations in the preconditioner.

One set of timestep parameters is used for the three
cases in this work. We ust,.; = 1 for the first three
iterations. After thatAt,. is set to 20 and the value is
doubled every 5 iterations. To prevent the solution from
becoming unstable with too large a timestep, the solu-
tion update is checked every Newton iteration. If non-
physical flow quantities are encountered, (i.e. negative
pressure or density), then the recent solution update is
rejected andAt,.; for the next iteration is halved. A
similar safeguarding mechanism is used in the work by
Smith et al. [26]. The same timestep sequence is used
for the first-order stage as well as the matrix-dissipation
region above the wing are refined to provide a better soStage.
lution of the shock wave. Figure 3 shows the grid with A nonzero initial solution ofy = 10v., is used for
431,000 nodes for the third case. None of these grids arghe turbulence model, as suggested by Chisholm and
expected to be sufficiently fine to achieve a low numeri-Zingg [16].
cal error in drag.

Figure 3: DLR-F6 wing-body grid with 431,000 nodes.

6.2 Solver parameters 6.3 Preconditioning of the viscous term

The linear system is solved using a matrix-free non-
restarted version of GMRES with 50 Krylov vectors. A Figure 4 depicts the convergence histories for Case 1 us-
linear system tolerance gf= 10-2 is used in this work, ing four different calculations of the viscous term in the
based on a study given in a later part of the paper. Th@reconditioner. The baseline viscous calculation as given
preconditioner is ILU(1) based on an approximate Jacoin (22) and (23) is used on the right-hand side; thus these
bian matrix after the reverse Cuthill-McKee reordering cases all converge to the same solution. It is observed
of the unknowns. Values ef = 10,V;, =V,, , = 0.6 are  that distance-1 preconditioning and the approximate-
utilized in the approximate Jacobian. difference formula have faster convergence than the other
Startup is initiated using a first-order scalar scheme betwo approaches. The distance-1 viscous preconditioner
fore switching to the matrix-dissipation scheme. Switch-is used in the rest of the study. Convergence to'%0
ing is triggered when the mean-flow residual convergedor Case 1 using distance-1 viscous preconditioning is

to 10~*. The first-order scheme is defined witf) =  obtained in 4.5 hours or the equivalent of 3,000 residual
1/4,® =0, andV; = V,, = 1, where=(?) ands(¥) arethe  evaluations. It requires 50 outer and 1,200 inner itera-
coefficients of the dissipation term as given in (14). tions in total.



Preconditioner ~ Storage i-it iy ts  tr+ts RHS evaluations

ILU(0) 1.0 33 10 226 236 100 ¢ e —— GMRGE(;()((;O) —
ILU(1) 20 24 29 173 202 GMRES(50) ——
ILU(2) 38 12 96 101 197 1\ GMRES(T0) ——
ILU(3) 64 10 269 106 375 001 |

ILU(4) 9.8 9 638 121 759  _

ILUT(10-3,20) 13 42 548 370 918 =g %7

ILUT(10~3,80) 23 21 1176 219 1,395 & 1eost

ILUT(10~3,160) 3.3 15 2,065 197 2,262

ILUT(10~7,20) 14 42 2802 397 3,199 1e-08 1

ILUT(107°,80) 2.9 20 7,365 251 7,616 1e-10 |

ILUT(107°,160) 4.6 14 14971 230 15,201

le-12 : ‘ : :

0 5 10 15 20 25 30
) CPU time (hours)
Table 3: Memory, cost and effectiveness to reduce the

inner residual by two orders of magnitude for different rigyre 6: Case 2 convergence histories using different
preconditioners. sizes of the Krylov subspace.

Convergence criterion  CPU time (hours)

RHS evaluations

0.5% ofC,, 17.2
0 2000 4000 6000 8000 10000

100 ; : ‘ Py — 0.1% of Cy, 18.8

| n=10% — | 0.01% ofC, 20.6

! 0.5% ofCp 16.9

001 | 1 0.1% ofCp 18.6

00001 | 0.01% ofC'p, 20.5

1e-06

Residual

Table 4: Convergence data for the lift and drag coeffi-
cients for Case 2.

1e-08

le-10

le-12
0

s 10 15 20 25 30 3 a0 6.5 Convergence results
CPU time (hours)

The distance-1 viscous formulation is chosen to con-
Figure 5: Case 2 convergence histories using differenstruct the preconditioning matrix in the rest of the study.
tolerances in the linear solver. ILU(1) is used as the preconditioner. Figure 5 shows the
convergence for Case 2 using different linear system tol-
erances. Convergence to 18 is obtained in 25 hours or
the equivalent of 6,000 residual evaluations for this half-
6.4 Incomplete factorization million-node case using a linear system tolerancg of
10-2. It requires 148 outer and 2,300 inner iterations.
The use of a larger inner tolerance of 10is found to
The drop-tolerance strategy ILUT is studied and com-produce a longer startup stage with an increased num-
pared to ILUp) preconditioning. Table 3 tabulates mem- ber of outer iterations, while a smaller inner tolerance
ory, cost and effectiveness to reduce the linear residusdf 10~? leads to slower asymptotic convergence with an
by two orders-of-magnitude for several preconditionersincreased number of inner iterations.
The study is performed on Case 1. The linear system that Figure 6 shows the convergence using different sizes
arises when the non-linear residual is #0s studied. In  of the Krylov subspace. The use of GMRES(30) is found
the table, i-it is the number of inner iteratiortg, is the  to converge faster than GMRES(50) during startup, but
time to factorize the matrix, antl is the time to solve leads to a slower asymptotic convergence.
the system. In this study, ILyY is found to be more ef- Convergence of lift and drag coefficients with=
ficient than ILUT. The ILUp) preconditioner witp=1  10~2 and GMRES(50) is given in Figure 7. The time
is found to be the best choice for this case based on botrequired to converge the force coefficients to some spec-
memory and cost considerations. ified tolerances is summarized in Table 4. It requires 17
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Figure 7: Convergence of lift and drag coefficients for Figure 9: Case 3 convergence history.
Case 2.
op ing as well as the approximate-difference approach are

5% selected based on efficiency considerations. The p)U(

045

013 and ILUT preconditioners are studied; the former is

-018 —
050 found to be more efficient.
?E Current results have motivated further research to
i improve the efficiency of the current algorithm. Fu-

ture work includes investigation of preconditioning and
startup strategies and the choice of solver parameters.
The algorithm will also be extended to parallel to fur-
Figure 8: Pressure contours over the ONERA M6 wingther reduce computational time. The improved algorithm
at M, =0.8395, = 3.06, and Re = 11.% 10°. will be applied to computations on finer grids to produce
more accurate flow solutions.

i
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