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Abstract

We present our recent progress using the Newton-Krylov method to solve three-dimensional aerodynamic flows. An
unstructured-grid approach is utilized to handle complex geometries that arise in practical industrial designs. The
Spalart and Allmaras turbulence model is used to calculate turbulent eddy viscosities. We employ Newton’s method to
obtain the steady-state flow solution for a potentially fast convergence rate, with the linear system that arises solved
by a preconditioned Krylov method. Issues with regard to preconditioning of the viscous operator in three dimensions
are addressed. An incomplete factorization preconditioner applied to a matrix involving only the nearest neighboring
terms is chosen based on numerical experiments. The capability of the current solver is demonstrated by numerical
studies over the ONERA M6 wing as well as the DLR-F6 wing-body configuration.

1 Introduction

After many years of development, computational fluid
dynamics (CFD) has become an important tool in aero-
dynamic analysis [1, 2]. It provides a reliable alter-
native to wind-tunnel and flight tests at a lower cost.
The current technology is capable of performing Navier-
Stokes calculations over complete three-dimensional air-
craft configurations. These calculations require the use
of a fine grid to capture the geometry, which leads to
intensive memory usage as well as high computational
times. Two drag-prediction workshops have been orga-
nized to assess the capabilities of current solvers when
applied to such flows [3, 4, 5]. With parallelization, flow
solutions can be obtained within a day using a grid up
to three million nodes. However, it is inevident that grid
convergence is achieved. Moreover, code-to-code varia-
tions are observed. It is believed that accurate drag pre-
diction may require futher improvement in grid density
and quality. As a result, research continues to develop
more efficient and accurate algorithms to apply to these
engineering geometries for routine industrial use.

The Newton-Krylov method is an efficient method to
solve the Navier-Stokes equations [6]. This method has
the potential for rapid convergence. Venkatakrishnan and

Mavriplis [7] developed an unstructured approximate-
Newton algorithm. The linear system is solved by a
preconditioned generalized minimum residual (GMRES)
method. Different preconditioners as well as orderings
of the unknowns were studied. The algorithm was found
to be competitive with a multigrid algorithm. Barth and
Linton [8] presented a Newton solver on unstructured
meshes. Matrix-free GMRES is used to solve the linear
system. The work is extended to parallel computations as
well as three-dimensional applications. Nielsen et al. [9]
developed an unstructured Newton-Krylov algorithm for
the Euler equations in two and three dimensions. The
method is found to provide a fast asymptotic conver-
gence rate. Mesh sequencing is found to be an effec-
tive startup strategy for the method. Anderson et al. [10]
compared the performance of a Newton-Krylov method
with a multigrid algorithm. Fast convergence was ob-
tained using an inexact linear solve. They concluded that
the performance of GMRES can greatly depend on the
choice of parameters.

Blanco and Zingg [11] performed a study comparing
quasi-Newton, standard Newton, and matrix-free New-
ton methods. They developed a fast solver on triangu-
lar grids using a matrix-free inexact-Newton approach
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together with an approximate-Newton startup strategy.
Pueyo and Zingg [12] performed a parametric study of an
inexact preconditioned matrix-free Newton-Krylov al-
gorithm. Their optimized algorithm is found to con-
verge faster and more reliably than an approximate New-
ton algorithm and an approximately-factored multigrid
algorithm. Geuzaine et al. [13, 14] studied mesh se-
quencing as well as multigrid preconditioning with the
Newton-Krylov method. Nemec and Zingg [15] applied
the Newton-Krylov method to numerical optimization.
The same approach is applied to solve the flow equations
as well as the adjoint equations to calculate the objec-
tive function gradients. Their work is extended to multi-
block structured grids using the Spalart-Allmaras (S-A)
turbulence model. Chisholm and Zingg [16, 17] devel-
oped a strategy which provides effective and efficient
startup with the Newton-Krylov algorithm. Their work
is also extended to multi-block structured grids using the
S-A turbulence model. Manzano et al. [18] applied the
Newton-Krylov algorithm to three-dimensional inviscid
flows using unstructured grids.

The purpose of this work is to extend the algorithm
of Manzano et al. to turbulent flows using the S-A tur-
bulence model on hybrid unstructured grids. The goal
is to develop an efficient and robust algorithm for three-
dimensional aerodynamic flows. Different aspects of the
algorithm are studied and discussed in the paper, includ-
ing preconditioning and startup strategy. The perfor-
mance of the algorithm is demonstrated over a wing as
well as a wing-body configuration.

2 Governing Equations

The governing equations are the Navier-Stokes equa-
tions. These equations describe the conservation of mass,
momentum and total energy for a viscous compressible
flow. For an arbitrary control volumeΩ, the integral form
of the equations can be written as:

∂

∂t

∫

Ω

QdV +
∫

∂Ω

F · n̂dS =
∫

∂Ω

G · n̂dS (1)

with Q the set of conservative flow variables (density
ρ, momentum componentsρu, ρv, ρw, and total energy
ρE). F is the inviscid flux tensor, andG is the flux ten-
sor associated with viscosity and heat conduction. These
quantities can be written as:

Q =
[

ρ ρu ρv ρw ρE
]T

(2)
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ĵ +
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

0
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τzz

h




k̂

f = uτxx + vτxy + wτxz − qx

g = uτyx + vτyy + wτyz − qy

h = uτzx + vτzy + wτzz − qz (4)

For a Newtonian fluid in local thermodynamic equilib-
rium, Stokes relation is valid. The viscous stress tensor
τ can be related to the dynamic viscosityµ and the strain
rate tensor using:

τ = µ




2ux uy + vx uz + wx

vx + uy 2vy vz + wy

wx + uz wy + vz 2wz




− 2
3
µ (ux + vy + wz) I (5)

whereI is the unit tensor, andux denotes∂u/∂x and
so forth. The heat flux vector is given by Fourier’s
law q = −k∇T . The thermal conductivity is related
to the dynamic viscosity through the Prandtl number
Pr = cpµ/k. Sutherland’s law is used to calculate the
dynamic viscosity. Assuming the fluid behaves as a ther-
mally and calorically perfect gas, the pressurep can be
written in terms of the flow variables to close the system:

p = (γ − 1)
[
ρE − 1

2
ρ

(
u2 + v2 + w2

)]
(6)

3 Turbulence Modeling

We solve the Reynolds-averaged Navier-Stokes equa-
tions for turbulent flows. The Reynolds-stress tensor
is modeled using the Boussinesq approximation and in-
troducing an eddy-viscosity term. The turbulent eddy
viscosity is modeled with the one-equation Spalart and
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Allmaras turbulence model [19]. In differential form the
model is written as:

∂ν̃

∂t
+ (v · ∇) ν̃ = cb1(1− ft2)S̃ν̃

+
1
σ

[∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2
]

−
[
cw1fw − cb1

κ2
ft2

](
ν̃

d

)2

+ft1∆U2 (7)

wherev is the velocity vector. The model is solved in
a form fully-coupled with the mean-flow equations. The
terms on the right-hand side of the equation are the pro-
duction term, the diffusion term, the destruction term,
and the trip term respectively. The eddy viscosityνt is
calculated from the working variablẽν, using:

νt = ν̃fv1, fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
(8)

andν denotes the kinematic viscosity. The vorticity-like
termS̃ in the production term is calculated using:

S̃ = S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
(9)

whereS = |∇ × v| is the magnitude of the vorticity,d is
the distance to the closest wall, andκ is the von Ḱarmán
constant. The destruction term governs the dissipation of
the eddy viscosity due to blocking effects of the wall. It
contains a functionfw that models near-wall effects. The
function is calculated by:

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

g = r + cw2(r6 − r), r =
ν̃

S̃κ2d2
(10)

The model includes a trip term that models laminar-to-
turbulent flow transition. Transition locations are not
predicted and are specified by the user. The trip term
includes two functions that are given by:

ft1 = ct1gt exp
[
−ct2

ω2
t

∆U2
(d2 + g2

t d2
t )

]

ft2 = ct3 exp(−ct4χ
2)

gt = min
(

0.1,
∆U

ωt∆x

)
(11)

where∆U is the norm of the velocity difference between
a field point and the trip,ωt is the magnitude of the vor-
ticity at the trip,dt is the distance to the closest trip, and

∆x is the grid spacing at the trip. The flow can be as-
sumed to be fully-turbulent by settingft1 andft2 to zero.
This assumes transition occurs at the leading edge. Clo-
sure coefficients are given by:

cb1 = 0.1355, σ = 2/3, cb2 = 0.622,

κ = 0.41, cw1 = cb1/κ2 + (1 + cb2)/σ,

cw2 = 0.3, cw3 = 2, cv1 = 7.1,

ct1 = 1, ct2 = 2, ct3 = 1.2, ct4 = 0.5

Note thatct3 andct4 are updated with values from newer
versions of the model [20]. The wall boundary condition
is ν̃ = 0. A value ofν∞/10 is used as the free-stream
condition for ν̃, whereν∞ is the kinematic viscosity in
the free stream.

Ashford [21] proposed a modification tõS in the pro-
duction term:

S̃ = Sfv3 +
ν̃

κ2d2
fv2, fv2 =

(
1 +

χ

cv2

)−3

fv3 =
(1 + χfv1) (1− fv2)

χ
(12)

with cv2 = 5. The modification is found to produce better
numerical properties [16] and is adopted in the current
work.

4 Spatial Discretization

The spatial discretization follows that used by Mavriplis
and Venkatakrishnan [22] for hybrid unstructured grids.
A cell-vertex approach is utilized with centroidal-
median-dual control volumes constructed around source-
grid vertices. A finite-volume discretization is obtained
by integrating the fluxes over the boundary of the con-
trol volume. The value of the flux at each control volume
face is computed by averaging the fluxes in the two con-
trol volumes on either side of the face:

fik ' 1
2

[F(Qi) + F(Qk)] · ~nik + Dik (13)

wherefik is the inviscid numerical flux on the faceik
with neighboring cellsi andk, ~nik is the area-weighted
normal of the faceik, andDik is the dissipation operator.

Numerical dissipation is added for stability and resolv-
ing shocks. A matrix-dissipation scheme is used to dis-
cretize the convective flux [23]. It is constructed from the
undivided Laplacian and biharmonic operators:

Dik = −1
2
|Aik|

[
ε
(2)
ik (Qk −Qi)− ε

(4)
ik (Lk − Li)

]
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Li =
∑

k

(Qk −Qi)

where

ε
(2)
i =

∑

k

κ2
|pk − pi|
pk + pi

and
ε
(4)
i = max

(
0, κ4 − ε

(2)
i

)
(14)

whereεik is calculated by averaging the values from the
two neighboring cellsi andk. Two parametersκ2 andκ4

control the addition of second- and fourth-difference dis-
sipation. A pressure switch selects the second-difference
operator in the presence of shocks, while the fourth-
difference operator is used in areas of smooth flow. The
Laplacian operator is denoted asL, and|A| is the abso-
lute value of the inviscid flux Jacobian. Small eigenval-
ues in the Jacobian may occur near stagnation points and
sonic points using this approach. This affects conver-
gence and can be avoided by introducing two parameters
Vl andVn [23]. Values ofκ2 = 2, κ4 = 0.1, Vl = Vn =
0.25 are used in the current work. A centered scheme is
utilized for the diffusive-flux term. The convective terms
in the turbulence model are discretized using a first-order
scheme, as suggested by Spalart and Allmaras [19].

Boundary conditions are enforced by extrapolating the
solution to boundary faces and imposing the appropi-
ate boundary conditions. They are handled in a fully-
implicit manner in order to obtain fast convergence using
Newton’s method.

5 Newton-Krylov Algorithm

5.1 Newton iterations

After spatial discretization the steady-state governing
equations become a system of nonlinear algebraic equa-
tionsR(Q) = 0. We use Newton’s method to obtain a
solution of these equations. At each Newton iteration,
we need to solve a linear system for the solution update.

(
∂R
∂Q

)n

∆Qn = −R(Qn)

Qn+1 = Qn + ∆Qn (15)

This procedure is repeated until the solution satisfies
some convergence tolerance. Robustness of the method
can be improved by including a timestep and applying an
implicit-Euler approach. The matrix of the linear system
now becomes:

A(Qn) =
V

∆tn
+

(
∂R
∂Q

)n

(16)

whereV is a diagonal matrix of cell volumes, and∆tn

is the timestep. When the timestep is increased towards
infinity, Newton’s method is approached.

5.2 The linear system

The linear system that arises every Newton iteration is
large and sparse for practical problems. In addition, the
matrix is non-symmetric due to the hyperbolic nature of
the Navier-Stokes equations. Krylov subspace methods
can be used to solve this class of problems. In particu-
lar, the generalized minimum residual method (GMRES)
developed by Saad and Schultz [24] is found to be effec-
tive for aerodynamic applications. This method has the
property of minimizing the 2-norm of the residual over
all vectors in the Krylov subspace. A new search direc-
tion is constructed every iteration and is added to the sub-
space, thus progressively improving the solution. On the
other hand, more search directions incur extra memory
and computational costs. We found a non-restarted GM-
RES with 50 search directions to be sufficient for most
cases.

Complete solving of the linear system is found to be
unnecessary to obtain quadratic convergence [25]. An in-
exact Newton method can be utilized which leads to ef-
ficient algorithms by avoiding oversolving of the linear
system. The linear system is solved until the solution
satisfies a tolerance specified by a parameterηn:

||R(Qn) +A(Qn)∆Qn|| ≤ ηn||R(Qn)|| (17)

The GMRES algorithm allows a matrix-free imple-
mentation; the matrix of the linear system is not required
explicitly. The matrix-vector product can be calculated
using finite differences:

Av ' R(Q+ εv)−R(Q)
ε

+
V
∆t

v (18)

This allows quadratic convergence of Newton’s method
because the matrix of the linear system is a complete lin-
earization of the residual vector. Moreover, this approach
reduces memory usage and avoids some difficulties dur-
ing linearization. We use a matrix-free stepsize of:

ε||v|| =
√

10−10 (19)

following recent results from Chisholm and Zingg [17].

5.3 Preconditioning

Preconditioning transforms the linear system (written as
Ax = b) to one which has the same solution, but is eas-
ier to solve by an iterative solver. This reduces the num-
ber of inner iterations required. The right-preconditioned
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Figure 1: Calculation of the spatial derivatives by inte-
gration over (a) a diamond path, (b) a source-grid cell.

GMRES algorithm is based on solving

AM−1u = b, u = Mx (20)

withM as the preconditioner. The matrixAM−1 should
have a better condition number than the original matrix
A. In practice, an iterative solver will perform efficiently
if the eigenvalues ofAM−1 are clustered around unity.
An effective preconditionerM is chosen so thatM−1

approximatesA−1, whileM−1 is easy to compute. This
operation is performed every outer iteration.

Pueyo and Zingg [12] have constructed a precondi-
tioner which works well for many aerodynamic flows. It
is based on an incomplete-LU factorization (ILU(p)) of
an approximate Jacobian after the reverse Cuthill-McKee
(RCM) reordering of the unknowns. The parameterp
controls the amount of fill. Increasing its value results
in more accurate factors with extra storage and computa-
tional costs. The approximate Jacobian is constructed by
a linearization of the flow equations with only second-
difference dissipation. This improves the diagonal dom-
inance of the matrix, and was found by Pueyo and Zingg
to be more effective than the complete Jacobian. The co-
efficient of the dissipation term is calculated using

ε(2)
p = ε(2) + σε(4) (21)

with a parameterσ, whereε(2) andε(4) are the coeffi-
cients of the dissipation term as defined in (14). The
subscriptp denotes the preconditioner. Chisholm and
Zingg [16] have extended the approximate Jacobian from
Pueyo and Zingg to incorporate the matrix-dissipation
scheme. They suggest two parametersVl,p and Vn,p

to avoid overly small diagonal elements in the matrix.
Hence the blend of scalar and matrix dissipation can be
altered in the approximate Jacobian used to form the pre-
conditioner. Values typically used areVl,p = Vn,p = 0.6.

5.4 Preconditioning of the viscous term

The discretization of the viscous term produces a sten-
cil involving the next-to-nearest neighboring terms. The

inclusion of these terms in the preconditioner causes ex-
pensive ILU factorization and is found to be inefficient
for three-dimensional cases. The baseline viscous term
is calculated by:

(∫

∂Ω

G · n̂dS

)

i

'
∑

ik

Gik · ~nik (22)

whereGik = G(Qik,∇Qik) is the viscous flux on a face
ik, with neighboring cellsi andk. ∇Q is the gradient of
the flow variables. This is calculated using:

∇Qik =
1
2

(∇Qi +∇Qk) (23)

where

∇Qi ' 1
Vi

∑

ik

Qik~nik (24)

and

Qik =
1
2

(Qi + Qk) (25)

whereVi is the volume of celli. Thus the viscous term
involves next-to-nearest neighboring terms.

A study of several viscous operators that lead to a re-
duced stencil is performed. The first approach uses a
truncated linearization in the preconditioning matrix, by
setting:

∂Ri

∂Qkk
= 0 (26)

wherekk is a next-to-nearest neighbor of celli. This
approach only involves the nearest neighboring terms. It
is referred as “distance-1 preconditioning” in the rest of
the study.

The second approach approximates the gradient using
an approximate-difference formula as suggested in refer-
ences [26, 27]:

∇Qik · n̂ik ' Qk −Qi

lik
(27)

wherelik is the distance between the centroids of cellsi
and k. This approach is efficient, and it has the same
stencil as distance-1 preconditioning. However, this
method is prone to inaccuracy on irregular grids when
the line joining the centroids of cellsi andk is not per-
pendicular to the faceik.

The third approach calculates the gradient on a face
by integrating over a diamond-shaped control volume as
developed by Coirier [28]. Flow variables at face ver-
tices are approximated by averaging the surrounding grid
nodes. This approach leads to the same stencil on trian-
gular grids, but it has a larger stencil on structured grids
when compared to the previous two methods.
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The fourth approach calculates the gradient on a
face by integrating over control volumes on the source
grid [28]. This approach has the same stencil as the
diamond-path approach. The last two approaches are il-
lustrated in Figure 1. Extension of the viscous calcula-
tions to hybrid unstructured grids in three dimensions is
straightforward.

5.5 Time-stepping strategy

Our startup strategy utilizes an implicit-Euler approach
by introducing a timestep as given in (16). This improves
both the stability of the nonlinear iterations and the con-
ditioning of the linear system and thus results in a more
robust procedure. On the other hand, the timestep affects
the convergence rate. Therefore, it is important to choose
a timestep that is both robust and efficient.

For the mean-flow equations, the local timestep fol-
lowing Pulliam [29] is utilized:

∆tflow =
∆tref

1 +
√

V −1
(28)

whereV is the local cell volume. One way to calculate
the reference timestep∆tref is to follow the switched
evolution relaxation (SER) approach from Mulder and
van Leer [30]:

∆tref = α||R||−β
2 (29)

where||R||2 is the residual norm. The idea is to increase
the timestep inversely proportional to the residual norm,
thus approaching Newton’s method as the residual con-
verges to zero. Other choices include the use of a con-
stant value or a geometric series. These seem to be better
choices for the startup stages due to their flexibility.

A spatially-varying timestep is used in the turbu-
lence model following the approach of Chisholm and
Zingg [16]. This approach prevents unstable solutions
caused by negative values ofν̃ by locally reducing the
timestep. It allows larger timesteps to be used elsewhere
in the domain. Moreover, this approach allows the use
of a matrix-free implementation in the algorithm. The
timestep is summarized as follows:

∆tturb =





∆tflow if |δe| < δm

|∆tlimit| otherwise
(30)

whereδe is an estimate of the solution update, andδm

= rν̃ is the maximum allowable change specified by a
parameterr. We use a value ofr = 0.3. The estimate is
determined using:

JDδe = −R (31)

Case M∞ α◦ Re

1 0.8395 3.06 11.7× 106

2 0.8395 3.06 11.7× 106

3 0.5 0.0 3.0× 106

Table 1: Flow conditions.

Case Geometry Grid size

1 ONERA M6 179,000
2 ONERA M6 480,000
3 DLR-F6 431,000

Table 2: Geometry and grid size.

whereJD is the Jacobian andR is the right-hand side of
the turbulence equation. The limiting timestep is calcu-
lated by: (

V

∆tlimit
+ JD

)
δm = −R (32)

Further details about the local timestep can be found in
the original work by Chisholm and Zingg [17].

6 Results

Three turbulent cases are studied. The first two are tran-
sonic flows over a wing. The third case is a subsonic
flow over a wing-body configuration. Flow conditions
are summarized in Table 1. The cases are assumed to
be fully turbulent. All cases are run on a 1 GHz alpha
EV68 processor at the high-performance advanced com-
puting facility in the University of Toronto Institute for
Aerospace Studies.

6.1 Grid generation

The ICEMCFD grid generator is utilized to generate the
grids for the test cases. Prism layers are generated by
extruding 15 layers of prism elements from the surface
mesh using a growth ratio of 1.5. The offwall spacing
is 10−6 times the chord at the wing root. The far-field
boundary is specified at 12 wing-root chords from the
wing. It is located at 12 times the length of the fuselage
from the wing-body configuration.

The geometry and grid size are summarized in Table 2.
A grid with 179,000 nodes is generated for the first case.
Figure 2 shows the grid for the second case, with a close-
up of the leading edge at the wing root. It is a finer grid
with 480,000 nodes consisting of both tetrahedral and
prismatic cells. The wing surface as well as the volume
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Figure 2: ONERA M6 wing grid with 480,000 nodes.

Figure 3: DLR-F6 wing-body grid with 431,000 nodes.

region above the wing are refined to provide a better so-
lution of the shock wave. Figure 3 shows the grid with
431,000 nodes for the third case. None of these grids are
expected to be sufficiently fine to achieve a low numeri-
cal error in drag.

6.2 Solver parameters

The linear system is solved using a matrix-free non-
restarted version of GMRES with 50 Krylov vectors. A
linear system tolerance ofη = 10−2 is used in this work,
based on a study given in a later part of the paper. The
preconditioner is ILU(1) based on an approximate Jaco-
bian matrix after the reverse Cuthill-McKee reordering
of the unknowns. Values ofσ = 10,Vl,p = Vn,p = 0.6 are
utilized in the approximate Jacobian.

Startup is initiated using a first-order scalar scheme be-
fore switching to the matrix-dissipation scheme. Switch-
ing is triggered when the mean-flow residual converges
to 10−4. The first-order scheme is defined withε(2) =
1/4,ε(4) = 0, andVl = Vn = 1, whereε(2) andε(4) are the
coefficients of the dissipation term as given in (14).
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Figure 4: Case 1 convergence histories using different
viscous-term calculations in the preconditioner.

One set of timestep parameters is used for the three
cases in this work. We use∆tref = 1 for the first three
iterations. After that,∆tref is set to 20 and the value is
doubled every 5 iterations. To prevent the solution from
becoming unstable with too large a timestep, the solu-
tion update is checked every Newton iteration. If non-
physical flow quantities are encountered, (i.e. negative
pressure or density), then the recent solution update is
rejected and∆tref for the next iteration is halved. A
similar safeguarding mechanism is used in the work by
Smith et al. [26]. The same timestep sequence is used
for the first-order stage as well as the matrix-dissipation
stage.

A nonzero initial solution ofν̃ = 10ν∞ is used for
the turbulence model, as suggested by Chisholm and
Zingg [16].

6.3 Preconditioning of the viscous term

Figure 4 depicts the convergence histories for Case 1 us-
ing four different calculations of the viscous term in the
preconditioner. The baseline viscous calculation as given
in (22) and (23) is used on the right-hand side; thus these
cases all converge to the same solution. It is observed
that distance-1 preconditioning and the approximate-
difference formula have faster convergence than the other
two approaches. The distance-1 viscous preconditioner
is used in the rest of the study. Convergence to 10−12

for Case 1 using distance-1 viscous preconditioning is
obtained in 4.5 hours or the equivalent of 3,000 residual
evaluations. It requires 50 outer and 1,200 inner itera-
tions in total.
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Preconditioner Storage i-it tf ts tf + ts

ILU(0) 1.0 33 10 226 236
ILU(1) 2.0 24 29 173 202
ILU(2) 3.8 12 96 101 197
ILU(3) 6.4 10 269 106 375
ILU(4) 9.8 9 638 121 759
ILUT(10−3,20) 1.3 42 548 370 918
ILUT(10−3,80) 2.3 21 1,176 219 1,395
ILUT(10−3,160) 3.3 15 2,065 197 2,262
ILUT(10−5,20) 1.4 42 2,802 397 3,199
ILUT(10−5,80) 2.9 20 7,365 251 7,616
ILUT(10−5,160) 4.6 14 14,971 230 15,201

Table 3: Memory, cost and effectiveness to reduce the
inner residual by two orders of magnitude for different
preconditioners.
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Figure 5: Case 2 convergence histories using different
tolerances in the linear solver.

6.4 Incomplete factorization

The drop-tolerance strategy ILUT is studied and com-
pared to ILU(p) preconditioning. Table 3 tabulates mem-
ory, cost and effectiveness to reduce the linear residual
by two orders-of-magnitude for several preconditioners.
The study is performed on Case 1. The linear system that
arises when the non-linear residual is 10−4 is studied. In
the table, i-it is the number of inner iterations,tf is the
time to factorize the matrix, andts is the time to solve
the system. In this study, ILU(p) is found to be more ef-
ficient than ILUT. The ILU(p) preconditioner withp = 1
is found to be the best choice for this case based on both
memory and cost considerations.
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Figure 6: Case 2 convergence histories using different
sizes of the Krylov subspace.

Convergence criterion CPU time (hours)

0.5% ofCL 17.2
0.1% ofCL 18.8
0.01% ofCL 20.6
0.5% ofCD 16.9
0.1% ofCD 18.6
0.01% ofCD 20.5

Table 4: Convergence data for the lift and drag coeffi-
cients for Case 2.

6.5 Convergence results

The distance-1 viscous formulation is chosen to con-
struct the preconditioning matrix in the rest of the study.
ILU(1) is used as the preconditioner. Figure 5 shows the
convergence for Case 2 using different linear system tol-
erances. Convergence to 10−12 is obtained in 25 hours or
the equivalent of 6,000 residual evaluations for this half-
million-node case using a linear system tolerance ofη =
10−2. It requires 148 outer and 2,300 inner iterations.
The use of a larger inner tolerance of 10−1 is found to
produce a longer startup stage with an increased num-
ber of outer iterations, while a smaller inner tolerance
of 10−3 leads to slower asymptotic convergence with an
increased number of inner iterations.

Figure 6 shows the convergence using different sizes
of the Krylov subspace. The use of GMRES(30) is found
to converge faster than GMRES(50) during startup, but
leads to a slower asymptotic convergence.

Convergence of lift and drag coefficients withη =
10−2 and GMRES(50) is given in Figure 7. The time
required to converge the force coefficients to some spec-
ified tolerances is summarized in Table 4. It requires 17
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Figure 7: Convergence of lift and drag coefficients for
Case 2.

Figure 8: Pressure contours over the ONERA M6 wing
at M∞ = 0.8395,α = 3.06◦, and Re = 11.7× 106.

hours to converge to within 0.5% of the converged lift
and drag coefficients, which are 0.263 and 0.0148 re-
spectively. Figure 8 shows the pressure contours over the
wing. The pressure coefficients at different wingspan lo-
cations are compared to experimental data in Figure 11.

Figure 9 shows the convergence for the third case over
the wing-body configuration. Convergence to 10−12 is
obtained in 20 hours with the equivalent of 6,000 residual
evaluations. It requires 165 outer and 2,000 inner itera-
tions in total. The pressure contours over the wing-body
configuration are shown in Figure 10.

7 Conclusions

A Newton-Krylov algorithm is presented for turbulent
aerodynamic flows. Convergence to 10−12 for half-
million-node three-dimensional cases can be obtained in
20-25 hours on a single processor.

The inclusion of the next-to-nearest neighboring terms
in the viscous operator causes preconditioning to become
impractical for three-dimensional applications. Four ap-
proaches are suggested as alternatives and are found to
be viable options. The distance-1 viscous precondition-
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Figure 9: Case 3 convergence history.

ing as well as the approximate-difference approach are
selected based on efficiency considerations. The ILU(p)
and ILUT preconditioners are studied; the former is
found to be more efficient.

Current results have motivated further research to
improve the efficiency of the current algorithm. Fu-
ture work includes investigation of preconditioning and
startup strategies and the choice of solver parameters.
The algorithm will also be extended to parallel to fur-
ther reduce computational time. The improved algorithm
will be applied to computations on finer grids to produce
more accurate flow solutions.
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Notes for the von Ḱarmán Inst. for Fluid Dynam-
ics Lecture Series: Numerical Techniques for Vis-
cous Flow Computation in Turbomachinery Blad-
ings, Brussels, Belgium, Jan. 1986.

[30] Mulder, W. A. and van Leer, B., “Experiments with
Implicit Upwind Methods for the Euler Equations,”
Journal of Computational Physics, Vol. 59, 1985,
pp. 232–246.

11



x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

480k grid
Experiment

20% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

44% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

65% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

80% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

90% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

95% wing span

Figure 11: Comparison between experimental and computed pressure coefficients at different spanwise locations for
the ONERA M6 wing at M∞ = 0.8395,α = 3.06◦, and Re = 11.7× 106.
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