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An evolutionary geometry parametrization is presented for aerodynamic shape optimiza-
tion. The geometry parametrization technique is constructed by integrating the traditional
B-spline approach with a knot insertion procedure. It is capable of defining a sequence
of nested parametrizations with the number of design variables being gradually enlarged.
The optimization coupled with this technique is carried out sequentially from the basic
parametrization to more refined parametrizations, as long as the geometry can be contin-
uously improved. Due to the nature of the B-spline formulation, feasible parametrization
refinements are not unique. Guidelines based on sensitivity analysis and geometric con-
straints are developed to assist the automation. The proposed process is applied to several
optimization examples to demonstrate its effectiveness.

I. Introduction

Motivated by the need to reduce jet fuel consumption and greenhouse gas emissions, there is an increase
in demand for efficient aircraft with possibly novel, unconventional aerodynamic configurations. Based
on improvements in computational fluid dynamics (CFD) and high performance computing capabilities,
numerical aerodynamic shape optimization has become a promising component in the development of such
aircraft and has been widely adopted in aerospace industry. However, with the increasing complexity of design
problems, shape optimization for aerodynamic applications remains a costly task and further improvements
in efficiency are needed.

One well recognized problem in aerodynamic shape optimization is attributed to an excessive number
of design variables. A number of authors’® have pointed out that the presence of a large number of
design variables results in poor performance for most existing optimization algorithms. Thus, it is essential
to include a limited number of critical design variables in an optimization, and the challenge of choosing
design variables is faced by a designer. However, prescribing design variables is not an ideal treatment for
an automated optimization process, especially when an unconventional configuration is subjected to some
unfamiliar design objectives; human intervention could mislead the optimization and should be minimized.
Consequently, it is desirable to organize a problem as a succession of optimizations with an increasing number
of significant design variables, and these variables should be deduced based on the performance of the existing
geometry.

In order to build such a process, it is critical to have a flexible and consistent definition for design
variables. For aerodynamic shape optimization problems, this specifically refers to a geometry representation
technique that is able to continuously refine the parametrization and produce a gradually enlarged set of
design variables. We regard such a technique as an evolutionary geometry parametrization, and it requires
two essential conditions:

e Multiple parametrization refinements can be carried out in a consistent manner;

e The geometry should not be changed as its parametrization is refined.
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There exist a large variety of parametrization methods for various applications.* © However, some tech-
niques like extended Joukowski transformation” and PARSEC?® require predetermined design variables, so
they are not suitable to form the proposed parametrization. Other commonly used approaches, such as dis-
crete grid points,’ domain elements,'” basis shape functions,!!>'? and polynomial splines'® possess enough
flexibility and can be considered for modification into an evolutionary parametrization.

Attempts of performing optimization with a changing parametrization have been carried out by several
authors. Beux and Dervieux' describe a gradient-based multilevel optimization using surface grid point
coordinates as design variables. They defined a hierarchical parametrization by extracting different subsets
of grid points from the complete surface points forming a family of embedded levels (i.e. a coarse level
corresponds to a small number of grid points, and a fine level refers to a large number of grid points).
With this nested parametrization, they proposed two optimization sequences: first, the optimizations are
conducted sequentially from the coarsest level to the finest level; second, multigrid strategies are adopted.
The optimizations are performed at the various levels according to a full V-cycle sequence. Their results
display an increase of optimization efficiency due to this process.

Similar research has also been accomplished by Desideri and colleagues.? 141 Their parametrization
strategy is defined by Bezier curves and volumes with a degree elevation algorithm. In these works optimiza-
tions are carried out on different parametrizations following a prescribed sequence. They have implemented
both gradient-based and gradient-free optimizers, and considerable improvements are achieved.

In this paper, evolutionary geometry parametrization is constructed based on an existing B-spline curve
formulation for airfoils'® and a B-spline volume parametrization for general three-dimensional geometries
and associated volume grids.!” This process consists of a B-spline approximation and a series of knot
insertions. The difference between this approach and the above methods is that the knot insertion procedure
is not unique due to the intrinsic properties of B-spline formulation. Therefore, parametrization refinements
cannot be predetermined but can be selected during the optimization process. As a result, the proposed
optimization is carried out sequentially from the initial parametrization to more refined parametrizations as
long as the objective function continues to improve.

The rest of the paper is constructed as follows: Section II describes the B-spline formulations; Section II1
briefly reviews the mesh movement algorithm, the flow solver and the optimizer used in the optimization
problems; Section IV explains the optimization procedure associated with an evolutionary parametrization;
sSection V presents the results of optimization problems; finally, Section VI concludes the paper and indicates
areas for future work.

II. B-spline parametrization

A B-spline method uses the tensor product of polynomial basis functions and corresponding coefficient
vectors to analytically represent a shape. Because the basis functions are predefined in the parametric
domain, the locations of the coefficient vectors, known as control points, determine the shape. Hence these
control points are naturally chosen as design variables for an optimization. An evolutionary parametrization
based on B-spline formulation has two stages. First, a basic parametrization consisting of the initial set of
control points is generated; second, refined parametrizations with more control points are constructed using
the knot insertion algorithm. The details of this procedure are presented using an airfoil and a rectangular
wing as examples.

II.A. B-spline curve

A planar B-spline curve is used to describe the surface of an airfoil. It is defined as a mapping from the
one-dimensional parametric space { € R} to the two-dimensional physical space {Xa € R2} of the following
form:

X(€) = 3" diNie() (1)

X (&) is the B-spline curve. With a given airfoil, the purpose of this procedure is to produce a B-spline curve
that best approximates its surface; ¢ is the parameter that is generated by mapping each surface point on

the airfoil to a parametric space; the coeflicient vectors, {d; : i =1,...,n}, are the n control points; the
functions, {N; :4=1,...,n}, are the normalized polynomial basis functions of order k.
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A few essential choices will significantly affect the quality of an approximation. The choice of the mapping
parameter is one of them. As denoted in the work of Kulfan,'® for an airfoil with a round nose, the following
centripetal parametrization'® gives desirable results.

§&1=0 (2)
n—k—lj_l .
@:TZ\/L,” j=2,...,N (3)
m=1

Here N is the total number of surface points on the airfoil, L,, is the segment length between successive
points, and the normalization factor, Ly is given by

N-1
Lr=/Ln (4)

The above mapping defines a parametric domain, £ € [0,n — k —1]. Another concept associated with this
mapping is a knot vector that partitions the parametric domain. This partition determines the distribution
of the basis functions, which has an important impact on the parametrization. Many authors®®:2! have
experimented with different choices. The cosine function adopted here turns out be a good compromise
between robustness and accuracy:

0 1<i<k
S [1—cos(ni_kk_1 w)} k+1<i<nth=s
t; = n—éc—l n+l2c—1 <i< n+§+3 (5)
"*’2“*1 [1—605(:;’2:21 w)} %’”5 <i<n
n—k—1 n+1<i<n-+k

Note the multiple knots appearing at the middle and two ends of the knot vector; they ensure one control
point is placed at the leading edge of the airfoil and two control points coincide at the trailing edge of the
airfoil. Because the multiplicity of a knot decreases the continuity of the associated curve, the repeated knots
at two ends will generate a desirable sharp trailing edge, but the continuity reduction at the leading edge
is unwanted. To overcome this problem, two adjacent control points are placed colinearly with the leading
edge point, so that C! continuity is restored. This amendment is performed at the end of the approximation.

Once the parametric domain is fully defined, the basis functions can be deduced by a recursive relation??
of the following form:

1if ¢ <E<tim

Nia(€) = . (6)
0 otherwise
Nik(€) = — 1 N1 (6 + TS N () (7)
tZJrk,l — tl tz+k - t1+1

Based on Eq. 1, in order to determine the B-spline curve, locations of control points must be provided.
Assume the airfoil surface is defined by a set of points, {P;,j=1,...,N}. The control points can be

determined by solving the least squares problem, min Ejvzl [|P; — X;||2. This process can be further

improved using an iterative parameter correction algorithm proposed by Hoschek,?® which optimizes the
mapping parameter for each surface point.

One example of an approximation using a 4th-order B-spline curve is shown in Figure 1(a). The
NACAO0012 airfoil is described using 15 control points, and the leading edge is handled by keeping three
adjacent control points aligned and equidistant.

II.B. Knot insertion

Adding control points to the existing B-spline curve is accomplished through knot insertion. Boehm?*
demonstrated that a new knot can be added into the existing knot vector without changing the shape of
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Figure 1. B-spline parameterization of the NACAO0012 airfoil. Plot (a) depicts the parametrized surface and control
points; plot (b) shows the refined parametrization with the additional control points.

the B-spline curve. Thus the geometry is preserved regardless the increased of the number of control points.
However, if the new knot to be inserted already exists in the knot vector, then adding a repeated knot would
result in a decrease in continuity. Therefore, inserting repeated knots is avoided.

Inserting a new knot obeys the following procedure. Denoting the new set of control points with a super-
script *, if a knot ¢t* is added to (¢,,t,+1), the new control points {d¥ : i =1,...,r —k+1,r+1,...,n+ 1}
retain the positions of the old control points based on the local support property of the B-spline formulation:

ar = d, 1<i<r—k+1 (8)
df=d;; r+1<i<n+1 (9)

The new control points, {d} :i=r—k+2,...,r}, are placed on the control polygon formed by the old
control points, {d} :i=r—k+1,...,r}. The quantitative relation can be deduced using the de Boor
algorithm:?2

d*

i =01-ai)di1 +a;d; (10)
t* —t;
o= — (11)
titk—1 — t;

The above procedure creates new control points located on the old control polygon, but their exact
coordinates are unknown in advance. If a user specified control point d* between (d,,d,1) is required, this
procedure can be reversed to calculate the required knot:2°

d* —d,

_ 12
y dr+1 - dr ( )

t" =trp1 + s(tryk —try1) (13)
Figure 1(b) uses the parametrized NACAQ0012 airfoil as an example. One knot insertion takes place at the
interval (t13,%14) on the upper surface, splitting this knot interval into two parts that contain approximately
same number of parameters. This insertion strategy is adopted in all examples presented, unless otherwise

stated. Another inverse knot insertion occurs on the lower surface, generating a new control point located
at £ = 0.5. In both cases, the geometry is precisely maintained.

II.C. B-spline volume

The B-spline volume parametrization developed by Hicken and Zingg'” is employed in the three-dimensional
shape optimization problems. Instead of only parametrizing the surface of the object, this approach represent
the entire computational grid with a B-spline volume control mesh. Thus, the shape deformation is acquired
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through the movement of the B-spline surface patches, and the corresponding grid perturbation is driven
by the adjustment of the B-spline volume control mesh to conform to the surface changes. The B-spline
volume method is formulated by extending planar B-spline curves into multi-dimensional space. This defines
a mapping from a parametric space, {£ = (£,1,¢) € R®: (£,1,¢) € [0,1]} to the physical space {X(£) € R3}.
The tensor product representation is given by

ng  MNj ng

X(E) =D > > dijr Nipi(€) Ny, (1) N (€) (14)

i=1 j=1k=1

Here, the B-spline volume, X (&), and the control points, d;;i’s, have analogous characteristics to the B-
spline curve and control points. However, the mapping parameter, £ is defined using a traditional chord
length parametrization for the purpose of approximating structured multi-block grids. The basis functions
are defined separately for each parameter. Theoretically, the orders of the basis functions are independent
for different parameters, but in practical applications, the order of polynomial basis functions is usually set
to be the same for each parameter to maintain the same continuity condition. Hence, the order of the basis
functions is denoted by p for the rest of the work. The computation of the basis functions still refers to the
recursive definition but with spatially varying knot vectors. Taking basis functions in the £ direction as an
example, they are given by

L ti(n,¢) <€ <tit1(n,C)

0 otherwise

Nia(€) = (15)

- . 5 — 1 (777 C) i
Nenl®) = (tiJr;Dl(na ¢) — ti(n, C)) Nep-1(6)

ti-HD (777 C) - 5 .
- (tiJrP(na C) - tz‘+1(777 C)) M+1,P—1 (5) (16)

where the knot vector, t;(n, (), is a spatially varying function of parameters, n and ¢. Its form can be
arbitrarily set to accommodate the different geometries, as long as it remains non-decreasing. For the grids
made of hexahedra, a simple bilinear form is used.'”

t(n,¢) = £(0,0)(1 = n)(1 = ) +¢(1,0)n(1 = ¢) +£(0, 1)(1 = )¢ +¢(1, 1)n¢ (17)

Here t(0,0), t(1,0), ¢(0,1) and ¢(1, 1) are four edge knot vectors in the ¢ direction, and they are constructed
to have roughly the same number of parameters in each knot interval.

The B-spline volume control points are determined by solving Eq. 14 through a least squares procedure.
For multi-block grids, consistent positions of control points at interfaces are mandatory. Thus the least
squares problem is solved sequentially for block edges, surfaces, and volumes. The resulting B-spline volume
control points are also referred as a volume control mesh. Figure 2(a) shows the control mesh of a rectangular
wing with 7 control points in the spanwise and streamwise directions using 4th-order basis functions and
bilinear spatially varying knot vectors.

Creating a refined control mesh for an existing B-spline volume can also be achieved using a knot insertion
algorithm. From Eq. 17, one can observe that the edge knot vectors are spatially invariant; this implies that
the knot insertion algorithm for B-spline curves is still applicable to these edge knot vectors. Since the
grids used in this work consist of hexahedra, once the four edge knot vectors in the same direction are
refined simultaneously, all the other knot vectors in this direction can be subsequently refined using Eq. 17.
Hence, by re-solving the least squares problem, a new B-spline volume can be established with a refined
control mesh. Referring to the local support property of the B-spline formulation, only some of the control
points will be altered on the edges, which implies that the change to the control mesh will be limited to
the corresponding sections. Figure 2(b) illustrates a control mesh refinement in the spanwise direction (one
more section is added).

III. Overview of optimization routines

In order to perform an automated aerodynamic shape optimization, a set of analysis and optimization
routines are integrated together. The present optimization codes in two and three dimensions contain the
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(a) initial control mesh (b) refined control mesh

Figure 2. B-spline parameterization of a rectangular wing. The white spheres in plot (a) are the original control points
and the red spheres in plot (b) are the refined control points.

following essential components: 1) geometry parametrization, 2) grid movement algorithm, 3) flow solver,
4) optimizer. Among them, the geometry parametrization using B-spline formulation is described in detail
in the previous section. A brief overview of the remaining routines is given here.

During the optimization, once the geometry is modified by manipulation of the surface control points, the
computational grid has to conform to the new shape. Nemec et al.?6 proposed an algebraic grid movement
algorithm that preserves the location of the outer grid boundary and relocates the grid points in the normal
direction proportional to the distance from the surface. This approach is demonstrated to be robust and
efficient for small shape changes. Truong et al.?” implemented a mesh movement algorithm based on the
linear elasticity equations with multiple increments. This method is able to accommodate relatively large
shape variation occurred in the optimization, but is also computationally expensive. Hicken and Zingg'”
integrated the linear elasticity grid movement algorithm with the B-spline volume formulation such that the
relatively coarse control mesh is moved by the algorithm, and the fine computational grid is regenerated
using the perturbed control mesh. Because usually there are two to three orders of magnitude fewer control
points than grid points, this approach is very efficient. In the present work, the algebraic grid movement is
used in the two-dimensional airfoil optimizations and the linear elasticity grid movement of the control mesh
is adopted in three-dimensional wing optimizations.

To evaluate the aerodynamic performance of an existing geometry, a high fidelity flow solver is necessary.
For a two-dimensional airfoil, an efficient Newton-Krylov flower solver was developed by Nemec and Zingg!®
solving the Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras turbulence model. Spatial
derivatives in the governing equations are discretized by the second-order centered difference scheme, and
temporal derivatives are neglected for steady solution. The resulting flow residual equations are solved using
a Newton-Krylov strategy. The implicit Euler time marching method with approximate-factorization is
used to provide an initial value for the Newton iterations, and the generalized minimal residual method is
adopted to solver the linear systems. In the three-dimensional optimization code, a parallel Newton-Krylov-
Schur Euler solver developed by Hicken and Zingg®® is used. This solver adopts a similar Newton-Krylov
strategy, but for the results presented in this paper, the start-up algorithm is changed to the dissipation-based
homotopy continuation,?” and the linear solver is changed to the flexible GMRES with an approximate-Schur
preconditioner.

The SNOPT computational package® is used as the optimizer. This algorithm handles constraints by
forming a modified Lagrangian and searches local optimal points that satisfy the KKT optimality conditions.
It adopts a sequential quadratic programming method; each quadratic subproblem is created based on the
approximated Hessian of the Lagrangian using a BEFGS method. Since SNOPT is a gradient-based algorithm,
the gradients of objective functions and constraints are evaluated using the well established discrete adjoint
method.'”26:31 In the present code for airfoil optimization, the grid sensitivities are treated implicitly; in
three dimensions, the grid sensitivities are handled through mesh adjoint equations.
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IV. Optimization procedure

Having all the numerical routines available, an automated optimization process can be established with
the aid of an evolutionary B-spline parametrization. Since this evolutionary parametrization is able to
produce consistent geometry representations as the number of control point gradually increases, the proposed
process is executed in a progressive manner: initially, an optimization is started with relatively few control
points; once it converges or is close to convergence, the geometry parametrization is refined, and the next
optimization begins with more control points based on the obtained geometry. This procedure repeats
continuously until the final termination. To clearly present the results, finding an optimized geometry is
regarded to be a completion of an optimization cycle.

The knot insertion algorithm can be performed at different knot intervals, so the additional control points
can be placed at various locations. To choose the most effective control points among all the candidates, we
have established the following selection criteria:

1. The number of parameters in the each knot interval should remain above a certain threshold. Since the
B-spline control points are locally supported, clustering excessive control points in some region would
not lead to significant improvement.

2. Local non-linear constraints such as minimum thickness, critically impact the movement of control
points. If a constraint is inactive, it implies that there exists a feasible region in the design space, and
adding control points at this location has a large probability to outperform adding control points in
a region with active local constraints. Therefore preference is given to refinements which add control
points to the regions containing inactive local non-linear constraints.

3. The satisfaction of the linear constraints is mandatory. Any parametrization refinement violating the
linear constraints is dropped from consideration.

4. If there are multiple candidates remaining after considering the above requirements, the magnitude of
the sensitivity with respect to the proposed new control points is used as a measure of the potential
improvement. The prospective control point with the highest sensitivity is selected.

Second, parametrization refinement (i.e. increasing the number of design variables) occurs at regular
intervals during the optimization process, but it is hard to identify a clear signal for this procedure. Some
authors’? argue that when the number of design variables is small, a small number of optimization iterations
is enough and full convergence is unnecessary, since these optimization cycles are only intermediate steps.
However others3? 33 point out that the optimizations at the first few cycles should be driven sufficiently close
to the optimal shape that the current shape can provide a good start for subsequent optimizations. At the
current stage, we choose to perform well converged optimization at each cycle for the following two reasons:

1. Tt is desirable to have a small number of critical design variables. If a significant improvement is made
by existing design variables, the optimization could be terminated without attempting the next cycle.
Thus, optimization at each cycle is driven toward convergence to make full use of every design variable.

2. One selection criterion uses the magnitude of the sensitivity as a test of different parametrization
refinements. This is only valid if the optimization is fairly well converged.

Moreover, terminating the optimization cycles also requires a criterion. As pointed out in the work of
Zingg et al.,3* the benefit of introducing control points after a certain threshold is marginal. Thus, this
process is terminated if significant improvements are not achieved by adding further design variables. Other
termination conditions are also posed; they will be stated for each optimization problem.

V. Results

The proposed optimization process based on evolutionary parametrization is applied to aerodynamic
shape optimization problems. To demonstrate its effectiveness, the same problems are also solved using vary-
ing numbers of control points that are uniformly placed. Here “uniform” means that, for a two-dimensional
airfoil, its knot vector obeys the stated cosine function, and for a three-dimensional wing, its knot vectors
evenly partition the parametric domain. The results from these two approaches are compared and discussed.
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Figure 3. Lift-constrained drag minimization

Table 1. Geometric constraints for lift constrained drag minimization problem

constraint 1 2 3

location (c) 0.96 0.99 -

minimum thickness (¢) | 0.006 | 0.0012 -
minimum area (c?) - - 0.07761

V.A. Airfoil optimization: lift-constrained drag minimization

The objective of this optimization is to minimize the drag coefficient of an airfoil at a Mach number of 0.74
and a Reynolds number of 2.7 million in a fully turbulent flow. The lift coefficient is kept constant at 0.733,
and the geometric constraints are listed in Table 1. The initial shape for the optimization is the RAE2822
airfoil. The angle of attack is not treated as a design variable but adjustable to satisfy the lift constraint.3?
The grid has a “C” topology with 289 nodes in the streamwise direction and 65 nodes in the normal direction.
We parametrize this initial geometry with 15 B-spline control points evenly placed around the airfoil. Three
points at the leading edge and two points at the trailing edge are frozen to prevent translation and unrealistic
curvature. The ordinates of the remaining 10 control points serve as design variables.

In this problem, the area constraint affects every design variable, thus it behaves as a global constraint.
The thickness constraints only influence the control points close to them, so they are referred to as local
constraints. As discussed in Section IV, the parametrization refinement takes into account whether or
not these two thickness constraints are active. A geometric restriction is imposed to ensure that each
knot interval contains at least 5% of the total mapping parameters (each surface grid point is assigned a
parameter by a predetermined mapping strategy, and the parametric domain partition defined by the knot
vector requires each knot interval to contain a certain number of parameters so that every control point can
control a minimum number of surface grid points), and the entire process is terminated when two successive
parametrization refinements result in negligible improvement. Figure 3(a) displays the surface change and
the inserted control points upon the completion of the optimization. Figure 3(b) shows a comparison of the
pressure distributions. The shock is completely eliminated by the optimized airfoil.

To provide a comparison for optimization efficiency, this result is compared with a series of optimizations
with varying numbers of control points uniformly placed around the airfoil. Figure 3(c) depicts such a
comparison in terms of the scaled objective function. The scaling factor is the drag coeflicient of the original
RAE2822 airfoil. This figure shows that the optimization with evolutionary parametrization consistently
reduces the drag coefficient in comparison to a uniform placement of design variables. After adding 6 design
variables to the original 15 for a total of 21, it is able to reach an optimal solution that is comparable to the
result obtained using 27 design variables evenly around the airfoil.

V.B. Airfoil optimization: maximization of lift-to-drag ratio

The second airfoil optimization maximizes the lift-to-drag ratio. The freestream Mach number and Reynolds
number are 0.25 and 2.88 million respectively. The seven thickness constraints listed in Table 2 are imposed.
The angle of attack is considered a design variable and initially set to 9.0 degrees. The baseline geometry is
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Figure 4. Lift-to-drag maximization

Table 2. Geometric constraints for lift-to-drag maximization problem

constraint 1 2 3 4 5 6 7
location (c) 0.05 ] 0.35 | 0.65 | 0.75 | 0.85 0.95 0.99
minimum thickness (¢) | 0.04 | 0.11 | 0.04 | 0.03 | 0.026 | 0.012 | 0.002

the NACAOQ012 airfoil, and the computational grid has the same size as the previous problem. Initially 15
control points are evenly placed around the airfoil; 10 of them are free to move in the vertical direction.

In this problem, multiple thickness constraints are present. Thus the additional control points are only
inserted into the regions where inactive thickness constraints reside, and the optimization sequence is termi-
nated after all the constraints are considered. Figures 4(a) and 4(b) illustrate the change of the geometry
and the pressure distribution. The comparison of the evolutionary parametrization and uniform refinements
is depicted in Figure 4(c). The objective function value is scaled by the initial lift-to-drag ratio of the
NACAO0012 airfoil. It can be seen from this figure that the proposed optimization sequence captures more
effective design variables. The optimal lift-to-drag ratio is obtained with only 20 control points.

V.C. Planform optimization

The following optimizations are all conducted in a three-dimensional context; the common design objective
is to minimize the induced drag at a constrained lift coefficient. Prandtl’s lifting line theory3® concludes
that the minimum induced drag for a planar wake occurs when the lift is elliptically distributed. This is
considered as a measure for the optimization results.

The B-spline volumes are used to approximate a 12-block flat-plate grid consisting of 1.1 million nodes,
and the initial geometry is constructed to be a rectangular wing with a uniform chord of 2/3, a semi-span of
2, and NACAO0012 sections. The chord and span are non-dimensionlized by the chord length of the flat-plate
grid. The projected area, S = 4/3, is used as the reference area, and remains fixed during the optimization.
The freestream Mach number is 0.5, and the lift coefficient is constrained at 0.35. The angle of attack is
considered a design variable, and it is initially 3.94321 degrees, which produces the target lift coefficient with
the baseline geometry.

The initial parametrization for each block is 7 x 7 x 6. In other words, on the wing surface, there are
7 control points in the streamwise and spanwise directions. To perform an optimization through planform
variation, all the control points except the ones on the trailing edge are free to move in the streamwise
direction, and the entire trailing edge are fixed to reduce the impact of a nonplanar wake. The leading
edge control points possesses complete degrees of freedom, other interior points are coupled with the leading
edge control points to provide a scaling once the leading edge changes. Therefore, the initial effective design
variables are the 7 chord lengths and the angle of attack. One additional constraint is needed to confine
the wing within —0.5 < x < 0.5 with the purpose of maintaining a reasonable shape. The parametrization
refinement is formulated such that more spanwise stations are added, so that the effective design variables
are gradually increased. By experience, each knot interval is required to maintain at least 15% of the total
number of parameters in the spanwise direction, so that the B-spline control points lie sufficiently far apart.
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(a) Initial planform (b) cycle 1 (c) cycle 2

(d) cycle 3 (e) cycle 4 (f) cycle 5

Figure 5. Planform changes during the optimization

Figure 5 shows the planform deformation at each optimization cycle. As the more spanwise stations are
added, the geometry approaches a crescent shape with decreasing chord lengths along the span. The lift
distributions are plotted in Figure 6(a), and it can be seen that the final lift distribution is close to the
classical elliptical distribution for the most part but substantially different at the tip. This phenomenon
has been identified by Hicken and Zingg,” and they point out that the presence of the shape tip causes
the vertex to release along the tip edge, which ultimately results in a nonplannar wake. Nevertheless, the
purpose of this example is to demonstrate the effectiveness of the evolutionary parametrization. In terms of
the performance of the optimized design, the drag coefficient is reduced from 0.006769 to 0.006606; a roughly
2.4% drop is achieved. The span efficiency of the final geometry is 0.9838, which is close to the efficiency of
0.988 obtained by Hicken and Zingg3” using 15 spanwise control points. Figure 6(b) compares the evolution-
ary parametrization with uniformly spaced parametrizations. The latter do not receive significant benefits
from increasing effective design variables, and their performance is inferior comparing to the evolutionary
parametrization using the same number of spanwise control points.

V.D. Winglet optimization

With the purpose of reducing induced drag, the effect of non-planar structure has been well recognized.?® In
this problem, the optimization based on evolutionary parametrization is applied to investigate an optimal
spanwise vertical structure that yields minimal induced drag. The baseline geometry is the same rectangular
wing used for planform optimization; the operating condition and constraints are also identical to the previous
problem. The vertical coordinates of the surface control points are free to move, and a box constraint is
imposed to confine the entire geometry within —0.2 < z < 0.2. To prevent excessive degrees of freedom,
interior control points at each spanwise station are coupled with the corresponding leading and trailing
edges such that the thickness of the section is maintained. Also, to generate reasonable vertical structure,
the control points near the wing tip are maintained in a consistent manner. The formed winglet can be
either upward or downward with wavy surface details, but an abrupt change of angle is avoided. This is
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Figure 7. Winglet formation

done by defining the maximum dihedral and anhedral between adjacent control points to be 145 and 35
degrees respectively. These relations are expressed in terms of linear constraints, which effectively restrict
the total number of degrees of freedom; complete freedom is only given to the vertical coordinates of the
control points located at the leading and trailing edges. Consequently, the parametrization refinement occurs
along the spanwise direction, adding more effective design variables. The same restriction on knot interval
size still applies; moreover, the added stations are required to satisfy the existing linear constraints.

Figure 7 shows an upward winglet produced during the optimization. The added control points provide
additional degrees of freedom to make the winglet more or less normal to the horizontal wing. The last two
refinements fail to provide sufficient improvement, so the optimization is terminated with 9 spanwise stations.
The drag coefficient is reduced from 0.006730 to 0.005835, and the span efficiency is increased from 0.9656
to 1.1137. This result is close to the performance of the optimized winglet configuration obtained by Hicken
and Zingg3” as they reported a span efficiency of 1.147 using 13 spanwise stations for the upward winglet.
This optimization result is compared to the optimal solutions if control points are uniformly distributed.
Figure 8 shows that the optimization based on evolutionary parametrization reaches a better optimum with
fewer design variables.
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V.E. Box-wing optimization

The evolutionary parametrization is also applied to a box-wing configuration. The initial box-wing geometry
has a semi-span of 3.0, a chord length of 1, and NACAO0012 sections. The initial height to span ratio is
0.105. It is embedded in a 6-block grid consisting of roughly 6.02 x 10° nodes. The computational grid is
approximated using B-spline volumes with 9 control points in the streamwise direction and 5 in the spanwise
and vertical directions. The projected area considering the contribution from two horizontal wings is 5.87;
it is used as the reference area and constrained to this value during optimization. The initial angle of attack
is set to 3.0 degrees and kept fixed. The lift coefficient at this particular angle of attack is 0.1793; it is also
constrained to this value.

The control points along the horizontal wings are allowed to move in vertical direction, and the control
points on the vertical plate are free to move in the spanwise direction. Again, the control points belonging to
one section are coupled to maintain the integrity of the geometry; only the leading and trailing edge control
points have complete freedom. In addition, dihedral and anhedral angle limitations are defined between
successive control points, so no abrupt bending is allowed. At the junctions of the horizontal wings and the
vertical plate, control points are extrapolated based on adjacent sections including the control points at the
leading and trailing edges. Besides these linear constraints, a box constraint is imposed to confine the entire
geometry within 0 <y < 3,-0.315 < z < 0.315. The parametrization refinements occur along the span and
the vertical plate, additional sections are simultaneously inserted at the upper and lower horizontal wings as
well as the vertical plate.

Figure 9 shows the geometry deformation at the end of each cycle. The process is terminated because
excessive control points have been placed on the vertical plate, i.e. the geometry limitation is reached. The
overall performance is depicted in Figure 10. The optimization based on evolutionary parametrization gains
substantial benefit from the added design variables, and the drag coefficient is reduced by a considerable
amount. However, the optimization results with uniformly placed control points do not exhibit much de-
pendence on the enriched design variables, and the optimization efficiency is clearly lower than the proposed
process.

VI. Conclusion

In the present work, a B-spline approximation method is coupled with a knot insertion algorithm to form
an evolutionary geometry parametrization algorithm. This algorithm is able to provide gradually increasing
design variables for shape optimization problems. An optimization sequence taking advantage of this feature
is proposed, continuously selecting critical design variables to improve the design objective. Several aero-
dynamic shape optimization problems are solved using this proposed process, and the results are compared
with optimizations conducted with uniformly refinement parametrizations. These comparisons consistently
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demonstrate that the optimization based on the evolutionary parametrization is more efficient in achieving
a better design with fewer design variables. The current process is not fully automated since the imple-
mentation of parametrization refinements and the termination conditions still requires experimentation and
turning, so future investigation is necessary to improve the automation. Also, evolutionary parametriza-
tion is not limited to B-spline formulations; other efficient geometry representation techniques can also be
considered and tested.
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