
Comparison of parallel preconditioners for a
Newton-Krylov flow solver

Jason E. Hicken, Michal Osusky, and David W. Zingg

1 Introduction

Analysis of the results from the AIAA Drag Prediction workshops (Mavriplis et al,
2008) suggest that at least O(108) grid nodes are necessary for grid-converged lift
and drag values in computational aerodynamics. This motivates the development
of efficient solution algorithms that scale well using thousands of processors. In
particular, we are interested in parallel Newton-Krylov methods, since serial imple-
mentations of these methods have proven to be highly efficient for turbulent flows
(Chisholm and Zingg, 2009).
Parallel preconditioning is a critical part of scalable Newton-Krylov algorithms,

and this remains an active area of research for large-scale problems. In this pa-
per, we compare the performance of two parallel preconditioners for a Newton-
Krylov flow solver: an additive-Schwarz preconditioner and an approximate-Schur
preconditioner. A previous study using only 24 processors was inconclusive regard-
ing the relative performance of these preconditioners (Hicken and Zingg, 2008). In
the present study, the approximate-Schur preconditioner is shown to scale well to at
least 1000 processors and is superior to the additive-Schwarz preconditioner when
more than 100 processors are used.

2 Overview of the Newton-Krylov Solver

This section briefly reviews the parallel Newton-Krylov solution algorithm: for de-
tails see Hicken and Zingg (2008, 2009) and Osusky et al (2010). The steady govern-
ing equations are discretized in space, leading to a coupled set of nonlinear algebraic
equations:

R(q) = 0, (1)

Jason E. Hicken, postdoctoral fellow
e-mail: jehicken@oddjob.utias.utoronto.ca

Michal Osusky, PhD candidate
e-mail: michal@oddjob.utias.utoronto.ca

David W. Zingg, Professor and Director
University of Toronto Institute for Aerospace Studies,
4925 Dufferin St. Toronto, Ontario, Canada, M3H 5T6
e-mail: dwz@oddjob.utias.utoronto.ca

1



2 J. E. Hicken, M. Osusky, and D. W. Zingg

where R : Rn → Rn is the residual and q ∈ Rn is a column vector representing the
discrete solution. The results presented in this paper are based on a summation-
by-parts finite-difference discretization (Kreiss and Scherer, 1974); however, the
Newton-Krylov algorithm is relatively independent of the chosen discretization.
Newton’s method is applied to (1), leading to the sequence of linear systems

A
(k)Δq(k) = −R(k), k ≥ 0, (2)

where Δq(k) = q(k+1) − q(k), R(k) = R(q(k)), and A
(k)
i j = ∂R(k)

i /∂q j. Newton’s
method converges provided A(k) is non-singular and the initial iterate q(0) is suf-
ficiently close to the solution: a globalization strategy is necessary to ensure the
algorithm converges when q(0) is far from the solution. The globalization strategy
adopted here is the dissipation-based continuation of Hicken and Zingg (2009).
Solving the linear system (2) exactly is unnecessary and inefficient, particularly

in the early iterations of Newton’s method. This motivates the class of inexact-
Newton methods (Dembo et al, 1982), in which the linear-update system is solved
to a tolerance ηk:

‖R(q(k))+A
(k)Δq(k) ‖2 ≤ ηk‖R(q(k))‖2.

A Newton-Krylov algorithm is an inexact-Newton method that uses a Krylov iter-
ative solver. In this work, we use the Krylov iterative solver GCROT(m,k) (Hicken
and Zingg, 2010), a variant of de Sturler’s truncated GCRO algorithm (de Sturler,
1999). Krylov methods require only Jacobian-vector products to solve (2), and these
products can be obtained using a finite-difference approximation. Hence, the Jaco-
bian matrix does not need to be explicitly formed and stored, leading to significant
CPU-time and memory savings1

3 Parallel Preconditioners

A Newton-Krylov algorithm consists of three primary operations: residual evalu-
ations, dot products, and preconditioner applications. The first two operations are
easily parallelized and scale well. In contrast, finding an effective parallel precon-
ditioner can be challenging. Saad and Sosonkina (1999) proposed an approximate-
Schur preconditioner that we have found to be an efficient choice for CFD applica-
tions. For comparison, we also consider the additive-Schwarz preconditioner with
no overlap (block Jacobi), which is a popular preconditioner for Newton-Krylov
algorithms. Both preconditioners are described below in the context of the generic
system

Ax = b, (3)

where A ∈ Rn×n and x,b ∈ Rn.

1 While most Newton-Krylov algorithms require an approximate Jacobian matrix for precondition-
ing, this matrix typically requires less storage and computation than the full Jacobian.



Parallel preconditioners for Newton-Krylov methods 3

ILU-based Additive Schwarz Let Pi be the rectangular matrix that projects a
global n-vector onto a local vector corresponding to the unknowns stored on pro-
cess i. Applying Pi to the linear system (3), and considering local solutions of the
form x= PTi xi, we obtain the block diagonal system

Aixi = bi, (4)

where bi ≡ Pib and Ai ≡ PiAPTi . The local matrix Ai is factored into LiUi using
ILU(p) (Meijerink and van der Vorst, 1977). The additive-Schwarz preconditioner
(with no overlap) is obtained by applying the local factorizations to bi, and then
summing the local contributions to create the global preconditioned vector:

xschwarz ≡∑
i

P
T
i (U−1

i L
−1
i )Pib.

The operations in this block-Jacobi preconditioner are local and parallelize well.
However, the preconditioner becomes less effective as more processors are added,
because the coupling between domains is ignored.

Approximate Schur Consider a local ordering in which variables assigned to pro-
cessor i and coupled to unknowns on processor j )= i are ordered last. This ordering
partitions PiAx= Pib into the following block structure:

(

Bi Fi
Hi Ci

)(

ui
yi

)

+

(

0
∑ j Ei jy j

)

=

(

fi
gi

)

. (5)

The variables ui are not coupled across processors and can be eliminated using

ui = B
−1
i (fi−Fiyi). (6)

Substituting ui into (5) we find the following system for the variables coupling the
domains: 






S1 E12 . . . E1P
E21 S2 . . . E2P
...

. . .
...

EP1 EP2 . . . SP








︸ ︷︷ ︸

S








y1
y2
...
yP








=








g′1
g′2
...
g′P








, (7)

where Si ≡ Ci−HiB
−1
i Fi, and g′i ≡ gi−HiB

−1
i fi. The coefficient matrix S is the

Schur complement corresponding to the variables coupled between processors. Sup-
pose we solve (7) using block Jacobi. This approach would parallelize well, but it
requires Si—more precisely, its inverse — which can be expensive to form explic-
itly. Saad and Sosonkina (1999) recognized that an ILU factorization of Si can easily
be extracted from an ILU(p) factorization of Ai. Their Schur-based preconditioner
consists of a GMRES-accelerated approximate solution of (7), with Si replaced by
its ILU factorization. Once approximate solutions to the yi are obtained, they are
substituted into (6), with Bi replaced with its ILU(p) factorization, to obtain ui. The



4 J. E. Hicken, M. Osusky, and D. W. Zingg

Table 1 Description of cases used to compare preconditioners

case grid size a.o.a.† Mach number Reynolds number

case I 1.0×107 nodes 3.00 0.50 ∞ / 600
case II 1.0×107 nodes 3.06 0.84 ∞ / 600
case III 3.8×107 nodes 3.00 0.50 ∞ / 600
case IV 3.8×107 nodes 3.06 0.84 ∞ / 600

† angle of attack in degrees

approximate-Schur preconditioner is nonstationary, so we use the flexible variant of
GCROT(m,k).

4 Results

The two preconditioners are compared using the four test cases listed in Table 1.
The geometry for all cases is the ONERA M6 wing. Both inviscid and viscous
flow conditions are considered for each case, with the off-wall mesh spacing mod-
ified appropriately. The preconditioners for the inviscid runs are constructed us-
ing ILU(2), while the viscous preconditioners are based on an ILU(3) factoriza-
tion. Fourth-difference scalar dissipation is used in all cases, and second-difference
dissipation is activated as necessary. For a given case, the parallel performance of
the preconditioner prec using p processors is measured using a relative efficiency:
efficiencyprecp ≡

(

pminT Schurpmin
)

/
(

pTprecp
)

, where T Schurpmin is the CPU time for a nine-
order rresidual-norm reduction when the approximate-Schur preconditioner is used
with the fewest possible processors permitted by memory constraints, pmin.
Figure 1 plots the results for the inviscid runs. Cumulative matrix-vector products

are plotted versus processors in the left figure, and relative efficiency is shown in the
right figure. As the number of processors is increased, the additive-Schwarz precon-
ditioner generally uses more matrix-vector products, as expected. In contrast, the
number of products used by the approximate-Schur preconditioner remains steady
or declines slightly. Consequently, the approximate-Schur preconditioner has a bet-
ter relative efficiency when more processors are used (0.7–0.9) compared with the
additive-Schwarz preconditioner (0.5–0.6).
The results from the viscous runs are shown in Figure 2. Both preconditioners ex-

hibit better scalability compared with the inviscid runs: the viscous Jacobian-vector
product is more expensive but the number of products remains on the same order as
the inviscid runs, so the ratio of computation to communication goes up. Relative
performance is similar to the inviscid runs: the approximate-Schur preconditioner
outperforms the additive-Schwarz preconditioner when more than 100 processors
are used.
Table 2 summarizes the CPU times required to reduce the L2 norm of the residual

by nine orders of magnitude, when the maximum number of processors are used.



Parallel preconditioners for Newton-Krylov methods 5

processors

m
at
rix
-v
ec
to
rp
ro
du
ct
s

102 103
0

2000

4000

6000

8000

10000

processors

re
la
tiv
e
ef
fic
ie
nc
y

102 103
0.4

0.6

0.8

1.0

1.2

approx. Schur
add. Schwarz
case I
Case II
case III
case IV

Fig. 1 Number of matrix-vector products versus processors (left) and relative parallel efficiency
(right) for the inviscid runs.

processors

m
at
rix
-v
ec
to
rp
ro
du
ct
s

102 103
0

2000

4000

6000

8000

10000

processors

re
la
tiv
e
ef
fic
ie
nc
y

102 103
0.4

0.6

0.8

1.0

1.2

approx. Schur
add. Schwarz
case I
case II
case III
case IV

Fig. 2 Number of matrix-vector products versus processors (left) and relative parallel efficiency
(right) for the viscous runs.

Table 2 CPU times, in seconds, for a 10−9 residual reduction using the maximum number of
processors considered.

640 processors 1024 processors
case I case II case III case IV

inviscid add. Schwarz 294 436 1123 2842
approx. Schur 245 308 917 1598

viscous add. Schwarz 741 1324 3582 6508
approx. Schur 659 1046 2451 3992



6 J. E. Hicken, M. Osusky, and D. W. Zingg

5 Conclusions and Future Work

For a problem of fixed size, the number of matrix-vector products required by the
additive-Schwarz (block-Jacobi) preconditioner generally increases as the number
of processors increases. The approximate-Schur preconditioner, in contrast, is much
less sensitive to the number of processors and scales well out to at least 103 proces-
sors. The approximate-Schur preconditioner is straightforward to implement and
outperforms the Schwarz preconditioner when more than 100 processors are used.

References

Chisholm TT, Zingg DW (2009) A Jacobian-free Newton-Krylov algorithm
for compressible turbulent fluid flows. Journal of Computational Physics
228(9):3490–3507, DOI 10.1016/j.jcp.2009.02.004

Dembo RS, Eisenstat SC, Steihaug T (1982) Inexact Newton methods. SIAM Jour-
nal on Numerical Analysis 19(2):400–408, DOI 10.1137/0719025

Hicken JE, Zingg DW (2008) A parallel Newton-Krylov solver for the Euler
equations discretized using simultaneous approximation terms. AIAA Journal
46(11):2773–2786, DOI 10.2514/1.34810

Hicken JE, Zingg DW (2009) Globalization strategies for inexact-Newton solvers.
In: 19th AIAA Computational Fluid Dynamics Conference, San Antonio, Texas,
United States, AIAA-2009-4139

Hicken JE, Zingg DW (2010) A simplified and flexible variant of GCROT for
solving nonsymmetric linear systems. SIAM Journal on Scientific Computing
32(3):1672–1694

Kreiss HO, Scherer G (1974) Finite element and finite differencemethods for hyper-
bolic partial differential equations. In: de Boor C (ed) Mathematical Aspects of
Finite Elements in Partial Differential Equations, Mathematics Research Center,
the University of Wisconsin, Academic Press

Mavriplis DJ, Vassberg JC, Tinoco EN, Mani M, Brodersen OP, Eisfeld B, Wahls
RA, Morrison JH, Zickuhr T, Levy D, Murayama M (2008) Grid quality and
resolution issues from the drag prediction workshop series. In: The 46rd AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA–2008–0930

Meijerink JA, van der Vorst HA (1977) An iterative solution method for linear sys-
tems of which the coefficient matrix is a symmetric M-matrix. Mathematics of
Computation 31(137):148–162

Osusky M, Hicken JE, Zingg DW (2010) A parallel Newton-Krylov-Schur flow
solver for the Navier-Stokes equations using the SBP-SAT approach. In: 48th
AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, AIAA–2010–
116

Saad Y, Sosonkina M (1999) Distributed Schur complement techniques for general
sparse linear systems. SIAM Journal of Scientific Computing 21(4):1337–1357

de Sturler E (1999) Truncation strategies for optimal Krylov subspace methods.
SIAM Journal on Numerical Analysis 36(3):864–889


