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1 Introduction

Analysis of the results from the AIAA Drag Prediction workgis (Mavriplis et al,
2008) suggest that at least10?) grid nodes are necessary for grid-converged lift
and drag values in computational aerodynamics. This mesvthe development
of efficient solution algorithms that scale well using thaods of processors. In
particular, we are interested in parallel Newton-Krylovthaals, since serial imple-
mentations of these methods have proven to be highly effiéberurbulent flows
(Chisholm and Zingg, 2009).

Parallel preconditioning is a critical part of scalable Nem+Krylov algorithms,
and this remains an active area of research for large-scaldgms. In this pa-
per, we compare the performance of two parallel preconutis for a Newton-
Krylov flow solver: an additive-Schwarz preconditioner ardapproximate-Schur
preconditioner. A previous study using only 24 processas inconclusive regard-
ing the relative performance of these preconditionersKeticand Zingg, 2008). In
the present study, the approximate-Schur preconditieasrown to scale well to at
least 1000 processors and is superior to the additive-Setpvaconditioner when
more than 100 processors are used.

2 Overview of the Newton-Krylov Solver

This section briefly reviews the parallel Newton-Krylovsebn algorithm: for de-
tails see Hicken and Zingg (2008, 2009) and Osusky et al (R0h@ steady govern-
ing equations are discretized in space, leading to a coweleaf nonlinear algebraic
equations:

R(q) =0, 1)
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whereR : R" — R" is the residual and € R" is a column vector representing the
discrete solution. The results presented in this paper asedon a summation-
by-parts finite-difference discretization (Kreiss and &eh, 1974); however, the
Newton-Krylov algorithm is relatively independent of thieasen discretization.
Newton’s method is applied to (1), leading to the sequendi@@dr systems

AWAqW = _RW k>0, )

where Aq® = qk+D) — gk, R = R(q), and Ai(}‘) = orRY/aq;. Newton's
method converges provide®® is non-singular and the initial iterag? is suf-
ficiently close to the solution: a globalization strategynecessary to ensure the
algorithm converges wheq(? is far from the solution. The globalization strategy
adopted here is the dissipation-based continuation ofétiend Zingg (2009).
Solving the linear system (2) exactly is unnecessary anffiérent, particularly
in the early iterations of Newton’s method. This motivathe tlass of inexact-
Newton methods (Dembo et al, 1982), in which the linear-tpdgstem is solved
to a tolerance)y:

IR(@Y)+A®AqM (|2 < nel|R(GY) |2.

A Newton-Krylov algorithm is an inexact-Newton method thiaes a Krylov iter-
ative solver. In this work, we use the Krylov iterative sal@CROTm,k) (Hicken
and Zingg, 2010), a variant of de Sturler’s truncated GCRg§»@thm (de Sturler,
1999). Krylov methods require only Jacobian-vector prasit@solve (2), and these
products can be obtained using a finite-difference appration. Hence, the Jaco-
bian matrix does not need to be explicitly formed and stolesalling to significant
CPU-time and memory savinfs

3 Parallel Preconditioners

A Newton-Krylov algorithm consists of three primary opéoat: residual evalu-
ations, dot products, and preconditioner application fiifst two operations are
easily parallelized and scale well. In contrast, finding Haative parallel precon-
ditioner can be challenging. Saad and Sosonkina (1999pgempan approximate-
Schur preconditioner that we have found to be an efficientoehimr CFD applica-
tions. For comparison, we also consider the additive-Schyweeconditioner with
no overlap (block Jacobi), which is a popular preconditioioe Newton-Krylov
algorithms. Both preconditioners are described below eénabntext of the generic
system
AXx = b, 3)

whereA € R™" andx,b € R".

1 While most Newton-Krylov algorithms require an approximaacobian matrix for precondition-
ing, this matrix typically requires less storage and corapah than the full Jacobian.
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ILU-based Additive Schwarz Let P; be the rectangular matrix that projects a
global n-vector onto a local vector corresponding to the unknowogest on pro-
cessi. Applying P; to the linear system (3), and considering local solutionthef
form x = P['x;, we obtain the block diagonal system

Aix; = by, (4)

whereb; = Pib andA; = PiAPiT. The local matrixA; is factored intolL;U; using
ILU(p) (Meijerink and van der Vorst, 1977). The additive-Schwarzconditioner
(with no overlap) is obtained by applying the local factatinns tob;, and then
summing the local contributions to create the global prélt@mned vector:

Xschwarz= z PiT (UrlLrl)Pi b.
i

The operations in this block-Jacobi preconditioner arall@nd parallelize well.
However, the preconditioner becomes less effective as maeessors are added,
because the coupling between domains is ignored.

Approximate Schur Consider a local ordering in which variables assigned te pro
cessoli and coupled to unknowns on proces$ef i are ordered last. This ordering
partitionsP; Ax = P;jb into the following block structure:

Bi Fi Ui 0 fi
(Hi Ci) <Yi) " (ZJ EinJ) (9i> ©
The variabless; are not coupled across processors and can be eliminategl usin
ui = By (fi — Fiyi). (6)

Substitutingu; into (5) we find the following system for the variables couglithe
domains:

S1 E1p... E1p\ /Y1 9
E21 Sz ...Eop | | V2 9%

: T S I B (7)
Ep1 Ep2 ... Sp yp %

S

whereS; = C; — HiB; !Fj, andg] = gi — HiB; Xf;. The coefficient matriS is the
Schur complement corresponding to the variables coupledas processors. Sup-
pose we solve (7) using block Jacobi. This approach wouldligdize well, but it
requiresS; — more precisely, its inverse — which can be expensive to fexplic-
itly. Saad and Sosonkina (1999) recognized that an ILU faaton ofS; can easily
be extracted from an ILU) factorization ofA;. Their Schur-based preconditioner
consists of a GMRES-accelerated approximate solution)offith S; replaced by
its ILU factorization. Once approximate solutions to theare obtained, they are
substituted into (6), witlB; replaced with its ILUp) factorization, to obtaim;. The
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Table 1 Description of cases used to compare preconditioners

case grid size a.0ofa. Mach number Reynolds number
case | 10 x 10’ nodes 3.00 0.50 0 / 600
case Il 10 x 10" nodes 3.06 0.84 0 / 600
case |l 38 x 107 nodes 3.00 0.50 o / 600
case IV 38 x 10’ nodes 3.06 0.84 o / 600

T angle of attack in degrees

approximate-Schur preconditioner is nonstationary, saseethe flexible variant of
GCROT M, k).

4 Results

The two preconditioners are compared using the four testschsted in Table 1.
The geometry for all cases is the ONERA M6 wing. Both invisaitd viscous
flow conditions are considered for each case, with the off-mash spacing mod-
ified appropriately. The preconditioners for the inviscichs are constructed us-
ing ILU(2), while the viscous preconditioners are based onlaJ(3) factoriza-
tion. Fourth-difference scalar dissipation is used in aies, and second-difference
dissipation is activated as necessary. For a given cas@atiadiel performance of
the preconditioneprec using p processors is measured using a relative efficiency:
efficiencyy® = (pminTo™) / (PTS'™), whereTSM"is the CPU time for a nine-
order rresidual-norm reduction when the approximate-8pheconditioner is used
with the fewest possible processors permitted by memorgtcaimts,pmin.

Figure 1 plots the results for the inviscid runs. Cumulatierix-vector products
are plotted versus processors in the left figure, and rela&tificiency is shown in the
right figure. As the number of processors is increased, th@iae-Schwarz precon-
ditioner generally uses more matrix-vector products, ggeeted. In contrast, the
number of products used by the approximate-Schur predonditremains steady
or declines slightly. Consequently, the approximate-$gineconditioner has a bet-
ter relative efficiency when more processors are used (09)-€0mpared with the
additive-Schwarz preconditioner (0.5-0.6).

The results from the viscous runs are shown in Figure 2. Baghgnditioners ex-
hibit better scalability compared with the inviscid rurfse tviscous Jacobian-vector
product is more expensive but the number of products renwairtee same order as
the inviscid runs, so the ratio of computation to commundcagoes up. Relative
performance is similar to the inviscid runs: the approxiea8thur preconditioner
outperforms the additive-Schwarz preconditioner whenertban 100 processors
are used.

Table 2 summarizes the CPU times required to reducktmerm of the residual
by nine orders of magnitude, when the maximum number of E®@s are used.
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Fig. 1 Number of matrix-vector products versus processors (kgft) relative parallel efficiency
(right) for the inviscid runs.
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Fig. 2 Number of matrix-vector products versus processors (bgft) relative parallel efficiency
(right) for the viscous runs.

Table 2 CPU times, in seconds, for a 19 residual reduction using the maximum number of
processors considered.

640 processors 1024 processors
case | case |l case Il case IV
inviscid add. Schwarz 294 436 1123 2842
approx. Schur 245 308 917 1598
viscous add. Schwarz 741 1324 3582 6508

approx. Schur 659 1046 2451 3992
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5 Conclusions and Future Work

For a problem of fixed size, the number of matrix-vector pidduequired by the
additive-Schwarz (block-Jacobi) preconditioner gergrialcreases as the number
of processors increases. The approximate-Schur precomelitin contrast, is much
less sensitive to the number of processors and scales vt atileast 18 proces-
sors. The approximate-Schur preconditioner is straighi®od to implement and
outperforms the Schwarz preconditioner when more than 10€gssors are used.
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