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Globalization strategies are necessary in practical inexact-Newton flow solvers to en-

sure convergence when the initial iterate is far from the solution. In this work, we present

two novel globalizations based on parameter continuation. The first continuation method

parameterizes the boundary conditions while the second parameterizes the numerical dis-

sipation. In both cases, a continuation parameter is used to create a sequence of modified

nonlinear equations. The solution of each equation in the sequence provides an initial

estimate for the subsequent problem until the desired convergence tolerance is reached.

When applied to benign inviscid flows, the proposed globalization methods have similar

efficiency compared with the more common pseudo-transient continuation. They are sig-

nificantly more robust on difficult inviscid problems. Moreover, the continuation-based

methods require less tuning.

I. Introduction

Newton’s method is a powerful and general procedure for solving nonlinear algebraic equations. In the
context of computational fluid dynamics (CFD), the method is frequently used to solve steady-state1–6 and
transient problems.7, 8 Newton’s method is attractive in these applications, and in general, because of its
rapid convergence: under suitable conditions it will converge quadratically. Unfortunately, the basic method
is very sensitive to the initial iterate and may diverge if it is not sufficiently close to the solution.

In transient applications, the solution from the previous time-step is usually an excellent initial iterate.
In contrast, there is generally no acceptable initial iterate available for steady flows. Hence, practitioners
must use a globalization strategy when applying Newton’s method to steady problems. The globalization
seeks to move arbitrary initial iterates into the basin of attraction of Newton’s method. The globalized
algorithm should be robust and efficient.

Pseudo-transient continuation is often used in CFD to globalize Newton’s method.9 The strategy is
based on time-marching the flow equations until Newton’s method can be initiated. Most algorithms in this
class resemble implicit-Euler time marching but use spatially varying time steps. Although often successful
as a globalization strategy, pseudo-transient continuation can fail when the flow is nearly unstable, i.e. the
Jacobian has eigenvalues close to the imaginary axis. In addition, the method can introduce numerous
parameters that require tuning for optimal performance.

Newton’s method can also be globalized using line-search and trust-region approaches popular in opti-
mization. Generally, these methods seek directions and step lengths that reduce the norm of the residual,
and, consequently, may converge to a local minimum of the residual norm. Nevertheless, Pawlowski et al.
compared several such approaches and demonstrated that they can be effective as globalization strategies,
at least in the context of the incompressible Navier-Stokes equations.10

The globalization methods we present in this work use parameter continuation and are related to
probability-one homotopy11 and path-following algorithms.12 Homotopy and path-following methods are
applied in fixed-point problems, root finding, bifurcation problems, and interior-point optimization algo-
rithms, to name a few examples. These methods seek to find a set of solutions as a parameter varies; for
example, the roots of f(z) = z2 + 2z + λ as λ varies. In the proposed methods, a parameter is introduced
to modify the boundary conditions or numerical dissipation, with the aim of making a sequence of nonlinear
problems that are easier to solve.
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There are few examples of parameter continuation in the computational aerodynamics literature. A
notable exception is the early work of Bailey and Beam.13 Rather than globalization, they used arclength
continuation to obtain a continuous lift versus angle-of-attack curve.

The paper begins with a brief review of Newton’s method applied to CFD problems. We then discuss
the globalization strategies considered in this work, beginning with the popular pseudo-transient method of
continuation, which is used as a benchmark for the proposed globalization methods. We introduce parameter
continuation and provide some general theoretical results for this globalization strategy. We specialize to the
cases of boundary-condition and dissipation-based continuation and discuss implementation details. Finally,
the proposed methods are demonstrated and compared using several challenging steady-state flow problems.

II. Newton’s Method and Inexact-Newton Methods

We assume that most readers are familiar with Newton’s method; nevertheless, a brief review is useful to
introduce notation and definitions. We consider nonlinear algebraic systems of the form R(q) = 0, where
R : RN → RN . In the context of CFD, the vector q ∈ RN is a discrete representation of the flow variables;
it may hold the variable values at nodal or cell-centered locations, or it may hold coefficients in a polynomial
or Fourier expansion. The function R is the residual representing the discretized flow equations.

At iteration n of Newton’s method, the estimated root is given by q(n) and we seek a perturbation
∆q(n) = q(n+1) − q(n) such that the first-order Taylor series vanishes at the perturbed state. Hence, the
perturbation is given by the solution of the linear system

A(n)∆q(n) = −R
(n), (1)

where R
(n) = R

(

q(n)
)

and

A(n) =
∂R

∂q

∣

∣

∣

∣

q(n)

(2)

is the Jacobian matrix evaluated at the state q(n).
Newton’s method converges provided A(n) is non-singular and the initial iterate q(0) is sufficiently close

to the solution. In addition, convergence will be quadratic in n if A = ∂R/∂q is Lipschitz continuous near
the solution.14 The Jacobian matrix is usually invertible for well-posed CFD discretizations, although it is
often ill-conditioned. The initial iterate is a more significant issue.

The efficiency of Newton’s method is closely related to the algorithm used to solve the linear systems (1).
An important observation is that exact solutions are unnecessary during the early iterations of Newton’s
method. Rather than solve equation (1) exactly, the class of inexact-Newton methods seeks an update that
satisfies

‖R(n) + A(n)∆q(n)‖ ≤ η‖R(n)‖, (3)

where η ∈ [0, 1) is the so-called forcing parameter. Inexact-Newton methods were developed to take advan-
tage of iterative linear solvers, which, unlike direct linear solvers, can solve the Newton update equation to
the tolerance defined by η.

A Newton-Krylov algorithm is an inexact-Newton method that uses a Krylov iterative solver, such as
GMRES15 or BiCGStab.16 An advantage of using Krylov solvers in Newton’s method is that these solvers do
not need the Jacobian matrix to be explicitly calculated. Krylov iterative methods only need matrix-vector
products A(n)v, which can be approximated using first-order forward differences:

A(n)v ≈
R(q(n) + εv) − R(q(n))

ε
. (4)

We should remark that some Krylov methods also require transposed-matrix-vector products; however, even
these products can be evaluated without explicitly forming A by using reverse-mode automatic differentia-
tion.17

The globalizations presented in this work have been implemented in a Newton-Krylov framework to solve
the discrete Euler equations. The Euler equations are discretized on multi-block grids using summation-by-
parts (SBP) finite-difference operators, and simultaneous approximation terms (SATs) are used to couple
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blocks and impose boundary conditions. The flexible generalized minimal residual (FGMRES) method18 is
adopted as the Krylov solver and preconditioned with a parallel approximate-Schur preconditioner.19 See
reference 20 for further details on the discretization and the solution of the linear-update equation.

III. Pseudo-transient Continuation

If the residual is independent of time, and the eigenvalues of its Jacobian have negative real parts, then
a solution to R = 0 can be sought by introducing a time derivative and integrating to steady state.21 This
motivates the use of time-marching schemes to find steady-state solutions of the Euler and Navier-Stokes
equations and is the basis for pseudo-transient continuation.

When choosing a time-marching method to globalize Newton’s method, the stability properties of the
method are paramount: time-accuracy is not important in this application. The implicit-Euler time-marching
scheme is attractive, because it is unconditionally stable, and its time linearization becomes Newton’s method
in the limit of infinite step sizes. Thus, the solution algorithm can smoothly transition from the continuation
method to Newton’s method.

Pseudo-transient continuation is defined by the linear system

(

T (n) + A(n)
)

∆q(n) = −R
(n), (5)

where T (n) is a diagonal matrix with positive entries on the diagonal. Note that as T (n) → 0 we recover
Newton’s method, equation (1). On the other hand, if T (n) = 1

∆t
I, where I is the identity matrix, we obtain

the implicit-Euler time marching scheme. However, pseudo-transient continuation typically uses a spatially
varying time step, so it is not a time-marching scheme in the strict sense. For example, it is common to
scale a global time step by the local mesh spacing to accelerate convergence. In light of this, we express the
elements in the diagonal matrix T (n) in the form

(

T (n)
)

ii

=
1

∆t(n)
i

=
1

Ti∆t(n)
ref

,

where ∆t(n)
i

is the local time step for variable i, ∆t(n)
ref is the global reference time step, i.e. common to all

equations, and Ti is the local scaling for ∆ti.

A. An implementation of pseudo-transient continuation

This section provides a brief summary of the pseudo-transient continuation algorithm used as a benchmark
in this work. Additional details can be found in Ref. 20.

The algorithm is broken into two phases: an approximate-Newton start-up phase and a terminal inexact-
Newton phase. During the approximate-Newton phase, the exact Jacobian matrix A is replaced with a
first-order Jacobian, which is obtained by neglecting the high-order dissipation and increasing the second-
difference dissipation. Forming this approximate Jacobian does not introduce additional work, since the same
matrix is factored using ILU(1) to build the Schur preconditioner. However, since factoring the matrix is
one of the most expensive tasks, the approximate Jacobian is updated and factored only every m iterations;
m = 3 is used here.

The reference time step during the approximate-Newton phase is given by

∆t(n)
ref = a(b)m! n

m
",

where '·( is the floor operatora. This operator ensures that updates to ∆t(n)
ref are consistent with the Jacobian-

update period m. Typical ranges for a and b are a ∈ [0.01, 0.1] and b ∈ [1.2, 1.7]. The local scaling for variable
i is defined by

Ti =
[

J(1 +
3
√

J)
]−1

,

where J is the metric Jacobian at the node where variable i is located.
a!x" gives the largest integer less than or equal to x
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The algorithm switches to the terminal inexact-Newton phase when the relative residual is reduced one
order of magnitude:

R(n)
rel ≡

‖R(n)‖
‖R(0)‖

≤ 0.1. (6)

During the terminal phase, the diagonal matrix T (n) is set to zero, and the Jacobian-vector products are
obtained using equation (4).

IV. Parameter Continuation

We consider continuation-based globalizations in the class of probability-one homotopyb methods.11, 12

The mathematical theory behind these methods is well developed, and, as mentioned in the introduction,
they are useful in a wide range of applications. However, homotopy methods are not widely used in the
computational aerodynamics community, so one of the aims of this paper is to encourage experimentation
with these methods.

The idea behind homotopy methods is simple. Suppose we wish to solve R(q) = 0. Introduce a
parameter λ ∈ [0, λmax] and a modified residual F(q, λ) such that F(q, 0) = R(q). The modified residual
F is called a homotopy mapping in the literature. Moreover, assume that F(q, λmax) = 0 is significantly
easier to solve than the target problem R(q) = 0. The algorithm begins with λmax and decreases this
parameter incrementally, solving a sequence of modified problems until λ = 0. The solution path defined by
g(λ) = {(q, λ) ∈ RN+1 : F(q, λ) = 0} is followed approximately, using the previous solution as the initial
guess for the next.

The above parameter continuation will converge to the desired root provided the following conditions are
met.11

1. F : RN+1 → RN is a C2 map.

2. The Jacobian matrix DF ∈ RN×(N+1) has full rank along the solution path g.

3. F(q, λmax) = 0 has a unique solution.

4. The Jacobian ∂R/∂q is nonsingular at the solution of R(q) = 0.

Conditions 2–4 are not particularly onerous. Condition 1 is more difficult to guarantee in CFD discretizations
that involve nonsmooth functions (e.g. limiters). Nevertheless, algorithms can often be applied more widely
than their underlying theorems suggest, and the numerical experiments indicate parameter continuation can
be applied to steady-state flows with shocks.

Modern probability-one homotopy algorithms can follow the solution curve around folds, points where
the Jacobian ∂F/∂q is singular: recall, condition 2 requires only that the N × (N + 1) Jacobian be of
full rank along the solution path. Walker22 has shown that a certain class of path-following algorithms can
be implemented in an inexact-Newton-Krylov framework such that folds can be accommodated. Despite
the availability of such algorithms, we avoid homotopy maps that introduce folds into the solution curve;
intuitively, following a complex curve with folds would require more steps and more computational effort.
Therefore, the challenge in CFD applications is finding a homotopy map F(q, λ) with no folds in the solution
curve.

Algorithm 1 describes a generic parameter continuation that is suitable for homotopy maps without folds.
In the following sections, we present two globalization strategies that are special cases of this algorithm. The
generic algorithm requires several inputs.

λmax: the initial value of the continuation parameter.

nmax: the maximum number of Newton iterations for each λi.

τ, τλ: the tolerances for the residual and modified residual, respectively.

η: the forcing parameter for the solution of the linear system.

λi: a function defining how the continuation parameter is decreased to zero.
All of the algorithms considered here are converged to a relative tolerance τ = 10−10. Suitable choices for
the remaining inputs depend on the homotopy map used and will be specified for each algorithm below.

bIn the literature, the words continuation, path-following, and homotopy are often used interchangeably.
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Algorithm 1: Generic parameter continuation for an inexact-Newton solver.

Input: λmax, nmax, τ, τλ, η

set λ0 = λmax, and R0 = R(q(0))
for i = 0, 1, 2, . . . do

set F0 = F(q(i), λi)
for n = 0, 1, 2, . . . , nmax do

compute residual R(q)
if ‖R‖ ≤ τ‖R0‖ then done

compute homotopy map F(q, λi)
if ‖F‖ ≤ τλ‖F0‖ then exit loop

inexact solve:
(∗) find ∆q such that ‖F + A∆q‖ ≤ η‖F‖

q := q +∆q
endfor

set λi+1 < λi

endfor

A. Boundary-Condition Continuation

In this section we describe a boundary-condition continuation. The implementation is based on a finite-
difference discretization of the Euler equations, with boundary conditions imposed weakly through penalty
terms. Very similar implementations should be possible with any discretization that uses weakly imposed
boundary conditions.

We use summation-by-parts (SBP) finite-difference operators on multi-block structured grids. The SBP
operators provide a linearly-stable discretization of the partial differential equations; however, the discretiza-
tion must be modified to account for the boundary conditions and inter-block coupling. This is accomplished
by adding simultaneous approximation terms (SATs) to the nodes along the block boundaries. The SATs
penalize variables associated with waves entering the block that do not match the desired boundary condition
or neighbouring node value. Consequently, the residual equation for an arbitrary node i on a block boundary
has the form

[R(q)]
i
= Ri(q)

= R(E)
i

(q) + A+
i

(Qi − Qbc) , (7)

where R(E)
i

denotes the discrete Euler fluxes, including the numerical dissipation, and A+
i

(Qi − Qbc) is the
SAT penalty. The flow state at node i is given by Qi. The vector Qbc denotes the value of the desired
boundary state, for nodes on a boundary, or the value at a coincident node on a neighbouring block, for
nodes on a block interface. The matrix A+

i
is equal to the flux Jacobian matrix for the normal flux with

the eigenvalues for exiting waves set to zero. Further details on the SBP-SAT approach can be found in
references 23–29, and 20.

For a node on a solid surface, the boundary state is determined by flow tangency:

Qbc = Qwall =
(

ρ, ρu!

1, ρu!

2, ρu!

3, ρH∞ − p
)T

,

where p is the pressure, H∞ is the free-stream enthalpy, and

(

u!

1, u
!

2, u
!

3

)T
= u! ≡ Pu = (I3 − n̂n̂T )u.

The vector n̂ is a unit normal to the surface, and the 3× 3 matrix P projects out the normal component of
the velocity at the surface. I3 is the 3 × 3 identity matrix.

The boundary-condition continuation replaces Qwall with Qλ, a boundary state parameterized using λ.
If we use the free-stream value as the initial iterate, a suitable modified boundary state should satisfy

Qλ=1 = Q∞, Qλ=0 = Qwall,
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where Q∞ is the free-stream flow state. Other than these two limiting conditions, there appears to be
considerable flexibility in choosing Qλ. In practice, Qλ cannot be chosen arbitrarily, since some states will
lead to ill-posed problems, solution-curve folds, or intermediate flows more complicated than the desired
solution. For this exploratory work, we have chosen a convex combination of the free-stream state and the
wall boundary state.

Qbc = Qλ = (1 − λ)Qwall + λQ∞. (8)

This boundary state has performed adequately in the proposed continuation method, but we suspect there
are better choices.

When Qwall is replaced with Qλ, we obtain the modified residual F(q, λ). The modified residual is
equivalent to taking a convex combination of two residual equations: one where the flow-tangency condition
is applied at the surface and one where the free-stream condition is applied at the surface. In each nonlinear
iteration, the true residual, i.e. with λ = 0, can be formed first and its L2-norm evaluated to track conver-
gence. Subsequently, R can be modified to obtain F ; the modification occurs only at boundary nodes on
the aerodynamic surface.

The continuation parameter λ is updated according to the formula

λi =
λi−1

i
=

λ0

i!
, (9)

with λ0 = λmax = 0.95. We also investigated a formula relating λi to the residual, but did not find this to
be effective for the boundary-condition continuation.

When λ > 0, it is inefficient to solve F(q, λ) to a small tolerance. This is analogous to oversolving
the linear problem in inexact-Newton algorithms. Therefore, to avoid oversolving the modified system,
we perform only one inexact-Newton iteration per λ value (nmax = 1), using a fixed forcing parameter of
η = 0.01. The Schur preconditioner for each nonlinear sub-problem is formed using ILU(1).

Similar to pseudo-transient continuation, the exact Jacobian is approximated until the relative residual
drops below 0.1. Specifically, matrix A in line (∗) of Algorithm 1 is replaced with an approximate Jacobian
that uses first-order dissipation. The approximate Jacobian regularizes the solution updates, smoothing
convergence until the exact Jacobian can be used. Indeed, the effectiveness of this smoothing behaviour
inspired the globalization method described next.

B. Dissipation-Based Continuation

Numerical dissipation must be added to the discrete equations, either explicitly or implicitly, to prevent
oscillations and to capture shocks. Ideally, the contribution of numerical dissipation to the flux balance
should be minimized to obtain an accurate solution; however, practitioners sometimes increase the dissipation
to assist the solution algorithm at the expense of accuracy.30 This practice suggests that a dissipation-based
continuation strategy may be useful.

Consider a modified residual (homotopy map) of the form

F(q, λ) = R(q) + λD(q),

where D(q) is an appropriate numerical dissipation. We use a second-difference (first-order) scalar dissipa-
tion, which is symmetric positive-definite for fixed q and uses only nearest-neighbours in the stencil. Note,
no pressure switch or limiter is required, or even desired, for this dissipation. Hence, it should be straight-
forward to implement this continuation in most discretizations. Like boundary-condition continuation, the
residual R can be computed first to track convergence before adding the dissipation λD.

Dissipation-based continuation is closely related to continuation in the Reynolds number,9 i.e. beginning
with a small Reynolds number and increasing it gradually to the desired value. In the proposed method,
dissipation is added to all flow equations, while Reynolds-number continuation affects only the momentum
and energy equations. Moreover, the influence of the Reynolds number is different in the momentum and
energy equations. These distinctions may be important, since folds can be introduced when using Reynolds-
number continuation, see, for example, Ref. 22. In addition, dissipation-based continuation can be used for
hyperbolic equations like the Euler equations, where the limiting case of infinite Reynolds number may cause
numerical difficulties.
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When using dissipation-based continuation, each sub-problem is solved to a relative tolerance of τλ = 0.1
with an upper bound on iterations of nmax = 30. The continuation parameter is varied according to the
formula

λi = min

(

λi−1

2
,

9

10
R2

rel

)

,

where the relative residual Rrel is defined in equation (6). The initial value of the continuation parameter
can be varied as necessary depending on the grid and flow conditions. We have found that an initial value
of λmax = 2 provides a good compromise between a well-behaved initial problem and rapid convergence.

Dissipation-based continuation can use the exact Jacobian throughout convergence, unlike the pseudo-
transient and boundary-condition continuation algorithms. In addition, the Schur preconditioner is con-
structed using ILU(2) at the first iteration of each sub-problem, rather than ILU(1), and kept frozen there-
after. The expense of forming this more accurate preconditioner is warranted, since multiple iterations are
used to solve the sub-problems.

V. Results

We have chosen 6 test cases to demonstrate and compare the parameter-continuation algorithms. These
cases are described below and summarized in Table 1. In the table, grid size indicates the number of nodes
and M indicates the Mach number. The second-difference and fourth-difference dissipation coefficients are
denoted by κ2 and κ4, respectively.

Case 1: A spherical geometry is solved at a Mach number of 0.5. The grid consists of 5 blocks with nearly
isotropic mesh spacing. The solver may produce separated flow and fail to converge.

Case 2: The ONERA M6 wing geometry31 is solved at a Mach number of 0.84 and an angle of attack of
3.06 degrees. The blunt trailing edge on the experimental geometry is replaced with a sharp edge. The
grid has a 12 block HH-grid topology with an off-wall spacing of 0.001.

Case 3: This case considers the ONERA M6 wing geometry at a high-lift condition. The grid is the same
as Case 2. The Mach number is 0.2 and the angle of attack is 20.0 degrees. Numerical dissipation
encourages separation, which may lead to convergence issues.

Case 4: The DPW-W1 wing from the third drag prediction workshop32 is modelled at a Mach number of
0.78 and an angle of attack of 3 degrees. This geometry has a blunt trailing edge, which can pose
difficulties for the solution algorithm. An 8-block O-topology grid is used with a maximum stretching
ratio of 1.6.

Case 5: This case consists of the DWP-W1 wing geometry at a high-lift condition. The Mach number is
0.2 and the angle of attack is 20.0 degrees. Hence, this case is similar to case 3, but with a different
geometry.

Case 6: The last case considers the DLR-F6 wing-body geometry from the third drag prediction workshop.32

A very coarse grid is obtained by removing every other grid point from the coarse grid used in the
workshop. The original grid was intended for turbulent flows, so the resulting grid has a maximum
stretching ratio of approximately 6, and a maximum-minimum metric Jacobian ratio of 2× 1019; such
extreme values typically cause convergence problems. The flow is subsonic with a Mach number of 0.5
and an angle of attack of 3.0.

The cases are intended to be challenging and include geometries with blunt trailing edges (cases 1, 4–6),
high lift conditions (cases 3 and 5), and shocks (cases 2 and 4). The geometries with sharp corners are
particularly difficult, because the flow around such geometries is typically singular or unsteady.

Individual convergence histories, for each case and globalization method, are shown in Figure 1. The
figure displays the history of the relative residual, Rrel, versus equivalent residual evaluations. An equivalent
residual evaluation is obtained by normalized the CPU time by the time required to compute the nonlinear
residual R(q). Note that the range on the horizontal axis is different for each problem.

Figure 2 summarizes the equivalent residual evaluations required by the different globalization strategies.
Each vertical bar denotes the total number of evaluations required to reduce the relative residual by ten
orders of magnitude. An exception is case 6, which stalled slightly above ten orders of magnitude, so the
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Figure 1: Convergence histories for the 6 test cases
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Table 1: Cases used to test the globalization methods.

case geometry grid size M CL κ2 κ4

1 sphere 4.35 × 105 0.50 0.000 0.00 0.03

2 ONERA M6 1.16 × 106 0.84 0.278 0.50 0.03

3 ONERA M6 1.16 × 106 0.20 1.247 0.00 0.03

4 DPW-W1 6.55 × 105 0.78 0.937 0.50 0.04

5 DPW-W1 6.55 × 105 0.20 2.02 0.00 0.04

6 DLR F6 6.76 × 105 0.50 0.306 0.05 0.03

bars indicate the evaluations necessary to reach a reduction of nine orders of magnitude. If a bar is absent,
then the method failed to converge for that case.

The dissipation-based continuation stands out as the most robust globalization. Indeed, we have not
yet found a case where pseudo-transient or boundary-condition continuation converged and dissipation-
based continuation did not. Moreover, we suspect that when dissipation-based continuation fails, the Ja-
cobian matrix at λ = 0 is highly ill-conditioned or perhaps even singular (i.e. condition 4 is not satisfied).
Dissipation-based continuation also compares well in terms of CPU time, except for case six (DLR-F6 ge-
ometry) where this strategy performs poorly. For this subsonic case, a small amount of second-difference
dissipation (κ2 = 0.05) was necessary to obtain a converged solution for all three globalization methods. The
presence of second-difference dissipation seems to delay convergence of this continuation strategy.

Boundary-condition continuation performs well on four of the six cases. This method establishes the
general shape of the pressure field within the first few nonlinear iterations, even when the velocity at the
wall is far from tangential. It is not clear why the method sometimes fails, but solutions at intermediate
values of λ suggest that the boundary value Qλ may induce complex flow features downwind of the geometry,
which then lead to ill-conditioned linear problems.

Pseudo-transient continuation performs well in terms of CPU time on the more benign cases; however,
it has difficulty solving the cases that involve blunt trailing edges and/or high angles of attack. Pseudo-
transient continuation is susceptible to producing separated flow during the early iterations with these cases.
Once the flow is separated, the globalization seems to have difficulty recovering, and the iterates remain
outside the basin of attraction for Newton’s method.

VI. Summary and Conclusions

We have described two parameter-based continuations that can be used to globalize Newton’s method;
one using boundary-condition continuation, the other using dissipation-based continuation. In both methods,
a parameter is used to create a sequence of nonlinear problems, where the solution of one problem provides
the initial iterate for the next. We have implemented these globalization strategies in a finite-difference
discretization, but the method is general enough to be applied to other discretizations.

One difficulty that we foresee with boundary-condition continuation is the possibility that the modified
equations fail to have a solution, or that folds are introduced. Carefully constructed boundary conditions
are needed to guarantee that these issues are avoided; however, since fully converged intermediate solutions
are not necessary, this point may be overstated.

Boundary-condition and dissipation-based continuation have shown considerable promise as globalization
strategies for inexact-Newton methods. Dissipation-based continuation, in particular, appears to be espe-
cially robust and efficient. However, before these methods can supersede pseudo-transient continuation as
the method of choice, they must be applied to a broader spectrum of problems. Therefore, future work will
focus on applying these globalizations to turbulent flows and high-order discretizations.
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