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The induced drag of several nonplanar configurations is minimized using an aerodynamic shape optimization
algorithm based on the Euler equations. The algorithm is first validated using twist optimization to recover an
elliptical lift distribution. Planform optimization reveals that an elliptical planform is not optimal when side-edge
separation is present. Optimized winglet and box-wing geometries are found to have span efficiencies that agree well
with lifting-line analysis, provided the bound constraints on the entire geometry are accounted for in the linear
analyses. For the same spanwise and vertical bound constraints, a nonplanar split-tip geometry outperforms both the
winglet and box-wing geometries, because it canmore easilymaximize the vertical extent at the tip. The performance
of all the optimized geometries is verified using refined grids consisting of 88–152 million nodes.

Nomenclature
b = wing span
CD = coefficient of drag
CD;ellip = CD for an elliptical lift distribution
CL = coefficient of lift
c = sectional chord length
cd = sectional drag length
cl = sectional lift coefficient
D = drag
e = span efficiency
L = lift
M = Mach number
q1 = freestream dynamic pressure
S = reference area
U1 = freestream velocity magnitude
! = angle of attack with respect to the root chord
! = circulation distribution
" = aspect ratio
"1 = freestream density

I. Introduction

F UEL-SUPPLY uncertainty and climate-change mitigation de-
mand action from all transportation sectors. Addressing these

challenges will likely require multiple strategies, including effi-
ciency improvements. To this end, drag reduction remains a critical
area of research for the aviation industry.

Induced drag, also called vortex drag, is an inviscid form of drag
experienced by lifting wings of finite span. It is the result of work
done on the fluid to sustain the kinetic energy in the trailing vortical
wake. Induced drag represents approximately 40% of the total drag
on a conventional aircraft in cruise flight [1], so concepts that reduce
vortex drag are certainly worth studying. This is the motivation

behind the present study of nonplanar configurations and their
optimal design.

Roughly speaking, nonplanar configurations are geometries that
produce wakes with vertical structure. Munk [2] established a
number of fundamental results concerning such nonplanar config-
urations. Among his contributions, Munk showed that nonplanar
configurations can have significantly lower induced drag relative to
planar wings with the same span and lift. The example given by
Munk is an optimally loaded circular ring-wing, which has half the
induced drag of an optimally loaded planar wing. In the decades
following Munk’s work, nonplanarity has been the subject of
numerous studies. Wemention a few notable examples here, primar-
ily analytical and numerical results. For a more complete review
see [1].

Induced-drag theory for nonplanar configurations was extended
by Cone [3] to include general circulation distributions. Cone also
considered the induced drag on a number of optimally loaded config-
urations. In particular, he showed that the elliptical distribution is
optimal for families of closed elliptical loops, including the line and
circle as limiting cases.

Mangler’s [4] analysis of end-plate configurations presaged later
work on winglets. His results were refined and generalized by
Lundry and Lissaman [5], who presented a method to accurately
evaluate the induced drag of nonplanar configurations consisting of
line segments. The induced drag analysis of wing-tip geometries was
further generalized by Lowson [6]. He represented winglets as
polynomial curves and superelliptic functions. While the vertical
end-plate is optimal, Lowson found that superelliptical functions of
modest degree can achieve near-optimal induced drags.

Van Dam [7] studied planar geometries that produce nonplanar
wakes at angle of attack. While his initial results were shown to be
overly optimistic due to numerical errors [8], the idea of exploiting
planform shape has merit. This is supported by Smith’s work with a
planar split-tip configuration [9], which was shown to reduce the
induced drag by 6% according to linear theory.More impressive still,
a nonlinear analysis using wake relaxation showed a 10% reduction
relative to an optimally loaded planar wing.

Smith’s work with the split-tip configuration illustrates a serious
drawback with linear theory: the static-wake assumption. This
assumption is adequate for a first-order analysis of most geometries,
but the split-tip example demonstrates that higher-order effects must
be included for accurate induced drag prediction.

Wake shape is one way that nonlinearity can impact the induced
drag. Another important higher-order effect is induced lift, which,
unlikewake shape, is unique tononplanar configurations. Induced lift
is generatedonnonplanargeometries by thevertical component of the
bound vortex, which increases or decreases the streamwise velocity
on parts of the geometry. For fixed lift, Cone [3] argued that induced
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lift leads to lower induced drag on configurations with positive
spanwise camber (e.g.,winglets orientedupward) andhigher induced
drag on configurationswith negative spanwise camber (e.g., winglets
oriented downward). This was confirmed by Eppler using lifting-
surface theory with induced lift contributions [10].

One of the aims of this paper is to study the impact of nonlinear
effects on induced drag by employing an Euler-based optimization.
While computational fluid dynamics (CFD) introduces its own set of
issues to induced drag prediction, there are several advantages to
using CFD in this context.Most obviously, induced lift contributions
and nonlinear wake-wing interactions are inherently included in the
analyses. Moreover, the Euler equations model the wake auto-
matically and do not require the user to prescribe where the wake
begins, although the separation location on wing tips may not match
the true viscous flow (see discussion in Sec. II.B). Finally, the Euler
equations can be used to accuratelymodelwave drag, and they can be
extended naturally to the Navier–Stokes equations.

WhileCFDanalyses of induced drag are becomingmore common,
the use of aerodynamic shape optimization (ASO) to minimize
exclusively induced drag is much less common. The focus within the
ASO literature has been the minimization of wave drag and, to a
lesser extent, viscous drag. When induced drag is considered, a low-
fidelity model is often used to find an optimal geometry, which is
subsequently analyzed using an Euler flow solver (see, for example,
[11,12]). A clear drawback with this approach is that the geometry
has not be optimized with respect to the Euler equations.

Two notable investigations of induced drag in the ASO literature
are the works of Yamazaki et al. [13] and Liersch et al. [14].
Yamazaki et al. [13] used drag decomposition and a genetic algo-
rithm to explore the tradeoffs between minimizing different
components of drag, including induced drag. Liersch et al. [14] were
interested in whether or not nonplanar wings outperform planar
wings when both have the same unfolded span (i.e., equal spanwise
arclength). They used a lifting-line method to probe the design space
initially, while Euler-based inverse design and drag minimization
were used to refine the twist in some cases. Their study produced a
number of interesting results. In particular, they concluded that there
exist nonplanar wings with lower induced drag than a planar wing
with the same unfolded span and elliptical planform.

In this work, our primary objective is explore the use of Euler-
based aerodynamic shape optimization to minimize induced drag.
The algorithm and methodology are described in Sec. II. As a
validation, we use twist optimization to recover an elliptical lift
distribution (Sec. III). We believe this to be an important, yet often
overlooked, benchmark for high-fidelity ASO algorithms. In the
same section, we demonstrate the subtleties of planform optimi-
zation. Subsequently, we investigate several nonplanar geometries:
the winglet-up and winglet-down configurations in Sec. IV, the box-
wing configuration in Sec. V, and the split-tip configuration in
Sec. VI. These studies also accomplish our secondary objectives,
namely, demonstrating the capabilities of the Newton–Krylov ASO
algorithm and illustrating the potential of exploratory ASO to reveal
novel design concepts. Our results are summarized in Sec.VII, where
we also provide some discussion and conclusions.

II. Methodology
A. Aerodynamic Shape Optimization Algorithm

This section contains a brief summary of the ASO algorithm to
familiarize the readerwith our approach. The algorithm is thoroughly
described and verified in [15].

We use B-spline volumes to integrate geometry parameterization
with mesh movement. Each block in the computational mesh is
represented using a B-spline tensor-product volume. B-spline
surfaces are extracted from the volumes bordering the aerodynamic
surface, and the control-point coordinates of these surfaces become
the geometric design variables. See Fig. 1 for an example illustrating
the geometry parameterization. The surface control points are
coupled to the volume control points using the equations of linear
elasticity. Specifically, a linear elasticity mesh-movement algorithm
is applied to the mesh of B-spline control points, rather than the
individual points of the flow-analysis mesh. Once the control-point
locations have been determined, the flow-analysis mesh is regen-
erated algebraically using the B-spline equation. This semi-algebraic
approach produces perturbed grids in 2–3 orders of magnitude less
time relative to a node-based linear elasticity method, and yields
grids of similar quality [15]. Moreover, the integrated parameter-
ization and mesh-movement algorithm can accommodate large
shape changes, which is critical in the context of exploratory shape
optimization.

Our flow solver uses second-order accurate summation-by-parts
(SBP) finite difference operators to discretize the Euler equations
[16,17]. Simultaneous approximation terms (SATs) are applied at
block boundaries to enforce boundary conditions and couple blocks
[18]. The SAT interface treatment is similar to the interelement
coupling that arises in the discontinuous Galerkin finite element
method [19,20]. The SBP–SAT discretization is linearly time-stable
and requires only C0 mesh-line continuity. Fourth-difference scalar
dissipation is introduced to prevent oscillations. We avoid using
second-difference numerical dissipation, since it can significantly
degrade the accuracy of the induced drag prediction.

We use a parallel Newton–Krylov algorithm to solve the dis-
crete equations. The Krylov solver is preconditioned using an
approximate-Schur preconditioner [21], and Newton’s method is
globalized using a dissipation-based continuation method [22]. The
solver is considered converged when the l2 norm of the residual has
been reduced 10 orders of magnitude. Further details regarding the
flow solver are available in [23].

The SNOPTalgorithm [24] is used to find locally optimal designs.
The algorithm uses a sequential quadratic programming method and
can handle nonlinear constraints. The Hessian of the Lagrangian is
approximated using the quasi-Newton method of Broyden, Fletcher,
Goldfarb, and Shanno (BFGS); the full-memory version of BFGS is
used here. The optimizations are considered converged when the
Karush–Kuhn–Tucker conditions are satisfied to within a tolerance
of "! 10"7.

SNOPT requires the gradient of the objective and the constraints.
We use the discrete-adjoint variables to calculate the gradient of
functionals that depend on the flow. The adjoint equation corre-
sponding to the flow residual is solved using flexible GCROT#m; k$

Fig. 1 Example B-spline control mesh (upper) and surface (lower) used for the twist and planform optimization cases; the wing tip is parameterized
using the black control points and is constrained by the movement of the inner control points, shown as white spheres.
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with the approximate-Schur preconditioner; GCROT#m; k$ has been
shown to be robust and efficient compared with several other
truncated Krylov-subspace methods [25].

Gradient-based optimization algorithms, like SNOPT, perform a
local search of the design space, and there is no guarantee that they
will find the global optimum. The studies presented below use a
modest number of degrees of freedom, and experience suggests that
the design space is not particularly complex; hence, a multistart
strategy is often effective in locating additional local optima. More
complicated optimization problems will require an automated and
efficient search of the design space, and this remains an active area of
research.

B. Induced Drag Prediction

Induced drag is notoriously difficult to evaluate accurately. This
difficulty is observed in panel codes as well as Euler and Navier–
Stokes solvers. It has been attributed to the thin shape of wings,
poorly resolved pressure gradients, and fore-aft subtractive cancel-
lation [8].

Modern panel codes model the wake roll-up explicitly by solving
for the shape of the wake. Smith and Kroo [8,26] developed a hybrid
method to determine the wake shape and used this method to study
elliptical and crescent-shaped planforms. Their study showed that
modelling thewake shape is important for nonplanar configurations,
even when the nonplanar wake is a consequence of trailing-edge
shape as it is for the elliptical planform. They also concluded that a
Trefftz-plane integration is more reliable than surface-based inte-
gration for induced drag prediction, but only if the wake shape is
accurately modeled.

Induced drag can also be predicted from numerical solutions of the
Euler equations; however, as mentioned in the introduction, this
approach is not without difficulties. Van Dam and Nikfetrat [27] and
van Dam et al. [28] were among the first to address the issues
associated with calculating induced drag in Euler flow solvers.
Similar to panel codes, surface-based integrationwas found to be less
accurate than wake-plane-based integration techniques. Wake-plane
analysis also provides themeans to decompose the drag into different
components (induced drag, viscous drag, etc.). The vorticity in the
wake can decay before reaching the wake-analysis plane due to the
numerical dissipation in CFD solvers. More recent wake-plane
analyses account for this transfer of energy by including entropy
contributions in the induced drag calculation [29–31].

We have experimented with the wake-plane analysis of Giles and
Cummings [32] in an attempt to address the difficulties associated
with accurate prediction of induced drag. In our experience, the
wake-plane drag prediction is more accurate on coarse grids, but of
similar accuracy to surface-based integration on finer grids. In
addition, we have observed nonmonotonic convergence of wake-
based induced drag on fine grids.

Based on ourmixed experiencewithwake-based drag analysis, we
have elected to use sufficiently fine mesh spacing to offset the
potential problems of surface-based drag prediction. Table 1 lists the

statistics for the baseline grids used in the following studies. Some
variation in themesh spacingwill occurwhen the grids are perturbed.
However, the wall-normal spacing remains on the order of 10"3 for
the duration of an optimization. To confirm the predicted forces on
the optimal designs, we repeat the flow analysis for these shapes
using refined grids with a factor of 3 to 4 more nodes in each
coordinate direction. The refined grids are obtained using the B-
spline volumes, which ensures that the surface nodes coincide with
the predicted optimal shapes. Table 1 lists representative statistics for
the refined grids immediately below their corresponding coarse
grids. The refined grids are used to produce all spanwise lift- and
drag-distribution plots.

The far-field boundary is at least 22 chord lengths from the surface
geometry on all grids. In their study, Phillips et al. [12] found that
doubling the far-field distance from 10 to 20 chord lengths changed
the induced drag by less than 1%, which suggests that 22 chord
lengths is a conservative choice.

Euler codes often produce tip vortices that release off the side of
thewing tip, rather than at the trailing edge. This side-edge separation
deserves some discussion, because it influences the induced drag by
creating a nonplanar wake (see [9] as well as Sec. III). While its
accurate prediction with an Euler code is debatable, edge separation
is a real phenomenon [33], which has even been observed on wings
with rounded tips [34,35]. Thus, the perspective taken here is to study
the role of edge separation on induced drag, while acknowledging
that the separation location and vortex size may not correspond with
the true (viscous) flow.

C. Definitions and Conventions
We use the freestream values of the density and sound speed to

nondimensionalize the flowvariables. The characteristic length is the
initial root chord of the configuration. For all of the studies we use a
fixed Mach number ofM! 0:5. This Mach number ensures that the
flow remains subsonic for the geometries considered. We acknowl-
edge that practical aerodynamic designs must consider multiple
operating conditions; however, induced drag depends only weakly
on Mach number [9], so our conclusions should be applicable to a
wide range of flows.

The coefficients of lift and drag are defined as

CL ! L

q1S
and CD ! D

q1S

respectively, where S is the reference area (see subsequent
discussion) and q1 ! 1

2
"1U2

1 is the dynamic pressure. When only
vortex drag is present, the coefficient of drag can be expressed as

CD ! C2
L

#"e
! CD;ellip

e
(1)

where "! b2=S is the aspect ratio, b is the span, and CD;ellip is the
minimum induced drag predicted by lifting-line theory for a planar
wake. The parameter e is the span efficiency. Ideally, the span
efficiency would depend only on geometry, but, in general, it may be
a function of the coefficient of lift [1]. However, this dependence is
often weak, so span efficiency remains a useful and popular means of
comparing the induced drag of different configurations.

Rearranging Eq. (1) we have

e! C2
L

#"CD

! L2

q1b2D

This suggests there are two distinct ways of isolating the effects of
geometry on the span efficiency: 1) minimize CD while holding CL

and" fixed, or 2)minimizeDwhile holdingL and b fixed.However,
neither one of these choices is sufficient to guarantee a unique
geometry in an inviscid flow. To appreciate why, consider a lifting-
line analysis of an elliptically shaped planform, which will yield a
span efficiency of e! 1. The aspect ratio and coefficient of lift can be
held fixed while the geometry undergoes an isotropic scaling. Thus,
there is an infinite family of geometries that meet the constraints and

Table 1 Dimensions and length parameters (in root-chord units)
for the grids used in the studies

Study Blocks Grid size Spacing Far-field
distanceb

(Nodes) Off-wall Surfacea

Twist, planform
Coarse 18 1 381 050 0.00374 0.0278 36.8
Fine 1152 88 387 200 0.00086 0.0070 36.8
Winglet, box wing
Coarse 48 5 647 152 0.00072 0.0153 22.0
Fine 1296 152 473 104 0.00013 0.0060 22.0
Wing with split tip
Coarse 42 3 827 250 0.00050 0.0187 22.0
Fine 1134 103 335 750 0.00017 0.0062 22.0

aAverage surface spacing %
!!!!!!!!!!!!!!!
S=Nsurf

p
, where S is the area, and Nsurf is the number

of cells on the surface.
bMinimum distance to the far-field boundary.
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achieve the sameCD. A similar nonuniqueness arises if we constrain
only L and b. By varying the root chord, we can create a set of
geometries with elliptical planforms and fixed span, and each geo-
metry in this family can achieve the same lift with an appropriately
chosen angle of attack.

Constraining either CL or L, and any two of b, S, and ", is
sufficient to produce a unique design. In the studies below, we
constrain the span and the reference area. We then choose a lift
constraint based on S such that CL ! 0:375 for all geometries.

Unless stated otherwise, the reference area is the planform area of
the geometry (i.e., the area projected onto the xy-plane). The
planform area is calculated using derivatives of the coordinate
transformations. For example, suppose the surface coincideswith the
computational plane $! 0. Then the surface area is approximated by

S& 1

2

X

j

X

k

"j@z$j
J

#

jk

wkwj

where J is the Jacobian of the mapping, and the sum is taken over all
nodes #j; k$ on the surface. Coordinate-mapping derivatives, such as
@z$, are available from the second-order accurate discretization of the
governing equations. The weights wj and wk are based on the trap-
ezoid rule, which produces a second-order accurate estimate for S.
The integration includes contributions from both sides of a geometry,
so the factor of 1=2 ensures that the resulting surface area is
consistent with the projected area for planar geometries. The
sensitivities of the surface areawith respect to the designvariables are
calculated analytically.

III. Validation
According to linear aerodynamic theory, an elliptical spanwise lift

distribution produces the minimum induced drag when the wake is
planar. This provides a challenging benchmark for optimization
algorithms, because an order-% perturbation of the elliptical lift
distribution produces an order-%2 perturbation in the induced drag
[36]. Hence, obtaining the elliptical lift distribution requires
sufficient accuracy in the drag prediction.

Elliptical lift distributions are not unique to one geometry. The
same distribution can be obtained using changes in planform, twist,
sectional lift, or some combination of these. We first consider twist
optimization to recover an elliptical lift distribution; subsequently,
we investigate planform optimization.

Both the twist and planform optimizations use the 18 block grid
described in Table 1. They also share a common wing geometry and
parameterization, which is shown in Fig. 1. Thewing geometry has a
span of six root-chord units, NACA 0012 airfoil sections, and an
initially rectangular planform shape. Thewing consists of an inboard
section over 97.5% of the semispan and a wing-tip cap over the last
2.5% of the semispan. The upper and lower surfaces of the inboard
section are parameterized using 9 B-spline control points in the
streamwise direction and 5 to 15 control points in the spanwise
direction (white spheres in Fig. 1). The number of spanwise control
points is varied to ensure the optimal loading has been achieved.

The wing-tip cap is parameterized using two B-spline patches
(upper and lower surfaces) consisting of 9 ' 4 control points in the
streamwise and spanwise directions, respectively. The three out-
board control points of these patches, shown as dark spheres in Fig. 1,
are controlled by the movement of the inboard section such that
changes in the cap shape are limited to linear shears.

A. Twist Optimization
For twist optimization, the inboard control-point sections are free

to rotate about a fixed trailing edge, i.e., the effective designvariables
are the local angles of attack. Fixing the trailing edge helps reduce
nonplanar effects, although wing-tip edge separation makes a
completely planar wake difficult to achieve. The angle of attack is set
such that the initial geometry meets the CL constraint of 0.375, and
the projected area is constrained at its initial value of S! 6.

Figure 2 plots the span efficiency of the optimally twisted
geometries versus the number of spanwise control points on the
inboard section. For twist optimization, we see that the span effi-
ciency is relatively constant over the range of spanwise control points
considered. With 15 spanwise control points, the span efficiency is
approximately e! 0:993, in excellent agreement with the lifting-line
prediction of e! 1.

To confirm the predicted span efficiency, the B-spline mesh
corresponding to the 15 spanwise-control-point case was refined by
increasing the number of nodes by a factor of 4 in each direction. The
resulting grid has the nodal density of the 1152 block grid in Table 1.
Using the refined grid, the predicted coefficients of lift and drag are
CL ! 0:37889 andCD ! 0:00766, respectively, and the revised span
efficiency is e! 0:994. For comparison, the initial untwisted
geometry has a predicted span efficiency of e! 0:978, based on a
refined grid.

Figure 3 shows the spanwise lift distributions of the initial and
optimized geometries, for 15 spanwise control points, as well as an
elliptical distribution with the same total lift. Recall that all lift
distributions are computed using the refined grids. The optimized
geometry matches the elliptical distribution closely, except for a
small discrepancy visible at the wing tip. This is caused by side-edge
separation at the wing tip, which we discuss further in the next
section.

The sectional twist angle of the optimized geometry is also shown
in Fig. 3. The twist does not match the elliptical twist predicted by

number of inboard spanwise control points

e
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Fig. 2 Span efficiency versus the number of spanwise control points for
the twist, smooth-tip planform, and sharp-tip planform optimizations.

y

y

(2
c/

S
)×

c l

tw
is

t(
de

gr
ee

s)

0

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

0.00

0.05

0.10

0.15

-2.0

-1.0

0.0

1.0

2.0

elliptical lift
initial lift
optimized lift
elliptical twist
optimized twist

Fig. 3 Lift distributions of the initial and optimized geometries (15
spanwise control points) compared with an elliptical distribution with
the same total lift: the sectional twist (in degrees) of the optimized
geometry is also included.

HICKEN AND ZINGG 2567



linear theory. For comparison, we created a geometry with a
prescribed twist that closely approximates an elliptical twist distri-
bution; an exact elliptical curve is not possible using B-splines. The
mean error in approximating an elliptical twist with the given
parameterization is 0.047( or 1.4% based on the difference between
the root and tip twist angles. The optimization algorithmwas applied
to the prescribed geometry to find the angle of attack necessary to
meet the lift constraint of CL ! 0:375. With this angle of attack, the
span efficiency is predicted to be e! 0:991.

Subsequently, the grid for the prescribed-twist geometry was
refined by a factor of 4. On the refined grid, we find CL ! 0:37895
andCD ! 0:00767 for this geometry. This yields a span efficiency of
e! 0:993, which is smaller than the value obtained for the optimized
geometry on its refined mesh, i.e., the induced drag is larger on the
geometry with the prescribed twist. Consider the lift distribution for
the prescribed-twist geometry, which is plotted in Fig. 4. The figure
shows that the lift distribution from the prescribed geometry does not
match the elliptical lift distribution as closely as the one produced by
the optimized geometry.

B. Planform Optimization

Planform shape can also be manipulated to produce an elliptical
lift distribution. Indeed, many introductions to lifting-line theory
focus on elliptical planform shapes. By including the effects of wake
geometry, Smith and Kroo [8] have shown that the planformmay not
be exactly elliptical, depending on the shape of the trailing edge. For
example, a curved trailing edge will produce a nonplanar wake for
nonzero angles of attack, so the elliptical lift distribution will no
longer be optimal. This suggests that we use a straight trailing edge
perpendicular to the symmetry plane.

With a planar trailing edge, we might expect to recover a crescent-
shaped wing [7,8]. However, as we shall see, the optimal planform
shape depends subtly on the wing-tip shape. In particular, the tip
geometry can trigger side-edge separation, which leads to a non-
planar wake. To illustrate this effect, we consider two tip geometries;
one that has a smooth edge and one that has a sharp edge.

The initial planform is rectangular, and the leading-edge control
points of the inboard B-spline patches are free to move in the x-
direction (streamwise). As discussed above, the trailing-edge control
points are fixed to reduce the effects of a nonplanar wake. The
remaining control points in each section are scaled based on the
chord length; hence, the effective design variables are the chord
lengths at the spanwise stations.

The projected area is constrained by its initial value of S! 6. This
constraint ensures a consistent reference area, and it prevents
nonunique optima that would arise with a variable angle of attack;
there is an optimal planform for each angle of attack. The target lift
coefficient is 0.375.

Figure 2 shows the optimized span efficiencies for the smooth-tip
and sharp-tip geometries using 5 to 15 spanwise control points. The
optimization runs for the smooth-tip planform using 7 and 8
spanwise control points failed to converge and are not included in the
figure. The span efficiency of the smooth-tip planform is relatively
insensitive to the number of spanwise points and matches the span
efficiency of the twist optimization (e! 0:992 for 15 spanwise
control points). In contrast, the sharp-tip planform has a span effi-
ciency that is almost 1% higher (e! 1:001 for 15 spanwise control
points).

Using grids with 88 million-nodes (Table 1), refinement studies of
the planforms with 15 spanwise control points yield e! 0:988 for
the smooth-tip planform and e! 0:997 for the sharp-tip planform.
This suggests the performance differences between the two
planforms is real and not due to numerical errors.

The optimal planform shapes are plotted in Fig. 5. Only the
planforms corresponding to 15 spanwise control points are shown,
since the geometries with 11 through 15 points are similar. The two
wing-tip shapes lead to similar planforms over most of the span;
however, the two planforms differ toward the wing tip, where the
smooth-tip planform has a monotonically decreasing chord, and the
sharp-tip planform has an abrupt increase in the chord.

The two optimal planform shapes are clearly not elliptical. More
important, their lift distributions are not elliptical, as Fig. 6 demon-
strates. Liersch et al. [14] found that an elliptical planform does not
achieve the theoretical minimum induced drag, unless a twist is also
applied. While this may explain why the present planforms are not
elliptical, it does not adequately explain why the lift distributions are
not elliptical.

Side-edge separation provides a possible explanation for the
nonelliptical lift distributions and the distinct planform shapes at the
tip. On the sharp-tip planform the vortex releases along the wing tip
near the leading edge and curls onto the upper side of the wing, as
shown in Fig. 7. The flowfield created by the vortex lowers the
pressure on the upper surface near the tip, similar to the vortices on a
delta-wing. Evidence for this effect is visible in the lift distributions
in Fig. 6, as well as the experimental results of [33]. On the smooth-
tip planform the tip vortex also releases along the wing tip, but much
closer to the trailing edge.

As the wing-tip chord decreases, the region of reduced pressure
also decreases; hence, there appears to be a tradeoff between main-
taining this vortex-induced low-pressure region and establishing an
elliptical lift distribution. The wake offers an alternative perspective.
The edge separation produces a nonplanar wake, and the vertical
extent of this wake is increased by extending the chord at the tip (a tip
with finite chord has a vertical component when the wing is inclined
at an angle of attack). This is also illustrated in Fig. 7. The sharp-tip
planform is able to exploit the resulting nonplanar wake more than
the smooth-tip planform.
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IV. Winglets
In [15], it was shown that a gradient-based aerodynamic shape

optimization is capable of recovering winglets from an initially
planarwing.However, the number of spanwise degrees of freedom in
that studywas insufficient to obtain the optimal lift distribution, so in
this section we investigate the optimal loading for winglets more
thoroughly. In particular, we are interested in comparing the results
of aerodynamic shape optimization to those of linear theory.

The initial winglet semispan geometry is shown in Fig. 8.
Although the figure depicts a winglet-up geometry, both winglet-up
and winglet-down orientations are considered. The span is approx-
imately 6 chord units and the winglet height is approximately 0.6
chord units. NACA0012 sections are used throughout the span of the
geometry except toward thewinglet tip where the thickness-to-chord
ratio is gradually reduced.

The geometry is parameterized using 16 B-spline patches: 4
patches on the lower surface of themain wing, 4 patches on the upper
surface of the main wing, 4 patches on the outer surface of the
winglet, and 4 patches on the inner surface of thewinglet. Each patch
consists of 6 control points in the streamwise direction. The number
of control points in the spanwise or vertical direction is varied from 4
to 8, to ensure the optimal loading has been obtained. Therefore, five
separate optimization runs are considered, with 13, 17, 21, 25, and 27
total spanwise-vertical control points (accounting for the common
set of control points shared along each patch edge). The geometry in
Fig. 8 corresponds to the parameterization with 6 ' 8 control points
per patch, or 27 total spanwise-vertical control points.

Themainwing andwinglet control-point sections are free to rotate
about axes parallel to the y-axis and z-axis, respectively. The sections
are constrained to have the same chord length as the root section,
which is permitted to vary. The y-coordinate of each section in the
main wing is linearly interpolated between the root and winglet
junction. Similarly, the z-coordinate of each section in the winglet is
interpolated between the junction and the winglet tip.

The x-coordinate of the leading edge is fixed at x!"0:5, and the
control point coordinates are subject to the bound constraints jzj )
0:3 and jyj ) 3. Because the bound constraints are applied to the
control-point coordinates, the convex-hull property of B-spline
curves prevents the surface geometry from touching the bound
constraints. Applying the bounds directly to the surface nodes would
significantly increase the size of the optimization problem.

The control points along the junction between the main wing and
winglet are determined by the positions of adjacent control points:
the x and y coordinates match those of control points on the winglet,
while the z coordinates are taken from points on the main wing.

Along the winglet tip, the control-point coordinates are inter-
polated between the leading and trailing edge. In addition, the
leading- and trailing-edge control-point coordinates at the tip are
extrapolated from the positions of the two inboard control points; this
is necessary to prevent excessive deflections at the wing tip.

The maximum anhedral angle between any two adjacent control
points on the main wing is 35(. Similarly, the maximum dihedral
angle between adjacent control points on the winglet is 125(. These
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Fig. 7 Wing tip view of the optimized smooth-tip planform (upper) and optimized sharp-tip planform (lower) with the tip vortices visualized with
streamlines.

Fig. 8 Initial B-spline control mesh (upper) and surface geometry (lower) for the winglet optimization.
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constraints are necessary to prevent invalid geometries and meshes
near the winglet junction, a problem that we elaborate on below.

The 48-block grid from Table 1 is used for all optimization runs.
As usual, the coefficient of lift is constrained at 0.375 and an equality
constraint of S! 6 is imposed on the projected area.

Figure 9 plots the span efficiency of the optimized winglet-up and
winglet-down geometries as a function of the number of spanwise
control points over the main wing (or vertical control points over the
winglet). The figure also plots the span efficiency of the box-wing
geometry, which is described in the next section. As the control point
density increases, the span efficiency appears to plateau between
e! 1:15 and e! 1:16 for both winglet orientations.

The optimizedwinglet-up geometry corresponding to 15 spanwise
control points is illustrated in Fig. 10. A similar illustration of the
optimal winglet-down geometry is given in Fig. 11. Observe that the
trailing edge at the junction stretches toward the corner of the bound
constraints, which are illustrated with dashed lines in the inset
figures. The optimization attempts to maximize the vertical distance
between the junction edge and the tip, but this appears to conflict with
the optimal twist near the junction. Consequently, the trailing edge of
the wing and winglet approach one another, necessitating the
constraints on dihedral discussed earlier.

To confirm the span efficiency values, the 48-block grids from the
optimized 13 spanwise-control-point parameterizations were refined
by a factor of 3 and subdivided into 1296 blocks; see Table 1 for the
grid statistics. Using these refined grids, we obtain e! 1:147 for the
winglet-up geometry and e! 1:145 for the winglet-down geometry.

How do these results compare with linear theory? If we model a
winglet-up configuration using horizontal and vertical lifting lines
that coincidewith the bound constraints (height-to-span ratio of 0.1),
we find that the optimal span efficiency is approximately e! 1:24.
This is significantly larger than the value predicted by the nonlinear
solver. The difference can be largely explained by a tacit assumption
made in our application of linear theory. The lifting line can be
considered the wake at the trailing edge; therefore, in obtaining the
lifting-line result we have maximized the span and vertical height of
the trailing edge,while neglecting the bound constraints on the rest of
the geometry.

The trailing edge of the initial geometry provides a more realistic
lifting-line shape for a comparison with linear theory, because the
complete geometry is contained within the bound constraints. Using
this trailing edge, which has a height-to-span ratio of 0.09 rather than
0.1, the optimal span efficiency predicted by linear theory is
e! 1:17, in much closer agreement with the nonlinear results.

Finally, we note that the twowinglet orientations have very similar
span efficiencies; however, this is not universally true for allwinglets.
Bourdin [11] notes that the optimal winglet orientation is a function
of the tip geometry,which controls the locationwhere the tip vortex is
shed and, consequently, the vertical extent of thewake. For example,
Bourdin found that a winglet-up geometry outperforms a winglet-
down geometry when the tip is swept forward, and he found the
converse when the tip is swept back.

V. Box Wing
The box-wing configuration is a closed-wing system that resem-

bles a biplane with a vertical surface joining the wing tips. The
vertical connection creates a continuous lifting surface and elimi-
nates the wing tips. Indeed, the absence of wing tips is the distin-
guishing feature of closed-wing systems.While they do not eliminate
induced drag, closed-wing systems reduce it significantly. For exam-
ple, according to linear theory, the box wing produces the minimum
induced drag for a given height-to-span ratio [37].

In this section, our objective is to find the minimum induced drag
for a box-wing configuration and compare this Euler-based result
with linear theory. Thus, this study is analogous to the previous study
of the winglet.

The box-wing geometry has a span of 6 chord units and a
maximum height of 0.6 chord units. We use a sectional shape that
approximates the NACA 0012 airfoil. The semispan configuration is
parameterized using 24 B-spline patches. The vertical end plate and
two horizontal semispan wings use 8 patches each: 4 each for the
inner and outer surfaces. The patches consist of 6 control points in the
streamwise direction and 4 to 8 points in the spanwise or vertical
direction. As with the previous cases, varying the spanwise control-
point density ensures the optimal loading has been achieved.

number spanwise/vertical control points

e

6 8 10 12 14 16
1.100

1.150

1.200

1.250

winglet up
winglet down
boxwing

Fig. 9 Span efficiency versus the number of spanwise control points for
the optimized winglet-up, winglet-down, and box-wing geometries.

Fig. 10 Optimized winglet-up geometry and transparaent initial
geometry viewed from downstream; inset figures show close-up of the B-
spline control points (upper) and surface (lower) at the winglet junction.

Fig. 11 Optimized and initial (transparent) winglet-down geometries
viewed from downstream, with inset figures showing close-up of the B-
spline control points (upper) and surface (lower) at the winglet junction.
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Sections along the horizontal wings are permitted to rotate about
axes parallel to the y-axis. Similarly, sections along the vertical end
plate are free to rotate about axes parallel to the z-axis. Each section
is constrained to have the same (variable) chord length. The
y-coordinate of each section in the horizontal wings is linearly
interpolated between the root and junction. The z-coordinate of each
section in the end plate is interpolated between the upper and lower
junctions. The leading edge is fixed in the streamwise direction at
x!"0:5, and the control point coordinates are subject to the bound
constraints jzj ) 0:3 and jyj ) 3.

At the upper and lower junctions, where the horizontal wings join
the end plate, the control point coordinates are extrapolated from
adjacent sections. The x and y coordinates along the junction are
equal to the coordinates of the adjacent control points on the end
plate, and the z coordinates are equal to the coordinate values of
adjacent control points on the main wing.

As with the winglet, some constraints on the local dihedral are
necessary to prevent invalid geometries and meshes near the
junctions. On the lower wing, adjacent spanwise control points are
limited to a maximum anhedral angle of 35(. Conversely, adjacent
spanwise control points on the upper wing are limited to a maximum
dihedral angle of 35(. Finally, the dihedral angle between adjacent
control points on the winglet must lie between 55 and 125(.

The 48-block canonical grid from Table 1 is used during the
optimizations. As in the previous studies, the projected area is
constrained atS! 6, and the coefficient of lift isfixed atCL ! 0:375.

The span efficiency as a function of the number of spanwise (or
vertical) control points is plotted in Fig. 9. Although there is a
significant increase from 7 to 11 spanwise control points, the
efficiency stabilizes between e! 1:19 and e! 1:20 for the larger
control-point densities. A refinement study based on the 15-
spanwise-control-point geometry and the 1296-block grid from
Table 1 yields a span efficiency of e! 1:16.

Figure 12 shows coefficient of pressure contours around the
optimized box-wing geometry (15 spanwise control points). The
inset figure compares the trailing-edge shape of the optimized
geometry with the initial geometry. As with the winglet configura-
tions, the junctions are pushed toward the corners of the bound
constraints to maximize the span and vertical extent of the wake.

According to linear theory, a box wing modeled as a lifting line
with a height-to-span ratio of 0.1 has a span efficiency of e! 1:27;
however, like the linear analysis of the winglet, this naively applies
the bound constraints to the trailing edge and not the entire geometry.
When we account for the airfoil thickness, we obtain a more realistic
height-to-span ratio of 0.0816 and a lifting line analysis produces
e! 1:18. This prediction agrees well with the nonlinear optimiz-
ation results.

We close this section with some remarks on the optimal loading of
closed systems. According to linear theory, a vortex loop of constant
circulation can be added to the bound vortex of a closed system
without changing the induced drag [1]. In the context of lifting-line
theory, this implies that a box-wing configuration of minimum
induced drag is not unique. It is not clear if this nonuniqueness is
present in the Euler-based solution. The nonlinear physics may
eliminate the nonuniqueness, or small numerical errors may isolate
one geometry as a local minimum in the design space. Further inves-
tigation is necessary to determine the relative impact of these two
factors.

VI. Split Tip
In [9], Smith studied a split-tip configuration consisting of a main

wing with two tip wings. The configuration provides a simple model
for tip sails, which have been studied experimentally by Spillman
[38], for example (see also [39]). In Smith’s geometry, the tip wings
are staggered in the streamwise direction, and the rear tip wing is
swept back. Although his split-tip configuration has a planar wake at
zero angle of attack, the streamwise separation of the tip wings
produces a nonplanar wake when the wing is inclined to the flow.
Smith showed that a linear discrete-vortex method predicts that the
split-tip configuration has a span efficiency of approximately e!
1:066, at an angle of attack of 9 deg (CL ! 0:761), i.e., a drag
reduction of over 6%. He also analyzed the configuration using a
nonlinear, force-free wake calculation. When nonlinear effects
were included, the split tip reduced the drag by 10% relative to an
elliptical lift distribution. Smith’s experimental studies confirmed
this reduction.

Fig. 12 Optimized box-wing configuration with coefficient of pressure contours on the plane x! 0, and inset showing the trailing-edge shape of the
optimized and initial (transparent) configurations.

Fig. 13 Planform shape of the split-tip configuration.
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Motivated by Smith’s results, we consider the effect of dihedral on
the induced drag of a split-tip configuration. The hope is that an
optimized nonplanar split-tip, like its planar analog, will yield a span
efficiency larger than the value predicted by linear theory.

The initial split-tip configuration is similar to Smith’s geometry.
The main wing has a rectangular planform, while the tip wings have
taper ratios of 0.4. The semispan is three chord lengths, and the
junction between themainwing and tipwings is located at two-thirds

of the semispan. The projected/reference area is S! 5:4. The main
wing and tipwings haveNACA0012 sections throughoutmost of the
span, with some fairing required at the junction and at the wing tips.
The trailing edge of the rear tip wing has no sweep, and the planform
is symmetric about the midchord (in contrast with Smith’s geom-
etry). Figure 13 shows the planform shape of the split tip.

The canonical grid for the split-tip configuration is the 42-block
grid listed in Table 1. Each block in the grid is a B-spline volume

Fig. 14 Optimal split-tip geometries.
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Fig. 15 Lift and drag distributions for the up-down split-tip config-
uration.
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Fig. 16 Lift and drag distributions for the down-up split-tip config-
uration.
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consisting of 6 ' 6 ' 5 control points. The semispan geometry is
composed of four B-spline patches on the upper surface (two for the
main wing and one each for the tip wings), and four patches on the
lower surface. Each patch is parameterized with 6 ' 6 control points:
we consider only one set of spanwise control points.

The leading edges of the main and tip wings are limited to linear
variations in spanwise camber, but each section is free to rotate
parallel to the xz plane. Thus, twist can be used to optimally load the
configuration. The chord length of each section is constrained such
that it maintains a constant ratio with the root chord. The control
points are constrained by the bound constraint jzj ) 0:3. Allowing
the configuration to translate introduces nonunique designs, but any
design that activates both the upper and lower bound constraints will
be unique.

Figure 14 shows two local optima obtained from the split-tip
optimization. The split-tip optimum in Fig. 14b was obtained from
the initial configuration shown in Fig. 14a. We will refer to this
optimum as the up–down configuration, as a mnemonic for the
positions of the forward and rear tip-wing dihedrals. Similarly, we
refer to the local optimum shown in Fig. 14c as the down–up
configuration. The optimization leading to the down–up configura-
tion was initiated by giving the forward and rear tips on the baseline
geometry dihedral angles of "19:7( and 19.7, respectively. We also
considered initial geometries with both tip wings up and both tip
wings down, in an attempt to identify additional local optima. Both of
these initial geometries lead to the up–down configuration;
nevertheless, this does not preclude the existence of distinct local
optima for this parameterization.

Both split-tip optima have maximized the vertical distance
between the tip wings. The up-down configuration has a predicted
induced drag of CD ! 0:00580 (e! 1:158), while the down–up
configuration has a predicted value of CD ! 0:00585 (e! 1:148).
For the refinement study, we increased the nodal resolution by a
factor of 3 in each coordinate direction. The refined grid for the up–
down configuration yields CL ! 0:3762, CD ! 0:00579, and a span
efficiency of e! 1:167. The improved estimates for the down–up
configuration are similar: CL ! 0:3763, CD ! 0:00583, and
e! 1:160. These span efficiencies are comparable with or exceed
that of the box wing.

We can gain some insight into the efficiency of the split-tip
configurations by examining their spanwise distributions of lift and
drag. Figure 15 plots these distributions for the up–down config-
uration, and shows the individual contributions from themain and tip
wings. Figure 16 contains the analogous plots for the down-up
configuration. The lift distributions reveal that the outer load is
roughly shared by the tip wings. The drag distribution is even more
interesting, since it reveals that the tip wings are producing thrust
over sections of their span. This is precisely the goal ofwell-designed
tip sails [38]. For example, near y! 2 the upwash from the trailing
tip wing creates a localized flow for the forward tip wing that
increases the effective angle of attack; see Fig. 17. The optimization
algorithm has produced a geometry that exploits this effect auto-
matically.

The maximum height-to-span ratio along the trailing edge of the
up-down split-tip is 0.093. Based on this ratio, a linear lifting-curve
analysis of a simplified split-tip configuration produces e! 1:17.
Once again, the agreement between linear theory and the Euler-based
optimization is good: there is no significant performance improve-
ment as observed for Smith’s planar split-tip. For the present split-tip
geometries, the nonlinear effects will be reduced by the increased
vertical separation between the tip vortices, and this may explain the
absence of drag reduction beyond the predictions of linear theory.
Nevertheless, the split-tip still performs favorably comparedwith the
box-wing, because the split-tip is better able to maximize the height-
to-span ratio of the wake.

VII. Conclusions
Table 2 summarizes the predicted span efficiencies and force

coefficients of the configurations studied herein. The results listed are
those obtained from the refined grids, and the number of nodes and
surface-node spacing are included in the table for reference (see
Table 1 for further details regarding the grids and the definition of
surface node spacing).

The optimization studies have revealed several interesting results
regarding induced drag, which are listed below. We emphasize that
these conclusions may only apply to inviscid flows. In addition, the
chosen parameterizations may have limited the designs in some

Fig. 17 Flow visualization on the plane y! 2:1 for the up-down split-tip configuration. Streamlines are computed using the velocity field "u; 0;w# to
illustrate the projected velocity direction. Contours of the coefficient of pressure are also shown. The tip wings are twisted to take advantage of the local
flow direction.

Table 2 Summary of the induced drag minimization studies ordered by increasing span
efficiency (results from refined grids)

Configuration e CL CD S Grid nodes Surface spacing

Smooth-tip planform 0.988 0.37829 0.00769 6.0 88 387 200 0.0070
Twist 0.994 0.37889 0.00766 6.0 88 387 200 0.0070
Sharp-tip planform 0.997 0.37850 0.00762 6.0 88 387 200 0.0070
Winglet-down 1.146 0.37563 0.00653 6.0 152 473 104 0.0060
Winglet-up 1.147 0.37471 0.00649 6.0 152 473 104 0.0060
Box wing 1.151 0.37482 0.00647 6.0 152 473 104 0.0060
Split tip down–up 1.160 0.37634 0.00583 5.4 103 335 750 0.0062
Split tip up–down 1.167 0.37627 0.00579 5.4 103 335 750 0.0062
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cases, and increased geometric flexibility may improve the predicted
performance of these configurations.

1) An elliptical planform does not produce the minimum induced
drag when wing-tip edge separation is present. The edge separation
leads to a nonplanar wake, which can be exploited to reduce the
vortex drag if the wing tip has a finite chord-length.

2) The span efficiency of the optimized twist and planform
geometries was found to be relatively insensitive to the number of
spanwise degrees of freedom. In contrast, the winglet and box-wing
configurations required at least 11 nonuniformly spaced spanwise
control points to achieve the optimal loading.

3) When comparing the results of an Euler-based optimization
with linear theory, the bound constraints must be carefully adapted.
Applying identical bound constraints to the lifting line neglects the
finite-thickness of wings and winglets, and this effectively increases
the span and/or height of the wing.

4) Bound constraints on thewinglet and box-wing geometries lead
to a tradeoff between the optimal twist and maximizing the span and
height of the wake.

5) For the same spanwise and vertical bound constraints, an
optimized split-tip geometry was found to outperform an optimized
box-wing geometry by approximately 1.5%. The split-tip geometry
achieves a larger height-to-span ratio for the wake, because its thin
tips are less impacted by the bound constraints. Nonlinear effects do
not appear to play a significant role in the induced drag of the
nonplanar split-tip.

The present findings are interesting, but they are ultimately limited
by the inviscid assumption. Therefore, future work will consider
viscous and turbulent effects in exploratory aerodynamic shape
optimization of nonplanar geometries. Extension to aerostructural
optimization will also be pursued.
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