
Single- and Multi-Point

Aerodynamic Shape Optimization

Using A Parallel Newton-Krylov Approach

Timothy M. Leung∗ and David W. Zingg†

Institute for Aerospace Studies, University of Toronto, Toronto, Ontario, M3H 5T6, Canada

A Newton-Krylov algorithm for aerodynamic shape optimization in three dimensions is

presented for both single-point and multi-point optimization. An inexact-Newton method

is used to solve the Euler equations, a discrete-adjoint method to compute the gradient,

and a quasi-Newton method to find the optimum. The flexible generalized minimal residual

method is used with approximate-Schur preconditioning to solve both the flow equation

and the adjoint equation. The wing geometry is parameterized by a B-spline surface, and

a fast algebraic algorithm is used for grid movement at each iteration. For multi-point

optimization, a composite objective function is used. Optimization results are presented

to demonstrate the capabilities and efficiency of the approach.

I. Introduction

In the aerodynamic design of aircraft, there have been two major breakthroughs in the design process.
The first breakthrough is the development of computational fluid dynamics (CFD). In the last decade, CFD
has emerged as the primary design tool for aircraft aerodynamics, complementing, and sometimes replacing
wind tunnel testing. Improvements in computer hardware, especially in parallel architectures, allow engineers
to solve larger and more complex CFD problems. We can now accurately compute two-dimensional flow
solutions for viscous turbulent flows in less than one minute on a desktop computer, while three-dimensional
flows over an entire aircraft can be solved in a matter of hours using affordable parallel computers. However,
using CFD as an analysis tool alone still relies on a cut-and-try approach, which does not necessarily tell
engineers where and how design improvements can be achieved. Inverse design methods had been popular,
but they rely heavily on the expertise and experience of aerodynamicists.

The incorporation of high-fidelity CFD codes into automated optimization tools represents the second
major breakthrough. Unlike inverse design, aerodynamic shape optimization seeks to directly improve the
performance measures such as lift and drag coefficients. Such tools are useful in the refinement of the
“wing-fuselage” configuration; they can also serve as an inexpensive numerical testbed for unconventional
configurations. Beginning with the early works of Hicks et al.1 and Hicks and Henne,2 aerodynamic shape
optimization is becoming popular. The speed and effectiveness of aerodynamic shape optmization has
improved significantly through the development of the adjoint method.3,4 The main advantage of the
adjoint method is that the time required for each gradient computation is nearly independent of the number
of design variables. Adjoint methods are further divided into continuous5–10 and discrete11–19 approaches.
Both have been implemented successfully in aerodynamic design optimization.

Many examples in wing design optimization consider a only single operating condition, such as a fixed
Mach number or a fixed lift coefficient (“single-point optimization”). This serves to prove the effectiveness
of an algorithm but is not a practical approach to design. A wing must operate in a range of conditions in
the flight envelope, for example, a range of Mach number and lift coefficients. Trade-offs and compromises
must be made between different operating conditions to achieve an overall optimum. Nemec and Zingg15

studied multi-point optimization of airfoils using a discrete-adjoint method. Zingg and Elias22 investigated
automatic selection of sampling points and weights. The work is extended in Zingg and Billing23 to include
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multiple cruise and dive conditions. Studies in multi-point wing design include those by Reuther et al.,7,8

Cliff et al.,24 Leoviriyakit and Jameson.10 Jameson et al.25 studied multi-point aero-structural optimization
of wings.

In this paper, we present three-dimensional single-point and multi-point optimization results using a
Newton-Krylov approach. Our algorithm is based on Nemec and Zingg14,15 and Leung and Zingg.26 The
steady-state flow solution is computed using the inexact-Newton method, with the flexible generalized min-
imal residual method (FGMRES)27,28 solving the linear system at each outer iteration. The optimizer is
based on the quasi-Newton optimizer BFGS (Broyden-Fletcher-Goldfarb-Shanno),29 and the adjoint equa-
tion is again solved by FGMRES. The surface geometry is parameterized by B-spline control surfaces, which
provide the design variables. Examples are presented to demonstrate the effectiveness of the approach.

II. Problem Formulation

The goal of aerodynamic shape optimization is to find a set of design variables X such that a scalar
objective function J is minimized:

min
X

J (X,Q) (1)

where Q represents the flow solution. To ensure that the optimizer yields a physically realistic shape, a set of
inequality constraints may be imposed. We consider only geometric constraints that are functions of design
variables:

Cj(X) ≤ 0 (2)

In addition, the discrete flow equation must also be satisfied:

R(X,Q) = 0 (3)

A. Objective Functions

For aerodynamic shape optimization problems, the objective functions are based on performance measures,
such as lift and drag coefficients (CL, CD). We consider lift-constrained drag minimization as our objective
function:

J = ωL

(

1 − CL

C∗

L

)2

+ ωD

(

1 − CD

C∗

D

)2

(4)

Target lift and drag coefficients (C∗

L, C∗

D) are supplied by the user, while weights ωL, ωD, also user-supplied,
specify the relative importance of maintaining lift vs. drag reduction. If C∗

L is attainable and C∗

D is not,
this objective function represents lift-constrained drag minimization, with the lift constraint appearing as a
penalty.

For multi-point optimization with Np operating conditions, the objective function is the weighted sum
of all operating points:

JT =

Np
∑

i=1

ωiJi (5)

where the weights are specified by the user to reflect priorities or to approximate a weighted integral, for
example:

JT ≈
∫ M2

M1

ω(M)J (M)dM (6)

III. Geometry Parameterization and Design Variables

We parameterize the surface of the wing using B-spline control surfaces based on Fudge et al.30 In this
method, the k-th order B-spline representation of a surface in 3D space using N × M control points and
basis functions is given by:

a(s, t) =
M
∑

i=1

N
∑

j=1

Bi,jMi,k(s)Nj,k(t) (7)

2 of 16

American Institute of Aeronautics and Astronautics



where a is the position vector along the curve at parametric distances s and t from the origin, Bi are the
locations of the B-spline control points, and Mj,k(t) and Ni,k(t) are the basis functions of order k, defined
by the Cox-deBoor relationships:31

Ni,1(t) =

{

1 if di ≤ t < di+1

0 otherwise
(8)

Ni,k(t) =

[

t − di

di+k−1 − di

]

Ni,k−1(t) +

[

di+k − t

di+k − di+1

]

Ni+1,k−1(t) (9)

where di represents the elements of a uniform open knot vector given by:

di =











0 1 ≤ i ≤ k

i − k k + 1 ≤ i ≤ N

N − k + 1 N + 1 ≤ i ≤ N + k

(10)

Before the start of the optimization cycle, the surface grid is first parameterized using B-spline control
surfaces. For a structured surface grid with I and J nodes in the parametric directions s and t, the B-spline
surface can be described in discrete matrix form as:

A = UD

D = XV
(11)

where A contains the x, y or z coordinates for each surface grid node (j, k), U and V store the basis function
values at parametric distances s and t from the grid origin, D is an intermediate matrix of size M × J , and
X is a matrix containing the x, y or z coordinates of the B-spline control points:

A =









x11 · · · x1J

...
...

xI1 · · · xIJ









U =









N1(s1) · · · NM (s1)
...

...

N1(sI) · · · NM (sI)









X =









B11 · · · B1N

...
...

BM1 · · · BMN









V =









M1(t1) · · · M1(tJ)
...

...

MN (t1) · · · MN (tJ )









(12)

The distances s and t are calculated based on the nodal indices:

si =
i − 1

I − 1
(m − k + 2) (13)

tj =
j − 1

J − 1
(n − k + 2)

The control point locations are found by first solving for D, and then X in the least-squares problems in
(11). To generate a new surface grid, the intermediate matrix D in (11) is first generated based on the new
control point locations X, and then the new surface grid A is generated.

Fig. 1 shows the parameterization of an ONERA M6 wing. In this example, the wing is represented using
cubic B-spline control points, with nine control points in the spanwise direction, and 17 in the chordwise
direction. Any control point can translate in the x, y or z direction to change the surface geometry, but we
use only the z-coordinates as design variables. Moving individual control points is necessary to change the
wing cross-section. Increasing the number of control points improves the flexibility of the parameterization,
and allows the designer more control over changes in the geometry. Furthermore, the control points can be
grouped together so that they can be described by planform variables, such as semi-span (b/2), chord (c),
sweep (Λ), dihedral (Γ) and twist (Ω).
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Figure 1. B-spline surface parameterization of an ONERA M6 wing with a perturbation

IV. Geometric Constraints

For geometric constraints, we have implemented a volume constraint and a thickness constraint. A
volume constraint is imposed to limit the change in the volume enclosed by the wing. The constraint is
expressed as a penalty term in the objective function:

J = J0 + Jp,V + Jp,T (14)

The penalty term is added when the volume V deviates from the initial volume V0 by more than a prescribed
factor vf :

|V − V0| > vfV0 (15)

The volume penalty term is specified as a quadratic function:

Jp,V =
1

2
ωV

[

|V − V0|− vfV0

V0

]2

(16)

The penalty weight ωV is user-supplied. For thickness constraints, we specify a minimum thickness at a
fixed relative position (x/c, 2y/b) on the wing. The i-th thickness constraint is expressed as:

t∗i − ti ≤ 0 (17)

where ti is the thickness, and t∗i is the target minimum. A penalty term is added only if ti is lower than t∗i :

Jp,i =

(

1 − ti
t∗i

)2

if ti < t∗i (18)
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The contributions from all thickness constraints are summed and multiplied by a user supplied weight ωT:

Jp,T = ωT

∑

i

Jp,i (19)

By casting the constraints as penalty terms, our original optimization problem (1) can be solved using an
algorithm for unconstrained optimization.

V. Flow Analysis

The governing equations for the optimization are the Euler equations. In curvilinear coordinates (ξ1, ξ2, ξ3),
they can be expressed in the form:

∂tQ + ∂ξi
Ei = 0 (20)

where

Q =
1

J















ρ

ρu1

ρu2

ρu3

e















, and Ei =
1

J















ρUi

ρu1Ui + p∂xξi

ρu2Ui + p∂yξi

ρu3Ui + p∂zξi

(e + p)Ui















.

The scalar J denotes the Jacobian of the mapping from physical space to computational space, and Ui = uj∂xj
ξi

are the contravariant velocity components.
The flow equations are discretized on multi-block structured grids. In our parallel strategy, each block

in the grid and the corresponding component of Q is distributed to a separate processor. The discretization
of (20) is done in parallel in each block. Second-order centered differencing is used for interior nodes, and
first-order one-sided differencing is used at block boundaries. For numerical stability, we use the JST scalar
dissipation model,32,33 with second-difference dissipation near shocks and fourth-difference dissipation else-
where. Boundary conditions and the coupling between blocks at the interfaces are done using simultaneous
approximation terms (SATs). Details of the implementation of SATs can be found in Hicken and Zingg.34

Discretization of the Euler equations produces a set of nonlinear algebraic equations. At steady-state,
they can be represented by the equation

R(X,Q) = 0 (21)

which is the same flow constraint equation in (3). In order to find this steady solution, we start with an
initial guess Q(0) based on freestream properties and apply the Newton method, solving a linear system in
the form:

A(n)∆Q(n) = −R(n) (22)

where A = ∂R/∂Q is the flow Jacobian and R(n) = R(Q(n)). The flow vector Q is updated, and the
linear system is solved again until the L2-norm of R(Q) is reduced to machine zero. Since adjoint gradient
computation requires the flow Jacobian from a well-converged solution, reduction of 10 orders of magnitude
or more is necessary. The linear system (22) is solved using the flexible Krylov subspace iterative method
FGMRES.28 When a Krylov method is used to solve the linear system, only a matrix-vector product with
the flow Jacobian is required, and this can be approximated by a Frechet derivative (one-sided differencing):

Av ≈ R(Q + εv) − R(Q)

ε
(23)

leading to a Jacobian-free approach for the flow solver. To improve the convergence of FGMRES, the linear
system in (22) is right-preconditioned. The preconditioner uses a first-order Jacobian matrix (denoted by
A1) that combines the second- and fourth-difference dissipation terms:

κ̂2 = κ2 + σκ4; κ̂4 = 0.0 (24)

A value of σ = 4.0 is used here based on previous work.35 The matrix A1 is obtained by hand linearization.
The linearization of the artificial dissipation is performed by freezing the coefficients. The complex step
method36,37 is used to linearize the SATs at block boundaries. Our approach is similar to Nielsen and
Kleb,38 but our application of the complex step method is limited to the SATs. An approximate-Schur
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preconditioner based on Saad and Sosonkina39 is applied to A1 to form the preconditioner. Details of the
implementation can be found in Hicken and Zingg.34

The Newton method converges quadratically when Q is sufficiently close to the solution. However, during
the start-up phase, when the iterate is far from the solution, convergence may not be possible. Therefore,
for stability during the start-up period, the flow solver instead uses an approximate-Newton method; the
first-order Jacobian replaces the full Jacobian in (22). A pseudo-transient time step is also added during the
start-up phase for globalization of the Newton method:

∆t(n)
i =

∆t(n)
ref

Ji(1 + 3
√

Ji)
(25)

where the reference time step for iteration n is defined as

∆t(n)
ref = A(B)n (26)

Values of A = 0.1 and B = 1.5 are used. In summary, during the approximate-Newton start-up phase, the
linear system solved at each iteration n is given by:

[

T (n) + A(n)
1

]

∆Q(n) = R(n) (27)

where T (n) is a diagonal matrix containing the reciprocal of the local time steps. The flow solver then
switches to the Newton method when the normalized residual has dropped below a threshold τ , i.e.:

||R(n)||2
||R(0)||2

≡ R(n) < τ (28)

where τ = 0.1 is used. During the Newton phase, the reference time step is based on Mulder and van Leer:40

∆t(n)
ref = max

[

α
(

R(n)
)−β

,∆t(n−1)
ref

]

(29)

We find α = 1.0 and β = 1.75 found to be satisfactory values for a wide range of problems. As the residual
decreases, the time step approaches infinity, and the full Newton step is recovered.

VI. Optimizer

When the geometric constraints are implemented as quadratic penalty terms, we can now consider the
optimization as an unconstrained problem. A quasi-Newton optimizer BFGS is used. In BFGS, the inverse
of the Hessian matrix is approximated to get the search direction. BFGS guarantees that the search direction
is a descent direction.

A. Adjoint Solver

At the heart of any gradient-based optimization is the fast and accurate evaluation of the objective function
gradient G. The gradient can be expressed as:

G = ∇J =
∂J
∂X

− ψT ∂R

∂X
(30)

where the vector ψ is the adjoint variable, which is obtained by solving the adjoint equation:

ATψ =
∂J
∂Q

T

(31)

It should be noted that the size of (31) is independent of the number of design variables. We solve
the adjoint system by adopting the same strategy used for the flow solution. The adjoint system is solved
using FGMRES as the iterative solver. The system is right-preconditioned using the approximate-Schur
preconditioner. We specify a linear tolerance of 10−8 for the adjoint system. Note that the left-hand side
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of the adjoint equation differs from (22) by a transpose. As a result, the Jacobian-free approach used
in the flow solver cannot be used, and the matrix must be formed explicitly. The right-hand-side term
∂J /∂Q is evaluated analytically for each objective function. Finally, the partial derivatives with respect to
design variables ∂J /∂X, ∂R/∂X are evaluated using second-order centered differencing. For the k-th design
variable:

∂R

∂Xk
≈ R[X + hε̂k, Q] − R[X − hε̂k, Q]

2h
(32)

∂J
∂Xk

≈ J [X + hε̂k, Q] − J [X − hε̂k, Q]

2h

where ε̂k is the k-th unit vector, and the step size is given by:

h = max
(

ε · |Xk|, 1 × 10−4
)

(33)

B. Line Search

A line-search algorithm with backtracking is used to satisfy the strong Wolfe conditions. In the line-search
algorithm, a cubic interpolant is constructed for the function

φ(β) ≡ J (Xn + βpn) (34)

where pn is the search direction, and β is the step size along that direction. The minimum of the interpolant
is either at its endpoint or in the interior, which can be found by the line-search iteration until the strong
Wolfe conditions29 are satisfied:

βk+1 = βk − (βk − βk−1)

[

φ′(βk) + r2 − r1

φ′(βk) − φ′(βk−1) + 2r2

]

(35)

where

r1 = φ′(βk−1) + φ′(βk) − 3
φ(βk−1) − φ(βk)

βk−1 − βk
(36)

r2 =
√

r2
1 − φ′(βk−1)φ′(βk)

The line-search algorithm is considered stalled if a satisfactory step size cannot be found in 15 iterations, and
the optimizer is re-started from the steepest descent direction −G. The optimizer is considered converged to
a local minimum when ||G||2 falls below a user-defined tolerance. However, for many applications, it is often
impractical to reduce the gradient by more than one or two orders of magnitude.

C. Variable Scaling

The scaling of the design variables is crucial to the performance of the optimizer. A problem is considered
poorly scaled if changes in one variable produce much larger variations in the value of the objective function
than other variables. This problem arises when we mix B-spline design variables with planform variables.
In our experience, ∆Xi from initial to optimized geometry ranges from 10−5 for B-spline variables, to 100

for some planform variables (e.g. change in sweep angle, measured in radians). To help the convergence of
the optimizer, we scale the design variables by the square root of their initial values:41

Xs = L−1X (37)

where the entries in Xs are the scaled design variables, those in X are the unscaled design variables, and
the diagonal matrix L contains the square root of the initial unscaled design variables.

D. Grid Movement Strategy

A high-quality computational grid is necessary to compute the flow solution at each design iteration, and also
to evaluate the partial derivatives ∂J /∂X, ∂R/∂X in (30). For aerodynamic shape optimization using body-
fitted grids, expensive grid re-generation can be avoided by employing a suitable grid movement algorithm.
Each time the wing surface changes, the grid is adjusted accordingly. For the current work, a fast algebraic
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Figure 2. H-H grid over the ONERA M6 wing.

grid movement method is used. The movement of the nodes k = 2 to kmax along a grid line is determined
by the algebraic equation:

xnew
k = xold

k +
∆x1

2
[1 + cos (πSk)] (38)

where ∆x1 is the displacement of the surface node, and

Sk =

∑k
i=2 |xi − xi−1|

∑kmax

i=2 |xi − xi−1|
(39)

is the normalized arclength distance along the grid line.

VII. Results and Discussion

We obtain flow solver and optimization results using a distributed-memory Beowulf-class cluster. The
cluster uses Intel Itanium 2 processors with a CPU speed of 1.5GHz. Each node consists of 4 processors, with
8GB of shared memory per node. The computational nodes are connected by a high-bandwidth low-latency
Myrinet network. Communication between processors is done using the message passing library MPICH.

A. Single-Point Wing Optimization

We present results from a single-point optimization of a wing at a transonic speed. The goal of this opti-
mization case is to minimize drag at M = 0.90 while maintaining the lift coefficient of the original geometry.
For this case, a 431,000-node grid over an ONERA M6 wing, shown in Fig. 2, is used. The grid has an
H-H topology with 48 blocks. The ONERA M6 wing initially operates at α = 2.50◦. At this operating
condition, the lift and drag coefficients are CL = 0.307 and CD = 0.0281 respectively. The lift-constrained
drag minimization objective function (4) is used, with targets and weights in lift and drag:

C∗

L = 0.308 ωL = 100.0

C∗

D = 0.0075 ωD = 1.0

The high value of ωL is found to be necessary for the optimizer to maintain the lift coefficient. Our design
variables are the z-coordinates of 165 B-spline control points, which includes all control points except near
the leading edge, trailing edge and wing tip, angle of attack (α), the changes in leading-edge sweep angle
(∆ΛLE) at the wing root and at the 14th and 15th B-spline section near the wing tip, as well as the twist
angle (Ω), for a total of 170 design variables. The change in sweep angle is measured as the change from
the original ONERA M6 wing. As ΛLE changes, the wing is sheared along the chordwise direction, thus the
planform area remains constant throughout the optimization cycle. A volume constraint (16) with vf = 0.0
and a penalty weight of ωV = 50.0 was added to maintain the wing’s volume.
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Figure 3. Convergence history for the single-point optimization case

X
Y

Z

M
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

INITIAL
GEOMETRY
(ONERA M6)

OPTIMIZED
GEOMETRY

Figure 4. Comparison of Mach contours for single-point optimization case

The optimization convergence history is shown in Fig. 3. After 231 iterations, the objective function and
the gradient L2-norm are reduced by about three orders of magnitude. At this point, the lift and drag values
are:

CL = 0.307

CD = 0.00894

This represents a 68% reduction in drag. In the final geometry, the leading-edge sweep angle ΛLE is increased
from 30.0◦ to 43.7◦. The angle of attack increases to α = 2.62◦. A twist (washout) angle of Ω = −6.07◦

was added. Surface Mach number contours of the optimized wing are compared to the ONERA M6 wing
in Fig. 4, and pressure coefficients and wing sections of the optimized wing is plotted against the ONERA
M6 wing at six spanwise stations in Fig. 5. Both Figs. 4 and 5 show that the optimizer has successfully
eliminated the wave drag by removing the shock.

During the optimization cycle, a flow solve requires an average of 8.2 minutes to reduce the residual by
10 orders of magnitude, using 48 processors. The adjoint solver takes an average of 2.2 minutes to reduce the
residual by eight orders of magnitude. That the flow solution takes about four times longer to solve than the
adjoint solution is consistent with previous experience with our 2D adjoint solver. The entire optimization
cycle (231 iterations) took 44 hours to complete. Table 1 shows that most of the drag reduction occurs in
the first 20 iterations, which took about four hours.
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Figure 5. Comparison of pressure coefficients and wing sections at various spanwise stations for single-point
optimization case

B. Multi-Point Wing Optimization

A well-known issue with single-point optimization is that the optimized wing will typically perform well only
at the specified operating condition. In the single-point example presented in above, the optimizer was able
to significantly decrease the drag at the specified cruise condition at M = 0.90. Compared to the original
ONERA M6 wing, the performance improvement is significant over all transonic speeds, as shown in the
drag divergence plots in Fig. 6a. However, when the performance of the optimized wing is examined more
closely, in Fig. 6b, it is noted that drag increases rapidly at speeds both lower and higher than M = 0.90,
which could be undesirable. While at the specified cruise condition the wing is essentially shock free, shocks
develop rapidly away from the optimized condition, when the Mach number is above or below 0.90. In
multi-point optimization, we seek to reduce the drag of the wing over a wider range of Mach numbers, in this
case, between 0.70 < M < 0.90, at a fixed lift coefficient CL. We consider a three-point optimization case
using (5). The selected operating points are: M1 = 0.70, M2 = 0.88 and M3 = 0.90. We have arbitrarily
weighted each operating point equally (ωi = 1.0), but the weighting may change at the discretion of the
designer. The lift-constrained drag minimization objective function is used for each operating point, and the
targets (C∗

L, C∗

D) and weights (ωL, ωD) are re-used from the single-point optimization case. The multi-point
optimzation begins with the final geometry from the single-point case.

The convergence history for the three-point optimization case is shown in Figure 7 after 78 iterations,
which took 52 hours using 48 processors. The number of iterations required for this multi-point case is
fewer than the single-point case because the initial geometry is aerodynamically more efficient than the
ONERA M6 wing. Note that each iteration involves solving one flow solution and one adjoint solution
for each operating point. The composite objective function and gradient L2-norm have both decreased by
about three orders of magnitude. In the final geometry, the leading-edge sweep angle is slightly increased
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Iteration CD Drag Reduction

1 0.02804 —

20 0.01121 60%

50 0.01002 64%

100 0.00928 67%

Table 1. Drag reduction vs. iteration count for single-point optimization
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Figure 6. Drag divergence plot for the optimized wing at CL = 0.307
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Figure 7. Convergence history for the three-point optimization case

to ΛLE = 44.3◦, compared to 43.7◦ in the single-point case. The final twist angle is also slightly reduced to
Ω = −5.32◦. The operating angles of attack are α = 1.37◦, 1.38◦ and 2.01◦ for the operating Mach numbers
of M = 0.70, 0.88 and 0.90 respectively. The wing cross sections at six spanwise locations are compared
to the single-point results in Figure 8. The final shape is very similar to the single-point results. The final
geometry is shock-free at both M = 0.70 and M = 0.88, but a weak shock is present at M = 0.90.

Drag coefficients of the optimized wing over a range of Mach numbers at fixed CL = 0.307 are shown in
Fig 6c. As expected, drag coefficients at M = 0.70 and = 0.88 have been decreased, while that at M = 0.90
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Figure 8. Comparison of wing section shapes

has increased. The figure clearly shows that the mean drag over the range of Mach numbers 0.70 to 0.90 has
substantially decreased.

C. Effect of the Initial Geometry

The final design example studies whether multiple local optima exist. Hicken and Zingg42 have shown in the
design of wingtip devices that multiple local optima can exist. The focus of this design example is on the
sweep angle of the wing at transonic speeds.

The goal of this optimization is to find the shape which minimizes drag at an operating Mach number of
M = 0.76 and a lift coefficient of CL = 0.40. We use the following targets and weight on lift and drag in (4):

C∗

L = 0.402 ωL = 50.0

C∗

D = 0.00610 ωD = 1.0

We perform two optimization cases using two initial geometries. The first is a tapered wing with the following
planform parameters:

Root chord croot = 0.667 Planform area S = 0.967

Semi-span b/2 = 2.00 LE sweep angle ΛLE = 5.2◦

Taper ratio γ = 0.55 TE sweep angle ΛTE = −5.2◦

Aspect ratio AR = 8.27

The original wing has an cross section shape that is constant from wing root to wing tip. The second
geometry has the same wing cross section as the first case, but the wing has an initial forward sweep angle
of ΛLE = −6.3◦ at the leading edge.

The volume grids around the two wings are 12-block H-H topology grids with 320,292 nodes. On the top
and bottom surfaces, there are 31 and 41 nodes on the chordwise and spanwise directions respectively. The
two initial geometries and their respective grids are shown in Fig. 9. Both the top and bottom surfaces of
each wing are parameterized with a cubic B-spline surface with 12 control points in the spanwise direction
and 11 in the chordwise direction. Every B-spline control point is a design variable, except at the leading
and trailing edges, where the control points are fixed. There are 230 B-spline control point design variables
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Figure 9. 12-block grid around tapered wings used for the design examples

Initial Geometry Final CL Final CD Final Λ Final Ω

Tapered wing 0.400 0.00671 28.6◦ −3.60◦

With forward sweep 0.399 0.00902 −29.4◦ −0.60◦

Table 2. Final geometries and aerodynamic performances

in total. In addition, the change in the wing’s leading-edge sweep angle, twist and angle of attack are also
design variables.

A volume constraint is used to maintain the volume enclosed by the wings, with the parameter vf = 0.0
and penalty weight ωV = 50.0 used. Thickness constraints are also imposed near the leading edge and
trailing edge to prevent grid cross-over:

(t/c)∗ = 0.04 at (x/c) = 0.02

(t/c)∗ = 0.002 at (x/c) = 0.97

A penalty weight of ωT = 50.0 is used.
For both optimization cases, the objective function and gradient L2-norm have decreased by more than

three orders of magnitude. In the final geometries, both volume and thickness constraints are active. We
believe that both cases have converged to a local optimum. However, their final geometries and their
performance are very different, as shown in Table 2. For the tapered wing, a swept-back configuration is
obtained by the optimizer with Λ = 28.6◦, while for the forward-swept wing, the optimizer swept the wing
further forward to Λ = −29.4◦. The final wings from both cases are compared to their respective initial
geometries in Fig. 10. They are shown with Mach contours on the wing surface. In both cases, the shock on
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Figure 10. Initial and final geometries for the last case

the top surfaces has been eliminated in the optimized geometries. This can be seen clearly in the pressure
coefficient plots in Fig. 11.

VIII. Conclusion

An efficient parallel Newton-Krylov algorithm is presented for single- and multi-point optimization of
wings in three-dimensions. We have demonstrated that the algorithm is able to efficiently optimize both the
planform and cross section of a wing with 170 design variables. In our multi-point optimization results, we
have shown that we can improve the mean drag over a range of operating Mach numbers. Future work will
involve extension to viscous and turbulent flows, as well as optimization of wing-body configurations.
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