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A fast Newton–Krylov algorithm is presented that solves the turbulent Navier–Stokes equations on unstructured
2-D grids. Themodel of Spalart andAllmaras provides the turbulent viscosity and is loosely coupled to themean-flow
equations. It is often assumed that the turbulence model must be fully coupled to obtain the full benefit of an inexact
Newton algorithm. We demonstrate that a loosely coupled algorithm is effective and has some advantages, such as
reduced storage requirements and smoother transient oscillations. A transonic single-element case converges to
1 ! 10"12 in 90 s on recent commodity hardware, whereas the lift coefficient is converged to three figures in one
quarter of that time.

Nomenclature
c = reference chord length
e = total internal energy
!F = the inviscid flux tensor
!G = the stress and heat flux tensor
î = unit normal aligned with reference chord
ĵ = unit normal perpendicular to reference chord
M1 = freestream Mach number
n̂ = generic unit normal vector
Pr = Prandtl number
Prt = turbulent Prandtl number
p = pressure
Q = a solution vector
q = heat flux vector
R!Q" = residual vector
Re = Reynolds number based on reference chord length
T = temperature
T1 = freestream temperature
u = chord-aligned Cartesian velocity component
v = Cartesian velocity normal to chord
v = a generic vector
x = coordinate axis, aligned with reference chord
y = coordinate axis, normal to reference chord
! = ratio of specific heats
" = the difference operator
@# = the boundary of a control volume
" = a perturbation
"mz = machine zero
# = dynamic viscosity
#t = dynamic turbulent viscosity
#1 = freestream dynamic viscosity
$$ = intermediate turbulent viscosity variable
$t = kinematic turbulent viscosity
% = density
&ij = component of stress tensor
# = a computational domain

r = the gradient operator

Subscripts

i = general case node index subscript
ij = dual subscript denotes relation to reference chord
x, y = subscript denotes partial differentiation

Superscripts

k = outer iteration superscript
l = inner iteration superscript

I. Introduction

T HE aerodynamics community is interested in rapid
convergence to steady-state solutions of the turbulent Navier–

Stokes equations. There are several classes of solvers intended for
this purpose, one of which is labeled as Newton–Krylov. Recent
Newton–Krylov algorithms for flow solutions have fully coupled
their turbulence model to the mean flow equations. This paper is
meant to explore a loosely coupled algorithm. The authors plan to
demonstrate that their loosely coupled algorithm has performance
similar to fully coupled variants with an attendant reduction in
storage costs.

Van Dam et al. [1] and Venkatakrishnan [2] seem to have been the
first researchers to have implemented Newton algorithms for
compressible flows. These made use of variants of Gaussian
elimination for the solution of the system of equations. The advent of
an algorithm entitled “GMRES: A Generalized Minimum Residual
Algorithm for Solving Nonsymmetric Linear Systems,” which was
proposed in an article by Saad and Shultz [3], allowed the
employment of an iterative process instead of the direct solvers used
by the aforementioned researchers. Direct solvers suffer from storage
and latency costs as compared with iterative solvers when the
number of unknowns is large. The quadratic convergence of the
Newton–Raphson method is the primary attractor of this type of
algorithm, but Venkatakrishnan [2] demonstrated in his seminal
work that entry into the region of convergence might be delayed: a
transonic Euler case required roughly 40 iterations before rapid
convergence. Similar results were shown by Orkwis and McRae [4]
andVanden andOrkwis [5] for hypersonic laminar cases, by Forsyth
and Jiang [6] for sub- and supersonic laminar cases, and byBarth and
Linton [7] for a high-lift configuration.

The turbulence model employed in the present study is due to
Spalart and Allmaras [8,9]. Barth and Linton [7] employed this
model in a fully coupled form.Anderson et al. [10] did not investigate
their loosely coupled model applied to a Newton-like method for
incompressible turbulent flows, as they wrote that quadratic con-
vergence rates are unattainable with such a model. Geuzaine [11]
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implemented the samemodel in a fully coupled form, aswell as a k–!
model, again in fully coupled form. Chisholm and Zingg [12]
presented a fully coupled model; their study was performed on
structured grids. Smith et al. [13] also employed a fully coupled
turbulence model.

The purpose of thiswork is to demonstrate theflexibility of loosely
coupled algorithms, the reduction in storage costs as compared to
fully coupled schemes, and that the loosely coupled approach can be
as fast or faster to converge than fully coupled algorithms. The
remainder of this work is structured as follows: we describe the
algorithm in Sec. II, which is then compared with experimental data
in Sec. III. We choose and study a metric of comparison in Sec. IV,
and discuss the optimization of the algorithm in Sec. V. Section VI
demonstrates the capabilities of the algorithm. Section VII is
concerned with comparisons to fully coupled algorithms. A
summary completes the work in Sec. VIII. A table of test cases and
relevant data along with labels employed throughout this study
completes the paper.

II. Algorithm Description
A. Newton–Krylov Method

Our mathematical model is formed by a boundary value problem
(BVP). We employ a grid composed of triangles to discretize the
governing equations, thus to form a residual vector, denoted R!Q",
whereQ is the solution vector. We have employed bold italic type to
denote vector quantities throughout this work. Each grid node,
subscript i in the general case, is associated with a solution vector.
The method applied for the solution of the system of equations is due
to Newton and Raphson. We employ a Fréchet finite difference to
solve the problem in matrix-free form.

We write the solution process as
!
@R

@Q

"
k

#"Q$%R!Qk" (1)

and solve this equation for "Qk. The index superscript k labels the
“outer” iteration. The solution to Eq. (1) is accomplished by another
iterative process, due to Saad and Schultz [3], named GMRES. The
GMRES process allows us to solve Eq. (1) by means of successive
approximation given by a first-order Fréchet difference,

!
@R

@Q

"
# vl $R!Q& "lvl" % R!Q"

"l
(2)

The differentiation process involves a scalar parameter ", which we
choose as

"l $
#######
"mz

p

kvlk2
(3)

where "mz depends on the precision with which the particular
machine represents floating point numbers.

Once the GMRES, or “inner,” iterations labeled l terminate (see
our previous article [14] for implementation details), we update the
solution vector Qk&1 $Qk &"Qk. Equations (1–3) constitute the
algorithm to which many in this community refer as matrix- or
Jacobian-free. The present authors [14] found that a permutation due
to Cuthill and McKee [15] with modifications by Liu and Sherman
[16] and Gibbs et al. [17] (see [17] Sec. 4.1, Algorithm I)
implemented by Balay et al. [18] performs well when combined with
the particular preconditioner. This preconditioner is known as
BILU!n", and is formed by a process with roots inMeijerink and van
der Vorst [19]. Our previous studies showed that the block-factored
BILU!n" outperforms the scalar-factored ILU!n" by a significant
margin, and block-scalar ILU!n", which we denotedB=SILU!n", by
a less significant though still notable margin.

We solve the Navier–Stokes equations in conservative variable
form,Qi $ '!%"i; !%u"i; !%v"i; !e"i; !%$"i(T . The fundamental differ-
ence between the present loosely coupled scheme and fully coupled
schemes is the separation of variables. Fully coupled schemes for
planar flow have their vectors formed such that the Jacobian block

dimension is five. We write our solution as two distinct processes,
both of which employ the same Newton–Krylov algorithm, to solve
the mean flow, 1Qi $ '!%"i; !%u"i; !%v"i; !e"i(T , independently from
the turbulent flow, 2Qi $ '!%$"i(T . The Jacobian matrix blocks then
are of dimension four and one, respectively. The loose coupling of
the present scheme means that the inner iterations of the mean-flow
equations are completed, then the inner iterations of the turbulence
model are completed, before the outer iteration index is advanced by
one.

B. Navier–Stokes Equations

The integral form of the steady-state equations of motion of a
compressible viscous fluid, with suitable nondimensionalization,
may be written in tensor notation for an arbitrary control volume
labeled @# as

R !Q" )
I

@#
! !F # n̂ dS % !G # n̂ dS" $ 0 (4)

where

!F$
%u

%u2 & p
%uv

!e& p"u

2

664

3

775î&
%v
%vu

%v2 & p
!e& p"v

2

664

3

775ĵ (5)

We assume Stokes’ hypothesis holds for air, which behaves in our
régime like a Newtonian fluid:

!G$
0
&xx
&xy

u&xx & v&xy % qx

2

664

3

775î&
0
&yx
&yy

u&yx & v&yy % qy

2

664

3

775ĵ (6)

where stress terms have been denoted by !!. Two groups of symbols
in Eq. (6) remain to be defined in the next two paragraphs: q and !!,
with the aid of the Boussinesq and Reynolds analogies. The former
analogy is employed to write terms similar to those that involve the
dynamic viscosity to construct a dynamic turbulent viscosity, which
is addressed in the next subsection. The latter analogy serves to apply
the turbulent viscosity to the problem of heat transfer.

The viscous stress tensor !! can be related to viscosity and the strain
rate tensor as

!!$ !#& #t"
2ux uy & vx

vx & uy 2vy

" #

% 2

3
!#& #t"

ux & vy 0

0 ux & vy

" #
(7)

in which dynamic viscosity depends on temperature. We follow
Schlichting ([20], Fig. 15.1, p. 340) and Mavriplis [21] to write a
power law relation to model this feature

#

#1
$

!
T

T1

"
0:71

(8)

The heat flux vector q is given by Fourier’s law, augmented by
appeal to the Reynolds analogy,

q $% 1

! % 1

$
#

Pr
& #t

Prt

%
rT (9)

The term that involves dynamic viscosity is divided by the Prandtl
number, represented by the symbol Pr ) 0:72. The terms
subscripted with t will be treated in the next section. A thermally
and calorically perfect gas is assumed, giving

p$ !! % 1"
$
e % %

2
!u2 & v2"

%
(10)
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with ! $ 1:4. We follow Mavriplis [21] insofar as the integration of
convective and viscous fluxes is concerned: the convective fluxes are
treated as piecewise linear functions in space, whereas the viscous
fluxes are piecewise constant over each triangle, because they are
formed from first derivatives of flow variables.

A Riemann-type scheme as detailed by Thomas and Salas [22] is
employed at the far-field boundary. We require that the velocity be
zero at a solid wall, that the heat flux be adiabatic, and that the normal
gradient of pressure be zero [23].

C. Turbulence Model

The Navier–Stokes equations are augmented with a turbulence
model due to Spalart andAllmaras [8,9]. Thismodel has been chosen
here for the following reasons: its accuracy, its applicability to
unstructured grids, and its economy relative to models with two or
more equations. The turbulencemodel simulates an eddy viscosity $t
through convective, diffusive, and productive terms. We write the
equation

#t ) % $$
! $$=$"3

! $$=$"3 & c3v1
(11)

which then allows the variable #t to be incorporated into the mean
flow as an additional dynamic viscosity and, with division by Prt )
0:90 [9] (see Schlichting [20], Sec. 19.g), as an additional heat flux
term. A BVP is solved for the working variable $$. We have
implemented the model within the framework of the finite-volume
scheme applied to our triangular grids. The turbulent production,
destruction, and trip terms, although included in the residual
operator, are not linearized in our preconditioner. We have yet to
experiment with the updated trip control constants ct3 and ct4
documented in the article [9], and prefer instead to employ those
values listed in [8]. Values of $$ in the freestream on the far-field
boundary are set to $1 $ 0:01, and are zero at solid surfaces.

The turbulence model is iterated separately from the mean flow.
This allows the evolution of each model to proceed along distinct
paths, which is of benefit because 1) each system makes appeal to
different physical arguments, 2) each system has its own numerical
properties, and 3) investment is reduced in case a change in model is
desired.

D. Grid Sequencing

Most researchers who have reported Newton-like algorithms for
flow solution employ grid sequencing (first demonstrated by
Venkatakrishnan [2]). This strategy serves to dampen initial
transients, which are especially notable in transonic Euler flows, as
well as to accelerate the convergence. Grid sequencing has been
added to the present algorithm in an effort to speed convergence. The
grids employed here were not created by nesting or agglomeration
from the finest grid, nor was the fine grid created by adaptation, all of
which have been employed with success elsewhere. The grids that
were employed were created independently in a preprocessing step.
We employ a sequence of grids in which the coarsest grid contains
approximately 1 * 103 points, and a loose geometric progression
with ratio somewhere between three and four serves to indicate the
number of points contained in the subsequent grid.

E. Initial Iterations
We noted in our previous work [14] that during the initial

iterations of complex transonic flows, the second-order Jacobian
method might diverge, and an approximate Jacobian matrix was
preferred. Initial iterations seem to be a problemwith most, if not all,

fully coupled Newton–Krylov algorithms reported to date. The
startup strategies reported in the literature, usually some sort of
pseudotime integration, can be quite complex and require many
parameters to calm oscillations and allow convergence. The
algorithm described in this paper needs no such device when grid
sequencing is employed.

III. Comparison to Experiment
Aerodynamic prediction algorithms require testing against

experimental data to ensure accuracy, and to identify areas of
possible improvement. Two collections of data [24,25] have been
gathered and made available to scientists by a North Atlantic Treaty
Organization subcommittee called the Advisory Group for
Aerodynamic Research and Design (AGARD). This body was
charged with the distillation of a wide variety of experimental data to
those with flow features of interest to present-day aerodynamicists.
We have chosen to present two series of experimental data, one due
to Cook et al. [26], the other due toMoir [27], which we precedewith
a discussion of the computational grids used.

A. Test Cases and Grids

The airfoils are represented by coordinate pairs, whichwe place on
natural cubic splines. The external far-field boundary is represented
by a ring of points that approximate a circle, although the shape of
this boundary is unimportant and effectively arbitrary.

A grid triangulator due to Walsh and Zingg [28] is employed for
viscous flows. They encode an advancing front method andMinmax
triangulation surveyed by Barth [29]. The advancing front method
allows the specification of node positions by any criterion, which is
important due to the great variance in streamwise and normal
gradients typical of viscous flows. Walsh and Zingg followed Barth
[30] when they employed a stretched Steiner criterion to generate the
placement of nodes in the near-foil region, outside of which they
employed an algorithm due toWeatherill [31] to fill the remainder of
the computational domain.

B. Comparison to Experiment

We repeat with our algorithm two experimental tests, summary
data of which can be found in Table 1. We compare our algorithmic
data with the corresponding experimental data to determine whether
our predictor is accurate. The experimental data of Cook et al. [26]
document tests performed on a rear-loaded subcritical airfoil with a
thickness to chord ratio of 12.1%given the nameRAE2822.A three-
element airfoil data set was published as chapter A/2 in AGARD
Advisory Report No. 303 [27]. This airfoil was studied under the U.
K. National High-Lift Programme (NLHP) around 1970.

The coefficient of pressure on the surface of airfoil RAE 2822 is
shown in Fig. 1a. Case 6 of Cook et al. [26] had nominal Mach
number 0.725, angle of attack 2.92 deg. We calculate the flow with
Mach number 0.729, angle of attack 2.31 deg, as most other
calculational literature. The algorithm produces good agreement
with the experimental data. The coefficient of pressure on the surface
of the three-element configuration is reproduced as Fig. 1b. The grid
was composed of 51,779 nodes, and produces good agreement with
experimental data over all three elements. In both cases, the
agreement with experiment is comparable to that obtained by other
authors on similar grids.

IV. Characterization of Metric of Comparison
Comparison between algorithms would be accomplished more

easily if all computations were performed on the same machine and

Table 1 Parameters for comparison to experiment of Fig. 1

Label Case M1 ', deg Re Offwall No. of nodes No. on foil/farfield

WZ3C [26] Airfoil RAE 0.729 2.31 6:50 # 106 2 # 10%6 16,948 300/72
L1T2 [27] NLHP 3elem 0.197 4.01 3:52 # 106 2:5 # 10%6 51,779 1376/82
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the same grid. The elapsed time for completion would then be the
metric of choice; however, various factors render the conditions
under which this type of comparison could occur extremely unlikely.
A metric based on equivalent residual function evaluations (also
known as right-hand-side evaluations), denoted as “Eq. R!Q"” in
tabular form, should transcend machinery and makes algorithm
comparison somewhat possible. Pueyo and Zingg [32] remark of one
of its weaknesses: “. . .it tends to favor expensive flux evaluation
methods [because] overhead appears smaller. . .” but it was the only
cross-platform measure they found acceptable for their evaluations.
We choose to employ the samemetric to evaluate the performance of
our algorithm. We reduce the L2 norm of the residual to 10%12 and
note that lift and drag coefficients are converged to three significant
digits in roughly one-quarter of the time to reduce the residual to
10%12.

The present algorithm was ported onto different 32-bit machines,
and reduced to machine language with similar GNU “C” and Fortran
compilers, for all of which we employed similar compiler flags.
Table 2 documents the type and clock frequency of themachinery on
which the algorithm was tested.

The number of equivalent function evaluations is processor
dependent. The test data are characterized to follow a Gaussian
distribution across machines, with the use of parameters for the
mean and standard deviation (. The standard deviation is typically
on the order of 20% of the mean, as summarized in Table 3. We
have assumed implicitly in our use of the Gaussian distribution that
the data are random. Although this is not the case, the parameter (
provides useful information about the scatter or variation of the
data. The two Intel machines tested report a consistently lower
R!Q" score than the two AMD machines tested. All subsequent
data are reported for an AMD Athlon XP, which clocked
2167 MHz.

V. Optimization of Loosely Coupled Algorithm
A. Turbulence Model ILU#n$

Geuzaine [11] reports the continuity residual separately from the
turbulencemodel residual, as do Chisholm and Zingg [33]; however,
it should be noted that the full coupling of their algorithms fixes the
relation between residual quantities. The present algorithm adds a
degree of freedom by its nature. We define for every outer iteration
two iterative processes: themean-flow process and the turbulent flow
process. The mean flow is solved first and thereafter alternates with
the turbulence model iteration as reported in Sec. III.A.

For each mean-flow outer iteration, the mean-flow residual is
reduced by a prescribed tolerance, usually 0.1. We then perform a
number of turbulence model outer iterations such that the turbulent
residual is less than the mean-flow residual. The fully coupled
algorithms with which we contrast here have no such freedom. The
residuals are defined and tracked separately for the two processes.
The turbulence model residual, k2Rkk, is checked after every
turbulence model outer iteration to see whether it is lower than the
mean-flow residual, k1Rkk. The turbulence model outer iteration is
forced to repeat if this criterion is not met, to a maximum of five
repeated outer iterations. We limit the number of turbulence model
outer iterations to five, although cases in which the limit is reached
are rare. This is illustrated for case PZ8 in Fig. 2.

The loosely coupled algorithm permits us to choose different fill
levels for the mean flow 'BILU!n"( and turbulence model 'ILU!n"(
iterations. Single-element cases typically are solved for optimum
wallclock performance with BILU(4), whereas multi-element cases
may require one or two more levels of fill.

Table 4 and Fig. 3 present data for an optimization study of the fill
level for the turbulence model. The mean-flow matrix problem,
whose storage requirements in Megabytes are indicated by “MF,”
remains with BILU(4) as its preconditioner. The ILU preconditioner
for the turbulence model was varied between ILU(0) and ILU(9). Its
storage requirement is indicated by “TM.” The mean-flow solver
required upwards of 500 inner iterations to converge to a residual of
1 * 10%12. Net inner iterations for the turbulence model are shown in
the table as %in. Wallclock time is minimized for n$ 5 or n$ 7.
However, for this problem we are more interested in a tradeoff

x/c

-Cp
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Fig. 1 Calculated surface coefficients of pressure Cp compared with overlays of those measured by a) Cook et al. [26] and b) Moir [27].

Table 2 Machinery used for test of present algorithm

Processor Clock

Macintosh 750 267 MHz
Pentium III 450 MHz
Pentium III 600 MHz
Athlon XP 1800 MHz
Athlon XP 2167 MHz

Table 3 Equivalent residual evaluations for a range of cases evaluated
on five processors (see Table 2)

Label Eq. R!Q" (

PZ1 360 50
PZ2 660 100
PZ3 550 140
PZ4 625 25
PZ5 780 70
PZ6 860 120
PZ7 2,020 430
PZ8 850 170

Time (s)

lo
g(

||R
(Q

)||
)

0 10 20 30 40 50 60 70 80 90 100
-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Mean
Turbulent

Fig. 2 Convergence history for Case PZ8. Mean flow and turbulence
model residuals of optimal solution.
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between storage requirements and performance, and thus we choose
as turbulence model preconditioners a range between ILU(2) and
ILU(4).

B. Grid Sequencing
We find our algorithm to converge most quickly if the sequencing

switch is set to 1 * 10%2, as shown in Table 5. Geuzaine [11]
converges to near machine zero on his coarser grids, whereas Pueyo
and Zingg [34] converge to 1 * 10%2 on theirs. Chisholm and Zingg
[12] have a switch set nearer to 1 * 10%5.

The benefit is quite small for single-element cases (Table 6). In
fact, for case CZ2 the cost of computing the solution on the coarsest
grid exceeds its benefit. The benefit is much greater for the multi-
element airfoil (Table 7), perhaps due to themore complex flowfield.

VI. Calculation of a Multi-Element Airfoil Flow
A takeoff geometry from the U.K. National High-Lift Programme

is depicted in Fig. 1b. The wind tunnel measurement data were
published in 1994 by theAGARD as chapter A/2 ofAdvisory Report
No. 303 [27]. The slat, denoted “L1” by the experimenters [35], and
flap, denoted “T2,” are examined for the case in which the airfoil was
set at an angle of attack of 4.01 deg to the oncoming flow. Fejtek
reported a group of results [36,37] for this case. The freestreamMach
number wasM1 $ 0:197, whereas the Reynolds number calculated
toRe$ 2:51 * 106 based on the nested configuration chord length c.
The leading-edge slat, positioned at an angle of 25 deg, measured
12:5%c, whereas the flap measured 33%c and was positioned with a
deflection angle of 20 deg.

The results inTable 7 are summarized froma study of convergence
data. The baseline GMRES vector subspace was GMRES(50,0) and
the preconditioner was set to BILU(4). We were able to increase the
rate of convergence by almost a factor of 2, whereas storage
requirements only increased by 25%when we increased the fill level

to BILU(6) and employed a sequence of three grids for this complex
flow. The surface coefficient of pressure is depicted in Fig. 1b. We
can solve this flow with a Pentium class computer in under ten
minutes.

VII. Comparison with Fully Coupled Schemes
A. Memory Advantages

The distinction between loosely and fully coupled turbulence
models is shown in Table 8 for a hexagonal node layout, which
serves as amodel for our 2-D grid creation algorithm. An icosahedral
extrapolation for 3-D grids is tabulated as well. The loosely coupled
approach leads to a reduction in storage requirements of the order of
30% in both two and three dimensions.

B. Equivalent R#Q$ Comparison

We compare in Table 9 our scheme to various others that have
appeared in the literature. Data are included forGeuzaine [11],Wong
andZingg [43] andChisholm andZingg [12]. In each comparisonwe
replicated as well as we could the number of nodes, offwall spacing,
and other relevant and published mesh parameters. The summary
data is appended as Table 10.

The ability to make comparisons independent of processors is a
strength of the metric we have employed throughout this paper. The
number of grids employed by the other authors is listed in the fifth
columnof Table 9, and in each casewe employed the samenumber or
less. The CPU time for L2-norm convergence to 1 * 10%12 is
included in the text. A short paragraph on each of the six lines in the
table follows:

Case G1: Geuzaine [11] reports a result from Thibert et al. [44],
labeled here as case G1, for his fully coupled implementation of the
turbulence model due to Spalart and Allmaras. We note that his
algorithmmakes use of nested hybrid Cartesian grids, generated by a
full-coarsening procedure. His finest grid of three has an offwall
spacing of 30 microchords [46], contains 14,110 cells, and requires

Table 4 Results of turbulence model ILU#n$ parameter study for
13,514-node grid about airfoil RAE 2822; storage requirements for the
mean flow (MF) and the turbulence model (TM) are measured in Mb;

convergence was defined at L2#R$ % 1 ! 10"12

ILU!n" MF TM %in Time, s

0 37.9 1.3 551 85
1 37.9 1.6 350 81
2 37.9 2.2 249 78
3 37.9 2.8 209 76
4 37.9 3.4 196 76
5 37.9 4.0 183 73
6 37.9 4.7 174 76
7 37.9 5.3 162 73
8 37.9 5.9 167 76
9 37.9 6.5 160 76

Time (s)

lo
g(

||R
(Q

)||
)

0 10 20 30 40 50 60 70 80 90 100
-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
ILU(0)
ILU(2)
ILU(4)
ILU(6)
ILU(8)

Fig. 3 Convergence histories for Case PZ8. Effect of turbulence model
ILU fill on overall solution time. The turbulence model residual has been
omitted for clarity.

Table 5 Residual at which to sequence for case PZ8

Sequence at Time, s

1 * 10%1 76
1 * 10%2 63
1 * 10%3 68
1 * 10%4 69
1 * 10%5 70
1 * 10%6 71
1 * 10%7 72
1 * 10%8 72
1 * 10%9 73
1 * 10%10 74

Table 6 Grid sequencing study: number of grids, time to convergence,
and equivalent residual evaluations for cases PZ5 and CZ2 to reduce the

residual to 1 ! 10"12

Case No. grids Time, s R!Q"
PZ5 1 121.8 1220
PZ5 2 112.1 1130
PZ5 3 110.2 1100
CZ2 1 91.6 1150
CZ2 2 83.8 1050
CZ2 3 89.9 1130

Table 7 Case L1T2: Equivalent residual evaluations and other
statistics for 10 order of magnitude residual reduction

Case No. grids Time, s R!Q" GMRES BILU!n" Storage,
Mb

L1T2 1 1340 4970 (50,0) 4 328
L1T2 3 530 2048 (50,0) 6 388
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2.5 times as many function evaluations as our loosely coupled
algorithm. For this case, the present algorithm converged to 10%12 in
25 s.

Case CZ1: Chisholm and Zingg [12] report the same airfoil but
different flow conditions. Their final grid has an offwall spacing of
onemicrochord and contains 17,385 nodes. Their algorithm employs
structured grids. In this case, their fully coupled and our loosely
coupled algorithm perform similarly. Our loosely coupled algorithm
converged in 82 s.

CaseWZ3C:Wong andZingg [43] report an algorithmdesigned to
solve on grids composed of arbitrarily shaped control volumes. We
show their results for a grid composed of triangular elements. Their
grid has an offwall spacing of one microchord and contains
15,900 nodes. Their fully coupled algorithm requires roughly 2.3
times as many function evaluations as ours. The time to convergence
of our algorithm measured 117 s.

Case CZ2: Chisholm and Zingg [12] solve the same flow with a
sequence of three grids. Their final grid has 14,619 nodes and an
offwall spacing of two microchords. Their algorithm outperforms
ours by a factor of approximately 1.3, which is slightly outside the
standard deviation of Sec. V. The time to convergence of our loosely
coupled algorithm is 91 s.

Case G3: Geuzaine [11] employs a 19,482-cell grid for this case,
which is a calculation of an experiment performed by van den Berg
[45]. The grid employed by Geuzaine has an offwall spacing of

20microchords [46].He converges his turbulencemodel three orders
of magnitude higher than we do. His density residual converges to
1 * 10%10 for this case. We converge the mean-flow residual to
1 * 10%10, and our turbulence model lower than that. His algorithm
requires over eight times as many function evaluations as ours. Our
algorithm converges in 86 s.

Case CZ3: Chisholm and Zingg [12] employ 44,059 nodes for the
same case. Their grid has an offwall spacing of one microchord.
Their algorithm requires the same number (within the standard
deviation) of function evaluations as ours. Our time to convergence
measured 309 s.

VIII. Conclusions
A metric employed to compare algorithms across machinery has

been characterized. Five processors were tested using the present
algorithm and the equivalent function evaluation metric was
summarized as amean and a variation. The variationwas on the order
of 20%. Put another way, the speed at which the present algorithm
runs was determined within a margin of 20%. This measure does not
account for differences in implementation, language, or program-
ming skill, but it does allow a universal basis of comparison between
algorithms independent of processor.

An original Newton–Krylov solver with a loosely coupled
turbulence model for aerodynamic flows has been presented. The

Table 8 Generalized storage requirements: a comparison between full and loose coupling in two and three dimensions

Dimensions Model Coupling Average neighbors per node Storage per block Total per block equation Economy

2 Hexagon Full 6 5 + 5 175 32%
Loose 6 4 + 4& 1 119

3 Icosahedron Full 20 6 + 6 756 28%
Loose 20 5 + 5& 1 546

Table 9 Equivalent residual evaluations R#Q$ for four Newton–Krylov solvers are listed in the final four columns of the table; number of grid nodes,
offwall spacing, and convergence criteria are consistent for each case; references and further grid information may be found in Table 10

Label Foil M1 ' Grids Equivalent R!Q"
Present Chisholm and Zingg [12] Geuzaine [11] Wong and Zingg [43]

G1 NAC 0.502 1.77 3 630 —— 1,500 ——
CZ1 NAC 0.300 6.00 3 900 900 —— ——
WZ3C RAE 0.729 2.31 1 1,300 —— —— 3,000
CZ2 RAE 0.729 2.31 3 1,120 900 —— ——
G3 NLR 0.185 6.00 1 1,220 —— 10,000 ——
CZ3 NLR 0.185 6.00 3 1,450 1,500 —— ——

Table 10 Selected data for external flows. NAC refers to the NACA 0012 airfoil, whereas RAE refers to the RAE 2822 airfoil. NLR refers to the NLR
7301modifiedwithflap.Turbulentflow is tripped on the upper surface at tr.up andon the lower at tr.lo. Two cases (see labelG1andG3) refer to number of

cells, instead of nodes; this is indicated by asterisks.

Label Airfoil M1 ' Re tr.up tr.lo Offwall Nodes jm * km Nodes foil/farf

Pueyo and Zingg [32] Present

PZ1 [38] NAC 0.63 2.00 —— —— —— 2 * 10%3 9,711 249 * 39 9,657 200/108
PZ2 [39] NAC 0.80 1.25 —— —— —— 2 * 10%3 9,711 249 * 39 9,657 200/108
PZ3 [40] NAC 0.80 5.00 5:00 * 102 —— —— 5 * 10%4 12,201 249 * 49 12,303 200/72
PZ4 NAC 0.30 0.00 2:88 * 106 0:43c 0:43c 1 * 10%5 16,881 331 * 51 22,371 480/72
PZ5 NAC 0.30 6.00 2:88 * 106 0:05c 0:80c 1 * 10%5 16,881 331 * 51 22,371 480/72
PZ6 [41,42] NAC 0.70 1.49 9:00 * 106 0:05c 0:05c 1 * 10%5 16,881 331 * 51 22,371 480/72
PZ7 NAC 0.16 12.00 2:88 * 106 0:01c 0:95c 1 * 10%5 16,881 331 * 51 22,371 480/72
PZ8 [26,42] RAE 0.729 2.31 6:50 * 106 0:03c 0:03c 1 * 10%5 15,279 321 * 49 13,514 300/72

Wong and Zingg [43] Present
WZ3C [26,42] RAE 0.729 2 6:5 * 106 —— —— 2 * 10%6 15,900 —— 16,948 300/72

Geuzaine [11] Present
G1 [44] NAC 0.502 1.77 2:91 * 106 —— —— 3 * 10%5 *14,110 —— *16,970 260/44
G3 [45] NLR 0.185 6.00 2:51 * 106 —— —— 2 * 10%5 *25,661 —— *25,528 380/44

Chisholm and Zingg [12] Present
CZ1 NAC 0.3 6.00 9:00 * 106 0:05c 0:80c 1 * 10%6 17,385 305 * 57 17,578 250/92
CZ2 [26,42] RAE 0.729 2.31 6:50 * 106 0:03c 0:03c 2 * 10%6 14,619 257 * 57 14,685 250/87
CZ3 NLR 0.185 6.00 2:51 * 106 —— —— 1 * 10%6 44,059 —— 41,295 250/200
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algorithm has been shown to compare well with algorithms that
employ fully coupled turbulence models. The benefits of this loosely
coupled algorithm have been demonstrated via parameter studies of a
number of features which distinguish it from fully coupled variants.
The conclusions are enumerated here:

1) The present loosely coupled algorithm requires substantially
fewer equivalent function evaluations than the fully coupled
unstructured or hybrid grid algorithms with which it has been
compared (Sec. VII.B).

2) The present unstructured loosely coupled algorithm requires a
similar number of equivalent function evaluations to a structured
fully coupled algorithm (Sec. VII.B).

3) The present loosely coupled algorithm requires 30% less
memory than a fully coupled algorithm (Sec. VII.A).

4) The loosely coupled approach reduces investment in case a new
turbulence model is needed.
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