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Abstract Non-conforming numerical approximations o�er increased flexibility for applications that require
high resolution in a localized area of the computational domain or near complex geometries. Two key properties
for non-conforming methods to be applicable to real world applications are conservation and energy stability.
The summation-by-parts (SBP) property, which certain finite-di�erence and discontinuous Galerkin methods
have, finds success for the numerical approximation of hyperbolic conservation laws, because the proofs of
energy stability and conservation can discretely mimic the continuous analysis of partial di�erential equations.
In addition, SBP methods can be developed with high-order accuracy, which is useful for simulations that
contain multiple spatial and temporal scales. However, existing non-conforming SBP schemes result in a
reduction of the overall degree of the scheme, which leads to a reduction in the order of the solution error.
This loss of degree is due to the particular interface coupling through a simultaneous-approximation-term
(SAT). We present in this work a novel class of SBP-SAT operators that maintain conservation, energy
stability, and have no loss of the degree of the scheme for non-conforming approximations. The new degree
preserving discretizations require an ansatz that the norm matrix of the SBP operator is of a degree Ø 2p, in
contrast to, for example, existing finite di�erence SBP operators, where the norm matrix is 2p ≠ 1 accurate.
We demonstrate the fundamental properties of the new scheme with rigorous mathematical analysis as well
as numerical verification.

Keywords First derivative · Summation-by-parts · Simultaneous-approximation-term · Conservation ·
Energy stability · Finite di�erence methods · Non-conforming methods · Intermediate grids

1 Introduction

As we move closer to the advent of exascale high performance computing, it becomes increasingly evident that
the numerical simulation of real-world applications on such machines requires flexible and robust methods. One
approach that provides numerical e�ciency and robustness is the combination of summation-by-parts (SBP)
operators [7,29,6,12,2] with simultaneous-approximation-terms (SATs) [3,5,26,27] for the weak imposition of
boundary conditions and interface coupling. These nodal based SBP-SAT schemes are advantageous as they
are conservative, high-order, linearly [7,29] and nonlinearly stable [13,28,1,11] and are applicable to structured
multiblock [7,29] or unstructured meshes [8,17,16,15].

Many real world problems contain a wide range of length scales, and the e�cient approximation of such
problems necessitates the ability to judiciously distribute degrees of freedom. The goal is to construct dis-
cretizations that formally retain their convergence order across non-conforming interfaces and therefore, this
paper is a first step in the construction of adaptive SBP-SAT schemes with such properties.

We concentrate on the development of non-conforming SBP-SAT finite di�erence methods due to their
ability to arbitrarily assign degrees of freedom within elements. The construction of the SBP-SAT operators
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herein assumes that there is no subdivision of elements. That is, we focus on the interface coupling procedures
where the elements are conforming but the distribution of nodes inside of the elements can vary, see Fig. 1.
From here on the phrase non-conforming elements refers to this type of non-conformity.
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Fig. 1: Two conforming elements with non-conforming nodal distributions along their common interface.

Mattsson and Carpenter [24] developed interpolation operators that result in conservative and stable
schemes when incorporated into the SBP-SAT framework. Here, the interpolation operators depend on the
neighbouring non-conforming element. Building on these ideas, Kozdon and Wilcox [20] developed an approach
that couples non-conforming elements by first projecting the solution in adjacent elements onto an intermediate
grid, see Fig. 2, and then projecting back to the surface of the corresponding element. The main advantage of
this approach is that one can construct interpolation/projection operators independently of the neighbouring
elements as all element interfaces are projected to the same set of nodes. Throughout this paper we will adapt
this idea and consider di�erent types of intermediate grids.
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Fig. 2: Two conforming elements with non-conforming nodal distributions and an intermediate grid.

For clarity, we outline the four fundamental properties that we wish the new non-conforming SBP-SAT
discretization to satisfy:

1. Conservation: The numerical approximation must discretely recover the first moment, i.e. the integrals of
the variables of the conservation law. For example, this ensures no loss of the total mass in time.

2. Energy stability: The numerical solution remains bounded by the initial conditions and boundary conditions
of the problem. For a simple example of the continuous energy analysis consider the one-dimensional linear
advection equation with unit wave speed,

ˆU
ˆt

= ≠ˆU
ˆ›

, › œ [0, 1], t Ø 0, (1.1)

together with an initial condition and a Dirichlet boundary condition

U(›, 0) = U0(›), U(›L, t) = GL(t). (1.2)

To prove that the problem defined by (1.1) and (1.2) is stable, we employ the energy method. First, we
multiply (1.1) by the solution and integrate over the domain to find

1⁄

0

U ˆU
ˆt

d› = ≠
1⁄

0

U ˆU
ˆ›

d›. (1.3)



Conservative and Stable Degree Preserving SBP Operators for Non-Conforming Meshes 3

For the left-hand term of (1.3), we bring U into the temporal derivative and apply Leibniz’s rule. For the
right-hand term of (1.3), we use integration-by-parts, resulting in

d(U , U)
dt

= ≠ U2--1
0 , (1.4)

where we use the L2 inner product

(U , U) :=
1⁄

0

U2 d›. (1.5)

Finally, we apply the boundary condition, initial condition, integrate to the final time t = T and rearrange
to obtain

(U , U) Æ (U0, U0) +
⁄ T

0
G2

L dt, (1.6)

which shows that the solution is bounded by the initial condition and the boundary data. Therefore, the
problem is stable in the sense of Hadamard [14]. That is, the solution is continuously dependent on the
initial data of the problem.

3. High-order : The scheme can di�erentiate polynomials with high degree exactly; this implies that the order
of the solution error is high-order.

4. Degree preservation: In this work degree refers to the highest degree, say p, of the monomial for which
the di�erentiation matrix is exact. The constituent components of the SBP scheme, i.e., the derivative
operators and SATs, remain of degree p when applied to non-conforming meshes.

The first three properties are immediately available for non-conforming existing SBP finite di�erence
schemes from the work of Kozdon and Wilcox [20] and Mattsson and Carpenter [24]. Unfortunately, it was
shown by Lundquist and Nordström [21] that existing degree p SBP schemes, when applied to non-conforming
meshes, result in SATs that lose one degree of accuracy compared to the conforming case. Therefore, existing
SBP schemes are not degree preserving and thus violate the fourth desired.

The primary objective of this work is to construct SBP operators such that the resulting scheme is degree
preserving. It turns out that the essential idea is to consider SBP operators with norm matrices that are of at
least degree 2p, which allows the construction of degree preserving SATs. The second objective is to present a
generalized construction of SATs that leads to degree preserving schemes.

1.1 Notational conventions

To define precisely the mathematical analysis of the new SBP schemes we first introduce the notation that
we use throughout this work, adapted from Hicken et al. [16]. To reduce the notational complexity, the
presentation is restricted to two-dimensional operators. Vectors are denoted with lower case bold letters, for
example ⇠ = [›1, . . . , ›N ]T, while matrices are presented using capital letters with sans-serif font, for example,
H. Script letters are used to denote continuous functions on a specified domain, e.g.,

U(›, ÷, t) œ L2
!
œ̂ ◊ [0, T ]

"
, (1.7)

denotes a square integral function on the spatial domain œ̂ =
#
›1, ›N›

$
◊ [÷1, ÷N÷ ]. The restriction of functions

onto a computational mesh is denoted with lower case bold font. For example, the restriction of U onto a grid
of N nodes in each spatial direction, S≈̂ = {(›i, ÷i)}N

i=1, is given by

u := [U (›1, ÷1) , . . . , U (›N , ÷N )]T . (1.8)

Monomial basis functions are used in the proofs of the underlying properties of the new non-conforming
SBP-SAT schemes. We define the monomials for the tensor-product basis by

Pk(›, ÷) := ›i÷j , (1.9)

where k is uniquely associated with a monomial with individual powers of

k = j(p + 1) + i + 1, i, j = 0, . . . , p. (1.10)
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The cardinality of a basis for the polynomials under consideration is given by

Nú (p) := (p + 1)d. (1.11)

where d is the spatial dimension.

The monomials and their derivatives evaluated at the computational nodes are represented by

pk :=
#
Pk(›1, ÷1), . . . , Pk(›N› , ÷N÷ )

$T
, (1.12)

and
ˆpk

ˆ›
:=

5
ˆPk

ˆ›
(›1, ÷1), . . . ,

ˆPk

ˆ›
(›N› , ÷N÷ )

6T
. (1.13)

Typically, SBP methods are built from tensor-product operators on Cartesian grids for which the nodal
distribution is defined by two vectors

⇠ =
#
›1, . . . , ›N›

$T
, ⌘ =

#
÷1, . . . , ÷N÷

$T
. (1.14)

Thus the total number of nodes is N = N›N÷.

Having defined ⇠ and ⌘, the projection of the monomials in (1.12) onto the grid is constructed by

pk = ⇠i ¢ ⌘j , (1.15)

where ¢ is the tensor-product operator, and i and j can be found from k using (1.10). Furthermore, for any
vector v we define

vr := [vr
1, . . . , vr

N ]T , (1.16)

where if r < 0 then vr is a vector of zeros.

The degree of a SBP operator is the degree of the monomial for which the di�erentiation matrix operator is
exact at all nodes. For example, assume a set of computational nodes ⇠ and a one-dimensional di�erentiation
operator D(1D)

› . If
D(1D)

› ⇠k = k⇠k≠1, for k = 0, . . . , p, (1.17)

then the degree of the operator is p.

1.2 Review of summation-by-parts operators

Next, we give a brief introduction to the methodology of SBP methods. In essence, the goal of SBP opera-
tors is to discretely mimic the integration-by-parts property of first and higher derivatives [9,23,22,25]. We
demonstrate, in a one-to-one fashion, how the steps of the continuous energy analysis are mimicked at the
semi-discrete level with SBP operators to prove stability of semi-discrete approximations. Complete details on
SBP operators and the energy method can be found in, e.g., [7,29].

A numerical scheme is said to be stable if the semi-discrete solution is bounded in terms of the initial and
boundary data of the problem. To demonstrate the discrete energy stability we define a first-derivative SBP
operator that is applicable to general one-dimensional nodal distributions [6].

Definition 1 One-dimensional summation-by-parts operator for the first derivative: A matrix op-
erator D(1D)

› œ RN◊N is an SBP operator of degree p which approximates the first derivative ˆ
ˆ› on the nodal

distribution ⇠ in computational space, if

1. D(1D)
› ⇠k =

1
H(1D)

›

2≠1
Q(1D)

› ⇠k =
1

H(1D)
›

2≠1 1
S(1D)

› + 1
2 E(1D)

›

2
⇠k = k⇠k≠1, k = 0, 1, . . . , p.

2. H(1D)
› denotes the norm matrix and is symmetric positive definite.

3. E(1D)
› is symmetric and S(1D)

› is skew-symmetric. Thus, Q(1D)
› +

1
Q(1D)

›

2T
= E(1D)

› .

4.
!
⇠i

"T E(1D)
› ⇠j = ›i+j

N›
≠ ›i+j

1 , i, j = 0, 1, . . . , r, r Ø p.
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Remark 1. In this paper we consider only SBP operators where the norm matrix H(1D)
› is diagonal.

To impose boundary conditions or inter-element coupling we use the concept of SATs. The definition of the
SAT requires the decompositions of E(1D)

› into contributions associated with the boundaries of each element. In
this paper, we consider SBP operators that contain nodes at each of the boundaries. A simple decomposition
of E(1D)

› is given by [6]
E(1D)

› = e›N eT
›N

≠ e›1e
T
›1 , (1.18)

where
e›N = [0, . . . , 0, 1]T , e›1 = [1, 0, . . . , 0]T . (1.19)

The discretization of the spatial terms in the one-dimensional linear advection equation (1.1) using SBP
operators results in

du
dt

= ≠D(1D)
› u + ‡

1
H(1D)

›

2≠1 !
e›1e

T
›1u ≠ GLe›1

"
. (1.20)

The last term in (1.20) is the SAT, [3,5,26,27], which weakly imposes the boundary condition (1.2). Note that
the SAT incorporates the yet-to-be-determined scalar stability parameter ‡.

Next, we show how the discrete energy method constrains the choice of ‡ such that the resulting discretiza-
tion is stable. The symmetric positive definite norm matrix H(1D)

› generates a discrete L2 inner product [6,18]
such that

Èu, vÍ := vTH(1D)
› u ¥

1⁄

0

UV d› = (U , V). (1.21)

Multiplying (1.20) by uTH(1D)
› from the left, using the third property of the SBP operator, and rearranging

the equation, we obtain

dÈu,uÍ
dt

= ≠uT !
e›N eT

›N
≠ e›1e

T
›1

"
u + 2‡uT !

e›1e
T
›1u ≠ GLe›1

"
. (1.22)

Finally, completing the square on the right-hand side, integrating up to a final time T , and including the initial
condition, (1.22) becomes

Èu,uÍ Æ Èu0,u0Í ≠ “≈ 2
⁄ T

0
G2

L dt, (1.23)

where we introduce two additional constants ≈ = ≠‡
2‡+1 and “ = 2‡ + 1. For the scheme to remain stable we

require “ < 0. We know that ‡ = ≠1 for the scheme to remain conservative [7]. With this selection of ‡ we
exactly mimic the continuous energy result (1.6) term-by-term and obtain the discrete energy

Èu,uÍ Æ Èu0,u0Í +
⁄ T

0
G2

L dt. (1.24)

The extension of one-dimensional SBP operators to two spatial dimensions is accomplished with tensor prod-
ucts.

D› = D(1D)
› ¢ I÷, D÷ = I› ¢ D(1D)

÷ , (1.25)

where I› and I÷ denote the identity matrix of size N› and N÷, respectively.

The two-dimensional SBP operators satisfy

D› := H≠1Q› = H≠1
3

S› + 1
2E›

4
, D÷ := H≠1Q÷ = H≠1

3
S÷ + 1

2E÷

4
, (1.26)

where

H := H(1D)
› ¢ H(1D)

÷ ,

Q› := Q(1D)
› ¢ H(1D)

÷ , Q÷ := H(1D)
› ¢ Q(1D)

÷ , S› := S(1D)
› ¢ H(1D)

÷ , S÷ := H(1D)
› ¢ S(1D)

÷ ,

E› := E›,N› ≠ E›,1, E›,N›
:= RT

›,N›
H(1D)

÷ R›,N› , E›,1 := RT
›,1H(1D)

÷ R›,1,

E÷ := E÷,N÷ ≠ E÷,1, E÷,N÷
:= RT

÷,N÷
H(1D)

› R÷,N÷ , E÷,1 := RT
÷,1H(1D)

› R÷,1,

R›,N›
:= eT

›,N›
¢ I÷, R›,1 := eT

›,1 ¢ I÷, R÷,N÷
:= I› ¢ eT

÷,N÷
, R÷,1 := I› ¢ eT

÷,1.

(1.27)
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It is useful to note that the constituent matrices of (1.27) are approximations of the following bilinear forms [16]:

vTHu ¥
⁄

œ

VUdœ, vTQ›u ¥
⁄

œ

V ˆU
ˆ›

dœ, vTQ÷u ¥
⁄

œ

V ˆU
ˆ÷

dœ,

vTE›u ¥
j

≈

VUn›d≈, vTE÷u ¥
j

≈

VUn÷d≈.

(1.28)

In particular, we see that E› and E÷ are bilinear forms approximating surface integrals. Later we use this
interpretation to clarify the meaning of the SATs.

The remainder of the paper is organized as follows: Section 2 builds a non-conforming discretization with
two-dimensional SBP operators. Next, we create a novel set of degree preserving SBP operators in Sec. 3.
These new operators create a non-conforming numerical scheme that is conservative, energy stable, high-order
and degree preserving, as shown in Sec. 4. Numerical results are presented in Sec. 5 to support the theoretical
findings. Our concluding remarks are given in the final section.

2 Construction of coupling SATs for non-conforming elements

Mattsson and Carpenter [24] developed interpolation operators to project the approximate solution of a finite
di�erence scheme from one element to another in a stable way. In [20], Kozdon and Wilcox expanded this
conservative and stable finite di�erence scheme to non-conforming approximations where each element can
have an arbitrary number of computational nodes with the introduction of intermediate glue grids. However, the
non-conforming scheme of Kozdon and Wilcox does not preserve the degree of the conforming approximation
[20]; indeed, Lundquist and Nordström [21] proved that degree preserving SBP schemes cannot be constructed
using existing SBP operators — we prove this in Thm 1 and demonstrate this numerically in Sec. 5.2.

The essential idea of the proposed non-conforming scheme is to project the solution onto a new set of
nodes at an interface, and construct the SATs on these intermediate nodes.

For the analysis, we focus on the linear two-dimensional constant-coe�cient advection equation

ˆU
ˆt

+ –
ˆU
ˆx

+ —
ˆU
ˆy

= 0, (x, y) œ œ, t Ø 0, (2.1)

where – and — are the constant wave speeds. The hyperbolic equation (2.1) is subject to initial and boundary
conditions

U(x, y, 0) = U0(x, y), U(x, y, t) = G(x, y, t), ’(x, y) œ ≈ ≠. (2.2)

The boundary, ≈ , of the domain œ is decomposed into two surfaces ≈ ≠ = {(x, y) œ ≈ | (–nx + —ny < 0)},
≈ + = ≈/≈ ≠, and nx, ny, are the x and y components of the outward pointing unit normal to ≈ .

In order to use tensor-product SBP operators, it is first necessary to partition the domain œ into K
non-overlapping quadrilateral elements œi, such that

œ =
K€

i=1
œi. (2.3)

The tensor-product SBP operators are defined on a regular Cartesian computational grid; therefore, on each
element, the PDE (2.1) is mapped from physical coordinates, (x, y) œ œi to computational coordinates (›, ÷) œ
œ̂, resulting in

ˆ (J U)
ˆt

+ ˆ (–̃U)
ˆ›

+
ˆ

!
—̃U

"

ˆ÷
= 0, (2.4)

where

–̃ = –
ˆy

ˆ÷
≠ —

ˆx

ˆ÷
, —̃ = ≠–

ˆy

ˆ›
+ —

ˆx

ˆ›
, J = ˆx

ˆ›

ˆy

ˆ÷
≠ ˆx

ˆ÷

ˆy

ˆ›
. (2.5)

Remark 2. For simplicity, we restrict the discussion in this paper to only consider a�ne maps. Therefore the
mapping terms, for example J , are constants. The extension to curvilinear elements is straightforward and is
nicely outlined in Kozdon and Wilcox [20].
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2.1 Conforming discretization

Before presenting SATs that lead to stable and conservative schemes for non-conforming elements, it is in-
structive to examine SATs for the conforming case. This will clarify the meaning of the SATs. Also, it allows
us to reformulate the SATs using numerical fluxes as is commonly done in discontinuous Galerkin methods,
which is the form we will use throughout the paper.

We consider the coupling between a left element, L, and a right element, R, that are conforming and share
a vertical interface. The discretization in element L, considering only the coupling at the shared interface, is
given as

duL

dt
+ 1

J –̃D›uL + 1
J —̃D÷uL = 1

J H≠1 !
–̃E›,N›uL ≠ fú"

, (2.6)

where fú denotes the numerical flux function. The term on the right-hand side of (2.6) is the SAT that couples
the solution in element L to the solution in element R. Similarly, the discretization in element R is given as

duR

dt
+ 1

J –̃D›uR + 1
J —̃D÷uR = ≠ 1

J H≠1 (–̃E›,1uR ≠ fú) . (2.7)

where, for simplicity, we assume that both elements have identical nodal distributions. We define the numerical
flux functions

fú := 1
2

!
–̃E›,N›uL + –̃E›,1uR

"
≠ ‡|–̃|

2
!
E›,1uR ≠ E›,N›uL

"
. (2.8)

If we set ‡ = 0, then we recover a central numerical flux. For ‡ = 1 we obtain an upwind SAT. Note that the
definition of the numerical flux includes the surface mass matrix and therefore its definition di�ers from that
in [12], where the numerical flux is defined by

fú
Gas := 1

2
!
–̃R›,N›uL + –̃R›,1uR

"
≠ ‡|–̃|

2
!
R›,1uR ≠ R›,N›uL

"
. (2.9)

To clarify the role of the SATs in the discretization, we recast (2.6) and (2.7) into weak form. To do so, we
consider a computational grid with an appropriate functional space V œ V . Then we pre-multiply (2.6) by
vT

LH and (2.7) by vT
RH, where vL and vR are basis functions of V on to the nodes of the elements L and R,

respectively. Thus the problem defined by (2.6) becomes: Find uL such that for all vL œ RN

vT
LHduL

dt
+ 1

J –̃vT
LQ›uL + 1

J —̃vT
LQ÷uL = 1

J vT
L

!
–̃E›,N›uL ≠ fú"

, (2.10)

where a similar weak problem holds for the solution in the right element uR. From Section 1.2 we know that
each matrix of an SBP operator is an approximation to a certain bilinear form. Therefore, we see that

¥
s

œ̂L
V ˆU

ˆt dœ̂

˙ ˝¸ ˚
vT

LHduL

dt
+

¥ 1
J

s
œ̂L

V(–̃ ˆU
ˆ› +—̃ ˆU

ˆ÷ )dœ̂

˙ ˝¸ ˚
1
J –̃vT

LQ›uL + 1
J —̃vT

LQ÷uL =

¥ 1
J

i
≈̂

V(–̃U≠Fú
Gas)n›,Ld≈̂

˙ ˝¸ ˚
1
J vT

L

!
–̃E›,N›uL ≠ fú"

,
(2.11)

where n›,L is the › component of the outward pointing unit normal at the shared interface for element L.
Reformulating the SBP-SAT discretization in weak form1 clarifies that the components of the SAT are surface
integrals. The E matrices in (2.6) and (2.7) project the solution onto the nodes of the common interface and
approximate the surface integral. The construction of SATs for non-conforming elements is related to this idea.

2.2 Non-conforming discretization

Now we consider the case of two elements that do not have conforming nodal distributions. For coupling the
solution between elements we introduce an intermediate grid. On this intermediate grid we define a set of
nodes {(›≈,i, ÷≈,i)}N≈

i=1 with a corresponding symmetric positive definite surface-norm matrix M≈̂ of su�cient
accuracy. In contrast to [20,24], we do not project back to each respective element. Rather we directly use the
node distribution of the intermediate grid to construct approximations of the surface integrals.

1 Here we have not transferred the action of the derivative onto the test function; in the present context these two forms
are algebraically equivalent as a result of constant grid metrics [19].
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From the conforming discretizations (2.6) and (2.7), we generalize to a non-conforming discretization

duL

dt
+ 1

JL
–̃LD›LuL + 1

JL
—̃LD÷LuL = 1

JL
H≠1

L

!
–̃LE›L,N›uL ≠ fú

L

"
, (2.12)

in the left element and
duR

dt
+ 1

JR
–̃RD›RuR + 1

JR
—̃RD÷RuR = ≠ 1

JR
H≠1

R (–̃RE›R,1uR ≠ fú
R) , (2.13)

in the right element. Note that although the nodal distributions di�er on each element at the interface, –̃L = –̃R

and —̃L = —̃R because the elements are conforming (but not the nodal distribution) and we consider an a�ne
mapping. For non-conforming discretizations the numerical flux is defined as

fú
L = 1

2
!
–̃E›L,N›uL + –̃PT

›,LM≈̂ P›,RuR

"
≠ ‡|–̃|

2
!
PT

›,LM≈̂ P›,RuR ≠ PT
›,LM≈̂ P›,LuL

"
,

fú
R = 1

2
!
–̃E›R,1uR + –̃PT

›,RM≈̂ P›,LuL

"
≠ ‡|–̃|

2
!
PT

›,RM≈̂ P›,RuR ≠ PT
›,RM≈̂ P›,LuL

"
,

(2.14)

with –̃ := –̃L = –̃R and —̃ := —̃ = —̃R. Note that the coupling procedure in the non-conforming approximation
is more complicated. We now include the norm matrix from the intermediate grid M≈̂ and introduce the new
projection operators P›,L and P›,R. In this paper we consider projection operators that are constructed using
tensor products. Therefore we can rewrite the projection operators in terms of

P›,L = eT
›L,N›

¢ P(1D)
›,L P›,R = eT

›R,1 ¢ P(1D)
›,R . (2.15)

Here the projection operators P(1D)
›,L , P(1D)

›,R project the solution from the element interface on to the intermediate
grid. Throughout this section, all derivations are in one-dimension as we focus on interfaces.

Remark 3. Considering tensor products the proposed SATs are equivalent to the approach of Kozdon and
Wilcox [20], as shown in Appendix B. We concentrate on tensor-product projection operators in order to
demonstrate that the new degree preserving SBP operators can be equally applied in the context of other
coupling procedures, e.g., [20,24].

In order to construct the accuracy conditions for the SAT, it is necessary to map the monomials in one
computational space to the other. We therefore need to introduce a set of nodes ⌘L and ⌘R, which denote the
nodal distribution of the left and right element in one dimension along the interface. Furthermore, we define
⌘≈ which denotes the corresponding nodes of the intermediate grid. In order to construct a tensor-product
projection operator of degree p, the operators must satisfy

P(1D)
›,L ⌘k

L = ⌘k
≈ ,

P(1D)
›,R ⌘k

R = ⌘k
≈ ,

(2.16)

for k = 0, 1, . . . , p. For the SATs to be of the same degree as the derivative operators, the following relations
must be satisfied:

P(1D),T
›,L M≈̂ P(1D)

›,R ⌘k
R = H(1D)

÷L
⌘k

L,

P(1D),T
›,R M≈̂ P(1D)

›,L ⌘k
L = H(1D)

÷R
⌘k

R,
(2.17)

for k = 0, 1, . . . , p. These conditions ensure that the SAT is zero when its arguments are polynomials of degree
less than or equal to p in the ›-direction. Including (2.16) in (2.17), we arrive at

P(1D),T
›,L M≈̂⌘k

≈ = H(1D)
÷L

⌘k
L,

P(1D),T
›,R M≈̂⌘k

≈ = H(1D)
÷R

⌘k
R,

(2.18)

for k = 0, 1, . . . , p. We see that the conditions on P›,L are independent of those on P›,R. Therefore, the
construction of the projection operators can be performed independently. A brief derivation of the projection
operators is provided in Appendix A. Now we focus on the corresponding SBP operators for the non-conforming
problem. Here, we define the degree of a norm matrix. Consider two monomials ÷i and ÷j with i, j = 0, . . . , p.
Referring to the norm matrix, we understand the term degree of p̃ as exactness in the following sense

1!
⌘i

"T H(1D)
› ⌘j

2
=

3⁄ ÷N÷

÷1

÷i+jd÷

4
, for i + j Æ p̃. (2.19)
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Similarly, the interpretation of degree is applied to the remaining constituent matrices of the SBP operators,
see (1.28). Most tensor-product SBP operators are implicitly constructed such that the norm matrices are of
degree 2p≠1 [6,18]. For example, existing finite di�erence operators [18] or the discontinuous Galerkin spectral
element SBP operators constructed on the Legendre-Gauss-Lobatto (LGL) nodes [6,12] have this property.
A major drawback of such operators is that it is not possible to construct P(1D)

›,L and P(1D)
›,R as in (2.16) and

(2.18) such that the resulting SATs retain the accuracy of the derivative operators, as proven in the following
Theorem, where we adapt the ideas of Lundquist and Nordström [21].

Theorem 1. Given a degree p SBP operator D(1D)
›L

with norm matrix H(1D)
›L

of degree 2p ≠ 1, assuming an
intermediate grid with a norm matrix M≈̂ of degree Ø 2p ≠ 1 such that the matrices HL and M≈̂ are di�erent
in terms of the norm matrices having di�erent errors, then it is not possible to construct a projection operator
P›,L that is of degree p.

Proof 1. We assume that it is possible to construct operators of degree p and seek a contradiction. Therefore,
we have the degree p projection operator P›,L with the properties

P(1D)
›,L ⌘k

L = ⌘k
≈ ,

P(1D),T
›,L M≈̂⌘k

≈ = H(1D)
›L

⌘k
L,

(2.20)

for k = 1, . . . , p. Consider the case k = p. The norm matrix H(1D)
›L

is of degree 2p ≠ 1, therefore

(⌘p
L)T H(1D)

›L
⌘p

L ”=
⁄ ÷N÷

÷1

÷2pd÷. (2.21)

By re-deriving (2.20) we get

P(1D),T
›,L M≈̂⌘k

≈ = H(1D)
›L

⌘k
L,

… (⌘p
L)T P(1D),T

›,L M≈̂⌘p
≈ = (⌘p

L)T H(1D)
›L

⌘p
L,

(2.20)… (⌘p
≈ )T M≈̂⌘p

≈ = (⌘p
L)T H(1D)

›L
⌘p

L. (2.22)

However, by (2.21) the norm matrix H(1D)
›L

cannot integrate ÷2p exactly. Also, if M≈̂ is of degree 2p≠1, then the
left-hand side of (2.22) also does not integrate exactly. The error terms for each quadrature rule are di�erent,
so the equality (2.22) cannot hold in general. For the case where the degree of M≈̂ is larger than 2p ≠ 1, then
the equality (2.22) cannot hold since the left-hand side performs exact integration of ÷2p, whereas the right
hand side produces an error.

Theorem 1 holds the key to constructing SBP operators for which projection operators of degree p can be
built which lead to stable schemes. Namely, if one builds SBP operators that have norm matrices that are of
degree Ø 2p then the equality that failed in the proof of Thm. 1 can be satisfied for degree p monomials. This
is not only related to the presented discretization in (2.12), (2.13), but also holds for [24,20], as proven by
Lundquist and Nordström [21]. We now prove under what conditions SBP operators of degree p with norm
matrices of at least degree 2p, which we denote degree preserving SBP operators, exist.

Theorem 2. The existence of a quadrature rule with positive weights of degree Ø 2p is necessary and su�cient
for the existence of a degree preserving SBP operator of degree p.

Proof 2. The proof follows identically from that given in Del Rey Fernández et al. [6] for Thm. 2 and is
omitted for brevity.

Next, we construct degree preserving SBP operators.

3 Example of a degree preserving SBP operator

In this section, we explicitly construct degree preserving SBP operators (H(1D)
› , D(1D)

› ) in one dimension. The
two-dimensional SBP operator can be derived from (1.25). The degree of D(1D)

› is p and the degree of H(1D)
› is

2p. These operators are derived on a master element œ̂ := [≠1, 1]. Here, N› denotes the number of nodes.

First, assume we want to construct a classical finite di�erence SBP operator, denoted classical FD-SBP
operator (H(1D)

c , D(1D)
c ) with p Æ 4. Here, classical FD-SBP operators refer to SBP operators where the choice
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Q(1D)
c

=

≠ 1
2 q12 q13 q14 0 0 0 0 0 0 0 0

≠q12 0 q23 q24 0 0 0 0 0 0 0 0

≠q13 ≠q23 0 q34 ≠ 1
12 0 0 0 0 0 0 0

≠q14 ≠q24 ≠q34 0 2
3 ≠ 1

12 0 0 0 0 0 0

0 0 1
12 ≠ 2

3 0 2
3 ≠ 1

12 0 0 0 0 0

0 0 0 1
12 ≠ 2

3 0 2
3 ≠ 1

12 0 0 0 0

0 0 0 0 1
12 ≠ 2

3 0 2
3 ≠ 1

12 0 0 0

0 0 0 0 0 1
12 ≠ 2

3 0 2
3 ≠ 1

12 0 0

0 0 0 0 0 0 1
12 ≠ 2

3 0 q34 q24 q14

0 0 0 0 0 0 0 1
12 ≠q34 0 q23 q13

0 0 0 0 0 0 0 0 ≠q24 ≠q23 0 q12

0 0 0 0 0 0 0 0 ≠q14 ≠q13 ≠q12 1
2

S

WWWWWWWWWWWWWWWWWWWWWWWWWU

T

XXXXXXXXXXXXXXXXXXXXXXXXXV

Fig. 3: Structure of degree 2 FD-SBP operator with free boundary parameters

of the number of nodes N› is arbitrary assuming that N› is larger than a minimum number of nodes, see [7,9].
For such operators the norm matrices are of degree 2p ≠ 1. To construct these operators, we set the number
of boundary points to 2p. The classical FD-SBP operators are constructed by considering degrees of freedom
at the boundary nodes of the operator. Focusing on p = 2, the operators have the following structure:

H(1D)
c := 2

N›
diag (h1, . . . , h4, 1, . . . , 1, h4, . . . , h1) , (3.1)

and D(1D)
c :=

1
H(1D)

c

2≠1
Q(1D)

c , where Q(1D)
c is given in Fig. 3.

Here the degree of D(1D)
c on the interior nodes is 2p, as we consider a central di�erence formula. For the

classical FD-SBP operators the free coe�cients are calculated, so that the matrix D(1D)
c is of degree p. By

doing this, the norm matrix H(1D)
c is automatically of degree 2p ≠ 1, see [6,18].

We will consider degree preserving SBP operators (H(1D)
› , D(1D)

› ) with norm matrices of degree 2p. However,
we construct our SBP operators in a similar fashion and consider an interior stencil of degree 2p and boundary
nodes with free parameters. Since the norm matrix needs to be at least one degree higher than for the classical
FD-SBP operators, one naturally needs more free coe�cients. These coe�cients are obtained by increasing
the number of boundary points at least by one (to 2p + 1). For example, for p = 2 the norm matrix H(1D)

› is

H(1D)
› := 2

N›
diag (h1, . . . , h5, 1, . . . , 1, h5, . . . , h1) , (3.2)

and the upper left corner of Q(1D)
› has the following structure:

1
Q(1D)

›

2

(1:5,1:7)
=

≠ 1
2 q12 q13 q14 q15 0 0

≠q12 0 q23 q24 q25 0 0
≠q13 ≠q23 0 q34 q35 0 0
≠q14 ≠q24 ≠q34 0 q35 ≠ 1

12 0

≠q15 ≠q25 ≠q35 ≠q45 0 2
3 ≠ 1

12

S

WWWWWWWWU

T

XXXXXXXXV

.

As for Q(1D)
c the degrees of freedom referring to the interior nodes are the same. Here, we again consider a

central di�erence formula, which is based on Taylor expansion. Due to this stencil, we name the newly created
operators degree preserving, element based finite di�erence operators. Note, that these operators are element
based as in [10]. By changing the number of nodes, we must re-calculate the degrees of freedom at the boundary
blocks. [6].
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Let ⇠ be a uniformly distributed set of nodes within the reference space [≠1, +1] and ⇠1 = ≠1, ⇠N› = +1.
The free coe�cients are determined by solving

Q(1D)
› ⇠k = kH(1D)

› ⇠k≠1 k = 0, . . . , p,

1TH(1D)
› ⇠k =

⇠k+1
N›

≠ ⇠k+1
1

k + 1 k = 0, . . . , 2p.
(3.3)

In comparison to classical FD-SBP operators, the degree preserving operators are element based, in the sense
that their coe�cients explicitly depend on N›. A disadvantage of these operators is that the coe�cients of
the norm matrix are not necessarily positive for an arbitrary choice of N›. In case of negative weights for a
fixed value N›, we increase the number of boundary nodes to obtain more free coe�cients for satisfying the
property of a positive definite norm matrix.

By solving (3.3), the SBP operators are not fully specified. As in [6], the free parameters are chosen so
that the truncation error is minimized. To do so we define

‘p+1 :=
1

H(1D)
›

2≠1
Q(1D)

› ⇠p+1 ≠ (p + 1)⇠p, (3.4)

and then minimize
Je := ‘T

p+1H(1D)
› ‘p+1, (3.5)

under the assumption that all entries on the diagonal of H(1D)
› are positive. Still, applying this strategy does

not necessarily specify all coe�cients of Q(1D)
› . Besides a small truncation error, a desirable property is to

have small coe�cients within the operator to avoid round-o� errors. This is achieved by minimizing the sum
of squares of the operator Q(1D)

› which is accomplished by minimizing

JQ := 1TQ(1D)
› ¶ Q(1D)

› 1, (3.6)

where ¶ is the Hadamard product, and we again ensure that all entries of H(1D)
› are positive.

A description of the construction is provided in the following pseudo code:

Input: N› and p
Set bp := 2p + 1;
Solve (3.3);
while one or more entries of H(1D)

› are negative do
Set bp:= bp+1;
Solve (3.3) again;

end
Minimize Je in (3.5) under the constraint hi > 0 for i = 1, . . . , bp;
Minimize JQ in (3.6) under the constraint hi > 0 for i = 1, . . . , bp;

Algorithm 1: Construction of degree preserving operators

By following these steps we created SBP operators with a degree p di�erentiation matrix D(1D)
› and a norm

matrix H(1D)
› with degree 2p. Note, that as for existing SBP operators as in [6], a minimum number of nodes

needs to be considered.

We created the degree preserving operators using MAPLE. The set of operators which are considered later
in Sec. 5 were constructed with the MATLAB routines provided in the electronic supplementary material
(ESM) of this article.

4 Proof of conservation, energy stability, and degree preservation

In this section, we prove conservation, energy stability, and the degree preserving property for the presented
non-conforming discretization (2.12) and (2.13). We consider degree preserving SBP operators where the degree
of the di�erentiation matrices D›L , D›R is p, and the degree of the norm matrices HL, HR on the elements as
well as the norm matrix M≈̂ on the interface is equal to or greater than 2p. Here, the choice of the nodes on
the intermediate grid is completely arbitrary provided the norm matrix on the intermediate grid, M≈̂ , exists.
For this reason we consider di�erent nodal distributions on the intermediate grid in Sec. 5.
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Theorem 3. Given degree preserving SBP operators D›L and D›R of degree p, and projection operators of
degree Ø p, then, the non-conforming discretizations of a left element

duL

dt
+ 1

JL
–̃D›LuL + 1

JL
—̃LD÷LuL = 1

JL
H≠1

L

!
–̃E›L,N›uL ≠ fú

L

"
, (4.1)

a right element
duR

dt
+ 1

JR
–̃D›RuR + 1

JR
—̃RD÷RuR = ≠ 1

JR
H≠1

R (–̃E›R,1uR ≠ fú
R) , (4.2)

and a single corresponding interface, where fú
L and fú

R are given in (2.14), the numerical approximation has
the following properties:

3.1 Discrete conservation, meaning the discrete integral of u is constant over time.
3.2 Discrete energy stability.
3.3 Discrete preservation of the degree p for a non-conforming approximation.
Proof 3. We prove the result in three parts.

Proof of Part 3.1: Multiplying (4.1) by JL1
T
LHL and ignoring the terms which are not related to the interface

≈ , we have

JL1
T
LHL

duL

dt
= ≠–̃1T

L

3
S›L + 1

2E›L,N›

4
uL + 1T

L

!
–̃E›L,N›uL ≠ fú

L

"
. (4.3)

Due to the SBP property and from the consistency of the derivative matrix D›1L = 0L, it holds that

1T
LS›LuL = 1

21
T
LE›L,N›uL. (4.4)

Rearranging the right-hand side of (4.3) yields

JL1
T
LHL

duL

dt
= ≠ 1T

Lf
ú
L,

= ≠ –̃

2
!
1T

LE›L,N›uL + 1T
LPT

›,LM≈̂ P›,RuR

"
≠ |–̃|‡

2
!
1T

LPT
›,LM≈̂ P›,RuR ≠ 1T

LPT
›,LM≈̂ P›,LuL

"
.

(4.5)

From the properties of the projection operators (2.16) and the condition on the SATs (2.18), it can be shown
that

JL1
T
LHL

duL

dt
= ≠ –̃

2
!
1T

LE›L,N›uL + 1T
RE›R,1uR

"
≠ |–̃|‡

2
!
1T

RE›R,1uR ≠ 1T
LE›L,N›uL

"
. (4.6)

Analogously, multiplying (4.2) by JR1T
RHR yields

JR1T
RHR

duR

dt
= –̃

2
!
1T

RE›R,1uR + 1T
LE›L,N›uL

"
+ |–̃|‡

2
!
1T

RE›R,1uR ≠ 1T
LE›L,N›uL

"
. (4.7)

Adding (4.6) and (4.7) we see that

JL1
T
LHL

duL

dt
+ JR1T

RHR
duR

dt
= 0, (4.8)

which completes the proof.

Proof of Part 3.2: To show energy stability we apply the discrete energy method. Multiplying (4.1) by
JLu

T
LHL and ignoring the terms that are not related to the interface ≈ , we obtain

JLu
T
LHL

duL

dt
= ≠–̃uT

L

3
S›L + 1

2E›L,N›

4
uL + uT

L

!
–̃E›L,N›uL ≠ fú

L

"
. (4.9)

Since S›L = ≠ST
›L

, we have
uT

LS›LuL = 0. (4.10)
Rearranging the right hand side of (4.9), including the numerical flux (2.14) and the property (4.10) yields

JLu
T
LHL

duL

dt
=uT

L

3
–̃

2 E›L,N›uL ≠ fú
L

4
,

= ≠ –̃

2 uT
LPT

›,LM≈̂ P›,RuR + |–̃|‡
2

!
uT

LPT
›,LM≈̂ P›,RuR ≠ uT

LPT
›,LM≈̂ P›,LuL

"
.

(4.11)
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For the discretization on the right element we multiply (4.2) by JRuT
RHR to obtain

JRuT
RHR

duR

dt
= –̃

2 uT
RPT

›,RM≈̂ P›,LuL ≠ |–̃|‡
2

!
uT

RPT
›,RM≈̂ P›,RuR ≠ uT

RPT
›,RM≈̂ P›,LuL

"
. (4.12)

Setting uL,≈̂ := P›,LuL and uR,≈̂ := P›,RuR and adding (4.11) and (4.12) we find that

JLu
T
LHL

duL

dt
+ JRuT

RHR
duR

dt
= ≠ |–̃|‡

2

1
uT

R,≈̂
M≈̂uR,≈̂ ≠ 2uT

R,≈̂
M≈̂uL,≈̂ + uT

L,≈̂
M≈̂uL,≈̂

2
,

= ≠ |–̃|‡
2

3
uL,≈̂

uR,≈̂

4T 33
+1 ≠1
≠1 +1

44
¢ M≈̂

¸ ˚˙ ˝
=:M̃

3
uL,≈̂

uR,≈̂

4
Æ 0.

(4.13)

Here, M̃ is positive semidefinite, since it is the tensor product of two positive semidefinite matrices. Since
|–̃|‡ Ø 0, the expression in (4.13) is negative, and the discretization remains energy stable.

Proof of Part 3.3: Let k = 1, . . . , Nú (p). For degree preservation the SAT on the corresponding interface
must vanish for polynomials up to degree p. By including the polynomial pk,L in the SAT of (2.12) we have

SAT = 1
JL

H≠1
L

!
–̃E›L,N›pk,L ≠ fú

L

"
. (4.14)

The numerical flux is rearranged to be

fú
L = –̃

2
!
E›L,N›pk,L + PT

›,LM≈̂ P›,Rp̃k,R

"
≠ ‡|–̃|

2
!
PT

›,LM≈̂ P›,Rp̃k,R ≠ PT
›,LM≈̂ P›,Lpk,L

"
,

= –̃

2

Q

ccaE›L,N›pk,L + PT
›,LM≈̂pk,≈̂ ,L¸ ˚˙ ˝
=E›L,N›

pk,L

R

ddb ≠ ‡|–̃|
2

Q

aPT
›,LM≈̂pk,≈̂ ,L ≠ PT

›,LM≈̂pk,≈̂ ,L¸ ˚˙ ˝
=0

R

b ,

= –̃E›L,N›pk,L.

(4.15)

Here, we have made use of the properties (2.16) and (2.18) of the projection operators. Substituting (4.15) in
(4.14) we find

SAT = 0. (4.16)

Hence, the resulting discretization is degree preserving for polynomials of degree p. We emphasize that if the
SBP operators are not degree preserving, then projection operators that satisfy (2.16) and (2.18) cannot be
constructed.

5 Numerical results

In this section we demonstrate the convergence properties as well as the underlying theoretical findings from
Thm. 3 of the new non-conforming SBP-SAT scheme. To do so, we focus on the linear advection equation (2.1)
in two dimensions on the domain œ = [0, 1] ◊ [0, 1], where we assume a Cartesian mesh. The wave speeds in
both directions are – = — = 1. We enforce periodic boundary conditions to ensure that the energy is constant
in the exact solution. Unless stated otherwise, the upwind SAT (‡ = 1) is chosen. The time step is given by
the CFL condition

∆t := CFL
mini{ ∆xi

2 , ∆yi

2 }
maxi{Ni} max{–, —} (5.1)

where ∆xi and ∆yi denote the width in x- and y- direction of the i-th element, and Ni denotes the number
of nodes in one dimension of the i-th element. To integrate the approximation in time we use the five-stage,
fourth-order low-storage Runge-Kutta method of Carpenter and Kennedy [4]. Unless stated otherwise, we set
CFL = 1 and the final time to T = 0.1. The error of the time integration does not a�ect our results.

For the convergence study, we consider the initial condition

U(x, y, 0) = 2 + sin (2fix) + cos (2fiy) .
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DOFS L2 EOC
1936 8.70E-05
7744 5.80E-06 3.9
30976 3.03E-07 4.3
123904 1.98E-08 3.9
495616 1.24E-09 4.0
1982464 7.50E-11 4.0
Maximum CFL number: 2.27

Table 1: Experimental order of conver-
gence and maximum CFL number for a
degree preserving FD operator with p = 3.

DOFS L2 EOC
1936 1.04E-04
7744 7.71E-06 3.8
30976 5.44E-07 3.8
123904 3.27E-08 4.1
495616 2.02E-09 4.0
1982464 1.26E-10 4.0
Maximum CFL number: 2.26

Table 2: Experimental order of convergence
and maximum CFL number for a classical
FD-SBP operator with p = 3.

The experimental order of convergence is determined by

EOCd =
log

1
L2

d

L2
d≠1

2

log
1Ò

DOF Sd≠1
DOF Sd

2 ,

where L2
d denotes the error calculated with the norm matrix within all elements at the d-th mesh level. This

mesh level has nx = 2d elements in the x-direction and ny = 2d elements in the y-direction, which gives
4d elements within the spatial domain. The DOFSd denotes the degrees of freedom in the domain. For our
studies the number of nodes within an element remains constant, but the number of elements increases. This
is a di�erent approach than Kozdon and Wilcox [20], where for SBP finite di�erence operators the number of
elements remains constant but the number of nodes within the elements increases.

This mesh refinement strategy is adapted from [12] as the newly derived SBP operators are element based.
For the newly derived SBP operators in Sec. 3 their is no theoretical result concerning the convergence order.
However, we will numerically observe an order of p + 1.

The numerical results are divided into four components. First, in Sec. 5.1, we demonstrate similar error
and time step behavior for the new SBP operators compared to the finite-di�erence SBP operators, denoted by
classical FD-SBP operators, on conforming meshes. Next, Sec. 5.2 demonstrates the order loss if we consider
classical FD-SBP operators in the context of non-conforming problems. Sec. 5.3 shows that the newly derived
degree preserving SBP operators do not lose order in the convergence rate, for this same problem. Finally,
Sec. 5.4 verifies the proven conservation and energy stability from Thm. 3 of the new scheme.

5.1 Comparison of degree preserving SBP FD operators with classical FD-SBP operators on conforming
meshes

First, we consider a conforming grid to present the accuracy of the constructed degree preserving, element
based finite di�erence SBP operators. We consider an SBP operator of degree p = 3, where the degree of the
norm matrix is 2p + 1 = 7. We compare this operator with the classical FD-SBP operator of degree p = 3
adapted from [7], where the norm matrix is of degree 2p ≠ 1 = 5. We note that the degree preserving and
classical FD-SBP operators contain the same interior stencil. For comparison, we set the number of nodes in
one dimension for both operators to be 22. For both operators we get a convergence rate of p+1 = 4 as shown
in Tables 1 and 2.

Comparing the errors, we see that the newly developed SBP operator has a smaller L2 error compared
to the classical FD-SBP operator. The maximum allowable time step/maximum CFL number for the degree
preserving operator is nearly identical to that for the classical FD-SBP operator.

For conforming meshes, these two operators have similar properties. However, since the degree of the norm
matrix of the degree preserving operator is Ø 2p, we are able to couple these operators in a stable manner on
non-conforming meshes without losing an order in the convergence rate, as demonstrated in Sec. 5.3. This is
not possible for classical FD-SBP operators.
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N1 = 22 and N2 = 24
DOFS L2 EOC
2120 4.93E-04
8480 5.45E-05 3.2
33920 5.90E-06 3.2
135680 6.13E-07 3.3
542720 6.72E-08 3.2
2170880 7.54E-09 3.2
Maximum CFL number: 2.24

Table 3: Non-conforming method with clas-
sical FD-SBP operators and N2 = N1 + 2.

N1 = 22 and N2 = 44
DOFS L2 EOC
4840 4.27E-04
19360 4.63E-05 3.2
77440 5.04E-06 3.2
309760 5.35E-07 3.2
1239040 5.96E-08 3.2
4956160 6.82E-09 3.1
Maximum CFL number: 2.16

Table 4: Non-conforming method with clas-
sical FD-SBP operators and N2 = 2N1.

5.2 Coupling classic SBP finite di�erence operators on non-conforming meshes

Here we demonstrate the order loss for non-conforming SBP schemes with classical FD-SBP operators by
using the mesh refinement strategy as described above. We focus on the classical FD-SBP operator with p = 3
as in Sec. 5.1. To apply a non-conforming scheme we need to discretize œ into elements with di�erent nodal
distributions. We divide the domain œ into four subdomains:

œ1 = [0, 0.5] ◊ [0, 0.5],
œ2 = [0, 0.5] ◊ [0.5, 1],
œ3 = [0.5, 1] ◊ [0, 0.5],
œ4 = [0.5, 1] ◊ [0.5, 1].

In subdomains œ1 and œ4, we set all elements to have N2
1 nodes (N1 in both directions), whereas in œ2 and

œ3 we set all elements to have N2
2 nodes. For the simulations we considered two test cases with N1 = 22 and

N2 = 24, as well as N1 = 22 and N2 = 44. For both configurations we have nodes that do not coincide on
≈1 := {0.5} ◊ [0, 1] and ≈2 := [0, 1] ◊ {0.5}. For the degree 3 operator we consider the projection operators
derived by Kozdon and Wilcox [20]. These operators are of degree p ≠ 1 = 2, so the non-conforming method is
not degree preserving. Since the norm matrix of classical FD-SBP operators is 2p≠1 accurate, it is not possible
to construct projection operators that are degree preserving and stable at the same time [21]. In Tables 3 and
4, we see that these operators do not maintain an EOC of p + 1 or higher. In comparison, for the conforming
case we achieve an EOC of p + 1. In the next section we will see, that by considering degree preserving SBP
operators the non-conforming scheme maintains an EOC of p + 1 of higher.

5.3 Coupling of degree preserving SBP operators on non-conforming meshes

To demonstrate the e�ciency of the two dimensional degree preserving SBP-SAT scheme, we construct the
SATs using tensor products, as briefly described in Appendix A. By doing so we can directly compare our
non-conforming method with already existing coupling methods [20,24], since these methods are also tensor
product based.

For this numerical test we couple the new degree preserving SBP operators. To do so we divide œ in the same
way as in Sec. 5.2. On each of the subdomains we consider the same nodal distribution, so the discretizations
do not di�er. For ≈1 and ≈2 we construct tensor-product based projection operators, as discussed in Appendix
A. For the numerical results we consider three choices for the intermediate grid nodes with a corresponding
surface-norm matrix:

1. The nodes and norm matrix in one dimension from elements within œ1 and œ4, Fig. 4.
2. The nodes and norm matrix in one dimension from elements within œ2 and œ3, Fig. 5.
3. Twice the amount of nodes as on the most dense element in one dimension with the norm matrix adapted

from the SBP operator, Fig. 6.

For each set of nodes, the norm matrix on the intermediate grid is of degree > 2p, so it is possible to create
the appropriate projection matrices. However, no matter how we choose the intermediate grid, we achieve a
convergence rate Ø p + 1 = 4, as shown in Tables 5-10.

Considering the mesh configuration where the DOFs are the same, there is no change in the maximum
CFL number. However, the L2 error is smaller if the intermediate grid contains more nodes, see Figs. 7 and 8.
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N1 = 22 and N2 = 24
DOFS L2 EOC
2120 4.23E-03
8480 3.06E-04 3.8
33920 1.97E-05 4.0
135680 1.15E-06 4.1
542720 6.52E-08 4.1
2170880 3.62E-09 4.2
Maximum CFL number: 2.25

Table 5: Degree preserving SBP opera-
tors: Intermediate grid with 22 nodes and
N2 = N1 + 2.

N1 = 22 and N2 = 44
DOFS L2 EOC
4840 2.83E-03
19360 2.01E-04 3.8
77440 1.21E-05 4.1
309760 6.50E-07 4.2
1239040 3.20E-08 4.3
4956160 1.59E-09 4.3
Maximum CFL number: 2.17

Table 6: Degree preserving SBP opera-
tors: Intermediate grid with 22 nodes and
N2 = 2N1.

N1 = 22 and N2 = 24
DOFS L2 EOC
2120 5.18E-03
8480 3.56E-04 3.9
33920 2.19E-05 4.0
135680 1.27E-06 4.1
542720 7.28E-08 4.1
2170880 4.06E-09 4.2
Maximum CFL number: 2.25

Table 7: Degree preserving SBP opera-
tors: Intermediate grid with 24 nodes and
N2 = N1 + 2.

N1 = 22 and N2 = 44
DOFS L2 EOC
4840 1.91E-03
19360 1.31E-04 3.9
77440 8.30E-06 4.0
309760 4.77E-07 4.1
1239040 2.67E-08 4.2
4956160 1.51E-09 4.1
Maximum CFL number: 2.17

Table 8: Degree preserving SBP opera-
tors: Intermediate grid with 44 nodes and
N2 = 2N1.

Within these error plots, DPxx denotes the simulation with degree preserving operators where the intermediate
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N1 = 22 and N2 = 24
DOFS L2 EOC
2120 1.05E-03
8480 7.05E-05 3.9
33920 4.17E-06 4.1
135680 2.28E-07 4.2
542720 1.29E-08 4.1
2170880 7.16E-10 4.2
Maximum CFL number: 2.25

Table 9: Degree preserving SBP opera-
tors: Intermediate grid with 48 nodes and
N2 = N1 + 2.

N1 = 22 and N2 = 44
DOFS L2 EOC
4840 6.56E-04
19360 4.10E-05 4.0
77440 2.25E-06 4.2
309760 1.21E-07 4.2
1239040 6.93E-09 4.1
4956160 4.07E-10 4.1
Maximum CFL number: 2.17

Table 10: Degree preserving SBP opera-
tors: Intermediate grid with 88 nodes and
N2 = 2N1.
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Fig. 7: L2 error for N2 = N1+2 and di�erent
intermediate grids.
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Fig. 8: L2 error for N2 = 2N1 and di�erent
intermediate grids.

grid consists of xx nodes, and KW denotes the simulation with classical FD-SBP operators and the projection
operators of Kozdon and Wilcox [20].

Note that the degree of the di�erentiation matrix for all simulations is the same (p = 3). The EOC of
about one order higher is due to the fact that we can construct projection operators of one degree higher than
with classical FD-SBP operators as a result of using degree preserving operators.

5.4 Numerical verification of conservation and energy stability

As was shown in Thm. 3, the new scheme is conservative and energy stable. To verify this result we use
a more complicated mesh distribution. We divide the domain œ into eight elements in the x-direction and
y-direction, resulting in a mesh of 64 total elements. We divide the mesh distribution into a checker board
pattern of di�erent node distributions. Imagine that the tiles of the checker board are elements. In all black
tiles we consider the degree preserving operator with p = 3 and 22 nodes in each direction. For all white tiles
we consider the same operator with 24 nodes in each direction. By distributing the mesh in this way, there is
no interface in the interior of the domain where the nodes are conforming. So a projection must be taken into
account at each interface. With this mesh distribution we consider two simulations, one using a upwind flux
‡ = 1 and one using a central flux ‡ = 0.

We verify the stability results by writing the fully coupled system as a linear equation

du

dt
= Au. (5.2)

By computing the eigenvalues of A we get the spectrum plot in Fig. 9 and 10.
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Fig. 9: Non-conforming scheme with an up-
wind flux. All real parts of the eigenvalues
are non-positive which indicates energy sta-
bility.
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Fig. 10: Non-conforming scheme with a cen-
tral flux. All real parts of the eigenvalues
are zero (besides round-o� errors) which in-
dicates energy conservation.

For all eigenvalues the real parts are non-positive demonstrating an energy stable scheme. Furthermore, when
considering a central flux all eigenvalues are purely imaginary which leads to energy conservative scheme.

Besides the eigenvalues spectrum we analyze the behaviour of energy over time. Therefore, we consider
simulations with T = 10 and CFL = 0.25. Throughout the simulations, we measure conservation and energy
in terms of

conservation metric :=

-----

Kÿ

i=1
Ji1

THiui(T ) ≠
Kÿ

i=1
Ji1

THiui(0)

-----,

energy :=
Kÿ

i=1
Jiu

T
i Hiui,

(5.3)

where K denotes the number of elements and Ji, Hi,ui denote the mapping term, norm matrix and solution
of the corresponding element respectively. As initial condition we consider the discontinuous function, as this
is a demanding test of the conservative properties of the scheme,

U(x, y, t) =

I
3 for x Æ 0.3
1 for x > 0.3

, (5.4)

with periodic boundary conditions. To show that the new scheme is conservative and energy stable for nearly
arbitrary nodal distributions on the intermediate grid, we consider the minimum number of nodes case where
M≈̂ has the minimum nodes required to be at least of degree 2p. To do so we consider an intermediate grid
with four Legendre-Gauss nodes with corresponding weights for the diagonal entries of M≈̂ .

As we can see in Fig. 11, conservation holds. By using an upwind SAT, energy is dissipated, whereas using
a central SAT the energy remains constant in time, as shown in Fig. 12. For this test case the intermediate
grid has four Gauss nodes, whereas there are many more nodes on the elements. This numerically verifies
conservation and energy stability for this particular test case. However, as proven in Sec. 4, this behavior
occurs for all kinds of mesh distributions.

Remark 4. By considering intermediate grids with minimum number of Gauss nodes and applying the same
test as in Sec. 5.3, we also maintain an EOC higher than p + 1 as shown in Tables 11 and 12.

However, the L2 error is larger than the presented ones in Sec. 5.3. This underlines the assumption that
the number of nodes on the intermediate grid is related to the overall L2 error.
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Fig. 11: A semilog plot that demonstrates
the evolution of the absolute di�erence of
the initial total mass and current total mass
of the solution. This demonstrates numer-
ically that the degree preserving scheme is
globally conservative.
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Fig. 12: Evolution of the energy of the so-
lution for a computation coupled with SATs
using either an upwind or centered flux. We
see that energy is conserved for the central
scheme and energy decays for the upwind
scheme as predicted by the theory.

N1 = 22 and N2 = 24
DOFS L2 EOC
2120 1.20E-02
8480 7.73E-04 4.0
33920 4.66E-05 4.1
135680 2.53E-06 4.2
542720 1.36E-07 4.2
2170880 7.33E-09 4.2
Maximum CFL number: 2.24

Table 11: Degree preserving SBP operators:
Intermediate grid with 4 Gauss nodes and
N2 = N1 + 2.

N1 = 22 and N2 = 44
DOFS L2 EOC
4840 1.21E-02
19360 7.65E-04 4.0
77440 4.59E-05 4.1
309760 2.51E-06 4.2
1239040 1.37E-07 4.2
4956160 7.67E-09 4.2
Maximum CFL number: 2.16

Table 12: Degree preserving SBP operators:
Intermediate grid with 4 Gauss nodes and
N2 = 2N1.

6 Conclusions

In this paper we have derived a non-conforming SBP scheme built from multi-dimensional SATs. When tensor
products are used, such non-conforming schemes have already been derived as in [20,24], where classical FD-
SBP finite di�erence operators are considered. However, due to the use of classical FD-SBP finite di�erence
operators, it is not possible to construct projection operators between non-conforming interfaces that preserve
the degree of the derivative matrix while maintaining energy stability, as proven by Lundquist and Nordström
and given in Thm. 1. This results from the fact that the norm matrix, H(1D), is of degree 2p ≠ 1 and therefore
projection operators can not be constructed that are of degree Ø p. Having identified the norm matrix as the
factor impeding the construction of appropriate projection operators, we focused on the derivation of degree
preserving operators in one dimension. To do so we increased the degree of the norm matrix of the degree
preserving SBP operators to be higher than that used in classical FD-SBP operators.

The new degree preserving SBP operators allowed us to construct a non-conforming, degree preserving,
conservative, and energy stable method. These properties of the scheme were verified analytically as well as
numerically. The main idea of the method is to project the solution from each element to a set of nodes on an
intermediate grid on the interface between elements and evaluate the SAT term on these intermediate nodes.
On the intermediate grid the nodal distribution is arbitrary, as long as a quadrature rule of a minimum degree
exists. In the numerical results, we also considered di�erent intermediate grids.

By comparing our newly developed degree preserving scheme with already existing non-conforming meth-
ods, we achieved experimental orders of convergence of one order higher; this is likely a result of the fact that
the new scheme is globally of degree p.
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A Projection operators

In this section we briefly discuss the construction of the projection operators P
›,L

and P
›,R

of degree p, which are applied
in Sec. 5.3. Here we consider tensor-product based projection operators. As for the tensor-product SBP operators, we derive
the projection operators in one dimension, denoted by P(1D)

›,L

and P(1D)
›,R

. We focus on a left element L and a right element
R with nodal distributions ⌘

L

and ⌘
R

. Let ⌘
≈

denote the nodal distribution on the intermediate grid, then (2.16) and
(2.18) give us

P(1D)
›,L

⌘k

L

= ⌘k

≈

,
1

P(1D)
›,L

2T
M

≈̂

⌘k

L

= H(1D)
÷L

⌘k

≈

,
(A.1)

and

P(1D)
›,R

⌘k

R

= ⌘k

≈

,
1

P(1D)
›,R

2T
M

≈̂

⌘k

R

= H(1D)
÷R

⌘k

≈

,
(A.2)

for k = 0, . . . , p. We reiterate, that the choice of the nodes on the intermediate grid is nearly arbitrary, the only requirement
is that a 2p-accurate quadrature rule exists. In the case of ⌘

≈

= ⌘
L

or ⌘
≈

= ⌘
R

, we set the projection operators to be the
identity matrix. If we consider the Gauss nodes on the intermediate grid as in Sec. 5.4, the projection matrices are fully
determined in the sense that no free parameters remain. In general, (A.1) and (A.2) are insu�cient to fully specify P(1D)

›,L

and P(1D)
›,R

. We want the approximation of the surface integral to be as close as possible to the approximated surface integral

for the conforming case, in a sense that H(1D)
÷L

¥
1

P(1D)
›,L

2T
M

≈̂

P(1D)
›,L

and H(1D)
÷R

¥
1

P(1D)
›,R

2T
M

≈̂

P(1D)
›,R

. Therefore, we use

any remaining degrees of freedom to ensure that the modulus of each eigenvalue of the matrices H(1D)
÷L

≠
1

P(1D)
›,L

2T
M

≈̂

P(1D)
›,L

and H(1D)
÷R

≠
1

P(1D)
›,R

2T
M

≈̂

P(1D)
›,R

is as close to zero as possible.

Similarly, we motivate this optimization by analyzing the numerical flux in the left element for the upwind SAT, i.e.
for ‡ = 1. For conforming nodal distributions, this numerical flux in one dimension for the linear advection equation, with
unit wave speed, reduces to

f
ú,(1D)
L,conf

= –̃RT
›L,N›

H(1D)
÷

R
›L,N›

u
L

. (A.3)

For ‡ = 1, the numerical flux of the non-conforming approximation (2.14) reduces to

f
ú,(1D)
L

= –̃

2
RT

›L,N›

3
H(1D)

÷L
+

1
P(1D)

›,L

2T
M

≈̂

P(1D)
›,L

4
R

›L,N›
u

L

. (A.4)

Here, fú,(1D)
L

= f
ú,(1D)
L,conf

, if H(1D)
÷L

=
1

P(1D)
›,L

2T
M

≈̂

P(1D)
›,L

.

Our approach to optimize the eigenvalues of H(1D)
÷L

≠
1

P(1D)
›,L

2T
M

≈̂

P(1D)
›,L

and H(1D)
÷R

≠
1

P(1D)
›,R

2T
M

≈̂

P(1D)
›,R

is based
on the work of Kozdon and Wilcox [20]. Here, a Levenberg-Marquardt optimization algorithm has been used. We set the
number of optimization iterations within the algorithm to 10. For constructing one-dimensional projection operators a
MATLAB code is provided in the electronic supplementary material (ESM).

B Comparison to the non-conforming method of Kozdon and Wilcox

To put the derivations using the multi-dimensional notation into context, it is useful to observe that for the tensor-product
ansatz our approach is equivalent to the scheme of Kozdon and Wilcox [20]. In their notation, a projection from the left
element to the glue grid is denoted by the one-dimensional projection operator P

L2G

. The back transformation is denoted
by P

G2L

. If we also consider a tensor-product approximation and take the glue grid to be equivalent to our intermediate
grid, then

P
L2G

= P(1D)
›,L

. (B.1)

Due to the accuracy conditions made for P(1D)
›,L

, the operator P
L2G

is also p-th degree.
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For the approach of Kozdon and Wilcox, as for the approach of Mattsson and Carpenter [24], the projection operators
need to satisfy the following condition to ensure stability:

H(1D)
÷L

P
G2L

= PT
L2G

M
≈̂

. (B.2)

Motivated by the stability condition one can construct a transformation back to left element

P
G2L

=
1

H(1D)
÷L

2≠1 1
P(1D)

›,L

2T
M(1D)

≈̂

. (B.3)

Multiplying (B.3) by a monomial, say ⌘k

≈

with k = 0, . . . , p, and using (2.18) we find

P
G2L

⌘k

≈

=
1

H(1D)
÷L

2≠1 1
P(1D)

›,L

2T
M

≈̂

⌘k

≈

¸ ˚˙ ˝
=H(1D)

÷L
⌘k

L

= ⌘k

L

. (B.4)

So the P
G2L

is also p-th accurate. Considering the symmetric SAT in the discretization (2.12 with ‡ = 0) and focusing on
tensor-product operators, we get

SAT = –̃
L

2J
L

H≠1
L

3
RT

›L,N›
H(1D)

÷L
R

›L,N›
u

L

≠ RT
›L,N›

1
P(1D)

›,L

2T
M

≈̂

P(1D)
›,R

R
›R,1uR

4
. (B.5)

Denoting u
L,N

:= R
›L,N›

u
L

and u
R,1 := R

›R,1uR

we can rewrite (B.5) to become

SAT = –̃
L

2J
L

Q

au
L,N

≠ (H(1D)
÷L

)≠1(P(1D)
›,L

)TM
≈̂¸ ˚˙ ˝

=PG2L

P(1D)
›,R¸ ˚˙ ˝

=PR2G

u
R,1

R

b ,

= –̃
L

2J
L

!
u

L,N

≠ P
G2L

P
R2G

u
R,1

"
,

(B.6)

which is precisely the SAT for the Kozdon and Wilcox approach, assuming a symmetric SAT, despite the fact we have a
di�erent approach to derive the SAT.
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