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the four benchmark test cases is based on the NACA0012 airfoil and solutions of the Euler

equations with prescribed objective function and geometric constaints. Volunteer participants

were invited by ONERA to submit their optimized shapes for uniform pressure drag assess-

ment through grid convergence. The assessment required three phases. Initial investigations

with a simple protocol proved insufficient and raised some questions. This led to further inves-

tigations which showed that for most optimized airfoils there exists a lower drag branch and a

higher drag branch in the drag (Mach number) diagram. Hysteresis was observed when per-

forming a downward Mach number sweep and an upward Mach number sweep. For several

airfoils, the design Mach number falls within the overlap range of the two branches, which

indicates that two solutions may exist for the same airfoil. Two kinds of supersonic flow struc-

ture can be distinguished. One kind produces a lower drag branch, the other a higher drag

branch. The jump from one branch to the other involves non symmetrical converged solutions.
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These further investigations required a final assessment, where a protocol was instituted to en-

sure that the lower drag branch was captured by taking advantage of the hysteresis. However,

nonuniqueness may confound an optimization algorithm, as the same set of design variables

can give two different objective function values.

I. Introduction

AIAA launched in 2013 the Aero-Design Optimization Discussion Group ADO-DG with prescribed common test

cases. One of the test cases is based on the NACA0012 airfoil with solutions of the Euler equations. The objective

function to be minimized is the pressure drag coefficient CDp and the constraint is that at any chordwise location,

thickness must be greater than, or equal to, that of the initial airfoil. The aerodynamic conditions are for a single

design point at M∞ = 0.85, α = 0◦.

Volunteer participants were invited by ONERA to submit their optimized shapes as a list of point coordinates for

uniform pressure drag assessment through grid convergence. Seven shapes from six participants, ONERA, NASA/Stanford

University, McGill University, University of Bristol, The Boeing Company and University of Toronto, were submitted.

They are documented in references [1–10]. They were obtained with very different parameterization types, numbers

of design variables, optimization algorithms and flow solvers. It seemed in line with the Discussion Group spirit that

one partner carry out an assessment process, identical for all the optimized airfoils.

In Section 2 baseline and optimized airfoils are presented. In Section 3 the planned assessment protocol is de-

scribed. In Section 4 it is shown that for such unusual airfoils as those investigated here, the planned protocol is too

simple. In Section 5, further investigations provide clearer insight into the phenomenas. This insight leads to the final

assessment presented in Section 6. Concluding remarks are given in Section 7.

II. Baseline and Optimized Shapes

The test case [11] is based on work by Vassberg et al. [12]. However, here trailing edge closure at x = 1 is ensured

through a modification of the polynomial definition of the NACA0012 x4 coefficient. The modified airfoil equation is

y = ±0.6 (0.2969
√

x − 0.1260 x − 0.3516 x2 + 0.2843 x3 − 0.1036 x4) (1)

Information about the optimized airfoils and the approaches used is contained in table 1.

The upper lines of the baseline and optimized airfoils are plotted in figures 1 and 2. All optimized airfoils sat-
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Table 1 Information about optimized airfoils

identification design parameter design variables optimization optimization

-ization type algorithm grid size

(cell numbers)

airfoil 1 ONERA Bézier 96→ 127 SLSQP→ DOT 65,536

airfoil 2 McGill B-splines 16 SNOPT [13] 98,000

University

airfoil 3 University B-splines 18 SNOPT [13] 192,000

of Toronto

airfoil 4 University Symmetric 8→ 15 GSA (8 modes) 131,072

of Bristol SVD modes → FSQP (15 modes)

airfoil 5 Boeing Free Surface 799 Smoothed 1,310,720

(Symmetric) Steepest Descent

airfoil 6 NASA / radial basis 7→ 15→ 31 SNOPT [13] 122,000

Stanford functions

University

airfoil 7 ONERA Bézier 96 airfoil 1

→ SLSQP 65,536

isfy the thickness constraint, thickness greater or equal to the baseline airfoil thickness at all chordwise locations. All

optimized airfoils have common features: a blunt leading edge, a “flat top”, a highly curved rear region and a large

trailing edge included angle, which were also features of the optimized airfoils in [12]. However, as expected given

the variety of the approaches (table 1), significant differences appear between their shapes.

III. Planned Assessment Protocol

The grids are based on some of the NACA0012 airfoil grids of Vassberg and Jameson [14]. These highly regular grids

with quasi-orthogonal cells have an O-type topology with identical numbers of cells in the two directions. If nc is this

number, levels nc = 256,512,1024 are used in this study. The grid for level nc = 256 for airfoil 1 is illustrated in

figure 4. The metric properties of these grids were designed to ensure a quasi linear behavior of pressure drag with

1/nc2 for usual second order finite volume formulations. That was the case in [14], where extrapolation to zero mesh

size was thus straightforward. It remained so for the various optimized airfoils produced by ONERA and compared in

[1].

The optimized airfoils, requested to number at least 129 points, are transformed into series of 2048 points through

spline interpolation. The NACA0012 nc = 2048 grid is then projected onto their shape. The resulting grid is coarsened

to levels nc = 1024,512 and 256 for the resolution of the Euler equations.
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The Euler solutions are computed with the ONERA elsA software [15, 16]. As in the assessment computations of

[1], the centred scheme of Jameson [17] with the JST artificial dissipation is used, dissipation coefficients being set to

κ2 = 0.5, κ4 = 0.008. To facilitate convergence, a wall slip condition instead of a matching condition is applied to the

grid lines joining the trailing edge and the downstream grid boundary, see figure 4. Based on previous experience, the

default number of iterations for the present study was set to 5000, with 3 multigrid levels.

The planned protocol was, for each airfoil, to perform three computations, nc = 256,512,1024, at the unique

design conditions, M∞ = 0.85,α = 0◦, and to extrapolate to zero mesh size through the procedure described in [14].

Things did not turn out as straightforwardly as anticipated and led to further investigations.

IV. Initial Investigations

The planned protocol was first systematically applied to the seven airfoils. Anomalies appeared for some of them. At

this stage, it is enough to consider airfoils 1 and 2.

Convergence of the residual L∞ norm of variable ρ is plotted in figures 5 and 6. For airfoil 1, convergence is

as expected from common experience, reaching machine zero level and requiring more iterations with a finer grid

level than with a coarser (figure 5). Such is not the case for airfoil 2 (figure 6), where machine zero level is reached

with the coarsest and the finest grid but not with the medium grid. Pressure drag computation was still performed,

though with dubious results. Indeed a striking anomaly affects the behavior of airfoil 2 pressure drag through grid

refinement, plotted in figure 7. Pressure drag of airfoil 1 decreases with grid refinement because spurious drag [18]

(mostly at the blunt leading edge) decreases, while the flow physics (shock waves) are not disturbed. The opposite

behavior with airfoil 2, added to the convergence anomaly, leads us to suspect some flow topology change with grid

refinement.

Chordwise pressure coefficient distributions on airfoil 2 for the three grid refinement levels are plotted in figure 8.

The topology change is from a unique supersonic/subsonic shock trace with the coarsest grid (thick line in the figure)

to an initial supersonic/subsonic shock trace followed by a strong expansion leading to a second supersonic/subsonic

shock trace with the medium and fine grid.

This calls for several remarks: 1) the double shock pattern was not found by the designers of airfoil 2 who checked

it with several solvers [2] and found consistently much lower drag coefficient levels (around 40 drag counts, not 90 as
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in figure 7); 2) the difficult convergence with the medium grid must come from the fact that the flow is still close to the

topology change; 3) the double shock will produce much more wave drag than the unique shock (in the present case),

which accounts for the anomaly of figure 7, which shows much higher drag with fine grid than with coarse grid.

As pointed out by Vassberg et al. in [12], to understand drag production with airfoils of the kind dealt with here,

“one must inspect the flowfield, not just the properties on the airfoil surface”. This will be done extensively in a sub-

sequent section entitled Final assessment. Here such inspection is limited to the finest grid solutions for airfoils 1 and

2, figures 9 and 10 displaying supersonic iso-Mach number line patterns. Airfoil 1 shows a single supersonic area (for

a half-airfoil), airfoil 2 a double supersonic area. Airfoil 1 produces a supersonic/subsonic shock at a distance in the

field and, near the airfoil, a more complex structure consisting of a supersonic/supersonic shock followed by a short su-

personic expansion and ending with a supersonic/subsonic shock. Airfoil 2 produces an extended supersonic/subsonic

shock in the field and a subsonic-to-supersonic expansion leading to a second less extended supersonic/subsonic shock.

The first type of solution will be called solution of the first kind in this paper and the second type solution of the second

kind.

V. Further Investigations

Airfoil 2 supports a solution of the first kind in [2] and with the coarsest grid of the present study, but a solution of

the second kind with the finer grids. At this stage, an hypothesis could not be neglected, that of “non-unique solutions

of a discrete model of the Euler equations” as first evidenced by Jameson [19], then by Hafez and Guo [20]. In [21],

Jameson et al. produced other non-unique solutions for airfoils of the same type as those investigated in the present

paper. Ou et al. [22] confirmed multiple solutions for airfoils from [21] in unsteady viscous flow. The same authors

showed that the problem is not limited to 2D airfoils but may arise for wings as well [23].

Similar shock structures to those encountered in the present study are also discussed by Kuz’min and Ivanova

in [24]: “singular free-stream Mach numbers, which trigger the splitting/amalgamation of local supersonic regions”.

A physical interpretation of this phenomenon given by these authors is that in non-isentropic steady flow, the down-

stream boundary of a supersonic area cannot physically be in contact with the upstream boundary of another supersonic

area. So, when, through some infinitesimal perturbation, a unique supersonic area is split into two areas, the process

must be discontinuous.

In these further investigations, it was chosen to take Mach number as the perturbation factor. Downward Mach

number sweeps were computed with the coarsest nc = 256 grid level for all airfoils, around the design Mach number

M∞ = 0.85 with a step ∆M∞ = −0.0001. Except for the first computation, at M∞ = 0.85, all subsequent calculations
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were started from the converged state at M∞ + ∆M∞. The prescribed number of iterations was 3000. Most computa-

tions reached machine zero. When such was not the case, solutions with uncertainty |∆CDp | ≥ .01 drag count were

rejected, hence the gaps seen in figures 11 and 12. The purpose of these tests was looking for solutions of the first and

second kind and the topology change from one to the other. If an airfoil may support both kinds of solution, high Mach

numbers are likely to produce the first kind, with a shock located close to the trailing edge. Indeed, for all airfoils,

a solution of the first kind is obtained with the maximum Mach number M∞ = 0.8505. When the Mach number is

lowered, a solution of the second type is always obtained, but through two different mechanisms, one discontinuous,

one continuous, see figures 11 and 12. All airfoils but airfoil 5 undergo a discontinuous jump from a solution of the

first kind to a solution of the second kind through the splitting of a single supersonic area into two as described in [24],

with a correlative discontinuous drag increase. This occurs just below the design point Mach number M∞ = 0.85. It

can be seen that airfoil 5 behaves differently from the other airfoils. The reason is that, for this airfoil, transition from

a solution of the first kind to a solution of the second kind does not happen through the splitting of a single supersonic

area but through the appearance of a second, separate, continuously growing, supersonic area, with no contact with

the primary one in the investigated range.

From these coarse grid results, three airfoils were selected for fine grid checking (nc = 1024), and performing

an upward Mach number sweep after the downward sweep. The objectives were to search for hysteresis behavior

which would account for multiple solutions, and to investigate probable transient non-symmetrical solutions (one ap-

pears in figure 12 for airfoil 7). The chosen airfoils are airfoil 2 because of suspicion of multiple solutions, airfoil

5 for its unique continuous behavior and airfoil 7 the lowest drag airfoil at design conditions. The width of the ex-

plored Mach number range is narrower than with coarse grids, between M∞ = .8490 and M∞ = .8505. The basic

step, ∆M∞ = ±0.0001, has been empirically refined around discontinuities for airfoil 7 in search of non-symmetrical

solutions.

CDp (M∞) curves are plotted in figure 13. For airfoils 2 and 7, this figure shows a lower drag branch and a

higher drag branch. During the downward Mach number sweep, the solution jumps from the lower branch to the

higher branch, while in the upward sweep it jumps back to the lower drag branch. Hysteresis makes the two jump

Mach numbers different. So, in a narrow Mach number band, double solutions may be obtained. The design Mach

number, M∞ = 0.85 is inside this band. The lower drag branch consists of solutions of the first kind, the upper drag

branch of solutions of the second kind. With airfoil 5 a unique branch is found, with continuous transition from the

first to the second kind through the development of a downstream supersonic area separated from the primary one.

For airfoil 7, figures 14, 15, 16 illustrate the two-phase topology change from the first kind to the second kind
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through a non-symmetrical solution, first kind on the upper side, second kind on the lower side. Convergence of

these three computations is plotted in figure 17. It is slow immediately before the topology change, fast in the non-

symmetrical case and immediately after the topology change. In the upward sweep, the non-symmetrical solution

(second kind on the upper side, first kind on the lower side) is less transient than in the downward sweep.

It should be noted that a similar behavior was found for one of the present airfoils with an entirely different

flow solver [6]: it is not an artefact of the solver used in this study.

The shock pattern of solutions of the first kind for airfoils 2 and 7 shows a long supersonic-subsonic wave away

from the airfoil surface, broken down into a short supersonic-supersonic wave and a short supersonic-subsonic wave

near the airfoil surface. This might be the feature which accounts at once for very low drag and instability. In solutions

of the second kind, the pattern is simpler: two supersonic-subsonic waves separated by an expansion.

VI. Final Assessment

For airfoils 2 and 7 the existence of a lower drag branch over the design Mach number and of a higher drag branch

below, with some overlap providing double solutions, has thus been evidenced. The lower drag branch consists of

solutions of the first kind while the upper drag branch consists of solutions of the second kind. Figures 11 and 12

suggest that it might also be the case for airfoils 1, 3, 4, 6. So a modified assessment protocol taking advantage of

the downward sweep hysteresis was devised: 2000 iterations at M∞ = 0.8505 + 2000 iterations at M∞ = 0.85025 +

5000 iterations at M∞ = 0.85. This procedure led computations of all airfoils susceptible of a double branch (1, 2,

3, 4, 6, 7) to lower drag branch solutions of the first kind, see figures 18, 19, 20, 21, 23, 24. In the case of airfoil 5,

which does not have a branch at the design point, the solution shows a single supersonic area (for a half-airfoil), figure

22, but the iso-Mach number line pattern is not strictly of the first kind. A close look at figure 22 does show a short

supersonic/supersonic wave, but this wave is detached from the airfoil.

Computed pressure drag coefficient values are gathered in table 2 and figure 25. With the modified assessment

protocol, for all airfoils drag decreases as the grid is being refined, compare figure 25 to figure 7. Extrapolation to

zero mesh size was attempted following the method of [14]. The measured order of accuracy with this method varies

between 1.5 and 2.2 depending on the airfoil considered. But considering the coarseness of level nc = 256 and the

imperfect linear behavior for some airfoils, extrapolated data were not retained.

Different grid dependency slopes in figure 25 reflect different levels of spurious drag. More or less blunt lead-

ing edges will induce more or less spurious drag because spurious drag at the leading edge is influenced by pressure
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gradients. This can be illustrated by comparing the curvature of airfoils 3 and 6 in figure 26. Curvature is computed

with the reduced curvilinear abscissa parameter, 0 at the lower side trailing edge, 0.5 at the leading edge, 1 at the

upper side trailing edge. Airfoil 6 is much blunter than airfoil 3. Consistently, the grid dependency slope in figure 25

is much higher for airfoil 6 than for airfoil 3. A normally rounded leading edge such as the NACA0012’s produces

weaker pressure gradients than the blunt leading edges of the airfoils investigated here. (With an inviscid flow model,

a squared leading edge would induce infinite pressure gradients.) The much larger amounts of spurious drag with the

optimized shapes than with the NACA0012 is obvious in table 2.

If the differences in grid dependency slope arise from numerical effects (spurious drag), those in finest grid drag

level arise mostly from physical phenomena (wave drag). All airfoils but one support a shock structure of the first

kind, airfoils 1, 2, 3, 4, 6, 7. However there are differences between these structures (figures 18, 19, 20, 21, 23, 24).

An attempt at identifying a relation between drag and the length of the supersonic / supersonic wave is presented in

figure 27 with an exponential fit at the data points. It is acknowledged that the length measurement involves a part of

subjectivity, but the ambition is only to identify this supersonic wave length as a major factor in wave drag production

in solutions of the first kind. It is obvious that there must be other shock features that contribute to the wave drag

variation, such as shock angle and curvature.

Table 2 Grid convergence of pressure drag coefficient (expressed in drag counts)

mesh size CDp CDp CDp CDp CDp CDp CDp CDp

NACA0012 airfoil 1 airfoil 2 airfoil 3 airfoil 4 airfoil 5 airfoil 6 airfoil 7

nc = 256 473.3 58.3 69.0 54.0 106.3 99.6 84.9 52.3

nc = 512 471.6 40.8 40.6 44.5 89.8 87.7 55.1 32.5

nc = 1024 471.2 36.7 31.8 42.4 86.1 85.0 44.7 27.9

VII. Conclusion

One of the test-cases of the AIAA Aero-Design Optimization Discussion Group is based on the NACA0012 airfoil

with solutions of the Euler equations. The purpose of the present study was to provide a pressure drag assessmant of

the optimized shapes by several participants through grid convergence. It had been anticipated that this study would

be straightforward and dull. Fortunately, initial investigations produced anomalies and raised questions. Further

investigations, much inspired by Jameson’s 1991 paper on non-unique numerical solutions of the Euler equations and

Jameson et al. sequel of 2012, showed that for most of the airfoils investigated there exists a lower drag branch and a

higher drag branch in the drag coefficient vs. Mach number diagram. Hysteresis when performing a downward Mach

number sweep and an upward Mach number sweep was such that, for several airfoils, the design point was inside
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the overlap range of the two branches, which means a double solution at this point. A low drag converged solution

or a high drag converged solution could be found depending on the history of the computation. Dependency on

computation history is rather unwelcome in CFD but cannot be ignored. Two typical structures of supersonic flow were

distinguished. One consists in a single supersonic flow area containing a supersonic/supersonic wave starting from

the airfoil surface. The other involves two separate supersonic flow areas without a supersonic/supersonic wave. The

jump from one branch to the other is due to flow topology change from one kind to the other. The first kind produces a

lower drag branch, the second kind a higher drag branch. The topology change from one kind to the other may involve

non symmetrical converged solutions, of the first kind on one side of the airfoil and of the second kind on the other.

For the final assessment, a procedure that takes advantage of the hysteresis was used to ensure capture of the lower

drag branch at the design point. Reliable drag dependency on grid refinement was thus obtained. A relation between

the drag efficiency and the length of the supersonic/supersonic wave has been proposed. All airfoils but one admit two

branches, the optimum being a solution of the first kind. The airfoil behaving differently is of neither kind. It supports

a single supersonic area but the supersonic wave is separated from the airfoil. Its drag level is among the highest, but

its behavior in a Mach sweep is continuous, as if excellence in single-point drag minimization in highly transonic flow

involved the drawback of instability in the vicinity of the optimum. The conclusion of Jameson’s 1991 paper contains

the warning that optimization does not necessarily lead to a good design. As regards nonunique solutions, which have

been identified by other authors, although there is no reason why they might not occur with shapes not derived from

optimization, the present paper indicates a strong correlation between optimality and nonuniqueness: six of the seven

optimized airfoils support nonunique solutions.

For the airfoils apt to support multiple solutions, the optimization algorithms used by the various participants

always led to the lower drag branch, which is satisfactory for the ADO-DG purpose. However, nonuniqueness may

have negative effect on convergence of an optimization algorithm (as the same set of design variables can give two

different objective function values). The present paper, concentrating on numerical flow physics investigations, does

not contain a critical discussion of the different optimization methods or parameterizations. From the data produced

here, a follow-up paper dedicated to such a discussion might be of interest. However the present paper already provides

an overview of the status of the optimization results obtained by the different teams having worked on the ADO-DG test

case # 1 during the two first years since its creation. It will also, hopefully, encourage new participants to investigate

this optimization test case and try to achieve designs even closer to a shock-free airfoil.
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Fig. 1 Baseline and optimized shapes (1)
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Fig. 2 Baseline and optimized shapes (2)
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Fig. 5 Airfoil 1. Convergence of L∞ norm residual of ρ
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Fig. 6 Airfoil 2. Convergence of L∞ norm residual of ρ
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Fig. 7 Grid refinement effect on pressure drag coefficient following planned protocol
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Fig. 8 Airfoil 2. Planned protocol. Chordwise pressure coefficient distributions
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Fig. 9 Airfoil 1, nc = 1024 grid, planned protocol - supersonic iso-Mach number lines (∆M = 0.025)
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Fig. 10 Airfoil 2, nc = 1024 grid, planned protocol - supersonic iso-Mach number lines (∆M = 0.025)
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Fig. 11 Coarse grid downward Mach number sweep for airfoils 1, 2, 3, 4
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Fig. 12 Coarse grid downward Mach number sweep for airfoils 5, 6, 7
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Fig. 13 Fine grid downward and upward Mach number sweeps for airfoils 2,5,7
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Fig. 14 Airfoil 7, nc = 1024 grid - downward Mach number sweep, M∞ = 0.849425 - supersonic iso-Mach
number lines (∆M = 0.025)
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Fig. 15 Airfoil 7, nc = 1024 grid - downward Mach number sweep, M∞ = 0.8494245 - supersonic iso-Mach
number lines (∆M = 0.025)
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Fig. 16 Airfoil 7, nc = 1024 grid - downward Mach number sweep, M∞ = 0.849424 - supersonic iso-Mach
number lines (∆M = 0.025)
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Fig. 18 Airfoil 1, lower drag branch, nc = 1024 - supersonic iso-Mach number lines (∆M = 0.025)
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Fig. 19 Airfoil 2, lower drag branch, nc = 1024 - supersonic iso-Mach number lines (∆M = 0.025)
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Fig. 20 Airfoil 3, lower drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Fig. 21 Airfoil 4, lower drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Fig. 22 Airfoil 5, unique drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Fig. 23 Airfoil 6, lower drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Fig. 24 Airfoil 7, lower drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Fig. 25 Grid refinement effect on pressure drag coefficient following modified protocol
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Fig. 26 Curvature of airfoils 3 and 6 (detail)
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Fig. 27 Relation between supersonic/supersonic wave height and pressure drag
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