
2013-2583
21st AIAA Computational Fluid Dynamics Conference, June 24-27, 2013, San Diego, CA

Toward High-Fidelity Aerodynamic Shape
Optimization for Natural Laminar Flow

Ramy Rashad∗ and David W. Zingg†∗

University of Toronto, Toronto, Ontario M3H 5T6, Canada

High-fidelity aerodynamic shape optimization frameworks capable of efficiently incor-

porating and exploiting laminar-turbulent transition enable the design of aircraft with

significantly reduced drag. This work presents recent progress toward that end. First, a

two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver is extended to in-

corporate an iterative laminar-turbulent transition prediction methodology. The natural

transition locations due to Tollmien-Schlichting instabilities are predicted using the com-

pressible form of the Arnal-Habiballah-Delcourt criterion or alternatively, the simplified eN

envelope method of Drela and Giles. The boundary-layer properties are obtained directly

from the Navier-Stokes flow solution and the transition to turbulent flow is modeled using

an intermittency function. The RANS solver is subsequently employed in a gradient-based

sequential quadratic programming shape optimization framework. The laminar-turbulent

transition criteria are tightly coupled into the objective and gradient evaluations. The

gradients are obtained using a parallelized finite-difference approximation. The proposed

optimization framework is applied to the lift-constrained drag minimization of airfoils at

various flight conditions, leading to natural laminar flow designs.

I. Introduction and Motivation

The current push for environmentally responsible aviation requires serious efforts to mitigate the escalating
effects of such technology on climate change and natural resources. A clear vision for the efficiency

of future transport aircraft – with specific targets for reduced fuel burn, emissions and noise – has been
published in the U.S. National Aeronautics Research and Development Plan.1 As a result, manufacturers
and researchers are investigating both conventional and unconventional aircraft designs to meet these targets.
As part of the effort to reduce fuel burn and emissions, aerodynamicists are assessing the feasibility of natural
laminar flow (NLF) as a key enabler of environmentally responsible commercial aviation.

In the late nineteenth and early twentieth centuries, the breakthrough work of Reynolds and Prandtl
began to shed light on the existence, theory, and experimentation of boundary-layers and laminar-turbulent
transition.2 More than a century has passed, and designers have since become heavily reliant on Computa-
tional Fluid Dynamics (CFD), as well as single and multidisciplinary design optimization tools. Despite this,
there remain few NLF applications in the current commercial fleet, with Honda’s recent HA-420 business
jet3 and the nacelles on the recent Boeing 7874 being among the first, if not the only applications to date.
Over the past few decades, the use of CFD under the assumption of fully-turbulent conditions has allowed
for stunning advancements in aerodynamic design, but the conservatism leaves something to be desired.
Indeed, design tools capable of incorporating and exploiting laminar-turbulent transition enable the design
of aircraft with significantly reduced drag.

The lack of NLF applications in the fleet points to the sparsity of available design tools for NLF; it also
points to the challenges in reliably realizing extended regions of laminar flow in flight. The transition to
turbulence is affected by many factors, including: Reynolds number (Re), freestream turbulence intensity
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(Tu), pressure gradients, Mach number (M), surface roughness and heating, structural noise, rain, hail, icing,
and insect impacts.2,4–6

Although the preceding list of factors is quite formidable, so are the economic and environmental in-
centives to investigate the theoretical, experimental, and computational methods that may actualize NLF
in commercial aviation. Hence, engineers are exploring a variety of techniques that work to promote lam-
inar flow, including: shaping the aircraft to maintain favourable pressure gradients and lower sweep an-
gles, distributing surface roughness elements to stabilize crossflow instabilities, slat-less wing configurations,
boundary-layer suction and wall heating, plasma and piezoelectric actuators, non-stick materials and coat-
ings, and new manufacturing and maintenance procedures. Therefore, the development of design tools
capable of efficiently exploiting any of the available techniques are of immediate consequence and benefit.

In this work, NLF design is demonstrated through high-fidelity aerodynamic shape optimization with
transition prediction capable of accounting for the effects of Re, Tu, M, and the pressure gradients. The
Reynolds-averaged Navier-Stokes (RANS) equations are solved using the one-equation Spalart-Allmaras (SA)
turbulence model. The solver is first extended to incorporate an iterative laminar-turbulent transition pre-
diction methodology, and is subsequently employed in a gradient-based Sequential Quadratic Programming
(SQP) shape optimization framework. The proposed framework presents a good compromise between accu-
racy, robustness, and efficiency resulting in a flexible, high-fidelity, RANS-based optimization framework for
NLF design in subsonic and transonic flight.

II. Background

II.A. Transition Prediction in RANS Solvers

The challenges in reliably predicting laminar-turbulent transition continue to limit our ability to predict
many aerodynamic flows with accuracy.7 Consequently, the development of transition prediction methods of
varying complexity and fidelity is ongoing. While there are several mechanisms that may lead to transition,
the two dominant mechanisms typically encountered in high-speed external aerodynamic flows are Tollmien-
Schlichting and crossflow instabilities.8

The turbulence models used in RANS solvers do not have the stand-alone capability to predict the
laminar-turbulent transition locations in a flow field; in order to predict transition, one must apply a transi-
tion criterion. In recent years, several approaches for incorporating transition prediction into RANS solvers
have been developed. A review by Arnal et al.9 discusses the various advantages and disadvantages of each
approach in detail. The following list attempts to categorize the available strategies:

1. Coupling of a RANS code with a linear or parabolized stability solver and the e
N criterion.10–14

2. Direct implementation of simplified e
N methods into the RANS code.6,15–18

3. Direct implementation of analytical transition onset functions (criteria typically based on Rex or Reθ)
into the RANS code.15–17,19

4. Coupling of a RANS code with a boundary-layer code and transition prediction using the criteria of
methods 1 through 3.11,20,21

5. Coupling of additional transport equations to the RANS turbulence model, such as the γ−Reθ transition
model developed by Langtry and Menter.22–25 These approaches make use of analytical transition onset
functions built into the transport equations.

In the above strategies, the transition criteria employed by the RANS solvers are based on either the
e
N criterion or on transition onset functions. To apply the e

N criterion one must first approximate the
N-factor curves, representing the amplification ratios of the unstable frequencies of the disturbances in
the boundary-layer. Transition is assumed to occur when the maximum local N-factor has exceeded some
critical value (Ncrit). Values for Ncrit must be specified a priori based on the freestream turbulence intensity
and/or experimental calibration. In computing the N-factor curves, there are several methods of varying
fidelity and computational cost. The highest fidelity approach (for RANS solvers) is to solve the parabolized
or linearized stability equations at each station to obtain the local N-factors for the unstable frequencies.
Simplified approaches have been developed to alleviate the demanding computational cost of such methods,
including: the use of database methods generated from linear stability studies, approximating the N-factor
envelope through boundary-layer properties (such as the shape factor), and approximating the N-factor
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through the pressure gradient and curve fits based on linear stability theory, without the need for boundary-
layer properties.4

Examples of transition criteria based on a transition onset function are Michel, Granville, H−Rex,
Abu-Ghannam and Shaw, Gleyzes-Habiballah and Arnal-Habiballah-Delcourt.15,19,22 These methods have
been classified as “simpler” or “analytical” transition criteria.9 Each have their range of applicability and
limitations. These criteria typically compare the boundary-layer properties or related quantities (such as
Reθ) to an empirically calibrated transition onset function (such as Reθtr). The transition onset functions are
typically computed from the integrated boundary-layer properties; the exception being the local transport
equation approach developed by Langtry and Menter.23 The transition point is the first point at which, for
example, Reθ ≥ Reθtr .

In this work, for the prediction of the natural transition locations due to Tollmien-Schlichting instabilities,
we employ approaches 2 and 3 from the above list. The boundary-layer properties are computed directly from
the Navier-Stokes solution, as described in Section III.A. The framework makes use of Drela’s eN envelope
method26 in approach 2, and the relatively new compressible form of the AHD criterion15 in approach 3;
these criteria are presented in Sections III.B and III.C, respectively. Transition prediction is implemented
into the RANS solver using an iterative approach, and transition to turbulence is modelled using an explicit
intermittency function in conjunction with the SA turbulence model – both are discussed in Section III.D.

Unlike the local γ−Reθ transport equation approach,22 the other approaches are non-local in their formu-
lation, which has some disadvantages. However, these issues are being addressed; for example, approaches 1
and 2 have been successfully parallelized and extended to three-dimensional flows by Krimmelbein et al.,10,27

and there is no restriction to their use in an implicit Newton-Krylov type solver, as demonstrated in this
work. There is also no required calibration specific to a particular turbulence model.24 Furthermore, correla-
tions for crossflow instabilities (such as the C1 criterion) have already been successfully combined with these
approaches, with experimental validation demonstrating accurate transition prediction on transonic swept
wings in three dimensions.16,17 Finally, the modular implementation of the proposed transition prediction
framework facilitates the use of higher fidelity methods (such as linear stability theory or the parabolized
stability equations) if so desired.

II.B. RANS-based Aerodynamic Shape Optimization for NLF

Research in the area of high-fidelity aerodynamic shape optimization with laminar-turbulent transition is
sparse. The majority of research in this field5,28–33 employs inviscid-viscous coupling strategies, making use
of boundary-layer codes for the viscous formulation and either a panel method or the Euler equations for the
inviscid formulation. Although the inviscid/viscous coupling strategies are computationally cheaper than
the higher-fidelity RANS solvers, the industry’s trend toward the use of RANS solvers strongly suggests that
NLF design tools should follow suit. Recent research making use of RANS solvers to optimize with transition
prediction has shown promising results.

Driver and Zingg21 coupled a RANS optimization framework to the MSES inviscid/viscous solver for
transition prediction. This was a stop-gap approach used to successfully demonstrate the potential for NLF
design using RANS-based optimization. Lee and Jameson34 have successfully coupled a RANS solver to a
boundary-layer code and an e

N database method (making use of the Baldwin-Lomax turbulence model) for
NLF design in two and three dimensions. Their optimizations focused on the elimination of shock-waves
for reduced wave drag. Khayatzadeh and Nadarajah35 successfully extended the Langtry-Menter transport
equation approach to an adjoint-based optimization framework in two dimensions, and applied the framework
to the design of low Reynolds number NLF airfoils with separation bubbles. Design objectives investigated
included the minimization of turbulent kinetic energy and the maximization of the lift-to-drag ratio.

There are several specific areas that require continued research and development and have significant room
for improvement. The first is the direct use of high-fidelity RANS solvers as opposed to inviscid/viscous
coupling strategies. The second is to optimize at higher Reynolds and Mach numbers (representative of
subsonic and transonic transport aircraft). A third is to optimize for more realistic and practical designs
through the use of multipoint design optimizations that incorporate the off-design performance during the
optimization cycle.36 In the same vein, design objectives and constraints should aim to reflect the industry’s
aerodynamic design objectives. Often, design objectives are formulated specifically or primarily to delay
transition. Design objectives based on indirect functions – such as N factor curves – run the risk of creating
a gap between the design tool’s capabilities and the actual objectives of manufacturers. Finally, in order
to account for three-dimensional features such as sweep angle, taper ratio, and twist,35 there is a need for
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continued development of NLF design tools applicable to full aircraft configurations in three dimensions.
Ultimately, such design tools should include the prediction of transition due to crossflow instabilities, and
they should incorporate the transition criteria into the evaluation of the objective, constraints and gradients
of the design problem.

III. Flow Solver Methodology

The steady RANS equations are solved in two dimensions using a second-order Newton-Krylov finite-
difference flow solver (named Optima2D) originally developed by Nemec and Zingg.37,38 The linear system
that arises at each Newton iteration is solved using the preconditioned Generalized Minimum Residual (GM-
RES) method. Global convergence of the Newton method is made possible by an approximate factorization
startup algorithm. Numerical dissipation is added by either the scalar dissipation scheme of Jameson et
al.39 or the matrix dissipation scheme of Swanson and Turkel.40 The turbulent eddy viscosity is computed
using the one-equation Spalart-Allmaras (SA) turbulence model.41 As mentioned, the SA model is not itself
capable of predicting transition; the remaining constituents of the proposed transition prediction framework
include: the determination of the boundary-layer edge and properties, the calculation and evaluation of
the AHD and e

N transition criteria, and the implementation of a robust iterative procedure for transition
prediction in the RANS solver.

III.A. Calculation of the Boundary-Layer Edge

Many transition prediction methods for wall-bounded flows make use of boundary-layer properties. By
definition, the various boundary-layer properties are non-local, since they require the integration of flow
quantities from the wall to the boundary-layer edge. For example, the AHD criterion requires the calculation
of the displacement thickness (δ∗), momentum thickness (θ), shape-factor (H), and Pohlhausen number (Λ),
all of which require the calculation of the boundary-layer thickness (δ).

For arbitrary pressure distributions the edge velocity, Ue, is not known a priori. Hence, we must somehow
define the boundary-layer edge based on the RANS flow solution. One approach is to couple the RANS solver
to a boundary-layer solver that provides a boundary-layer thickness as part of the solution process.11,20,21,34

The benefit of using a boundary-layer solver is in the accurate calculation of the boundary-layer thickness
while allowing for coarser grids to be used in the RANS solver.11 The disadvantages of the coupling approach
include: (i) redundancy in solving both the NS and boundary-layer equations, (ii) restriction to fully-attached
and mildly separated flows, (iii) implementation and convergence issues in coupling the two solvers, and (iv)
complexities when moving to compressible flows, wings of finite span, and parallel implementations. For these
reasons, this work makes use of the available RANS solution, altogether avoiding the use of a boundary-layer
solver.

We consider three boundary-layer edge-finding methods; a comparison and assessment of their accuracy
may be found in Section V.A. The methods are briefly summarized as follows:

Compressible Bernoulli Equation: Following Nebel et al.,14 the first method makes use of the local
wall pressure, pw, to approximate the edge velocity via the Bernoulli equation for compressible flows,

Ue =

�

U2
∞ − 2γ

γ − 1

p∞
ρ∞

��
pw

p∞

� γ−1
γ

− 1

�
. (1)

The boundary-layer thickness for the given streamwise station, is then searched in the off-wall direction for
the point δ=y at which U=0.99Ue, where y is used here to denote the normal off-wall distance.

Baldwin-Lomax Diagnostic Function: Following Stock and Haase42 and Nebel et al.,14 the second
method makes use of a so-called diagnostic function derived from the Baldwin-Lomax turbulence model.
The diagnostic function,

F = y
a

�
dU

dy

�b
, (2)

is first computed and its maximum value in the off-wall direction is searched. The boundary-layer thickness
is then computed as δ=� · ymax, where ymax=y at which F=Fmax. The values of the constants have been
determined through numerical and experimental investigation to be al=3.9, bl=1.0, and �l=1.294 for laminar
boundary-layers, and at=1.0, bt=1.0, and �t=1.936 for turbulent boundary-layers.14
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Vorticity and Shear-Stress Method: Following Cliquet and Arnal,15 the third method makes use of
the local vorticity, Ω, and an approximation to the total shear stress, τtot. The total shear stress is defined
as τtot=τl + τt, where τl and τt can be expressed in the following manner:15

τl = µ|Ω| and τt = µt|Ω| . (3)

The boundary-layer thicknesses based on vorticity and shear stress are then searched in the off-wall direction,
such that

δΩ = y at which |Ω| = �Ω · |Ω|max , (4)

and
δτ = y at which |τtot| = �τ · |τtot|max , (5)

where �Ω=0.001 and �τ=0.015. Finally, the boundary-layer thickness is taken as the minimum, such that
δ=min(δΩ, δτ ).

In Section V.A, an investigation into the accuracy of the integrated boundary-layer properties is con-
sidered through a detailed grid convergence study. With the boundary-layer edge defined (facilitating the
calculation of the boundary-layer properties) the next step is to consider the evaluation of a transition
criterion.

III.B. AHD Transition Criterion

The natural transition locations (due to Tollmien-Schlichting instabilities) are predicted using the new com-
pressible form of the Arnal-Habiballah-Delcourt (AHD) criterion.15–17,43 The AHD criterion is designed for
low to moderate freestream turbulence intensities (Tu ≤ 0.1%), as typically encountered in external aero-
dynamic cruise conditions for transport aircraft.15 The method has the advantage of being applicable to a
wide range of pressure gradients, as well as compressible flows.15

Beginning at the stagnation point, we march toward the trailing edge of the airfoil, treating the upper
and lower surfaces independently. Our first task is to find the streamwise location of the neutral stability
point, scr. Upstream of the neutral stability point, it is assumed (from linear stability theory) that all small
disturbances over all frequencies remain stable and damp out. The neutral stability point is found using the
critical Reynolds number, calculated as a function of the incompressible shape factor, Hi, as

Reθcr = exp

�
E

Hi
− F

�
, (6)

such that scr is the first point at which, locally, Reθ=Reθcr . The functions E and F may be found in the
Appendix. Note that Reθcr typically decreases in the streamwise direction and is greater than Reθ upstream
of the critical point.

The next step is to find the streamwise location of the laminar-turbulent transition point, str. The
transition criterion is computed and checked only at points downstream of the neutral stability point. The
AHD criterion uses the Falkner-Skan self-similar solutions to represent the laminar boundary-layer profiles,
which are characterized by the local Pohlhausen number.15 Following the work of Granville, the necessary
relationships are extended from self-similar boundary-layers to actual flows by replacing Λ2 with its mean
value as follows:15

Λ2 =
θ
2

ν

dUe

ds
=⇒ Λ2 =

1

s− scr

� s

scr

Λ2ds . (7)

Arnal et al. proposed the following expression for the transitional Reynolds number, Reθtr :

Reθtr = Reθcr +A·exp(B ·Λ2)

�
ln(C ·Tu)−D ·Λ2

�
, (8)

where Tu is the freestream turbulence level, and the functions A, B, C, and D may be found in the Appendix.
The transition point is then taken as the first point at which, locally, Reθ = Reθtr . Note that Reθtr typically
decreases in the streamwise direction and is greater than Reθ upstream of the transition point.
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III.C. Simplified e
N envelope method

The simplified e
N envelope method used in Drela’s XFOIL and MSES codes26 has also been incorporated.

The method makes direct use of the boundary-layer properties to approximate the envelope of the spatial
amplification rates of the disturbances (the N-factors), as opposed to actually solving the linear stability
equations; while the envelope method does not track individual frequencies, it is significantly more efficient.18

The correlations are based on linear stability results for the Falkner-Skan family of velocity profiles. The
envelopes of the growth rates are locally approximated as straight lines with respect to the streamwise
direction, ξ, as follows:26

dN

dξ
= fcn(Hk, θ) =

dN

dReθ
· m+ 1

2
· l · 1

θ
, (9)

where dN
dReθ

, m, and l are functions of the so-called kinematic shape factor, Hk, and may be found in the
Appendix. The kinematic shape factor is computed based on the incompressible shape factor, Hi, and the
Mach number at the boundary-layer edge, Me, as

Hk =
Hi − 0.290M2

e

1 + 0.113M2
e

. (10)

The N-factor envelope is then obtained by integrating Equation (9) in the streamwise direction, beginning
at the critical point. The critical point is the first point at which, locally, Reθ=Reθcr , where Reθcr is defined
by26

log10 Reθcr =

�
1.415

Hk − 1
− 0.489

�
tanh

�
20

Hk − 1
− 12.9

�
+

3.295

Hk − 1
+ 0.44 . (11)

III.D. RANS Implementation

III.D.1. Iterative Transition Prediction Procedure

Automatic transition prediction in the RANS solver is achieved through an iterative process, which has been
developed by several researchers.6,11,15,18,20,43 This section provides an overview of the current implemen-
tation.

An initial guess of the transition locations (top and bottom surfaces) is required and typically taken at
25% chord. When the magnitude of the flow residual has been reduced to 5×10−6, the transition prediction
module is invoked to process the RANS solution; the tight tolerance was chosen to ensure sufficiently accurate
boundary-layer properties for transition prediction. The initial guess is then moved upstream or downstream
as required toward the newly predicted transition points in an under-relaxed fashion,20 such that

x
new
tr = x

old
tr − ω

�
x
old
tr − x

predicted
tr

�
, (12)

where ω is the under-relaxation factor, and xtr=x/c represents a normalized chord position. When the flow
residual returns to a magnitude of 5×10−6, the transition points are again updated. The iterative transition
prediction procedure is considered converged when ∆xtr=|xnew

tr −xold
tr | has converged to a tolerance of �tp. The

flow solver then continues to converge – with the final predicted transition locations – until the magnitude
of the flow residual has reduced to a tolerance of �r. For the purposes of gradient-based aerodynamic shape
optimization, �tp and �r are set to 10−6 and 10−12, respectively, ensuring a sufficiently smooth design space
for optimization.

From numerical experimentation, an under-relaxation factor of ω=0.8 is used at the outset, increasing
to ω=1.0 when ∆xtr ≤ 0.01. This was found to be a good compromise between efficiency and robustness.
A linear extrapolation of the boundary-layer properties – from the laminar region into the turbulent region
– allows the transition criterion to predict transition downstream of the forced transition points (when
required). If laminar flow separation is detected, then the separation point is taken as an approximation to
the transition point.11 A robust logic has been determined through extensive numerical experimentation and
code verification to handle the various outcomes of the transition prediction module. For the various airfoils
and flight conditions investigated, it was found that the iterative transition prediction procedure requires
approximately three to four times the computational cost of a fully-turbulent flow solve, with no significant
addition to the memory requirements.
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III.D.2. Modelling of Transitional Flow Regions

The transition to turbulence is enforced in the Navier-Stokes solution by one of two methods. The first
makes use of the trip term and the ft1 and ft2 trip functions in the SA model, as published by Spalart and
Allmaras.41 The second approach makes use of an intermittency function that scales the turbulent eddy
viscosity, such that µt = γµt and 0≤γ≤1, as used by Cliquet et al.15 The intermittency function takes the
form of an S-type curve as defined by Krumbein,44 such that

γ(x) = 1− exp(−0.412 ξ2) , where ξ = 3.36
x− x

beg
tr

ltr
, (13)

x
beg
tr represents the beginning of the transitional flow region as predicted by the transition criterion, and ltr is

the transition length. Although there are no physics-based methods for determining the transition length,18

empirically correlated approximations have been developed that make use of the boundary-layer properties
at the transition point. Following the work of Krumbein,44 the transition length can be obtained from

Reltr = 4.6
�
Reδ∗tr

�1.5
. (14)

For a smooth ramp-up of the eddy viscosity, the transition region must be sufficiently resolved; failure to do
so was observed to cause noise in the design space during optimization. A comparison of the eddy viscosity
ramp-up using the two transition region models is presented in Section V.D.

IV. Optimization Framework

The goal of the aerodynamic shape optimization framework is to minimize the specified design objective,
J , with respect to the design variables, X, subject to linear and nonlinear constraints. Although the optimizer
can handle several different design objectives, such as the maximization of lift-to-drag ratio or endurance
factor, in this work the focus will be on lift-constrained drag minimization. The proposed optimization
framework consists of the following constituents: (i) a two-dimensional RANS flow solver (as described in
the preceding section), (ii) a geometry parametrization and mesh movement algorithm, (iii) a sequential
quadratic programming algorithm, and (iv) a finite-difference gradient evaluation.

The airfoil geometry is parametrized using B-splines, the details of which may be found in Nemec and
Zingg.37 The design variables, X, are defined as the y-coordinates of the B-spline control points; the control
points are free to move in the vertical direction to facilitate shape changes during the optimization cycle.
The angle of attack of the airfoil is an additional design variable. The algebraic grid-perturbation strategy
described in Nemec and Zingg37 is used to ensure that the computational grid is smoothly adjusted to
conform to the changing geometric configurations.

The SNOPT general purpose Sequential Quadratic Programming (SQP) algorithm – developed by Gill et
al.45 – is employed as the optimizer in this work. SQP methods are among the most effective gradient-based
approaches for treating smooth, nonlinearly constrained optimization problems.46 SNOPT solves problems
that are locally optimal by minimizing quadratic models of the augmented Lagrangian.45 A backtracking
line-search strategy is used to determine the step-size and update the design variables in a manner that
ensures a sufficient decrease in the augmented Lagrangian merit function. The Hessian of the Lagrangian is
approximated using the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS). SNOPT
requires the gradients of the objective function and constraints; ensuring sufficiently accurate gradients is
of paramount importance to the success of the SQP algorithm. The gradients of the objective function
and constraints required by SNOPT are found using a finite-difference approximation, as discussed in the
following section.

IV.A. Parallel Finite-Difference Gradient Evaluation

The gradients of the objective and constraint functions with respect to the design variables – the B-spline
control points and angle of attack – may be obtained through a finite-difference approximation. In doing
so, we can approximate the gradients without having to differentiate the solver. Meanwhile the resulting
gradients implicitly contain the sensitivities of the laminar-turbulent transition criterion that defines the
transition locations, in turn allowing the optimizer to exploit that information.
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The components of the gradient vector, Gn, are evaluated using a second-order centered-difference ap-
proximation as follows:

Gn =
J [X + hnen, Q (X + hnen)]− J [X − hnen, Q (AX − hnen)]

2hn
n = 1, . . . , ND (15)

where ND is the number of design variables, en is the n
th unit vector, and h is a positive scalar defined as

hn = max(� · |Xn|, 10−6) . (16)

The step-sizes, hn, are computed by scaling the magnitude of the design variables, |Xn|, by the constant �.
If the step-size used in the approximation of the gradients is too large, the truncation error will dominate
and the required accuracy of the gradients will not be attained. If the step-size is too small, subtractive
cancellation will introduce significant error.5 Numerical studies were performed on the NACA-0012 and
RAE-2822 airfoils to determine an appropriate order of magnitude for �. For both airfoils, it was observed
that the gradient components were relatively constant over a range of � values from 10−4 to 10−2. Hence, a
value of � = 10−3 is used in equation (16) to compute the step-sizes, hn, in all optimization cases using the
finite-difference gradient evaluation.

The centered-difference approximation requires two flow solves to evaluate each component of the gra-
dient, and as such, it does not scale well with the number of design variables. In this work, the gradient
evaluation has been parallelized such that multiple processors compute the necessary flow solves – on the en-
tire set of perturbed geometries – in parallel. The flow solve required on the baseline geometry is also carried
out in parallel. For example, a case with eleven design variables would employ twenty-three processors in the
parallel computation of the objective and gradients. Thus, one can obtain all of the necessary information in
approximately the same turn-around time as a single serial flow solve. Although this approach works well in
two dimensions, the required computational resources become prohibitive in three dimensions. To address
these scaling issues, future work will focus on extending the current transition prediction framework to the
discrete adjoint gradient evaluation method.37

V. Results

V.A. Boundary-Layer Properties

In order to verify the three boundary-layer edge finding methods described in Section III.A, numerical flow
solutions using fixed transition locations were computed using the Optima2D flow solver (described in Section
III). The results from Optima2D are compared to numerical results obtained from XFOIL, developed by
Drela.26 XFOIL is a two-dimensional, incompressible flow solver which couples an inviscid solver to a viscous
boundary-layer code. The inviscid formulation in XFOIL is a linear vorticity-streamfunction panel method.
The viscous flow in the boundary-layer and wake is modeled with a two-equation lagged dissipation integral
boundary-layer method.26

Flow solutions were computed on the NACA-0012 airfoil with a sharp trailing edge at Re=1×106, M=0.20
and zero incidence, using a C-grid with 321×384 nodes. In both solvers, transition was fixed at 50% chord
on the top and bottom surfaces of the airfoil. A comparison of the three edge-finding methods in Optima2D
is presented in Figure 1(a), along with the edge velocity obtained using XFOIL. The comparison verifies
the ability of the various methods to define the boundary-layer edge, without the use of a boundary-layer
solver. Good agreement is observed between the methods in Optima2D and XFOIL in both the laminar and
turbulent regions, although our interest here is restricted to the laminar region for the purpose of predicting
transition.

The accuracy of the integrated boundary-layer properties is assessed through a grid convergence study
and by comparison to numerical boundary-layer properties obtained from XFOIL. All results are obtained
using matrix dissipation, which is highly recommended for the present purpose to avoid excessive numerical
dissipation in the boundary-layer. Figure 1(b) presents a grid convergence study of the boundary-layer shape
factor (H) for the same NACA-0012 test case. The grid-convergence results shown here were obtained using
the vorticity and shear-stress edge-finding method. The numbers in brackets provide the approximate number
of nodes in the laminar boundary-layer. These results verify the current implementation and demonstrate
that with reasonable grid density, sufficient accuracy of the boundary-layer properties can be computed
directly from the Navier-Stokes solution, confirming similar results found by Brodeur and van Dam.6
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(a) Verification of edge finding methods (b) Grid convergence study using vorticity method

Figure 1. NACA-0012 verification of edge finding methods and boundary-layer properties

V.B. Transition Prediction

Figure 2. NACA-0012 transition prediction

The predictive capability of the transition predic-
tion framework is first verified by comparison to
numerical results generated using XFOIL on the
NACA-0012 airfoil. The transition prediction in
XFOIL makes use of the simplified e

N envelope
method developed by Drela,26 and thus provides
a good benchmark for verification.

In Figure 2, transition prediction results are
shown for a 449×385 C-grid around the NACA-
0012 airfoil at Re = 10× 106, M = 0.2, and a
freestream turbulence intensity (Tu) of 0.1% (cor-
responding to an N-factor of 8 for the e

N cri-
terion). The Optima2D (O2D) points represent
the final converged transition locations using the
AHD criterion. Good agreement between XFOIL
and Optima2D is observed. The AHD criterion
predicts transition upstream of the e

N envelope
method. Similar trends have been found by Cli-
quet and Arnal15 and Streit et al.17

Validation of the transition prediction framework and the transition criteria has been carried out by com-
parison to available experimental transition data for the NLF-0416 airfoil developed by Somers.47 The exper-
imental results were obtained in the Langley Low Turbulence Pressure Tunnel (LTPT) using microphoned
pressure taps.47 The resolution of the experiments corresponds to the physical spacing of the microphoned
taps along the chord of the airfoil.

Presented herein are the test case results for a 449×385 C-grid around the NLF-0416 airfoil at Re=4×106,
M = 0.2, and Tu = 0.1% (and N = 8 for XFOIL). The transition points predicted by both Optima2D and
XFOIL are presented in Figure 3, along with the wind tunnel experimental data. The results of this test
case show that the predictive capabilities of Optima2D match closely with the published experimental results
over a range of lift coefficients.

Figure 4 presents the drag polar for the NLF-0416 airfoil using both Optima2D and XFOIL. Good
agreement is observed between the experimental results and the drag polars computed using both Optima2D
and XFOIL. In Somers’ report,47 the freestream turbulence intensity, Tu, was unfortunately not published
for the NLF-0416 experiments. It is possible that the wind tunnel may have had lower or higher Tu than
the 0.1% used for the computations.
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(a) Upper surface transition prediction results (b) Lower surface transition prediction results

Figure 3. NLF-0416 transition prediction validation

Figure 4. NLF-0416 drag polar comparison

V.C. Optimization Results - Problem Definition

To demonstrate the NLF design capabilities of the optimization framework, lift-constrained drag minimiza-
tion is performed under different flight conditions. The objective is to minimize the total drag of the airfoil
constrained by a user-specified lift target, C∗

l . For structural considerations, additional inequality constraints
are included. An area constraint ensures that the final area of the airfoil is greater than or equal to the
initial area. A thickness constraint near the leading edge ensures a minimum thickness of 0.1% chord located
at 0.5% chord.

The three flight conditions investigated, along with the specified lift target, are outlined in Table 1. The
Reynolds and Mach numbers of Case C were selected to approximate the cruise flight conditions of the
Dash-8 Q400 turboprop aircraft.

The initial geometry for all cases is the RAE-2822 parametrized by nineteen B-spline control points, as
shown in Figure 5. The five control points nearest the trailing edge, as well as three co-linear control points
located at the leading edge, are kept fixed throughout the optimization. The y-coordinates of the remaining
ten control points are used as the geometric design variables (shaded in blue), with the angle of attack
included as an additional design variable. The computational grid consists of a 575×224 C-grid, resulting
from grid convergence studies on the boundary-layer properties. Finally, all results were obtained using
the compressible Bernoulli edge-finding method, the intermittency function transition region model, and a
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Table 1. Optimization cases

Case Reynolds Number (Re) Mach Number (M) Lift Target (C∗
l )

A 5×106 0.2 0.2

B 10×106 0.4 0.4

C 15×106 0.6 0.4

Figure 5. RAE-2822 b-spline parameterization Figure 6. Eddy viscosity ramp-up on a NACA-0012 with

transition at 30% chord

finite-difference gradient evaluation. Prior to discussing the optimization results, the next section presents
a comparison of the transitional flow models.

V.D. Transitional Flow Models

The smoothness of the eddy viscosity ramp-up in the vicinity of the transition point was observed to have an
impact on the smoothness of the design space and, in turn, the accuracy of the gradients. In this section, we
compare the two transition region models discussed in Section III.D.2 by fixing the upper and lower transition
points at 30 % chord on a NACA 0012 at Re=10×106, M=0.20 and zero incidence, using a 575×224 C-grid.
Figure 6 shows the eddy viscosity ramp-up using both transition region models by following an upper surface
grid line that is inside the boundary-layer. The SA model trip function was observed to sharply increase
the eddy viscosity in the boundary-layer – typically one node upstream of the specified transition location41

– whereas the intermittency function provides a smoother introduction of the eddy viscosity in accordance
with the transition length (which in this case is fixed at 10% chord). The authors attempted a range of
values for the constants ct1 and ct2 in the SA model trip functions;41 however, no change in the sharp profile
of the eddy viscosity was observed.

The sharp increase in the eddy viscosity observed when using the SA trip term was found to cause locally
non-smooth design spaces for the grids typically employed for transition prediction. This becomes partic-
ularly evident when using a finite-difference approximation of the gradient, wherein small design changes
result in variations of the transition points that are less than the distance between two streamwise nodes. A
step-like noise in the design space was observed when under-resolving the SA model’s ramp-up. This noise
is not present when using the more gradual S-curve intermittency function - indicative of a ramp-up that is
sufficiently resolved by the fine grids typically required for transition prediction. As a result, the smoother
intermittency function has been selected as the transition region model for this work.
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Table 2. Case A summary of optimization results

Cd Cl Cm Tup(x/c) Tlo(x/c) AoA

Initial 0.00419 0.2001 -0.06842 0.6451 0.5174 -0.2278◦

Final 0.00308 0.1991 -0.04525 0.7329 0.7430 0.1683◦

(a) Initial and final airfoils (b) Initial and final pressure distributions

Figure 7. Case A optimization results; Re = 5×106, M = 0.2, C∗
l = 0.2; symbols indicate transition point locations

V.E. Case A Results

The results for Case A were obtained using the e
N envelope transition criterion with Ncrit=9. Table 2

provides a summary of the results comparing the initial and final (optimized) airfoils. Figure 7(a) compares
the initial and final geometries; Figure 7(b) compares the pressure profiles. The transition locations are
indicated by the solid circles. The angle of attack was increased slightly from an initial value of −0.23◦ to
0.16◦, the lift target was achieved, and the total drag was reduced by 12 drag counts, or 26%. The ability
of the optimizer to exploit the laminar-turbulent transition prediction is made evident by the aft movement
of the transition points from 64% to 73% chord on the upper surface and 52% to 74% chord on the lower
surface.

V.F. CASE B Results

The results for Case B were obtained using the e
N envelope transition criterion with Ncrit=9. Table 3

provides a summary of the results comparing the initial and final (optimized) airfoils. The angle of attack
was decreased from an initial value of 1.28◦ to 0.85◦, the lift target was achieved, and the total drag was
reduced by 15 drag counts, or 34%. The transition points on both the upper and lower surfaces were moved
aft by approximately 20% chord.

Figure 8(a) compares the initial and final geometries; Figure 8(b) compares the pressure profiles. It can
be observed that the optimizer was successful in designing an airfoil with an extended favourable pressure
gradient on both the upper and lower surfaces. These results demonstrate the ability of the optimizer to
design new NLF airfoils which would typically require considerable aerodynamic experience.
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Table 3. Case B summary of optimization results

Cd Cl Cm Tup(x/c) Tlo(x/c) AoA

Initial 0.00438 0.3999 -0.07403 0.5150 0.5214 1.2831◦

Final 0.00290 0.3998 -0.07897 0.7342 0.7256 0.8516◦

(a) Initial and final airfoils (b) Initial and final pressure distributions

Figure 8. Case B optimization results: Re = 10×106, M = 0.4, C∗
l = 0.4; symbols indicate transition point locations

V.G. CASE C Results

The results for Case C were obtained using the e
N envelope transition criterion with Ncrit=5. Table 4

provides a summary of the results comparing the initial and final (optimized) airfoils. The angle of attack
was decreased from an initial value of 0.78◦ to 0.00◦, the lift target was achieved, and the total drag was
reduced by 7 drag counts, or 18%. The transition points on the upper surface were moved aft from 62% to
75% chord, and from 47% to 53% chord on the lower surface.

Figure 9(a) compares the initial and final geometries; Figure 9(b) compares the pressure profiles. Similar
to the previous two cases, the optimizer was successful in designing an airfoil with extended regions of laminar
flow on both the upper and lower surfaces, in turn, reducing the total drag.

VI. Conclusions

A two-dimensional RANS solver making use of the Spalart-Allmaras turbulence model has been extended
to incorporate an iterative laminar-turbulent transition prediction methodology. It was observed that with
reasonable grid density sufficient accuracy of the boundary-layer properties can be computed directly from
the Navier-Stokes solution. The compressible form of the AHD criterion and the simplified e

N envelope
method have been implemented, verified, and validated by comparison to numerical and experimental data.

The RANS solver was subsequently employed in a gradient-based sequential quadratic programming shape
optimization framework using the SNOPT optimization suite. A finite-difference gradient computation has
been parallelized to enable a turn-around time equal to that of a single serial flow solve. The resulting
optimization framework has been applied to the design of natural laminar flow airfoils. Such applications
demonstrate the efficacy and practicality of using high-fidelity aerodynamic shape optimization as an NLF
design tool. Future work will consider a new discrete-adjoint formulation for transition prediction in a RANS
solver, as well as multipoint optimization to account for off-design performance, and the extension of the
approach to three dimensions, incorporating a crossflow transition criterion.
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Table 4. Case C summary of optimization results

Cd Cl Cm Tup(x/c) Tlo(x/c) AoA

Initial 0.00382 0.4000 -0.08620 0.6201 0.4651 0.7756◦

Final 0.00314 0.4000 -0.11606 0.7509 0.5346 0.0024◦

(a) Initial and final airfoils (b) Initial and final pressure distributions

Figure 9. Case C optimization results: Re = 15×106, M = 0.6, C∗
l = 0.4; symbols indicate transition point locations
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Appendix: Details of Transition Criteria

In the compressible form of the AHD criterion, outlined in Section III.B, the functions A through F are
computed as a function of the Mach number at the boundary-layer edge, Me, as follows:43

A = 98.64M3
e − 356.44M2

e + 117.13Me − 236.69

B = −13.04M4
e + 38.5M3

e − 30.07M2
e + 10.89Me + 22.7

C = 0.21M3
e + 4.79M2

e − 1.76Me + 22.56

D = −3.48M4
e + 6.26M3

e − 3.45M2
e + 0.23Me + 12

E = 0.6711M3
e − 0.7379M2

e + 0.167Me + 51.904

F = 0.3016M5
e − 0.7061M4

e + 0.3232M3
e − 0.0083M2

e − 0.1745Me + 14.6

In the simplified e
N envelope method, outlined in Section III.C, the functions dN

dReθ
, m, and l are given

as follows:26

dN

dReθ
= 0.01

�
[2.4Hk − 3.7 + 2.5 tanh(1.5Hk − 4.65)]2 + 0.25

m(Hk) =

�
0.058

(Hk − 4)2

Hk − 1
− 0.068

�
1

l(Hk)

l(Hk) =
6.54Hk − 14.07

H
2
k
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