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A two-dimensional Newton-Krylov aerodynamic shape optimization algorithm has been
modified to incorporate the prediction of laminar-turbulent transition. Modifications to
the discrete-adjoint gradient computation were required to allow the optimization algo-
rithm to manipulate the transition point through shape changes. The coupled Euler and
boundary-layer solver, MSES, is used to obtain transition locations, which are then used
in Optima2D, a Newton-Krylov discrete-adjoint optimization algorithm based on the com-
pressible Reynolds-averaged Navier-Stokes equations. The algorithm is applied to the
design of airfoils with maximum lift-drag ratio, endurance factor, and lift coefficient. The
design examples demonstrate that the optimizer is able to control the transition point loca-
tions to provide optimum performance, in effect designing optimized natural-laminar-flow
airfoils. In particular, the optimization algorithm is able to design an airfoil that is very
similar, in terms of both shape and performance, to one of the high-lift airfoils designed
by Liebeck (J. of Aircraft, 10:610-617, 1973) in the 1970’s.

I. Introduction

Numerical optimization techniques based on either gradient-based adjoint methods or genetic algorithms
have proven to be a powerful tool in aerodynamic design.1–4 Most existing optimization algorithms which
are based on the Reynolds-averaged Navier-Stokes equations assume that the flow is fully turbulent, i.e.
laminar-turbulent transition is assumed to occur at the leading edge.2, 3, 5–7 Therefore, the optimizer cannot
exploit the effect of the airfoil shape on the location of transition in maximizing the objective function.
Consequently, these algorithms cannot optimize natural-laminar-flow airfoils, where significant regions of
laminar flow are achieved through a suitable pressure gradient.

Prior to the development of efficient and robust aerodynamic optimization techniques, high-performance
airfoils could be designed by determining a pressure distribution that is feasible and optimal in some sense and
using an inverse method to find the corresponding airfoil shape. For example, the Stratford concave pressure
distribution, which leads to incipient turbulent boundary-layer separation, can be used to produce the
shortest region of pressure recovery possible without separation. Liebeck8 used both laminar and turbulent
rooftops followed by Stratford-type pressure recovery to design several high-lift airfoils. Zingg9 designed an
airfoil for high lift-to-drag ratio by combining a rooftop with a pressure gradient chosen to maintain laminar
flow with a concave pressure recovery determined by requiring a constant boundary-layer shape factor.
The constant shape factor permits a margin from separation to be chosen, leading to rapid pressure recovery
without incipient separation. The airfoils designed in these two studies achieve very high performance. Their
design is a complex process involving considerable knowledge of aerodynamics. This suggests the following
question: Can such airfoils be designed automatically using an aerodynamic optimization technique? There
are two aspects to the question. The first issue is whether the optimizer is able to find such a unique and
specialized optimum. The second is whether the airfoils designed by Liebeck and Zingg are actually optimal
in some sense, i.e. can the optimizer do better?

The objectives of the current work are as follows:
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• To incorporate laminar-turbulent transition prediction into Optima2D, the Newton-Krylov discrete-
adjoint aerodynamic optimization algorithm of Nemec and Zingg,2, 3 which is based on the Reynolds-
averaged Navier-Stokes (RANS) equations, and to investigate airfoils designed to minimize various
objective functions.

• To investigate whether the numerical optimization algorithm can design airfoils comparable to those
designed by Liebeck and Zingg.

Our focus is on the optimized airfoils and their performance. At this stage, we are not as concerned with
the efficiency of the algorithm. An efficient discrete-adjoint algorithm incorporating transition prediction
requires a prediction methodology that can be effectively integrated into a RANS solver, such as that of
Langtry and Menter.10 Furthermore, the airfoils presented here have been optimized for performance at a
single operating point and consequently are not suitable for practical use, which requires consideration of off-
design performance as well. Related research combining transition prediction with aerodynamic optimization
has been presented by Drela,11 Dodbele,12 Green at al.,13 Pralits,14 and Sturdza.15, 16

II. Methodology

The extension of the Spalart-Allmaras (SA) turbulence model to include the laminar-turbulent trip
functions is fairly straightforward and is discussed in the Newton-Krylov framework by Chisholm and Zingg.18

An overview of the required modifications to the SA turbulence model and how the transition locations are
obtained is explained in the next section. The method through which the transition locations affect the
gradient is explained in the section entitled Gradient Evaluation.

A. Newton-Krylov Flow Solver

The two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence
model are solved using a Newton-Krylov approach with approximate factorization start-up. The development
of the complete SA model in the approximately-factored and Newton-Krylov frameworks is discussed in Godin
et al.,19 and Zingg et al.,20 respectively. The required modifications to the SA model are briefly discussed
below. The complete SA turbulence model in steady-state form, rewritten for clarity, takes the following
form:

J−1 [M(ν̃) − P (ν̃) +D(ν̃) −N(ν̃)] = 0 (1)

where M(ν̃), P (ν̃), D(ν̃), and N(ν̃) are the convection, production, destruction and diffusion terms, respec-
tively. Only the production and destruction terms are modified to include trip terms:

P (ν̃) =
cb1

Re
S̃ν̃ (1 − ft2) + Reft1∆U

2 (2)

D(ν̃) =

(

cw1fw

Re
−
cb1ft2

κ2Re

)(

ν̃

dw

)2

(3)

The factor of J−1 is introduced to improve the scaling of the flow Jacobian matrix. It is important to
note that the Spalart-Allmaras turbulence model does not predict the transition location. Furthermore, the
addition of the trip term, Reft1∆U

2, in Eq. 2 acts as a source for the evolution of turbulent growth in
the boundary layer. The discretization of equation Eq. 1 was unmodified from the fully turbulent version.
Details can be found in Nemec.17 It should be noted that the trip function (ft1) is not included in the flow
Jacobian and only exists in the residual equations. Chisholm and Zingg showed that the added differentiation
of this trip function affects convergence only slightly.21

In order to obtain accurate transition locations, a complete solution from MSES11 is obtained. A value
of 9 is used as the critical amplification factor value (N). The transition locations are then used in the
RANS flow solve. This is done in order to avoid the difficulty of fully coupling an eN method into the
RANS solution. In order for this approach to be effective, the pressure distributions of the MSES and RANS
solutions should be similar.
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B. Gradient Evaluation

We solve the aerodynamic shape optimization problem using a gradient-based approach. The details of the
algorithm can be found in Nemec and Zingg.2 We modify the discrete-adjoint gradient calculation in the
following manner:

dJ

dX
=
∂J

∂X
− ψT ∂R

∂X
+
∂J

∂T

∂T

∂X
(4)

where J is the objective function, X are the design variables, T are the transition point locations, and ψ is the
adjoint variable. The sensitivity of the objective function with respect to the transition location movement,
∂J
∂T , is combined, via the chain rule, with the movement of the transition location due to airfoil perturbations,
∂T
∂X . This product contains the contribution of the upper and lower transition location sensitivities, which
are denoted by the subscripts “up” and “lo”:

∂J

∂T

∂T

∂X
=

∂J

∂Tlo

∂Tlo

∂X
+

∂J

∂Tup

∂Tup

∂X
(5)

A first-order backward finite-difference approximation of the ∂J
∂T term is used for both the upper and lower

airfoil surfaces:

∂J

∂Tlo
=

J [X,Q] −J [X,Q(X,Tlo − h)]

h
(6)

∂J

∂Tup
=

J [X,Q] −J [X,Q(X,Tup − h)]

h
(7)

∂Tup

∂X and ∂Tlo

∂X are found via finite differences of airfoil perturbations using MSES. It is important to note

that equations 6 and 7 require a new RANS flow solve for each perturbed state, while ∂T
∂X requires one

MSES flow solve per design variable perturbation. Since we are using MSES to calculate the ∂T
∂X term, it is

important to eliminate as much introduced error in the calculation of this term as possible. This is done by
reducing the viscous residual in MSES to 10−6. From numerical experiments, the transition locations have
converged beyond eight significant digits. Further details regarding the algorithm can be found in Driver.22

III. Results and Discussion

A. Objective Functions

The following objective functions are considered. In each case, geometric constraints are added to the
objective function as penalty terms.

1. maximization of the lift-to-drag ratio:

J =
CL

CD
(8)

2. endurance factor maximization:

J =
C

3/2

L

CD
(9)

3. maximization of lift coefficient, CL, with and without some additional penalty terms in the objective
function.

B. Lift to Drag Ratio Maximization

The NACA 0012 airfoil is used as the initial airfoil for the maximization of the lift-to-drag ratio. A single-
block, structured C-grid is used with roughly 18,500 nodes, 220 on the airfoil surface. The off-wall spacing is
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Figure 1. NACA 0012: control points and design variables

Table 1. Lift-to-Drag Maximization: Cases 1 and 2

Case CL Tup Tlo Airfoil Angle of

CD (x/c) (x/c) Area Attack

Case 1initial 31.38 0.45 0.85 0.08073 2.00o

Case 1final 101.22 0.57 0.95 0.08081 4.23o

Case 2initial 28.85 0.18 0.49 0.08073 2.00o

Case 2final 101.60 0.29 0.95 0.08075 5.86o

1 ×10−6, the distance to the outer boundary is 24, and the spacing at the stagnation point and trailing edge is
1 ×10−4, where all distances are expressed in terms of the airfoil chord length. The airfoil is parameterized
using 15 B-spline control points, of which 12 are used as design variables; the locations are indicated in
Figure 1. Control points 2-7 are used as design variables on the lower surface, with control points 9-14 used
as design variables on the upper surface. The angle of attack is also included as a design variable. The area
of the initial airfoil is required to be preserved throughout the optimization process. The area constraint is
lifted into the objective function via a penalty method with a weight of 0.1.

Two cases are optimized using the above initial conditions, but with different operating conditions. Case

1 is optimized at a Mach number of 0.25 and a Reynolds number of 1 million, while Case 2 is optimized
at a Mach number of 0.4 and a Reynolds number of 10 million. In both cases the initial angle of attack is
set to 2 degrees. Table 1 lists the lift-to-drag ratios, transition locations, and area values for both the initial
and final airfoils. Note that the transition points are constrained to lie no further aft than 95% chord.

Figures 2 and 3 show the initial and final airfoils and pressure distributions. Case 1 shares similar
qualities found in high lift-to-drag ratio airfoils at similar operating conditions.9 The entire lower surface
experiences laminar flow, while transition occurs at approximately 57% chord on the upper surface. Case

2 shows how the Reynolds number affects the optimum, since transition is very sensitive to the Reynolds
number. Similar to Case 1, the entire lower surface experiences laminar flow. In order to push the transition
location further downstream the favourable pressure gradient on the upper surface is required to be steeper
than in the lower Reynolds number case. This favorable pressure gradient adds stability to the boundary
layer, allowing transition to occur further aft.

A lift-to-drag ratio maximization for Reynolds numbers ranging from 1 to 10 million at a Mach number
of 0.25 is presented in Figure 4. Table 2 lists the associated lift-to-drag ratio values, transition locations,
and angles of attack for all of the cases. This experiment was done to examine how the pressure distribution
on the upper surface reacts to provide boundary layer stability at different Reynolds numbers. As the
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Figure 2. Case 1: Lift-to-drag ratio maximization, M=0.25, Re=1 million
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Figure 3. Case 2: Lift-to-drag ratio maximization, M=0.40, Re=10 million
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Figure 4. Lift-to-drag ratio maximization: Reynolds number variations

Table 2. Lift-to-drag ratio maximization: Reynolds number variation

Reynolds CL Tup Tlo Angle of

Number (106) CD (x/c) (x/c) Attack

1.0 101.22 0.57 0.95 4.23o

3.0 118.40 0.53 0.95 4.64o

5.0 117.32 0.51 0.95 5.35o

6.0 112.02 0.43 0.95 6.34o

7.0 102.27 0.31 0.95 6.33o

10.0 100.20 0.29 0.95 6.80o

Reynolds number increases, the favourable pressure gradient on the upper surface gradually becomes steeper
to maintain boundary-layer stability, as expected.

C. Endurance Factor Maximization

The general-aviation airfoil, GA(W)-1, is used as the initial airfoil for the endurance factor maximization. A
single-block, structured C-grid is used with roughly 14,000 nodes, 201 on the airfoil surface. The remaining
grid details are identical to the lift-to-drag ratio maximization case above. The airfoil is parameterized using
15 B-spline control points, of which 6 are used as design variables. The angle of attack is also included as a
design variable. Table 3 shows the thickness constraints used to avoid invalid shapes during the optimization
iterations. The thickness constraints are lifted into the objective function via a penalty method with a weight
of 1.0.

Two cases are optimized using the above initial conditions, but under different operating conditions.
Case 3 is optimized under fully turbulent conditions at a Mach number of 0.2 and a Reynolds of 2 million.
Case 4 is optimized at the same Mach and Reynolds numbers with free transition. Case 3 is the 7 design-
variable case presented by Hua et al.23 In both cases, the initial angle of attack is set to 2 degrees. Table 4
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Table 3. Endurance factor maximization: thickness constraints

x/c 0.15 0.35 0.60 0.92 0.99

t/c 0.01 0.164 0.07 0.01 0.001

Table 4. Endurance factor maximization: Cases 3 and 4

Case C
3/2

L Tup Tlo Angle of

CD (x/c) (x/c) Attack

Case 3initial 49.24 - - 7.53o

Case 3final 59.83 - - 7.24o

Case 4initial 61.99 0.49 0.65 2.44o

Case 4final 115.50 0.54 0.92 5.97o
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(b) Initial and final airfoils

Figure 5. Case 3: Endurance factor maximization, fully turbulent, M=0.2, Re=2 million

lists the endurance factor, lift, drag, transition locations, and angle of attack for both the initial and final
airfoils. The initial and final airfoils and pressure distributions for Case 3 are shown in Fig. 5; results for
Case 4 are presented in Fig. 6. In both cases, the initial angle-of-attack is chosen to maximize the endurance
factor for the GA(W)-1 airfoil under the specified conditions, i.e. fully-turbulent or with free transition.

In both design cases the thickness constraint at 35% chord is the only active constraint at convergence.
By exploiting a substantial region of laminar flow on both surfaces, Case 4 is able to produce an airfoil
that has an endurance factor nearly double that of the fully turbulent case. Although this demonstrates
a far superior airfoil at these operating conditions, off-design conditions can have a detrimental impact
on the performance. For example, when the airfoil designed in Case 4 is analyzed under fully turbulent
conditions, the steep pressure recovery causes turbulent boundary-layer separation, and the drag pays an
enormous penalty. Obviously this is not a desirable aerodynamic property. It is desirable to design an airfoil
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Figure 6. Case 4: Endurance factor maximization, free transition, M=0.2, Re=2 million

that exploits the advantages of having maximum laminar flow under ideal conditions but also performs well
when transition occurs further forward than expected. These trade-offs can be assembled into a family of
non-inferior designs, or a Pareto front.

In order to form a Pareto front, the weighted-sum method is used:

J = ωftJft + (1 − ωft)Jlt + ωt

Nc
∑

j=1

Cj (10)

where Jft and Jlt are the objective function values of Eq. 9 under fully turbulent and laminar-turbulent
conditions, respectively, the Cj are geometric constraints, and ωt = 1.0. An important point to make is that
at each Pareto front location a two-point design problem is solved. The two points are a laminar-turbulent
analysis and a fully turbulent analysis. The initial conditions are identical to Cases 3 and 4. The computed
Pareto front is shown in Figure 7, where the trade-offs associated with favoring one operating condition
over the other are clearly captured. Figure 8 shows selected Pareto front airfoils and the laminar-turbulent
pressure distributions. Table 5 lists the coefficients of lift and drag for the selected solutions contained in
the Pareto front.

Interesting trade-offs between fully turbulent and laminar-turbulent designs can be understood through
this Pareto front. For example, if one is aggressive and uses ωft=0.1, then one pays a huge price if transition
occurs at the leading edge; the endurance factor drops from approximately 115 to 49. If one is conservative
and uses ωft=0.9, then the gain when laminar flow is achieved is minimal. With intermediate values of ωft,
for example 0.3 ≤ wft ≤ 0.7, the off-design performance improves without too large a penalty in on-design
performance. For example, with ωft=0.5, the fully turbulent endurance factor is approximately 56 while the
on-design laminar-turbulent endurance factor is approximately 107.

D. Maximization of Lift Coefficient

In this section, three different lift-maximization problems are considered. In each case, the NACA 0012
airfoil is the initial airfoil. A single-block, structured C-grid is used with roughly 25,000 nodes, 325 on the
airfoil surface. The remaining grid details and geometry parameterization are identical to the lift-to-drag
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Table 5. Aerodynamic coefficients and endurance factor values for selected Pareto optimal solutions

Fully-Turbulent Laminar-Turbulent Fully-Turbulent Laminar-Turbulent

ωft CL CD CL CD C
3/2

L C
3/2

L

CD CD

0.1 1.088 0.0233 1.384 0.0142 48.84 114.7

0.2 1.127 0.0232 1.383 0.0142 51.55 114.2

0.3 1.126 0.0225 1.285 0.0130 53.02 111.7

0.5 1.213 0.0239 1.292 0.0137 55.90 107.5

0.6 1.259 0.0249 1.212 0.0128 56.72 104.4

0.7 1.235 0.0239 1.105 0.0118 57.48 98.34

0.8 1.270 0.0247 1.134 0.0145 57.96 83.31

0.9 1.308 0.0257 1.036 0.0135 58.01 77.86

ratio maximization cases. Table 6 shows the thickness constraints used. The thickness constraints are lifted
into the objective function via a penalty method with a weight of 0.05.

For the first lift-maximization example, designated Case 5, the following objective function is used:24

J = ωL

(

1 −
CL

C∗
L

)2

+ ωt

Nc
∑

j=1

Cj (11)

where C∗
L is a target lift coefficient chosen as 2.10. The results of this optimization are given in Table 7

and Fig. 9. A lift coefficient of 2.09 is achieved with turbulent boundary-layer separation at 86% chord on
the upper surface. The pressure distribution on the upper surface has a sort of laminar rooftop followed by
concave pressure recovery. There is a favourable pressure gradient over the entire lower surface.

For the second lift-maximization example, designated Case 6, a constraint on the skin-friction coefficient
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Table 6. Maximization of lift: thickness constraints

x/c 0.06 0.25 0.60 0.80 0.95

t/c 0.08 0.10 0.055 0.02 0.01

Table 7. Maximization of lift: Case 5

Case CL CD Tup Tlo Angle of

(x/c) (x/c) Attack

Case 5initial 0.2188 0.0066 0.37 0.75 2.00o

Case 5final 2.0937 0.0277 0.36 0.95 11.70o

is added in the following manner:

J = ωL

(

1 −
CL

C∗
L

)2

+

xend
∑

x=xstart



ωcf

(

1 −
ccf (x)

c∗f (x)

)2


+ ωt

Nc
∑

j=1

Cj (12)

where c∗f is a target skin-friction coefficient over a specified range of the airfoil surface from xstart to xend.
Note that the skin-friction constraint is active only when violated, i.e. when the local skin friction dips below
the specified value. The following parameters are used: C∗

L = 1.72, c∗f = 0.001, ωL = 2.0, ωcf = 1.0. This
constraint ensures that the flow remains fully attached. Results are given in Table 8 and Fig. 10. With the
requirement of fully attached flow, the maximum lift coefficient achieved is 1.69. The upper surface pressure
distribution displays a significant favourable gradient in the laminar region followed by concave pressure
recovery. The lower surface again has a favourable pressure gradient throughout.

For our third lift-maximization example, Case 7, the pitching moment is constrained, and the require-

10 of 16

American Institute of Aeronautics and Astronautics



x/c

y/
c

0 0.2 0.4 0.6 0.8 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

NACA-0012
Optima2D

(a) Initial and final airfoils

x/c

C
P

0 0.2 0.4 0.6 0.8 1

-4

-3

-2

-1

0

1

NACA-0012
Optima2D

= Transition Locations (NACA-0012)
= Transition Locations (Optima2D)

(b) Initial and final pressure distributions

Figure 9. Case 5: Maximization of lift, M=0.25, Re=2 Million

Table 8. Maximization of lift with separation constraint: Case 6

Case CL CD Tup Tlo Angle of

(x/c) (x/c) Attack

Case 6initial 0.2188 0.0066 0.37 0.75 2.00o

Case 6final 1.6937 0.0181 0.38 0.95 8.56o

ment of attached flow is retained, leading to the following objective function:

J = ωL

(

1 −
CL

C∗
L

)2

+ ωM

(

1 −
CM

C∗
M

)2

+

xend
∑

x=xstart



ωcf

(

1 −
cf (x)

c∗f (x)

)2


+ ωt

Nc
∑

j=1

Cj (13)

The moment constraint is nonzero only if the pitching moment coefficient exceeds the target value, C∗
M (in

magnitude). The following parameters are used: C∗
L = 1.60, C∗

M = −0.032, c∗f = 0.001, ωL = 2.0, ωM = 1.0,
ωcf = 1.0. The optimized airfoil and associated pressure distribution are shown in Fig. 11; further data are
given in Table 9. The reduction in the magnitude of the moment coefficient has led to a reduction of the lift
coefficient to 1.58. The upper surface pressure distribution has a laminar rooftop with a pressure coefficient
of roughly -2.50 followed by concave pressure recovery. The lower surface has a more pronounced favourable
pressure gradient than the two previous cases, leading to decreased aft loading and consequently a reduced
pitching moment. The lower surface of the airfoil is flat, in contrast to the concave lower surfaces of the
optimized airfoils of Cases 5 and 6.

Fig. 12 compares the lift, drag, and moment coefficients of the optimized airfoils of Cases 5, 6, and 7 as
a function of angle of attack. In comparison with Case 5, the additional skin friction coefficient constraint
in Case 6 has caused a reduction in maximum lift coefficient, a reduction in drag coefficient, and a reduction
in the magnitude of the pitching moment coefficient. The addition of the pitching moment constraint in
Case 7 has resulted in the same trends. Therefore, of the three optimized airfoils, Case 7 has the lowest
maximum lift coefficient, the lowest drag coefficient, and the smallest pitching moment coefficient.
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Figure 10. Case 6: Maximization of lift with separation constraint, M=0.25, Re=2 Million

Table 9. Maximization of lift with pitching moment and separation constraints: Case 7

Case CL CM Tup Tlo Angle of

(x/c) (x/c) Attack

Case 7initial 0.2188 0.0028 0.37 0.75 2.00o

Case 7final 1.5812 -0.0324 0.33 0.95 10.06o

E. Comparison with Zingg and Liebeck Airfoils

The previous examples have demonstrated that the optimization algorithm is capable of exploiting the
location of transition to optimize the airfoil. The resulting pressure distributions correspond closely to
what might be expected: some sort of laminar rooftop followed by a concave pressure recovery region. In
this section, we compare two optimized airfoils with airfoils designed using a carefully determined pressure
distribution and an inverse method, those of Liebeck8 and Zingg.9

The Liebeck airfoil, LNV109A, was designed to maximize the lift coefficient with fully attached flow and
a practical and realistic shape. The objective function and constraints for Case 7 have been chosen to mimic
those of Liebeck. The two airfoils as well as the pressure distributions at the optimum angle of attack are
compared in Fig. 13. With the exception of a small region near the leading edge, both the airfoils and the
pressure distributions are strikingly similar. The lift, drag, and moment coefficients produced by the two
airfoils are nearly identical, as shown in Fig. 12.

In order to compare with the Zingg airfoil, we mimic the thickness constraint used in its design by
requiring that the maximum thickness be 15% of the chord without specifying the chordwise position. Fig.
14 displays the resulting airfoils and pressure distributions. They are again very similar, although the Zingg
airfoil has a somewhat steeper pressure recovery and transition further aft on the upper surface. The Zingg
airfoil has a lift-to-drag ratio of 83 at CL = 0.888, which occurs at an angle of attack of 1.93◦. The optimized
airfoil has a lift-to-drag ratio of 90 and CL = 0.9974 at an angle of attack of 4.28◦. The optimized airfoil
has a larger lift-to-drag ratio, but Fig. 14 shows that it has a slightly smaller cross-sectional area.
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Figure 11. Case 7: Maximization of lift with pitching moment and separation constraints, M=0.25, Re=2
Million

IV. Conclusions

We have presented aerodynamic optimization results which incorporate laminar-turbulent transition.
These results show that the optimizer is able to exploit the transition location to obtain improvements in
the objective function. The resulting optimized natural-laminar-flow airfoils have characteristics very similar
to airfoils designed previously based on considerable aerodynamic expertise, such as those of Liebeck and
Zingg. Future work will involve integrating the transition prediction module with the RANS solver to enable
full exploitation of the discrete-adjoint method.
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Figure 12. Comparison of lift-maximization cases and Liebeck airfoil (LNV109A), M=0.25, Re=2 Million
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Figure 13. Comparison of Liebeck airfoil LNV109A with Case 7, M=0.25, Re=2 Million
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Figure 14. Comparison of Zingg airfoil with optimized airfoil, M=0.25, Re=1 Million
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