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This paper presents a general framework to derive a discrete adjoint method for the
optimal control of unsteady flows. First, we present the complete formulation of the time-
dependent optimal design problem and outline how to derive the discrete set of adjoint
equations in a general approach. After that we present results that demonstrate the ap-
plication of the theory to one- and two-dimensional inverse pulseshape designs, the data
assimilation problem in a shock-tube, the drag minimization of viscous flow around a ro-
tating cylinder, and the remote inverse design of a turbulent flow around a NACA0012
airfoil at a high angle of attack.

Nomenclature

J Objective function Q Flow variables
Y Design variables R Flow residual
dJ
dY Gradient of objective function Q∗ Target flow variables
R∗ Unsteady flow residual (∇QR

∗)T Transpose of the unsteady flow Jacobian
L Lagrangian ψ Adjoint variables
∆t Time discretization step T Final time
C̄D Mean drag coefficient Re Reynolds number
u∞ Free stream velocity Sn Strouhal number
S̄ Vector of spline control points λ Steady state adjoint variable
p Pressure ρ Density

I. Introduction and Motivation

The majority of work in aerodynamic shape optimization in the past has focused on the design of aerospace
vehicles in a steady flow environment.1,2 Researchers have applied these advanced design algorithms, par-
ticularly the adjoint method, to numerous problems, ranging from the design of two-dimensional airfoils to
full aircraft configurations to decrease drag, increase lift, and so on. These problems have been tackled using
many different numerical schemes on both structured and unstructured grids. Unlike fixed-wing aircraft, he-
licopter rotors and turbomachinery blades operate in unsteady flows. Therefore, optimal control techniques
for unsteady flows are needed to improve the performance of helicopter rotors and turbomachinery.

Similarly, understanding and reducing airframe-generated noise has not received much attention either,
but with the significant quieting of modern engines, airframe noise now competes with engine noise.3 Thus
airframe-generated noise is an important component of the total noise radiated from commercial aircraft,
especially during aircraft approach and landing, when engines operate at reduced thrust, and airframe
components (such as high-lift devices) are in the deployed state.4 Future Federal Aviation Administration
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noise regulations, the projected growth in air travel and the increase in population density near airports will
require future civil aircraft to be substantially quieter than the current ones. Consequently, the study of
airframe noise has become an important research topic.

In this paper, we develop a framework to calculate the gradient in a nonlinear unsteady flow environment
via the discrete adjoint method. The optimal control of time-dependent problems is generally a computa-
tionally expensive task since one needs to solve the adjoint equations in reverse time from a final solution.
Thus one has to store the entire flow history (potentially huge memory requirements) and then to integrate
the adjoint equations backwards in time (equally huge processor requirements).

The goal of this paper is to present the general framework and to apply it to a variety of model problems
to show its usefulness. Eventually, we want to be able to modify the shape of an airfoil to minimize the
radiated noise while maintaining good performance. Once this is achieved, similar techniques can also be
used to optimize blade shapes for helicopter rotors to minimize the average drag over a complete revolution,
to optimize turbomachinery blades, and for many other inherently unsteady optimization problems.1,2, 5

II. Formulation of the Discrete Time-dependent Optimal Design Problem

In the following we assume that we want to control the unsteady flow in the time interval [0, T ] and that
we start with an initial flow solution Q0. Furthermore, we use the implicit Euler time marching method to
discretize the governing equations in time since it is less cumbersome to write down all the equations. This is
not a restriction, since it is straightforward to modify the equations to use any other time marching method
(e.g. for the second-order backwards difference method (BDF2) see Appendix A).

We introduce a cost function

J =
N∑
n=1

In(Qn, Y ) (1)

where the function In= In(Qn, Y ) depends on the time-dependent flow solution Qn and design variables Y
for n = 1, . . . , N . N is implicitly defined via T = N∆t, where ∆t is the chosen time discretization step. We
then assume that

R∗n(Qn, Qn−1, Y ) :=
dQn

dt
+R(Qn, Y ) =

Qn −Qn−1

∆t
+R(Qn, Y ) = 0 (2)

defines implicitly the time-dependent flow solution Qn for n = 1, . . . , N , where R = R(Qn, Y ) represents a
residue containing the convective and dissipative fluxes. This presented form naturally suggests the use of a
dual time stepping scheme of the form

dQn

dτ
+R∗n = 0 (3)

to drive the unsteady flow residual R∗n= R∗n(Qn, Qn−1, Y ) to zero using a time-marching method in the
pseudo time τ . In our research we use the implicit Euler method to discretize the pseudo time derivative
in Eq. (3).6 It does not matter how one solves Eq. (2) as long as R∗n = 0 for all n, since this is what we
assume in the following.

The task of minimizing the cost function J can now be written as an unconstrained optimization problem
of minimizing the Lagrangian function

L =
N∑
n=1

[
In(Qn, Y ) + (ψn)TR∗n(Qn, Qn−1, Y )

]
(4)

with respect to Q0, . . . , QN and ψ1, . . . , ψN , where ψ1, . . . , ψN are the N vectors of the Lagrange multipliers.
A necessary condition for an extremal is that the gradient of L with respect to Q0, . . . , QN and ψ1, . . . , ψN

should vanish. Since we start with Q0 and calculate the states Q1, . . . , QN using the constraints given by
Eq. (2), we ensure that ∇ψnL = 0 for n = 1, . . . , N automatically.

The Lagrange multipliers ψn must now be chosen such that ∇QnL = 0 for n = 1, . . . , N , which leads to

0 = ∇QnIn + (ψn)T∇QnR∗n + (ψn+1)T∇QnR∗n+1 for n = 1, . . . , N−1 (5)
0 = ∇QN IN + (ψN )T∇QNR∗N (6)
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This can be written equivalently as

ψN = −
(
(∇QNR∗N )T

)−1
(∇QN IN )T (7)

ψn = −
(
(∇QnR∗n)T

)−1 [
(∇QnIn)T + (∇QnR∗n+1)Tψn+1

]
for n = N−1, . . . , 1 (8)

One can note that, since Q1, . . . , QN have been calculated from the current guess of Y , that the vectors of
Lagrange multipliers ψn can be calculated recursively backwards from the terminal boundary condition (7)
using (8). The system of equations (7) and (8) is known as the system of adjoint equations for the model (2),
or as the adjoint model. In this context, the Lagrange multipliers are also known as the adjoint variables.

Finally, one can evaluate the gradient of J with respect to the design variables Y , which can then be
used in a gradient-based optimization algorithm such as BFGS7–10 to find the optimum:

dJ

dY
=
∂L
∂Y

=
N∑
n=1

[
∇Y I

n(Qn, Y ) + (ψn)T∇YR(Qn, Y )
]

(9)

In summary, the gradient is determined by the solution of the adjoint equations in reverse time from
the terminal boundary condition and the partial derivatives of the flow residual and objective function with
respect to the design variables (while Qn is held constant). One can also see that the computational costs of
unsteady optimization problems are directly proportional to the desired number of time steps and (almost)
independent of the number of design variables.

III. Results

We now present a number of simple examples to demonstrate how this framework can be applied in prac-
tice. In our 2D examples, we use the preconditioned Bi-CGSTAB algorithm11 in order to invert (∇QnR∗n)T

in the adjoint equations which we converge to an absolute tolerance of 10−12. We find that Bi-CGSTAB is
about fifty percent faster than the preconditioned generalized minimum residual (GMRES) method,12 which
we use for our steady flow solvers in conjunction with an inexact Newton strategy.13 The reason for this is
most likely the fact that (∇QnR∗n)T is more diagonally dominant than the steady flow Jacobian (∇QR)T

due to the extra terms on the diagonal, which makes this matrix more suited for the use of Bi-CGSTAB.

A. The Inverse Design of a Pulse in a Converging-Diverging Nozzle in 1D

As our first example, we consider the inverse shape design of a subsonic flow with a pulse in the static outflow
pressure in a converging-diverging nozzle governed by the quasi-1D Euler equations. We use cubic spline
interpolation with six control points to represent the nozzle shape, and, since we fix the in- and outflow
control points to ensure a well-posed design problem, we have four shape design variables S̄. The initial and
target shapes of the nozzle together with the location of the control points are shown in Figure 1.
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Figure 1: Initial and target nozzle shapes in 1D.

The pulse in the static outflow pressure is
given by

p(t) = ps +A · sin(2πFt) (10)

where A and F are the given amplitude and
frequency of the pulse, and ps is a constant.
We also enforce constant stagnation condi-
tions, p0 and T0, at the inlet and the re-
maining three boundary conditions are calcu-
lated through linear extrapolation as follows:
At the inlet we use the Riemann invariant
R1 = u− 2a

γ−1 and at the outlet R2 = u+ 2a
γ−1

and H = E + p/ρ. Our flow solver is a
one-dimensional implementation of ARC2D, a
finite-difference code with blended first and
third order artificial dissipation fluxes.14 We
use the BDF2 time-marching method for a
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time-accurate flow solve and 100 nodes in space for all the presented cases. At t = 0 we initialize our
unsteady flow solve with the steady state solution Q0 of the quasi-1D Euler equations with p(t = 0) = ps
(see Figure 2).
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Figure 2: Initial and target pressure, velocity and density at t = 0.

We choose Y = (A,F, S̄) to be our control vari-
ables, and we consider two possible forms for the
cost functional J :

• The observation is only obtained for the final
time T

J1 =
1
2

100∑
j=1

(QNj −Q∗Nj )2 (11)

• The observation is distributed at assimilation
times 0 ≤ t ≤ T

J2 =
1
2
∆t

N∑
n=1

100∑
j=1

(Qnj −Q∗nj )2 (12)

Here, Q∗nj are the target or desired observations at
node j, which were obtained as solutions of the flow problem with the control vector Y ∗ = (0.05, 1.5, S̄∗),
where S̄∗ are the four target shape design variables. We consider two different initial guesses Y1 =
(0.04, 1.4, S̄) and Y2 = (0.08, 1.9, S̄) for this optimal control problem and we use T = 1.0 (in non-dimensional
units) as the time horizon.

Matlab’s command “fminunc” for unconstrained nonlinear optimization is used to solve this inverse design
problem. We set the LargeScale option to “off” so that Matlab uses the BFGS Quasi-Newton method with
a mixed quadratic and cubic line search procedure. We use the adjoint equations given in Appendix A to
calculate the gradient with one slight modification: We have to account for the steady flow solution after we
modify the shape of the nozzle due to new values of the design variables Y by adding λTR(Q0, Y ) to the
Lagrangian. This leads to one extra adjoint equation for λ that we have to solve for:

λ =−
(
(∇Q0R)T

)−1[
(∇Q0R∗2)Tψ2 +∇Q0R∗1)Tψ1

]
(13)
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Figure 3: Convergence plots for J1 (dashed) and J2 (solid) using T = 1.0 for the first
set of initial conditions in the left column and for the second set in the right column.

Once we provide Matlab with the
necessary routines to compute the
cost function and gradient, it is able
to drive both objective functions J1

and J2, given by Eqs. (11) and (12),
respectively, for the initial guess Y1,
to machine zero. The same is true
for J2 with the initial guess Y2, but
for J1 (comparison only at the final
time) and Y2, BFGS gets stuck in a
different minimum (see Figure 3).

We also compare the resulting
adjoint (ad) gradient of the cost
functionals with respect to the de-
sign variables at the first itera-
tion to the gradient computed via
the complex-step (cs) method.15

The agreement is excellent with((
dJ
dYk

)
ad
−

(
dJ
dYk

)
cs

)
/

(
dJ
dYk

)
cs
≤ 10−11

for all k and both J .
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B. The Inverse Design of Flow in a Shock-tube

In this section we look at the inverse design of a flow in a 1D shock-tube. The presented framework is useful
in data assimilation problems: Given a set of measurements of some actual flow on [0, T ], determine a “best”
estimate for the initial state that leads to the observed flow behaviour. This problem has been explored
before by Homescu and Navon,16 but unlike them we will use an analytic derivation of the adjoint model
whereas they linearized the nonlinear forward model code line by line and viewed the resulting tangent linear
model as the result of the multiplication of a number of operator matrices O1O2 . . . OM . They then derived
the adjoint model as the product of adjoint subproblems OTMO

T
M−1 . . . O

T
1 .

The shock-tube problem can be described as follows: A tube that is filled with gas is initially divided by
a membrane into two sections. The gas has a higher density and pressure in one half of the tube than in the
other half, with zero velocity everywhere. At time t = 0, the membrane is suddenly removed and the gas is
allowed to flow. We expect a net motion in the direction of lower pressure. Assuming uniform flow across
the tube, there is variation in only one direction and the 1-D Euler equations apply.
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Figure 4: Pressure, velocity and density: Initial guess (dashed line) and
target observation (solid line) at t = T = 0.21 using Y ∗1 in the left column
and Y ∗2 in the right column.

We choose Y = (pL, pR, ρL, ρR) to be the
control variables, and we consider again the
two forms of the cost functional J given by
Eqs. (11) and (12), respectively. This time the
target or desired observationsQ∗nj are obtained
as solutions of the shock-tube problem for two
different sets of initial conditions:

Y ∗1=(pL = 1.1, pR = 0.2, ρL = 1.1, ρR = 0.2)
Y ∗2=(pL = 1.5, pR = 0.6, ρL = 1.6, ρR = 0.4)

We use the Sod shock-tube values17

Y= (pL = 1.0, pR = 0.1, ρL = 1.0, ρR = 0.125)

as an initial guess, and our time horizon for
the optimal control problem was T = 0.21 (in
non-dimensional units). In Figure 4 we show
different flow variables for the target observa-
tions at t = 0.21 obtained from the two dif-
ferent sets of initial conditions together with
the observation of the initial guess at the same
output time (using again 100 spatial nodes and the BDF2 time marching method).
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Figure 5: Convergence Plots for J1 (dashed) and J2 (solid) using T = 0.21
for the first set of initial conditions in the left column and for the second
set in the right column.

In order to provide Matlab’s BFGS algorithm
with the necessary gradient we use the adjoint
equations given in Appendix A, but since this
is a data assimilation problem it is advanta-
geous to write the gradient of J with respect
to the design variables Y as follows:

dJ

dY
=
∂L
∂Y

=
∂L
∂Q0

∂Q0

∂Y

=
[
(ψ2)T∇Q0R∗2 + (ψ1)T∇Q0R∗1

] ∂Q0

∂Y

Matlab is able to drive both objective func-
tions J1 and J2, given by Eqs. (11) and (12),
respectively, for the two target observations Y ∗1
and Y ∗2 , to machine zero (see Figure 5).

We also compared the resulting adjoint gra-
dient of the cost functionals with respect to
the design variables at the first design itera-
tion to the ones computed via the complex-step
method.15 The agreement is again excellent,

thus showing that the presented framework has no problems dealing with discontinuities such as shocks.
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C. The Inverse Design of a Pulse in a Converging-Diverging Nozzle in 2D

We use our 2D multi-block structured solver, Tornado,18 which is based on the well known ARC2D flow
solver,14 in Euler mode to solve the full 2D version of the pulse problem presented in Section A. The pulse
in the static outflow pressure is again given by equation (10), and we specify constant stagnation conditions
at the inlet. We use cubic spline interpolation, but this time with only five control points to represent the
nozzle shape, and since we fix the in- and outflow control points to ensure a well-posed design problem, we
have three shape design variables S̄. The x-locations of the control points are 2.5, 5.0 and 7.5, respectively,
and the initial and target shapes of the nozzle are shown in Figure 6.

Figure 6: Initial (red) and target (black) converging-diverging nozzle shapes in 2D.

The control vector is again given by Y = (A,F, S̄) and our objective function is as follows:

J =
1
2
∆t

N∑
n=1

Ie∑
i=1

Je∑
j=1

4∑
k=1

(Q̃ni,j,k − Q̃∗ni,j,k)
2

where Q̃ni,j,k are the conservative flow variables at node (i, j) in the computational domain (the map of the
curvilinear grid into a uniform and equally spaced grid). We choose N = 200, Ie = 99 and Je = 55 with a
constant time step ∆t = 0.1, which yields T = 20.0 as our final time. We also scale the objective function J
by a factor such that the initial value is unity. The starting point Q0 is the steady-state solution of the 2D
Euler equations with p(t=0) = ps = 92 kPa, and we show the nondimensionalized target pressure at t = 0
in Figure 7.

Figure 7: Nondimensionalized target pressure at t = 0 in 2D Nozzle.

The target flow variables Q̃∗ni,j,k are
obtained as the solution of the flow
problem with the control vector Y ∗ =
(1000, 0.15, S̄∗). The gradient of J with
respect to the control variables Y is cal-
culated using the adjoint equations given
in Appendix A. Again we have to ac-
count for the steady flow solution after
modifying the shape of the nozzle by solv-
ing one additional adjoint equation for λ
given by Eq. (13).

In order to save computational time
and storage, we only save the flow field
every five time steps (and thus compare
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the flowfield with the target flowfield only every five time steps). This means, in particular, that we have
to invert the transpose of the Jacobian only 40 times as opposed to 200 times in order to calculate the
complete gradient. This of course has an influence on the accuracy of the gradient, as we will demonstrate
with the following example. If we use Y = (2500, 0.21, S̄) as an initial guess for the control vector and we
use second-order central finite-differences (fd) with a stepsize of h = 10−7 to calculate the gradient at the
first iteration (comparing the flowfield at every time step) we get(

dJ

dY

)
fd

= (−0.0519, 1.9142, −3.7971, 4.0757, 5.5990)

(
dJ

dY

)
ad

= (−0.0519, 1.9142, −3.7661, 4.0911, 5.6017)

whereas the adjoint method with jumping over five time steps (ad5) yields(
dJ

dY

)
ad5

= (0.2219, 1.0391, −4.1309, 3.7740, 5.6894)

Nonetheless, one can see in the convergence plot for different initial guesses for A and F in Figure 8 that the
objective function can be driven to machine zero in all the presented cases (not all initial guesses converge).
We have to impose constraints on the shape design variables (S̄ ∈ [0.7, 1.7]) to ensure that the flow through
the nozzle always stays entirely subsonic in the inverse design process. We also constrain the amplitude and
frequency of the pulse (A ∈ [−14000, 14000] and F ∈ [−0.5, 0.5]) to prevent pulses with excessively large
amplitudes or frequencies.
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Figure 8: Convergence plots for the inverse design of a pulse in a 2D converging-diverging nozzle.

D. Drag Minimization for Viscous Flow around a Rotating Cylinder

The viscous flow past a circular cylinder has been comprehensively studied due to its simple geometry and its
representative behavior of general bluff body wakes. The various flow regimes are identified by the character
of the flow in the wake and boundary layer of the cylinder, which is highly dependent on the Reynolds
number (Re).19 The first flow regime, Re < 1, is characterized by purely laminar, attached, steady, two-
dimensional flow. In the second flow regime, 3− 5 < Re < 30− 40, flow separates from the upper and lower
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surfaces of the cylinder and two steady recirculation zones appear, which are two-dimensional, laminar and
attached vortices. As the Reynolds number increases to Re > 40, these vortices become unstable and are
shed alternately from the upper and lower surfaces of the cylinder. The flow field exhibits an unsteady train
of two-dimensional laminar vortices travelling in the wake, the so-called Karman vortex shedding (which has
been extensively studied for the last century, starting with the pioneering work of von Karman20). The next
major flow regime occurs at a Reynolds number of around 180 where the flowfield becomes three-dimensional.
This flow regime also marks the beginning of the transition from laminar to turbulent flow in the wake and
regular vortex shedding at a Strouhal number of about 0.2 is observed over a range of Reynolds numbers
from roughly 200 to 100, 000.

Using the Magnus Effect (also known as the Robbins Effect), which can be observed for rotating spheres
as well as cylinders, one can try to minimize the drag and to suppress the Karman vortex shedding by
controlling the angular velocity of the rotating body. The idea is that a deep understanding of the control
strategies necessary to control flows past rotating bluff bodies could be applied in areas like drag reduction,
lift enhancement, vibration control and last but not least, our particular interest, noise control.

In order to solve the underlying 2D unsteady Navier-Stokes equations, we use our 2D single-block struc-
tured solver, PROBE,13 which is a Newton-GMRES solver loosely based on ARC2D.14 We implement the
rotational boundary conditions by requiring the normal velocity on the surface of the cylinder to be zero
and the tangential velocity to be equal to Ω · r, where Ω is the angular velocity and r = 0.5 the radius of the
cylinder. Several researchers21,22 have considered two control cases: The constant rotation case, Ω(t) = Ω,
and the time harmonic rotary oscillation case, Ω(t) = A · sin(2πFt). Thus, they use as design variables
Y = Ω or Y = (A,F ), respectively.

Table 1: A comparison of the mean drag coefficients and
Strouhal numbers.

C̄D Sn

Re 100 1000 100 1000

Present work 1.45 1.53 0.179 0.252

Homescu et al.21 1.42 1.68 - -

He et al.22 1.35 1.52 0.167 0.239

Williamson23 - - 0.164 -

Henderson24 1.35 1.51 0.166 0.237

For comparison purposes, it is convenient to introduce the
Strouhal number

Sn = d · fn/u∞
where d is the diameter of the cylinder, fn is the Karman
vortex shedding frequency, and u∞ is the free stream ve-
locity. Using an O-mesh with 140× 90 grid nodes, and the
BDF2 time-marching method with a time step of ∆t = 0.1,
we compare our results for the mean value of the drag co-
efficient C̄D and the Strouhal number Sn with experimen-
tally and computationally obtained values by various au-
thors21–24 in Table 1.

Figure 9: Vortex shedding behind a cylinder with unit diameter, M∞= 0.2
and Sn = 0.252 (we show the vorticity).

There is a reasonable agreement for both
Reynolds numbers. We could probably in-
crease the accuracy of our flow solver by using
a smaller time step, a finer grid, or a higher-
order time-marching method, but since we are
only using this as a model problem we are sat-
isfied with the results. Because the primary
focus of this paper is on the optimal control
of unsteady flows, grid density and grid ex-
tent studies are not performed. We recognize
that the 140 × 90 grid is relatively coarse and
that the computed unsteady flow is not grid
converged for this case. Also, the use of the
thin-layer Navier-Stokes equations which are
implemented in PROBE is questionable for a
bluff-body flow and will deviate to some degree
from a full Navier-Stokes solution.

The experimental work of Tokumaru and Dimotakis25 motivates the attempt to find an optimal angular
velocity in order to minimize the drag. We show the vortex shedding for Re = 1000 at the time point where
we will start our rotary control in Figure 9. The effect of different values of Ω on the drag coefficient for the
constant rotation case can be seen in Figure 10. The rotation starts impulsively at zero time steps, and one
can see that after a transition period of about 1500 time steps the mean drag coefficient C̄D is decreased for
all presented cases.
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Figure 10: Drag coefficients for the constant rotation case for different values of Ω (∆t = 0.1).

We want to “jump” over the adjusting or transition period as quickly as possible, thus taking a bigger
time step ∆T = 0.5 for N∗= 300 time steps. Once we reach the domain where we actually want to control
the problem, we use a smaller time step ∆t = 0.2 for another 500 time steps (the control time window is
indicated by the box in Figure 10), which yields a total of N = 800 time steps for each flow solve. The
corresponding adjoint equations for the described situation are given in Appendix B.

Our choice for the objective function for the constant and harmonic rotating cases is a time average
(mean) drag minimization problem:

J = C̄D =
1

N−N∗

N∑
n=N∗+1

CnD (14)

where CnD is the drag coefficient at time step n. Using BFGS26,27 and constraining Ω to values between 0
and 1.9 we are able to minimize the drag with gradient norms of 10−8 at the minima. We show the resulting
design space in Figure 11 with the gradients at the different design points represented as straight lines. One
can see that there are several local minima in this design space, with the global minimum in the given interval
at Ω = Ω∗ ≈ 1.16 leading to C̄D ≈ 0.11. This optimum value minimizes the mean drag value far beyond
the extent of the control time window, as can be seen in Figure 10, and this behaviour was also observed by
other researchers.21,22

Once again we try to save computational time and storage by saving the flowfield in the control time
window only every other time step leading to only 300 + 500/2 = 550 matrix inversions for the adjoint as
compared to 800 in the original case. The result is also shown in Figure 11, and the gradients and objective
function values are in reasonable agreement with each other thus leading to a similar convergence history
except that in this case the local minima are slightly shifted (about 0.25 percent off) and the gradient norms
only reduce to 10−3 at these minima.
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Figure 11: The design space of the constant rotating cylinder Ω(t) = Ω.
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Figure 12: Drag coefficients for the harmonic rotation case for different values of A and F (∆t = 0.1).
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In Figure 12 we show the effect of different values of A and F on the drag coefficient for the harmonic
rotation case. The rotation starts smoothly at zero time steps, and one can see that after a transition period
of about 750 time steps the mean drag coefficient C̄D is again decreased for all presented cases.

This time we “jump” over the transition period with a time step of ∆T = 0.2 for N∗= 375 time steps and
then switch to a smaller time step ∆t = 0.1 in the actual control window for another 400 time steps, giving
a total of N = 775 time steps for each flow solve. Using the same objective function as for the constant
rotating cylinder given by Eq. (14) and constraining the amplitude A to [0, 1.9] and the frequency F to
[0, 0.3], we can minimize the drag with gradient norms of about 10−4 at the minima. The resulting design
space can be seen in Figure 13 with the gradients in the different design points represented by arrows and
the objective function values given by a colour scale with red representing the highest and blue the lowest
values. Once again several local minima can be seen, with a global minimum for Y = Y ∗ ≈ (0.98, 0.114)
leading to C̄D ≈ 0.6832, which again leads to a minimized mean drag value far beyond the extent of the
control time window (see Figure 12).
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Figure 13: The design space of the harmonic rotating cylinder and a zoom into the most interesting region.

E. The Remote Inverse Shape Design of an Airfoil in Unsteady Turbulent 2D Flow

Traditional adjoint implementations are aimed at minimizing a cost function computed from flow variables
on the surface, for example of an airfoil, that is being modified. However, for many problems, such as
noise reduction, we want to minimize an objective function using flow quantities that are not collocated
at the points where the surface is being modified. The goal is to use our set of discrete adjoint equations
to quantify the influence of geometry modifications on the flow variables at an arbitrary location (e.g. a
near-field plane) within the domain of interest. This type of sensitivity calculation has been successfully
used before by Nadarajah et al.28,29 for the steady case of sonic boom minimization and will be necessary
for a variety of problems including inlet design, turbomachinery design, and airfoil-generated noise.
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A typical approach to tackle the high-lift noise reduction problem is to represent the CFD solution on a
reasonable computational mesh that does not extend too far from the airfoil (see Figure 14). At a pre-specified
distance below the aircraft but still within the CFD mesh, one can specify the location of a near-field plane.

Figure 14: Schematic of the propagation of the aircraft pressure
signature.

This plane is the effective interface between the CFD
solution and a wave propagation program based on
principles of geometrical acoustics and nonlinear wave
propagation30 which calculates the pressure fluctua-
tions at the ground plane. This solution can then be
used to determine any of a variety of measures of the
airframe-generated noise, for example overpressures.
This paper only focuses on controlling the near-field
pressures, which are one of the inputs to a wave prop-
agation program.

Our test case is a remote inverse shape design prob-
lem which involves turbulent flow over an airfoil. The
free stream Mach number is 0.2 with a Reynolds num-
ber of 4×106, and the angle of attack is 20◦. At these
conditions the airfoil experiences vortex shedding. We
use PROBE13 with the one-equation Spalart-Allmaras
turbulence model31 to solve this unsteady turbulent
flow problem.

The geometry of the airfoil is described with cubic B-spline curves,18 which means that some of the y-
coordinates of the B-spline control points can easily be used as shape design variables. We use

Figure 15: The initial (red) and target (black) airfoil shapes.

four shape design variables to keep the problem sim-
ple and to be able to compare our adjoint gradient
with a finite-differenced one. Our initial airfoil shape
is the NACA0012 and we perturb the four shape de-
sign variables slightly to get a target airfoil shape (see
Figure 15). Our discrete cost function J is given by

J =
1
2
∆t

N∑
n=N∗+1

∑
NF

(pn − p∗n)2

where pn is the near-field pressure obtained from the current airfoil shape, and p∗n is the near-field pressure
obtained from the target airfoil shape (both at time step n). The sum over NF implies a sum over all the
grid nodes that define the near-field plane; our particular choice is shown in Figure 16.

X

Y

-10 -5 0 5 10

-10

-5

0

5

10

Figure 16: Our mesh where the near-field plane is shown in black.

In Figure 17 we show the drag coefficients for
the initial and target airfoil shapes over time. Both
flow solves are warmstarted from a NACA0012 pe-
riodic steady state solution, thus one can see an
adjustment period for the target airfoil. We want
to “jump” over this unphysical adjusting period af-
ter a shape modification has taken place as quickly
as possible. Therefore, we take a bigger time step
∆T = 0.1 for the first N∗ = 300 time steps, and
once we reach our desired control window, we use
a smaller time step ∆t = 0.05 for another 200 time
steps, for a total of N = 500 time steps for each flow
solve. The corresponding adjoint equations for this
situation are again given in Appendix B.

The convergence history of this remote inverse
design problem with the adjoint approach in com-
parison to a second-order central finite-difference ap-
proach with a step size of h = 10−7 is shown in
Figure 18. The objective function J is again always
scaled by a factor such that its initial value is unity.
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Figure 17: Drag coefficient for the initial and target airfoil shape (∆t = 0.05).

One can see that the objective function is driven to a small value in about twenty-six design iterations and
that the two approaches show a reasonable agreement, which means that our adjoint approach for the gradi-
ent calculation is accurate. We also try to save computational time and storage by saving the flowfield in the
adjusting period and in the control window only every fourth time step, leading to only 500/4 = 125 matrix
inversions for the solution of the adjoint equations. The result is also shown in Figure 18, and the gradi-
ents and objective function values are in reasonable agreement with the original adjoint and finite-difference
approach, thus leading to a similar convergence history while saving 75 percent computational resources.
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Figure 18: Convergence history of the remote inverse design problem with four design variables.

13 of 16

American Institute of Aeronautics and Astronautics



IV. Conclusion

We have presented a general framework to derive a discrete adjoint method for the optimal control
of unsteady flows. We applied this framework to several applications of interest and thus demonstrated
the generality of our approach. We also showed that marching with a bigger time step over transition
or unphysical adjusting periods as well as skipping time steps (e.g. every other) while recording the flow
solution works well in practice, thus resulting in significant savings in both memory and computational time
for unsteady optimization problems. Our future work will focus on the ability to modify the shape of an
airfoil to minimize the radiated noise while maintaining good performance. Therefore, we will investigate
the presented remote inverse design problem further by using more complex geometries (slats and flaps) as
well as more design variables.

Appendix

A. Adjoint Equations for BDF2

In this appendix, we derive the discrete adjoint equations resulting from discretizing the time derivative
in Eq. (2) with the second-order implicit backward difference (BDF2) time marching method. Since this
method is not self-starting, we use the implicit Euler method for the first time step. The time-dependent
flow solution Qn is then implicitly defined through the following unsteady residuals:

R∗1(Q1, Q0, Y ) :=
Q1 −Q0

∆t
+R(Q1, Y ) = 0

R∗n(Qn, Qn−1, Qn−2, Y ) :=
3Qn − 4Qn−1 +Qn−2

2∆t
+R(Qn, Y ) = 0 for n = 2, . . . , N

The problem of minimizing the discrete objective function given by J =
∑N
n=1 I

n(Qn, Y ) is equivalent
to the unconstrained optimization problem of extremizing the Lagrangian function

L =
N∑
n=2

[
In(Qn, Y ) + (ψn)TR∗n(Qn, Qn−1, Qn−2, Y )

]
+ I1(Q1, Y ) + (ψ1)TR∗1(Q1, Q0, Y )

with respect to Q0, . . . , QN and ψ1, . . . , ψN . The Lagrange multipliers ψn must now be chosen such that
∇QnL = 0 for n = 1, . . . , N , which leads to

0 = ∇QnIn + (ψn)T∇QnR∗n + (ψn+1)T∇QnR∗n+1 + (ψn+2)T∇QnR∗n+2 for n = 1, . . . , N−2
0 = ∇QN−1IN−1 + (ψN )T∇QN−1R∗N + (ψN−1)T∇QN−1R∗N−1

0 = ∇QN IN + (ψN )T∇QNR∗N

This can be written equivalently as

ψN = −
(
(∇QNR∗N )T

)−1
(∇QN IN )T

ψN−1= −
(
(∇QN−1R∗N−1)T

)−1[
(∇QN−1R∗N )TψN+(∇QN−1IN−1)T

]
ψn = −

(
(∇QnR∗n)T

)−1[
(∇QnR∗n+2)Tψn+2+ (∇QnR∗n+1)Tψn+1+(∇QnIn)T

]
for n = N−2, . . . , 1

Finally, the gradient of J with respect to the design variables Y is again given by

dJ

dY
=
∂L
∂Y

=
N∑
n=1

[
∇Y I

n(Qn, Y ) + (ψn)T∇YR(Qn, Y )
]

B. Adjoint Equations for Warmstarted BDF2 with a Time Step Size Change

In this appendix, we derive the discrete adjoint equations in the form in which we use them to present our
rotating cylinder and remote inverse design results. We usually warmstart our flow solve at some time point
which means that we know Q0 and Q−1. We also want to “jump” over the adjusting or transition period as
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quickly as possible thus taking a bigger time step ∆T for N∗ time steps. Once we reach the domain where
we actually want to control the problem we use a smaller time step ∆t for N−N∗ time steps. Thus we have
a total of N time steps and to keep the second-order time accuracy, the time-dependent flow solution Qn is
implicitly defined through the following unsteady residuals:

R∗n(Qn, Qn−1, Qn−2, Y ) :=
3Qn − 4Qn−1 +Qn−2

2∆T
+R(Qn, Y ) = 0 for n = 1, . . . , N∗

R∗N
∗+1(QN

∗+1, QN
∗
, QN

∗−1, Y ) :=
(2∆t∆T + ∆T 2)QN

∗+1 − (∆t+ ∆T )2QN
∗

+ ∆t2QN
∗−1

∆t∆T (∆t+ ∆T )
+R(QN

∗+1, Y ) = 0

R∗n(Qn, Qn−1, Qn−2, Y ) :=
3Qn − 4Qn−1 +Qn−2

2∆t
+R(Qn, Y ) = 0 for n = N∗+ 2, . . . , N

The problem of minimizing the discrete objective function given by J =
∑N
n=N∗+1 I

n(Qn, Y ) is then
equivalent to the unconstrained optimization problem of extremizing the Lagrangian function

L =
N∑

n=N∗+1

In(Qn, Y ) +
N∑
n=1

(ψn)TR∗n(Qn, Qn−1, Qn−2, Y )

with respect to Q0, . . . , QN and ψ1, . . . , ψN . This leads to the following equations for ψn:

0 = (ψn)T∇QnR∗n + (ψn+1)T∇QnR∗n+1 + (ψn+2)T∇QnR∗n+2 for n = 1, . . . , N∗

0 = ∇QnIn + (ψn)T∇QnR∗n + (ψn+1)T∇QnR∗n+1 + (ψn+2)T∇QnR∗n+2 for n = N∗+1, . . . , N−2
0 = ∇QN−1IN−1 + (ψN )T∇QN−1R∗N + (ψN−1)T∇QN−1R∗N−1

0 = ∇QN IN + (ψN )T∇QNR∗N .

which can be written equivalently as

ψn=


−

(
(∇QnR∗n)T

)−1[(∇QnIn)T
]

for n = N

−
(
(∇QnR∗n)T

)−1[(∇QnIn)T + (∇QnR∗n+1)Tψn+1
]

for n = N − 1
−

(
(∇QnR∗n)T

)−1[(∇QnIn)T + (∇QnR∗n+1)Tψn+1+ (∇QnR∗n+2)Tψn+2
]

for n = N−2, . . . , N∗+1
−

(
(∇QnR∗n)T

)−1[ (∇QnR∗n+1)Tψn+1+ (∇QnR∗n+2)Tψn+2
]

for n = N∗, . . . , 1

A little care must be taken in calculating derivatives of R∗N
∗+1with respect to Qn since the factors in front

of QN
∗+1, QN

∗
and QN

∗−1are slightly different. The gradient of J with respect to the design variables Y is
then given by

dJ

dY
=
∂L
∂Y

=
N∑

n=N∗+1

∇Y I
n(Qn, Y ) +

N∑
n=1

(ψn)T∇YR(Qn, Y )
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