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Abstract

Several types of simultaneous approximation term (SAT) for di↵usion problems discretized with diagonal-norm mul-
tidimensional summation-by-parts (SBP) operators are analyzed based on a common framework. Conditions under
which the SBP-SAT discretizations are consistent, conservative, adjoint consistent, and energy stable are presented.
For SATs leading to primal and adjoint consistent discretizations, the error in output functionals is shown to be of
order h2p when a degree p multidimensional SBP operator is used to discretize the spatial derivatives. SAT penalty
coe�cients corresponding to various discontinuous Galerkin fluxes developed for elliptic partial di↵erential equations
are identified. We demonstrate that the original method of Bassi and Rebay, the modified method of Bassi and Rebay,
and the symmetric interior penalty method are equivalent when implemented with SBP diagonal-E operators that have
diagonal norm matrix, e.g., the Legendre-Gauss-Lobatto SBP operator in one space dimension. Similarly, the local
discontinuous Galerkin and the compact discontinuous Galerkin schemes are equivalent for this family of operators.
The analysis remains valid on curvilinear grids if a degree  p + 1 bijective polynomial mapping from the reference to
physical elements is used. Numerical experiments with the two-dimensional Poisson problem support the theoretical
results.

Keywords: Simultaneous approximation term, Summation-by-parts, Functional superconvergence, Adjoint
consistency, Unstructured grid, Curvilinear coordinate

1. Introduction

High-order methods can provide superior solution accuracy for a given computational cost. Furthermore, when used
with unstructured and discontinuous elements they enable e�cient hp-adaptation and high code parallelization while
still being consistent, locally conservative, and stable for wide range of fluid flow problems. Many of these powerful
features can be attributed to the solution discontinuity between adjacent elements. The manner in which elements
are coupled a↵ects most essential properties of discretizations, such as accuracy, consistency, conservation, stability,
adjoint consistency, functional convergence, conditioning, sti↵ness, sparsity, symmetry, and so on. Therefore, the
coupling procedure at interfaces between adjacent elements is a critical aspect of discontinuous high-order methods. In
this paper, we analyze the numerical properties of discretizations arising from the use of one such coupling procedure,
simultaneous approximation terms (SATs) [1], for di↵usion problems.

Discontinuous high-order methods developed in the past few decades include summation-by-parts (SBP) methods
coupled with SATs, discontinuous Galerkin (DG), and flux reconstruction (FR) methods. In the DG and FR methods,
element coupling and boundary conditions are enforced via numerical fluxes. A unified framework of DG fluxes for
elliptic problems is analyzed by Arnold et al. [2], a review of the SBP-SAT method is presented in [3, 4], and the con-
nections between SBP-SAT, DG, and FR methods can be found, for example, in [5–8]. Motivated by developments in
the DG method, Carpenter, Nordström, and Gottlieb [9] introduced the Carpenter-Nordström-Gottlieb (CNG) SAT to
solve the multi-domain problem for high-order finite di↵erence methods [10]. In later works [10, 11], they showed that
SATs are closely related to DG fluxes and introduced the Baumann-Oden (BO)[12] and local discontinuous Galerkin
(LDG) [13] type SATs for one-dimensional classical SBP operators. Although these SATs are consistent, conserva-
tive, and energy stable, not all of them possess other desired properties such as symmetry and adjoint consistency.
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Hicken and Zingg [14] presented conditions that SATs must satisfy for SBP-SAT discretizations to be adjoint consis-
tent. Furthermore, they showed that, under mild assumptions, linear functionals superconverge for adjoint consistent
discretizations. Adjoint consistency and functional superconvergence properties are further studied in [15–22]. Re-
cently, Craig Penner and Zingg [23] showed that functional superconvergence is retained in curvilinear coordinates for
adjoint consistent discretizations of hyperbolic PDEs with generalized SBP operators [24].

Multidimensional SBP operators were introduced by Hicken, Del Rey Fernández, and Zingg [25]. The SBP oper-
ators constructed in [25] are classified as SBP-� operators – a family of operators that have

⇣

p+d�1
d�1

⌘

volume nodes on
each facet, where d is the spatial dimension of the problem. Later, the SBP-⌦ [26] and SBP diagonal-E1 [27] operator
families were introduced. SBP-⌦ operators have volume nodes strictly in the interior domain of the element, while the
SBP diagonal-E operators are characterized by two features: facet nodes that are collocated with volume nodes and
diagonal surface integral matrices. A broader classification of the operators that is based on the dimensions spanned
by the volume to facet node extrapolation matrices2, R, categorizes the SBP-⌦, SBP-�, and SBP diagonal-E operators
under the Rd, Rd�1, and R0 operator families, respectively, where the superscript on R indicates the dimensions spanned
by the extrapolation matrices [28]. For a degree p multidimensional SBP operator that has a diagonal norm matrix3,
the diagonal entries of the norm matrix and the corresponding volume nodes define a degree 2p�1 quadrature rule, and
this connection simplifies the construction of multidimensional SBP operators as quadrature rules are readily available
in the literature [26]. The analysis presented in this paper is restricted to multidimensional SBP operators that have a
diagonal norm matrix.

SATs for hyperbolic problems discretized with SBP-� and SBP-⌦ operators were studied in [25, 26]. A frame-
work to implement SATs with multidimensional SBP operators for second-order partial di↵erential equations (PDEs)
was subsequently proposed by Yan, Crean, and Hicken [29]. The framework presented in [29] is flexible enough to
construct compact4 stencil SATs that lead to consistent, conservative, adjoint consistent, and energy stable SBP-SAT
discretizations. Furthermore, it was shown in [29, 30] that the modified method of Bassi and Rebay (BR2) [31], the
symmetric interior penalty (SIPG) [32], and the compact discontinuous Galerkin (CDG) [33] methods fall under this
framework. Numerical properties of discretizations of the two-dimensional heat equation with SBP-� and SBP-⌦ op-
erators coupled with the BR2 and SIPG SATs were also investigated in [29]. For tensor-product SBP discretizations
in multiple dimensions, wide stencil DG fluxes, such as the LDG method, are widely used for coupling of viscous
terms [34–36]. However, many numerical properties of discretizations resulting from the use of wide stencil SATs and
multidimensional SBP operators have not been analyzed so far. In light of this, we study properties of compact and
wide stencil SATs under a general SAT framework for multidimensional SBP operators.

The three main objectives of the present work are: (1) to extend the framework in [29] to allow construction of wide
stencil SATs and study their numerical properties, (2) to demonstrate that when di↵usion problems are discretized with
degree p multidimensional SBP operators in a primal and adjoint consistent manner, the error in output functionals is of
order h2p, and (3) to show the equivalence of di↵erent types of DG-based SATs when implemented with SBP diagonal-
E operators that have a diagonal norm matrix. We also specify SAT coe�cients that correspond to the consistent DG
fluxes in [2, 33] and provide stability analysis for the SATs that are not studied in [29]. All results are presented in two
space dimensions; however, generalization to three space dimensions is straightforward.

The paper is organized as follows: In Section 2, we introduce our notation and present important definitions. After
describing the model problem in Section 3, the SBP-SAT discretization and the generic SAT framework are provided in
Section 4. We analyze properties of SBP-SAT discretizations in Section 5 and present SATs corresponding to popular
DG methods in Section 6. In Section 7, we demonstrate the equivalence of various types of SATs when implemented
with the diagonal-norm R0 SBP family and study the sparsity of system matrices arising from SBP-SAT discretizations.
In Section 8, we investigate numerical properties of various SBP-SAT discretizations of the steady version of the model
problem. Finally, we present concluding remarks in Section 9.

1Abbreviated as SBP-E in all figures and tables.
2Also known as the interpolation/extrapolation matrix.
3The norm matrix is known as the mass matrix in the DG literature.
4If SATs couple only immediate neighbor elements, they are referred to as compact stencil SATs; otherwise, they are referred to as wide or

extended stencil SATs.
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2. Notation and definitions

We closely follow the notation in [25, 29, 37]. A d-dimensional compact domain and its boundary are denoted
by ⌦ ⇢ Rd and @⌦, respectively. The domain is tessellated into ne non-overlapping elements, Th ⌘ {{⌦k}ne

k=1 : ⌦ =
[ne

k=1⌦k}. The boundaries of each element will be referred to as facets or interfaces, and we denote their union by
�k ⌘ @⌦k. A reference element, ⌦̂, and its boundary, �̂, are used to construct SBP operators which are then mapped
to each physical element. The reference triangle is a right angle triangle with vertices v̂1 = (�1,�1), v̂2 = (1,�1), and
v̂3 = (�1, 1) and facets f1 =

���!
v̂2v̂3, f2 =

���!
v̂3v̂1, and f3 =

���!
v̂1v̂2. The boundaries @⌦, �k, and �̂ are assumed to be piecewise

smooth. The set of all interior interfaces is denoted by �I ⌘ {�k\�v : k, v = 1, . . . , ne, k , v}. The set of facets of⌦k that
are also interior facets is denoted by �I

k ⌘ �I \ �k, and �B ⌘ {@⌦\ �k : k = 1, . . . , ne} delineates the set of all boundary
facets. Finally, the set containing all facets is denoted by � ⌘ �I [ �B. The set of np volume nodes in element ⌦k is
represented by S k = {(xi, yi)}np

i=1, while the set of n f nodes on facet � 2 �k is denoted by S � = {(xi, yi)}n f

i=1. Similarly,
we represent the set of volume nodes in the reference element, ⌦̂, and facet nodes on � 2 �̂ by Ŝ = {(⇠i, ⌘i)}np

i=1, and
Ŝ � = {(⇠i, ⌘i)}n f

i=1, respectively. Operators associated with the reference element bear a hat, (·̂).
Scalar functions are written in uppercase script type, e.g.,Uk 2 C1(⌦k), and vector-valued functions of dimension

d are represented by boldface uppercase script letters, e.g., Wk 2 [L2(⌦k)]d. The space of polynomials of total
degree p is denoted by Pp(⌦̂), and n⇤p =

⇣

p+d
d

⌘

is the cardinality of the polynomial space. The restrictions of functions
to grid points are denoted by bold letters, e.g., uk 2 Rnp is the evaluation of Uk at grid points S k, while vectors
resulting from numerical approximations have subscript h, e.g., uh,k 2 Rnp . When dealing with error estimates, we
define h ⌘ maxa,b2S k ka � bk2 as the diameter of an element. Matrices are denoted by sans-serif uppercase letters, e.g.,
V 2 Rnp⇥n⇤p ; 1 denotes a vector consisting of all ones, 0 denotes a vector or matrix consisting of all zeros. The sizes of
1 and 0 should be clear from context. Finally, In represents the identity matrix of size n ⇥ n unless specified otherwise.

The definition of multidimensional SBP operators first appeared in [25], and is presented below on the reference
element.

Definition 1 (Two-dimensional SBP operator [25]). The matrix D̂⇠ 2 Rnp⇥np is a degree p SBP operator approximating
the first derivative @

@⇠ on the set of nodes Ŝ = {(⇠i, ⌘i)}np

i=1 if

1. D̂⇠ p = @P
@⇠ for all P 2 Pp(⌦̂)

2. D̂⇠ = Ĥ�1Q̂⇠ where Ĥ is a symmetric positive definite (SPD) matrix, and

3. Q̂⇠ = Ŝ⇠ +
1
2 Ê⇠ where Ŝ⇠ = �ŜT

⇠ , Ê⇠ = ÊT
⇠ and Ê⇠ satisfies

p

T Ê⇠q =

Z

�̂

PQn̂⇠ d�

for all P,Q 2 Pr(⌦̂), where r � p, and n̂⇠ is the ⇠-component of the outward pointing unit normal vector,
n̂ = [n̂⇠, n̂⌘]T , on �̂.

An analogous definition applies for operators in the ⌘ direction. Properties 2 and 3 in Definition 1 give

Q̂⇠ + Q̂T
⇠ = Ê⇠, (1)

which will be referred to as the SBP property. Throughout this paper, the matrix Ĥ is assumed to be diagonal. The set
of nodes Ŝ and the diagonal entries of Ĥ define a quadrature rule of at least degree 2p � 1; thus, the inner product of
two functions P and Q is approximated by [25, 26]

p

T Ĥq =

Z

⌦̂

PQ d⌦ + O
⇣

h2p
⌘

.

Together with the fact that Ĥ is SPD, the above approximation can be used to define the norm

u

T Ĥu = kuk2
Ĥ
=

Z

⌦̂

U2 d⌦ + O
⇣

h2p
⌘

,

which is a degree 2p � 1 approximation of the L2 norm.
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Under the assumption that a quadrature rule exists on � 2 �̂ with nodes Ŝ � the surface integral matrix Ê⇠ can be
decomposed as [26]

Ê⇠ =
X

�⇢�̂
RT
� B̂�N̂⇠�R�, (2)

where, B̂� 2 Rn f⇥n f is a diagonal matrix containing a minimum of degree 2p positive quadrature weights on � along its
diagonal, N̂⇠� 2 Rn f⇥n f contains the ⇠ component of n̂� along its diagonal, and R� 2 Rn f⇥np is a matrix that extrapolates
the solution from the volume nodes to the facet nodes. The quadrature accuracy requirement on B̂� is a su�cient but
not necessary condition to construct SBP operators [38]. In this paper, we consider SBP operators with facet quadrature
based on the Legendre-Gauss (LG) rule which o↵ers a degree 2p + 1 accuracy. The extrapolation matrix, R�, is exact
for polynomials of degree p on the reference element. For SBP-⌦ operators, it is constructed as [26]

R� = V̂�V̂+⌦ = V̂�

⇣

V̂T
⌦V̂⌦

⌘�1
V̂T
⌦, (3)

where V̂� 2 Rn f⇥n⇤p and V̂⌦ 2 Rnp⇥n⇤p are Vandermonde matrices constructed using the orthonormalized canonical
basis discussed in Appendix A and the set of nodes Ŝ � and Ŝ , respectively, and (·)+ represents the Moore-Penrose
pseudoinverse. For SBP-� operators, R� is obtained using a V̂⌦ matrix constructed using the basis evaluated at the
p+ 1 volume nodes that lie on facet � [26]. Finally, for SBP diagonal-E operators, R� contains unity at each entry (i, j)
if i + (n � 1)n f = j, where n = {1, 2, 3} is the facet number; all other entries are zero [38].

Some definitions that are used in DG formulations of di↵usion problems will prove useful for later discussions.
Following [2], we introduce the broken finite element spaces associated with the tessellation Th of ⌦. The spaces of
scalar and vector functions, Vh and ⌃h respectively, whose restrictions to each element, ⌦k, belong to the space of
polynomials are defined by

Vh ⌘ {P 2 L2(⌦) : P|⌦k 2 Pp(⌦k) 8⌦k 2 Th},
⌃h ⌘ {V 2 [L2(⌦)]2 : V|⌦k 2 [Pp(⌦k)]2 8⌦k 2 Th},

(4)

and the set in which traces5 of the functions in Th lie is defined by

T (�) ⌘ ⇧⌦k2Th L2(�k). (5)

The jump, J·K, and average, {·}, operators for scalar and vector-valued functions are defined as

JPK = Pk nk + Pvnv, {P} = 1
2

(Pk + Pv), 8P 2 T (�),

JVK = Vk · nk +Vv · nv, {V} = 1
2

(Vk +Vv), 8V 2 [T (�)]2.
(6)

At the boundaries, JPK = Pk nk and {V} = Vk, and the {P} and JVK are left undefined [2]. Surface integral terms that
appear in the DG flux formulation6 are converted to volume integrals via lifting operators. For vector-valued functions,
the global lifting operator for interior facets, L : [L2(�I)]2 ! ⌃h, and the local lifting operator for interior facets,
L� : [L2(�)]2 ! ⌃h are defined by [33]

Z

⌦

L (V) ·Z d⌦ = �
Z

�I
V · {Z} d� 8Z 2 ⌃h, (7)

Z

⌦�

L� (V) ·Z d⌦ = �
Z

�
V · {Z} d� 8Z 2 ⌃h, � 2 �I , (8)

where ⌦� = �k [ �v. Similarly, for scalar functions, the global lifting operator, S : L2(�I) ! ⌃h, the local lifting

5Traces define the restriction of functions along the boundaries of each element; thus, functions in T (�) are double-valued on �I and single valued
on �B [2]. See [39] for trace theorems which a↵ect the function spaces in which the solution and test functions are sought.

6The flux formulation is obtained by transforming second-order PDEs into a system of first-order PDEs.
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operator, S� : L2(�)! ⌃h, and the lifting operators at Dirichlet boundary facets, SD : L2(�)! ⌃h, are defined by
Z

⌦

S (P) ·Z d⌦ = �
Z

�I
P JZK d� 8Z 2 ⌃h, (9)

Z

⌦�

S� (P) ·Z d⌦ = �
Z

�
P JZK d� 8Z 2 ⌃h, � 2 �I , (10)

Z

⌦�

SD(P) ·Z d⌦ = �
Z

�
PZ · nd� 8Z 2 ⌃h, � 2 �D, (11)

respectively. Note that the surface integrals on the right-hand side (RHS) of (7) and (9) do not include boundary facets;
hence, these global lifting operators di↵er from similar definitions, e.g., in [2, 40]. The consequence of such definitions
of the global lifting operators is that the boundary conditions are enforced using compact SATs only, i.e., extended
stencil SATs are applied exclusively on interior facets. This is important for adjoint consistency of discretizations of
problems with non-homogeneous Dirichlet boundary conditions, as explained in Section 5.3. Moreover, the lifting
operator at Dirichlet boundaries is defined locally; however, a global lifting operator definition would give the same
final SBP-SAT discretization of the PDEs we are interested in.

3. Model problem

We consider the two-dimensional di↵usion equation,

@U
@t
+ L(U) = F in ⌦, U = U0 at t = 0, BD(U) = UD on �D, BN(U) = UN on �N , (12)

where the linear di↵erential operators in ⌦, on �D, and on �N are given, respectively, by L(U) = �r · (�rU), BD(U) =
U, and BN(U) = (�rU) · n, F 2 L2(⌦) is the source term, � =

⇥ �xx �xy
�yx �yy

⇤

is an SPD tensor with di↵usivity coe�cients
in each combination of directions, and we assume that �\ �D , ;. The energy stability analysis presented in this work
applies to SBP-SAT discretizations of the unsteady model problem given in (12).

In order to study adjoint consistency and superconvergence of functionals, we will consider the steady version of
(12), the Poisson problem. We also consider a linear functional of the form

I(U) = hG⌦,Ui⌦ + hG�D ,CD(U)i�D + hG�N ,CN(U)i�N , (13)

where G⌦ 2 L2(⌦), G�D 2 L2(�D), G�N 2 L2(�N), CD and CN are linear di↵erential operators at the Dirichlet and Neu-
mann boundaries, respectively, and h·, ·i⌦, h·, ·i�D , and h·, ·i�D represent the L2(⌦), L2(�D), and L2(�N) inner products,
respectively. Such a functional is said to be compatible with the steady version of (12) if [41]

hL(U), i⌦ +
⌦

BD(U),C⇤D( )
↵

�D +
⌦

BN(U),C⇤N( )
↵

�N = hU, L⇤( )i⌦ +
⌦

CD(U), B⇤D( )
↵

�D +
⌦

CN(U), B⇤N( )
↵

�N , (14)

where L⇤, B⇤D, C⇤D, B⇤N , and C⇤N are the adjoint operators to the linear di↵erential operators L, BD, CD, BN , and CN ,
respectively, and  is a unique adjoint variable in an appropriate function space, e.g., we assume U, 2 H2. A
compatible linear functional satisfies the relations [41, 42]

I(U) = hU,G⌦i⌦ + hCD(U),G�Di�D + hCN(U),G�N i�N = hU, L⇤( )i⌦ +
⌦

CD(U), B⇤D( )
↵

�D +
⌦

CN(U), B⇤N( )
↵

�N

= hL(U), i⌦ +
⌦

BD(U),C⇤D( )
↵

�D +
⌦

BN(U),C⇤N( )
↵

�N = hF , i⌦ +
⌦

BD(U),C⇤D( )
↵

�D +
⌦

BN(U),C⇤N( )
↵

�N .
(15)

In the subsequent analysis, we will consider the compatible linear functional

I(U) =
Z

⌦

GU d⌦ �
Z

�D
 D(�rU) · nd� +

Z

�N
 NU d� , (16)

where G 2 L2(⌦),  N = [n·(�r )] 2 L2(�N), and  D 2 L2(�D). The functional given in (16) is obtained by substituting
G⌦ = G, G�D =  D, G�N =  N , CD(U) = �(�rU) · n, CN(U) = U, BD(U) = UD, and BN(U) = (�rU) · n = UN in
(15), i.e.,

I(U) = hG,Ui⌦ + h D,�(�rU) · ni�D + h N ,Ui�N (17)
= hL(U), i⌦ +

⌦UD,C⇤D( )
↵

�D +
⌦UN ,C⇤N( )

↵

�N (18)
= hU, L⇤( )i⌦ +

⌦�(�rU) · n, B⇤D( )
↵

�D +
⌦U, B⇤N( )

↵

�N . (19)
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Following [41], we apply integration by parts to hL(U), i⌦ twice and rearrange terms to find

hL(U), i⌦ � hU, (�r ) · ni�D + h(�rU) · n, i�N

= � hU,r · (�r )i⌦ � h(�rU) · n, i�D + hU, (�r ) · ni�N ,
(20)

where symmetry of the inner product is used assuming the problem is real-valued. Equations (18) to (20) imply

L⇤( ) = �r · (�r ) , B⇤D( ) =  , B⇤N( ) = (�r ) · n, C⇤D( ) = �(�r ) · n, C⇤N( ) =  . (21)

Using the result in (21) and subtracting (19) from (17) we have

hG + r · (�r ),Ui⌦ + h �  D, (�rU) · ni�D + h N � (�rU) · n,Ui�N = 0. (22)

Thus, the adjoint for the model problem satisfies

L⇤( ) � G = 0 in ⌦,  =  D on �D, (�r ) · n =  N on �N . (23)

4. SBP-SAT discretization

In this section, the discretization of the model equation (12) with multidimensional SBP operators is presented.
Notation and definition of operators follow [29]. The following assumption is used in the construction of SBP operators
on curved elements which is presented in Appendix A.

Assumption 1. We assume that there exists a bijective and time-invariant polynomial mapping, Mk : ⌦̂ ! ⌦k, of
degree pmap  p + 1 for all ⌦k 2 Th. Furthermore, volume and facet quadrature rules with the set of nodes in
the reference element exist such that diagonal-norm SBP operators satisfying Definition 1 can be constructed on the
reference element.

The extrapolation matrix is exact for constant functions in the physical element,⌦k, particularly R�k1 = 1. Polyno-
mials in⌦k are not necessarily polynomials in the reference element, ⌦̂; thus, SBP operators in the physical domain are
not exact for polynomials in ⌦k. However, under Assumption 1 the accuracy of the derivative operators in the physical
elements is not compromised [37]. We state, without proof, Theorem 9 in [37] that establishes the accuracy of SBP
derivative operators on physical elements.

Theorem 1. Let Assumption 1 hold and the metric terms be computed exactly using (A.6) and (A.7). Then for uk 2 Rnp

holding the values of U 2 Cp+1(⌦̂) at the nodes in Ŝ , the derivative operators given by (A.15) are order p accurate,
i.e.,

[Dxkuk]i =
@U
@x

(⇠i, ⌘i) + O(hp), and [Dykuk]i =
@U
@y

(⇠i, ⌘i) + O(hp).

Furthermore, if the SBP operators on physical elements are constructed as described in Appendix A and As-
sumption 1 holds, then Dxk1 = 0 and Dyk1 = 0, which are the conditions required to satisfy the discrete metric
identity/freestream preservation condition [37, 38].

The di↵usivity coe�cients are evaluated at the volume nodes and stored in an SPD block matrix,

⇤ =

"

⇤xx ⇤xy
⇤yx ⇤yy

#

, (24)

where each block is diagonal, e.g., ⇤xx = diag(�xx(x1, y1), . . . , �xx(xnp , ynp )). The second derivative is approximated by
applying the first derivative twice,

[r · (�r)]k ⇡ D(2)
k =

h

Dxk Dyk
i

⇤k

"

Dxk
Dyk

#

, (25)

and the normal derivative at facet � is given by

[n · (�r)]k ⇡ D�k = NT
�kR̄�k⇤k

"

Dxk
Dyk

#

, (26)
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where
N�k =

"

Nx�k
Ny�k

#

, and R̄�k =

"

R�k
R�k

#

.

Furthermore, a discrete analogue of application of integration by parts to the term
R

⌦k
Vr·(�rU) d⌦ yields the relation

(see [29, Proposition 1]),
D(2)

k = �H�1
k Mk + H�1

k

X

�⇢�k

RT
�kB�D�k, (27)

where Mk is a symmetric positive semidefinite matrix given by

Mk =
h

DT
xk DT

yk

i

H̄k⇤k

"

Dxk
Dyk

#

, (28)

and
H̄k =

"

Hk
Hk

#

.

A further decomposition of the D(2)
k matrix can be obtained by applying the the SBP property twice:

Proposition 1. If SBP operators on physical elements are constructed as discussed in Appendix A, then the second
derivative operator in (25), which is constructed by applying the first derivative twice, has the decomposition

D(2)
k = H�1

k

⇣

D(2)
k

⌘T
Hk � H�1

k

X

�⇢�k

DT
�kB�R�k + H�1

k

X

�⇢�k

RT
�kB�D�k. (29)

Proof. Using the SBP property in (1), we have

Dxk = H�1
k HkDxkH�1

k Hk = H�1
k QxkH�1

k Hk = H�1
k

⇣

�QT
xk + Exk

⌘

H�1
k Hk,

therefore,
Dxk = �H�1

k DT
xkHk + H�1

k Exk, and DT
xk = �HkDxkH�1

k + ExkH�1
k . (30)

Furthermore,
h

Exk Eyk
i

⇤k

"

Dxk
Dyk

#

=
X

�⇢�k

RT
�kB�NT

�kR̄�k⇤k

"

Dxk
Dyk

#

=
X

�⇢�k

RT
�kB�D�k. (31)

Using (30) and the fact that H̄k⇤kH̄�1
k = ⇤k (since Hk and components of ⇤k are diagonal), we arrive at

D(2)
k =

h

Dxk Dyk
i

⇤k

"

Dxk
Dyk

#

= �H�1
k

h

DT
xk DT

yk

i

⇤k

"

Dxk
Dyk

#

Hk + H�1
k

h

Exk Eyk
i

⇤k

"

Dxk
Dyk

#

= H�1
k

h

DT
xk DT

yk

i

⇤k

"

DT
xk

DT
yk

#

Hk � H�1
k

h

DT
xk DT

yk

i

⇤k

"

Exk
Eyk

#

+ H�1
k

h

Exk Eyk
i

⇤k

"

Dxk
Dyk

#

. (32)

Noting that ⇤k = ⇤
T
k , Exk = ET

xk, Eyk = ET
yk, and substituting (31) in (32) yields the desired result.

Remark 1. Identity (29) mimics application of integration by parts twice on
R

⌦
Vr · (�rU) d⌦.

The SBP-SAT semi-discretization of (12) for element ⌦k can now be written as

duh,k

dt
= D(2)

k uh,k + f k � H�1
k s

I
k(uh,k) � H�1

k s

B
k (uh,k,u�k,w�k), (33)

where the interior facet SATs and the boundary SATs are given, respectively, by

s

I
k(uh,k) =

X

�⇢�I
k

h

RT
�k DT

�k

i

2

6

6

6

6

6

4

T(1)
�k T(3)

�k
T(2)
�k T(4)

�k

3

7

7

7

7

7

5

"

R�kuh,k � R�vuh,v
D�kuh,k + D�vuh,v

#

+
X

�⇢�I
k

8

>

>

>

<

>

>

>

:

X

✏⇢�I
k

RT
�kT

(5)
�✏k

h

R✏kuh,k � R✏guh,g
i

+
X

�⇢�I
v

RT
�kT

(6)
��v

h

R�vuh,v � R�quh,q
i

9

>

>

>

=

>

>

>

;

,

(34)
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Figure 1: Element and facet labeling. For convenience common labeling is often used, e.g.,
P

�⇢�v (·) implies
P

�1 (·) +P

�2 (·).

and

s

B
k (uh,k,u�k,w�k) =

X

�⇢�D

h

RT
�k DT

�k

i

"

T(D)
�

�B�

#

(R�kuh,k � u�k) +
X

�⇢�N

RT
�kB�

⇣

D�kuh,k � w�k
⌘

, (35)

here, u�k is the restriction of U on S �, w�k is the restriction of n · (�rU) on S �, ✏ 2 {✏1, ✏2}, � 2 {�1, �2}, and the
matrices T(1)

�k ,T
(2)
�k ,T

(3)
�k ,T

(4)
�k ,T

(5)
�✏k,T

(6)
��k 2 Rn f⇥n f are SAT penalty/coe�cient matrices. Elements and facets are labeled as

shown in Fig. 1. To avoid calculating the gradient of the solution, [ Dxkuh,k
Dykuh,k

], multiple times to find terms such as D�kuh,k
in (34), one can compute and store the gradient of the solution in a vector.

The structure of the interior facet SATs given by (34) di↵ers from the form considered in [29] by the inclusion of
the last two terms, which enable the study of wide stencil SATs that couple a target element with second neighbors,
e.g., BR1 and LDG type SATs. We point out that, unlike wide stencil DG fluxes, the boundary SATs do not include
extended stencil terms. This facilitates the design of adjoint consistent schemes for problems with non-homogeneous
Dirichlet boundary conditions; however, it bears an adverse e↵ect on energy stability of some the DG-based SATs.
The connection between the SATs and DG fluxes as well as the stability issues due to the form of the boundary SATs
are discussed in Section 6. All of the SATs considered in this work have T(4)

�k = 0. While it is possible to construct
SATs with a nonzero T(4)

�k coe�cient, this can decrease the global accuracy of the numerical solution and increase the
condition number and sti↵ness of the arising system matrix [11, 19]. Indeed, for most of the SBP-SAT discretizations
studied in Section 8, we observed that setting T(4)

�k = 1/2B� decreases the accuracy of the solution and increases the
condition number of the arising system matrix by two to three orders of magnitude. For the analyses that follow, we do
not make the assumption that T(4)

�k is zero. The assumptions we make regarding the SAT coe�cients are stated below.

Assumption 2. For any element⌦k and facets a, b 2 {�, ✏, �}, we assume that the coe�cient matrices T(1)
ak , T(2)

ak ,T
(3)
ak ,T

(4)
ak ,

and T(D)
a are symmetric, T(5)

abk = (T(5)
bak)T , and T(6)

abk = (T(6)
bak)T .

Premultiplying (33) by v

T
k Hk and employing identity (27), the weak form of the SBP-SAT discretization reads

v

T
k Hk

duh,k

dt
= �v

T
k Mkuh,k +

X

�⇢�k

v

T
k RT

�kB�D�kuh,k + v

T
k Hk f k � v

T
k s

I
k(uh,k) � v

T
k s

B
k (uh,k,u�k,w�k), (36)

for all vk 2 Rnp . Summing (36) over all elements yields
X

⌦k⇢Th

v

T
k Hk

duh,k

dt
= Rh(uh, v), 8v 2 R⌃ne , (37)

where

Rh(uh, v) = �
X

⌦k⇢Th

v

T
k Mkuh,k +

X

⌦k⇢Th

v

T
k Hk f k �

X

�⇢�I

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R�kvk
R�vvv
D�kvk
D�vvv

3

7

7

7

7

7

7

7

7

7

7

7

7

5

T 2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

T(1)
�k �T(1)

�k T(3)
�k � B� T(3)

�k
�T(1)

�v T(1)
�v T(3)

�v T(3)
�v � B�

T(2)
�k �T(2)

�k T(4)
�k T(4)

�k
�T(2)

�v T(2)
�v T(4)

�v T(4)
�v

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R�kuh,k
R�vuh,v
D�kuh,k
D�vuh,v

3

7

7

7

7

7

7

7

7

7

7

7

7

5

�
X

�⇢�I

8

>

>

>

<

>

>

>

:

X

✏⇢�I
k

"

R�kvk
R�vvv

#T 2

6

6

6

6

6

4

T(5)
�✏k �T(5)

�✏k
T(6)
�✏k �T(6)

�✏k

3

7

7

7

7

7

5

"

R✏kuh,k
R✏guh,g

#

�
X

�⇢�I
v

"

R�kvk
R�vvv

#T 2

6

6

6

6

6

4

T(6)
��v �T(6)

��v
T(5)
��v �T(5)

��v

3

7

7

7

7

7

5

"

R�vuh,v
R�quh,q

#

9

>

>

>

=

>

>

>

;

�
X

�⇢�D

"

R�kvk
D�kvk

#T "

T(D)
� �B�

�B� 0

# "

R�kuh,k � u�k
D�kuh,k

#

+
X

�⇢�N

v

T
k RT

�kB�w�k. (38)
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Instead of adding the terms responsible for extending the stencil (terms containing coe�cients T(5) and T(6)) facet by
facet, we can add them element by element. That is, we regroup facet terms associated with T(5) and T(6) by element
and rewrite the residual as

Rh(uh, v) = �
X

⌦k⇢Th

v

T
k Mkuh,k +

X

⌦k⇢Th

v

T
k Hk f k �

X

�⇢�I

(v?)T T?u

?
h �

X

⌦k⇢Th

X

�,✏⇢�I
k

(v⇧)T T⇧u⇧h

�
X

�⇢�D

"

R�kvk
D�kvk

#T "

T(D)
� �B�

�B� 0

# "

R�kuh,k � u�k
D�kuh,k

#

+
X

�⇢�N

v

T
k RT

�kB�w�k,

(39)

where
P

�⇢�I (v?)T T?u

?
h is equal to the third term on the RHS of (38), and

X

�,✏⇢�I
k

(v⇧)T T⇧u⇧h =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4
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R�vvv
R✏1kvk

R✏1g1 vg1
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R✏2g2 vg2

3
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7

5

T
2

6

6

6

6
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6

6
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6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 T(5)
�✏1k �T(5)

�✏1k T(5)
�✏2k �T(5)

�✏2k

0 0 T(6)
�✏1k �T(6)

�✏1k T(6)
�✏2k �T(6)

�✏2k
T(5)
✏1�k �T(5)

✏1�k 0 0 T(5)
✏1✏2k �T(5)

✏1✏2k
T(6)
✏1�k �T(6)

✏1�k 0 0 T(6)
✏1✏2k �T(6)

✏1✏2k

T(5)
✏2�k �T(5)

✏2�k T(5)
✏2✏1k �T(5)

✏2✏1k 0 0

T(6)
✏2�k �T(6)

✏2�k T(6)
✏2✏1k �T(6)

✏2✏1k 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R�kuh,k
R�vuh,v
R✏1kuh,k

R✏1g1 uh,g1

R✏2kuh,k
R✏2g2 uh,g2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (40)

Yet another form of the residual, and one that is important for energy analysis, is obtained by employing the
“borrowing trick” of [9] which is generalized for multidimensional SBP operators in [29]. The approach allows to
find conditions for energy stability by writing the volume term on the RHS of (38), �P

⌦k⇢Th v

T
k Mkuh,k, as a facet

contribution. The following lemma is as an extension of Lemma 1 in [29].

Lemma 1. Given a facet based weight ↵�k > 0 satisfying
P

�⇢�k ↵�k = 1 for each facet �, the residual of the SBP-SAT
discretization for the homogeneous version of (12), i.e., F = 0,UD = 0 , andUN = 0, can be written as

Rh(uh,uh) = �
X

�⇢�I

"

D�kuh,k
D�vuh,v

#T 2

6

6

6

6

4

T(4)
�k T(4)

�k
T(4)
�v T(4)

�v

3

7

7

7

7

5

"

D�kuh,k
D�vuh,v

#

�
X

�⇢�I

X1 �
X

⌦k2Th

X

�,✏2�I
k

X2

�
X

�⇢�D

"

R�vk
Fkvk

#T "

T(D)
� �B�C�k

�CT
�kB� ↵�k⇤

⇤
k

# "

R�kuh,k
Fkuh,k

#

,

(41)

where

X1 =

2
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7

7
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�k C�v

� 1
2 T(1)

�v
1
2 T(1)

�v T(3)
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⇤
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⇤
v

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R�kuh,k
R�vuh,v
Fkuh,k
Fvuh,v

3

7

7

7

7

7

7

7

7

7

7

7

7

5

X2 =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R�kuh,k
R�vuh,v
R✏1kuh,k

R✏1g1 uh,g1

3

7

7

7

7

7

7

7

7

7

7

7

7

5

T
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1
8 T(1)

�k � 1
8 T(1)

�k T(5)
�✏1k �T(5)

�✏1k
� 1

8 T(1)
�v

1
8 T(1)

�v T(6)
�✏1k �T(6)

�✏1k
T(5)
✏1�k �T(5)

✏1�k
1
8 T(1)

✏1k � 1
8 T(1)

✏1k
T(6)
✏1�k �T(6)

✏1�k � 1
8 T(1)

✏1g1
1
8 T(1)

✏1g1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R�kuh,k
R�vuh,v
R✏1kuh,k

R✏1g1 uh,g1

3

7

7

7

7

7

7

7

7

7

7

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R�kuh,k
R�vuh,v
R✏2kuh,k

R✏2g2 uh,g2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

T
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1
8 T(1)

�k � 1
8 T(1)

�k T(5)
�✏2k �T(5)

�✏2k
� 1

8 T(1)
�v

1
8 T(1)

�v T(6)
�✏2k �T(6)

�✏2k
T(5)
✏2�k �T(5)

✏2�k
1
8 T(1)

✏2k � 1
8 T(1)

✏2k

T(6)
✏2�k �T(6)

✏2�k � 1
8 T(1)

✏2g2
1
8 T(1)

✏2g2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R�kuh,k
R�vuh,v
R✏2kuh,k

R✏2g2 uh,g2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R✏1kuh,k
R✏1g1 uh,g1

R✏2kuh,k
R✏2g2 uh,g2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

T
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1
8 T(1)

✏1k � 1
8 T(1)

✏1k T(5)
✏1✏2k �T(5)

✏1✏2k
� 1

8 T(1)
✏1g1

1
8 T(1)

✏1g1 T(6)
✏1✏2k �T(6)

✏1✏2k
T(5)
✏2✏1k �T(5)

✏2✏1k
1
8 T(1)

✏2k � 1
8 T(1)

✏2k
T(6)
✏2✏1k �T(6)

✏2✏1k � 1
8 T(1)

✏2g2
1
8 T(1)

✏2g2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R✏1kuh,k
R✏1g1 uh,g1

R✏2kuh,k
R✏2g2 uh,g2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

9



and

Fk =

"

⇤xx ⇤xy
⇤yx ⇤yy

#

k

"

Dxk
Dyk

#

, ⇤⇤k =
"

⇤xx ⇤xy
⇤yx ⇤yy

#�1

k

"

Hk
Hk

#

, C�k =
h

Nx�kR�k Ny�kR�k
i

,

Fv =

"

⇤xx ⇤xy
⇤yx ⇤yy

#

v

"

Dxv
Dyv

#

, ⇤⇤v =
"

⇤xx ⇤xy
⇤yx ⇤yy

#�1

v

"

Hv
Hv

#

, C�v =
h

Nx�vR�v Ny�vR�v
i

,

Proof. Since the result follows from simple algebraic manipulations, the complete proof is omitted but we state some
of the steps. We made use of the decomposition provided in [29],

Mk =
X

�⇢�k

↵�kFT
k⇤
⇤
kFk, (42)

applied the relations C�kFk = D�k, C�vFv = D�v, subtracted 1
2 T(1) terms from the first 2 ⇥ 2 block of T? and added

1
4 T(1) terms in the 2 ⇥ 2 diagonal blocks of T(⇧), which is then decomposed into the three terms in X2. Note that T(⇧)

is summed element by element; therefore, we recover 1
2 T(1) terms at each interior facet due to contributions from two

abutting elements.

5. Properties of the SBP-SAT discretization

In this section, some numerical properties of the SBP-SAT discretization given in (33) to (35) are analyzed. We
will make use of the three equivalent forms of the residual in (38), (39), and (41) depending on the property under
consideration.

5.1. Consistency
Consistency is a requirement that the SBP-SAT discretization of the primal problem represents the continuous

PDE accurately. Consider the steady version of the model problem (12); then consistency requires that the SBP-SAT
discretization be at least approximately satisfied by the exact solution [43]. More precisely, we require that

lim
h!0

X

⌦k2Th

�

�

�Lh,k(uk) � f k

�

�

�

Hk
= 0, (43)

where uk 2 Rnp is a grid function representing the exact solution,Uk 2 Cp+1(⌦k),

Lh,k(uk) = �D(2)
k uk + H�1

k s

I
k(uk) + H�1

k s

B
k (uk,u�k,w�k) (44)

is the discrete counterpart of the linear operator Lk applied onUk, and k·kHk is the norm defined by Hk matrix on Rnp .

Theorem 2. Let Assumption 1 hold, the SBP operators be constructed as described in Appendix A, the solution to the
PDE (12) beU 2 Cp+1(⌦), and uk 2 Rnp be a grid function representingUk. Then, the discretization (33) to (35) is a
consistent approximation of the di↵usion problem given by (12), and

�

�

�Lh,kuk � f k

�

�

�1 = O(hp�1).

Proof. The result is a simple consequence of Theorem 1, and the accuracy of the extrapolation matrix. It follows by
substituting u in place of uh in (33) to (35), and noting that D(2)

k uk = [r · (�rU)]S k + O
⇣

hp�1
⌘

, D�kuk = �D�vuv =

[nk · (�rU)]S � + O(hp), and the extrapolation matrices are order p + 1 accurate, e.g., R�kuk = U|S � + O(hp+1).

5.2. Conservation
A conservative discretization needs to satisfy the divergence theorem discretely. Multiplying (12) by a test function,

V 2 H2(⌦), and integrating by parts we find
Z

⌦

V@U
@t

d⌦ = �
Z

⌦

rV · (�rU)d⌦ +
Z

�B
V(�rU) · nd� +

Z

⌦

VF d⌦, (45)

which is equivalent to applying the divergence theorem if we setV = 1. Thus, for a problem with no source term and
v = 1, we require all except the boundary terms on the RHS of (39) to vanish.
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Theorem 3. Let Assumption 1 hold and the metric terms be evaluated exactly, then the SBP-SAT discretization given
in (33) to (35) is conservative if the penalty matrices satisfy

T(1)
�k = T(1)

�v , T(3)
�k + T(3)

�v = B�, T(5)
abk = �T(6)

abk, (46)

where a, b 2 {�, ✏1, ✏2}.
Proof. In (37) and (39), we set v = 1, f k = 0. Applying T(1)

�v = T(1)
�k , and T(3)

�k � B� = �T(3)
�v in T(?), T(5)

abk = �T(6)
abk

for a, b 2 {�, ✏1, ✏2} in T(⇧), and using the exactness of the extrapolation matrix for constants along with the operations
Dxk1 = Dyk1 = 0 and D�k1 = D�v1 = 0, we obtain

P

⌦k⇢Th v

T
k Mkuk = 0,

P

�⇢�I (v?)T T?u

? = 0, and
P

�,✏2�I
k
(v⇧)T T⇧u⇧ = 0.

Therefore, (37) becomes
X

⌦k⇢Th

1

T Hk
duh,k

dt
=

X

�⇢�N

1

T RT
�kB�w�k +

X

�⇢�D

h

1

T RT
�kB�D�kuh,k � 1

T RT
�kT

(D)
�

⇣

R�kuh,k � u�k
⌘i

, (47)

i.e., all interface terms in the residual vanish and
P

⌦k⇢Th 1

T Hk
duh,k

dt depends only on boundary terms, as desired.

5.3. Adjoint Consistency
Adjoint consistency refers to an accurate discrete representation of the continuous adjoint problem, i.e., the exact

solution to the continuous adjoint problem (23) needs to satisfy

lim
h!0

X

⌦k⇢Th

�

�

�L⇤h,k( ) � gk

�

�

�

Hk
= 0, (48)

where L⇤h,k is the discrete adjoint operator (see [14, 16] for similar definitions). The discretization of the linear functional
(16) needs to be modified in a consistent manner to attain an adjoint consistent discretization [41]. One possible
modification is

Ih(uh) =
X

⌦k⇢Th

g

T
k Hkuh,k �

X

�⇢�D

 T
�kB�D�kuh,k +

X

�⇢�N

z

T
�kB�R�kuh,k +

X

�⇢�D

 T
�kT

(D)
� (R�kuh,k � u�k), (49)

where  �k and z�k are restrictions of  and n · (�r ) on S �, respectively. The last term in (49) is added for adjoint
consistency [14, 17, 29, 41, 44]. Similarly, we modify the discretization of another form of the functional that is given
by the last equality in (15) as

Ih( h) =
X

⌦k⇢Th

f

T
k Hk h,k �

X

�⇢�D

u

T
�kB�D�k h,k +

X

�⇢�N

w

T
�kB�R�k h,k +

X

�⇢�D

u

T
�kT

(D)
� (R�k h,k �  �k). (50)

A general procedure to modify the functional for adjoint consistency of discretizations of problems with non-homogeneous
Dirichlet boundary conditions is discussed in [44]. If the boundary SATs contain extended stencil terms, it is not clear
whether a similar modification is applicable to retain adjoint consistency.

To find the discrete adjoint operator, we require that Ih(uh) � Ih( h) = 0, which is a discrete analogue of I(U) �
I( ) = 0. Subtracting

P

⌦k⇢Th  
T
h,kHk(Lh,k(uh,k) � f k) = 0 from (49) gives

Ih(uh) =
X

⌦k⇢Th

g

T
k Hkuh,k �

X

�⇢�D

 T
�kB�D�kuh,k +

X

�⇢�N

z

T
�kB�R�kuh,k

+
X

�⇢�D

 T
�kT

(D)
� (R�kuh,k � u�k) �

X

⌦k⇢Th

 T
h,kHk(Lh,k(uh,k) � f k).

(51)

Rearranging, adding, and subtracting terms we have

Ih(uh) =
X

⌦k⇢Th

 T
h,kHk f k �

X

�⇢�D

u

T
�kB�D�k h,k +

X

�⇢�N

w

T
�kB�R�k h,k +

X

�⇢�D

u

T
�kT

(D)
� (R�k �k �  �k)

�
X

⌦k⇢Th

 T
h,kHkLh,k(uh,k) +

X

⌦k⇢Th

u

T
h,kHk gk +

X

�⇢�D

u

T
�kB�D�k h,k �

X

�⇢�D

u

T
�kT

(D)
� (R�k h,k �  �k)

�
X

�⇢�N

w

T
�kB�R�k h,k �

X

�⇢�D

 T
�kB�D�kuh,k +

X

�⇢�N

z

T
�kB�R�kuh,k +

X

�⇢�D

 T
�kT

(D)
� (R�kuh,k � u�k),

(52)
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where the sum of the first four terms on the RHS is equal to Ih( h) due to (50). Rearranging terms, we find

�
X

⌦k⇢Th

 T
h,kHkLh,k(uh,k) +

X

⌦k⇢Th

u

T
h,kHk gk + Bterms + Ih( h) � Ih(uh) = 0, (53)

where Bterms is the sum of the boundary terms in the last two lines of (52). Using (44) and (29) we write

� T
h,kHkLh,k(uh,k) =  T

h,kHkD
(2)
k uh,k �  T

h,k s

I
k(uh,k) �  T

h,k s

B
k (uh,k,u�k,w�k)

=  T
h,k

⇣

D(2)
k

⌘T
Hkuh,k �

X

�⇢�k

 T
h,kD

T
�kB�R�kuh,k +

X

�⇢�k

 T
h,kR

T
�kB�D�kuh,k

�  T
h,k s

I
k(uh,k) �  T

h,k s

B
k (uh,k,u�k,w�k). (54)

Summing over all elements and transposing the result, we find

�
X

⌦k⇢Th

⇣

 T
h,kHkLh,k(uh,k)

⌘T
=

X

⌦k⇢Th

u

T
h,kHkD

(2)
k  h,k �

X

�⇢�I

(u?h )T T̃? ?h �
X

⌦k⇢Th

X

�,✏2�I
k

(u⇧h)T T̃⇧ ⇧h

�
X

�⇢�D

(R�kuh,k � u�k)T T(D)
� R�k h,k �

X

�⇢�D

u

T
�kB�D�k h,k +

X

�⇢�D

u

T
h,kD

T
�kB�R�k h,k

+
X

�⇢�N

w

T
�kB�R�k h,k �

X

�⇢�N

u

T
h,kR

T
�kB�D�k h,k,

(55)

where T̃⇧ = (T⇧)T , and

T̃? =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

T(1)
�k �T(1)

�v T(2)
�k + B� �T(2)

�v

�T(1)
�k T(1)

�v �T(2)
�k T(2)

�v + B�

T(3)
�k � B� T(3)

�v T(4)
�k T(4)

�v

T(3)
�k T(3)

�v � B� T(4)
�k T(4)

�v

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (56)

Substituting (55) into (53), enforcing Ih(uh) � Ih( h) = 0, and simplifying, we obtain
X

⌦k⇢Th

u

T
h,kHk

⇣

D(2)
k  h,k + gk

⌘

�
X

�⇢�I

(u?h )T T̃? ?h �
X

⌦k⇢Th

X

�,✏2�I
k

(u⇧h)T T̃⇧ ⇧h

�
X

�⇢�D

"

R�kuh,k
D�kuh,k

#T "

T(D)
�

�B�

#

⇣

R�k h,k �  �k

⌘

�
X

�⇢�N

u

T
h,kR

T
�kB�

⇣

D�k h,k � z�k
⌘

= 0.
(57)

Rewriting (57) as
P

⌦k⇢Th u

T
h,kHk

⇣

L⇤h,k
�

 h
� � gk

⌘

= 0, we identify the discrete adjoint operator, L⇤h,k, satisfying

L⇤h,k( h) � gk = 0, (58)

to be
L⇤h,k( h) = �D(2)

k  h,k + H�1
k (s

I
k)⇤( h,k) + H�1

k (s

B
k )⇤( h,k, �k, z�k), (59)

where the adjoint interior facet SATs and boundary SATs are given, respectively, by

⇣

s

I
k

⌘⇤
=

X

�⇢�I
k

h

RT
�k DT

�k

i

2

6

6

6

6

6

4

T(1)
�k �T(1)

�v T(2)
�k + B� �T(2)

�v

T(3)
�k � B� T(3)

�v T(4)
�k T(4)

�v

3

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

4

R�k h,k
R�v h,v
D�k h,k
D�v h,v

3

7

7

7

7

7

7

7

7

7

7

7

7

5

+
X

�⇢�I
k

8

>

>

>

<

>

>

>

:

X

✏⇢�I
k

RT
�k

h

T(5)
�✏kR✏k h,k + T(6)

�✏kR✏g h,g

i

�
X

�⇢�I
v

RT
�k

h

T(5)
��vR�v h,v + T(6)

��vR�q h,q

i

9

>

>

>

=

>

>

>

;

,

(60)

⇣

s

B
k

⌘⇤
=

X

�⇢�D

h

RT
�k DT

�k

i

"

T(D)
�

�B�

#

h

R�k h,k �  �k

i

+
X

�⇢�N

RT
�kB�

⇣

D�k h,k � z�k
⌘

. (61)
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Note that the last term in (s

I
k)⇤ is obtained by rewriting the extended interior facet SATs by facet contribution, regrouping

by element, i.e.,
X

⌦k⇢Th

X

�,✏⇢�I
k

( ⇧h)T T⇧u⇧h =
X

�⇢�I

⇢

X

�⇢�I
v

 T
h,vR

T
�vT

(5)
��v[R�vuh,v � R�kuh,k] +

X

✏⇢�I
k

 T
h,kR

T
✏kT

(5)
✏�k[R�kuh,k � R�vuh,v]

+
X

�⇢�I
v

 T
h,qRT

�qT(6)
��v[R�vuh,v � R�kuh,k] +

X

✏⇢�I
k

 T
h,gRT

✏gT(6)
✏�k[R�kuh,k � R�vuh,v]

�

=
X

⌦k⇢Th

X

�⇢�I
k

⇢

X

✏⇢�I
k

h

 T
h,kR

T
✏kT

(5)
✏�k +  

T
h,gRT

✏gT(6)
✏�k

i

R�kuh,k �
X

�⇢�I
v

h

 T
h,vR

T
�vT

(5)
��v +  

T
h,qRT

�qT(6)
��v

i

R�kuh,k

�

,

(62)
and transposing to find
X

⌦k⇢Th

X

�,✏2�I
k

(u⇧h)T T̃⇧ ⇧h =
X

⌦k⇢Th

X

�⇢�I
k

⇢

X

✏⇢�I
k

u

T
h,kR

T
�k

h

T(5)
�✏kR✏k h,k + T(6)

�✏kR✏g h,g

i

�
X

�⇢�I
v

u

T
h,kR

T
�k

h

T(5)
��vR�v h,v + T(6)

��vR�q h,q

i

�

.

(63)
It is also possible to regroup the extended interior facet SATs as

X

�⇢�I
k

X

✏⇢�I
k

h

RT
✏k

⇣

T(5)
✏�kR�k h,k + T(6)

✏�kR�v h,v

⌘

� RT
✏g

⇣

T(5)
✏�kR�k h,k + T(6)

✏�kR�v h,v

⌘i

, (64)

which can replace the last term in (60). We now state a theorem which is an extension of Theorem 1 in [29].

Theorem 4. Let Assumptions 1 and 2 hold, and the metric terms be evaluated exactly. Then the SBP-SAT discretization
given in (33) to (35) and the discrete functional (49) are adjoint consistent with respect to the steady version of the
continuous PDE (12) and functional (16), i.e., (48) holds, and

�

�

�L⇤h,k k � gk

�

�

�1 = O(hp�1) if  k 2 Cp+1(⌦k) and the
coe�cient matrices satisfy the following relations

T(1)
�k = T(1)

�v , T(2)
�k + T(2)

�v = �B�, T(3)
�k + T(3)

�v = B�, T(4)
�k = T(4)

�v , T(5)
abk = �T(6)

abk, (65)

where a, b 2 {�, ✏1, ✏2}.
Proof. The result is a consequence of the accuracies of the derivative and extrapolation operators, e.g., for the exact
adjoint solution D(2)

k  k+ gk = [r ·(�r k)]S k +Gk |S k +O(hp�1) = O(hp�1). Similarly, D�k k = �D�k v = [n·(�r k)]S � +
O(hp) and R�k k =  k |S � + O(hp+1) which also holds for the extrapolations at the other facets. The desired result is
obtained by substituting these approximations in (59) and using the coe�cients in (65).

All but the second and fourth conditions in Theorem 4 are required for conservation (see Theorem 3). Similar
analysis in [14] shows that an additional condition is required for a conservative discretization to be adjoint consistent,
and such requirement can also be inferred from [2, 44]. The following corollary follows from a comparison of the
conditions presented in Theorems 3 and 4.

Corollary 1. Adjoint consistency is a su�cient but not necessary condition for conservation.

Remark 2. In the DG literature, conservative properties of numerical fluxes associated with the solution and with
the gradient of the solution are used to define conservation and adjoint consistency. A numerical discretization is
conservative if the numerical flux associated with the gradient of the solution is conservative, and the discretization is
adjoint consistent if both numerical fluxes associated with the solution and the gradient of the solution are conservative
[2, 44]. Conservation of the numerical flux associated with the gradient amounts to applying integration by parts
once, as in (45), and requiring that all SATs except those corresponding to

R

�B (�rU) · nd� vanish for v = 1 in
the discretized equation. On the other hand, conservation of both numerical fluxes amounts to applying integration
by parts twice on the di↵usive term and requiring that all SATs in the discretization except those corresponding to
R

�BV(�rU) · n�U(�rV) · nd� vanish for smooth test function, V. This gives (T̃?)T instead of T? in (39) which in
turn yields the same conditions for conservation as those stated for adjoint consistency in (65). The ambiguity on the
definition of conservation, i.e., whether to require the SATs to vanish after a single or double applications of integration
by parts, is discussed in [11]. Furthermore, in [21, 22] the latter definition is used to conclude that adjoint consistency
is a necessary and su�cient condition for conservation.
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Remark 3. The discrete adjoint operator, (59), is derived for compact stencil SATs in [29] using the variational
relation J0h[uh](�u) + R0h[uh] (�u, ) = 0, where J0h[uh] and R0h[uh] denote the Fréchet derivatives of Jh and Rh with
respect to uh, respectively, and �uh is the variation of uh. This suggests that the modification of the functional in (50)
is necessary for adjoint consistency, since our approach to obtain (59) relies on this modification.

Remark 4. Theorem 4 implies adjoint consistent schemes need not have a symmetric sti↵ness matrix resulting from
the residual (41). However, as in [29], we consider adjoint consistent SATs that yield a symmetric sti↵ness matrix by
requiring T(3)

�k � T(2)
�k = B�.

5.4. Functional accuracy
The accuracy of the target functional depends on the primal and adjoint consistency of the SBP-SAT discretization

of the underlying PDE. We establish functional error estimates for primal and adjoint consistent SBP-SAT discretiza-
tions of the Poisson problem on unstructured curvilinear grids. The following assumption will be necessary to proceed
with the analysis.

Assumption 3. Unique numerical solutions to the primal and adjoint equations, uh,k and  h,k respectively, exist, and
as h ! 0 they approximate the exact primal and adjoint solutions, uk and  k respectively, to order hp+1 in the infinity
norm, i.e.,

�

�

�

uh,k � uk
�

�

�1 = O
⇣

hp+1
⌘

, and
�

�

� h,k �  k

�

�

�1 = O
⇣

hp+1
⌘

.

The reason to invoke Assumption 3 is related to di�culties in showing that the SBP-SAT discretization is pointwise
stable (see, e.g., [14, 17, 23] for similar assumptions, and [45–47] for analysis of convergence rates in one dimensional
framework). Despite the fact that the truncation error for the primal and adjoint discretizations is O(hp�1), numerical
experiments show that the estimates in Assumption 3 are usually attained. In fact, the functional error estimate in
Theorem 5 below holds even for order hp primal and adjoint solution error values. To simplify the analysis, we first
consider the case where the discretization has only one element and later show that the error estimate holds for more
general cases.

5.4.1. Functional error estimate on a single element
The residual for the discrete Poisson problem, RHS of (33), on a single element premultiplied by  T

k Hk reads

 T
k HkRh,u = � T

k HkD
(2)
k

�

uh,k � uk
� �  T

k HkD
(2)
k uk �  T

k Hk f k +
X

�⇢�D

 T
k RT

�kT
(D)
�

⇣

R�kuh,k � u�k
⌘

�
X

�⇢�D

 T
k DT

�kB�

⇣

R�kuh,k � u�k
⌘

+
X

�⇢�N

 T
k RT

�kB�

⇣

D�kuh,k � w�k
⌘

= 0,
(66)

where we have added and subtracted the term  T
k HkD

(2)
k uk. Similarly, the residual of the discrete adjoint problem, (58),

premultiplied with u

T
k Hk can be written as

u

T
k HkRh, = �u

T
k HkD

(2)
k

⇣

 h,k �  k

⌘

� u

T
k HkD

(2)
k  k � u

T
k Hk gk +

X

�⇢�D

u

T
k RT

�kT
(D)
�

⇣

R�k h,k �  �k

⌘

�
X

�⇢�D

u

T
k DT

�kB�

⇣

R�k h,k �  �k

⌘

+
X

�⇢�N

u

T
k RT

�kB�

⇣

D�k h,k � z�k
⌘

= 0.
(67)

We will use the above forms of the residuals, (66) and (67), to prove the following theorem.

Theorem 5. If Assumptions 1 to 3 hold, U, 2 C2p+2(⌦), � 2 C2p+1(⌦), and uh,k 2 Rnp is a solution to a consis-
tent and adjoint consistent SBP-SAT discretization of the form (33), then the discrete functional (49) is an order h2p

approximation to the compatible linear functional (16), i.e.,

I(U) � Ih(uh) = O
⇣

h2p
⌘

. (68)

Proof. The diagonal norm matrices Hk and B� contain quadrature weights of at least order h2p and h2p+1 accuracy,
respectively. We discretize (16) using these quadratures as

I (U) =
Z

⌦

GU d⌦ �
Z

�D
 D (�rU) · nd� +

Z

�N
 NU d�

= g

T
k Hkuk �

X

�⇢�D

 T
�kB�w�k +

X

�⇢�N

z

T
�kB�u�k + O

⇣

h2p
⌘

. (69)
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From (15), the compatibility of the linear functional implies

I (U) = I ( ) =
Z

⌦

F d⌦ �
Z

�D
UD (�r ) · nd� +

Z

�N
UN d�

= f

T
k Hk k �

X

�⇢�D

u

T
�kB� z�k +

X

�⇢�N

w

T
�kB� �k + O

⇣

h2p
⌘

, (70)

Subtracting (49) from (69) and rearranging, we obtain

I (U) = Ih (
uh) � g

T
k Hk

�

uh,k � uk
�

+
X

�⇢�D

 T
�kB�

⇣

D�kuh,k � w�k
⌘

�
X

�⇢�N

z

T
�kB�

⇣

R�kuh,k � u�k
⌘

�
X

�⇢�D

 T
�kT

(D)
�

⇣

R�kuh,k � u�k
⌘

+ O
⇣

h2p
⌘

.
(71)

Adding and subtracting terms, we can rewrite (71) as

I (U) = Ih (
uh) � g

T
k Hk

�

uh,k � uk
�

+
X

�⇢�D

 T
�kB�

⇣

D�kuh,k � D�kuk
⌘

+
X

�⇢�D

 T
�kB�

⇣

D�kuk � w�k
⌘

�
X

�⇢�N

z

T
�kB�

⇣

R�kuh,k � R�kuk
⌘

�
X

�⇢�N

z

T
�kB�

⇣

R�kuk � u�k
⌘

�
X

�⇢�D

 T
�kT

(D)
�

⇣

R�kuh,k � R�kuk
⌘

�
X

�⇢�D

 T
�kT

(D)
�

⇣

R�kuk � u�k
⌘

+ O
⇣

h2p
⌘

.

(72)

Adding (66) to (72) and simplifying, we have

I (U) = Ih (
uh) +

⇢

X

�⇢�D

 T
�kB�D�kH�1

k � g

T
k �

X

�⇢�N

z

T
�kB�R�kH�1

k �
X

�⇢�D

 T
k DT

�kB�R�kH�1
k

�  T
k HkD

(2)
k H�1

k +
X

�⇢�D

⇣

 T
k RT

�k �  T
�k

⌘

T(D)
� R�kH�1

k +
X

�⇢�N

 T
k RT

�kB�D�kH�1
k

�

Hk
�

uh,k � uk
�

+
X

�⇢�D

 T
�kB�

⇣

D�kuk � w�k
⌘

�
X

�⇢�N

z

T
�kB�

⇣

R�kuk � u�k
⌘

�
X

�⇢�D

 T
k DT

�kB�

⇣

R�kuk � u�k
⌘

+
X

�⇢�N

 T
k RT

�kB�

⇣

D�kuk � w�k
⌘

�  T
k HkD

(2)
k uk �  T

k Hk f k + O
⇣

h2p
⌘

.

(73)

Applying identity (29) in (73) and simplifying gives

I (U) = Ih (
uh) +

⇢

� g

T
k �  T

k

⇣

D(2)
k

⌘T �
X

�⇢�D

⇣

 T
k RT

�k �  T
�k

⌘

B�D�kH�1
k +

X

�⇢�N

⇣

 T
k DT

�k � z

T
�k

⌘

B�R�kH�1
k

+
X

�⇢�D

⇣

 T
k RT

�k �  T
�k

⌘

T(D)
� R�kH�1

k

�

Hk
�

uh,k � uk
�

+
X

�⇢�D

 T
�kB�

⇣

D�kuk � w�k
⌘

�
X

�⇢�N

z

T
�kB�

⇣

R�kuk � u�k
⌘

�
X

�⇢�D

 T
k DT

�kB�

⇣

R�kuk � u�k
⌘

+
X

�⇢�N

 T
k RT

�kB�

⇣

D�kuk � w�k
⌘

�  T
k HkD

(2)
k uk �  T

k Hk f k + O
⇣

h2p
⌘

. (74)

The sum of the terms in the curly braces is the transpose of L⇤h,k( k) � gk, which is order hp�1 due to Theorem 4,
Hk(uh,k � uk) = O(hp+3) since Hk = JkĤ = O(h2), and kuh,k � ukk 1 = O(hp+1) due to Assumption 3. Hence, we have

I (U) = Ih (
uh) +

X

�⇢�D

 T
k RT

�kB�

⇣

D�kuk � w�k
⌘

�
X

�⇢�N

 T
k DT

�kB�

⇣

R�kuk � u�k
⌘

�
X

�⇢�D

 T
k DT

�kB�

⇣

R�kuk � u�k
⌘

+
X

�⇢�N

 T
k RT

�kB�

⇣

D�kuk � w�k
⌘

�  T
k HkD

(2)
k uk �  T

k Hk f k + O
⇣

h2p
⌘

,
(75)

where the relations ( T
�k �  T

k RT
�k)B�(D�kuk � w�k) = O(hp+2) and (z

T
�k �  T

k DT
�k)B�(R�kuk � u�k) = O(hp+2) are used to

obtain the second and third terms on the RHS, respectively. We can further simplify (75) as

I (U) = Ih (
uh)�

⇢

 T
k Hk f k+ 

T
k HkD

(2)
k uk�

X

�⇢�B

 T
k RT

�kB�

⇣

D�kuk � w�k
⌘

+
X

�⇢�B

 T
k DT

�kB�

⇣

R�kuk � u�k
⌘

�

+O
⇣

h2p
⌘

. (76)
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Moreover, using (69), (70), and (29), a straightforward algebraic manipulation of (75) yields

I (U) = Ih (
uh)�

⇢

u

T
k Hk gk+u

T
k HkD

(2)
k  k�

X

�⇢�B

u

T
k RT

�kB�

⇣

D�k k � z�k
⌘

+
X

�⇢�B

u

T
k DT

�kB�

⇣

R�k k �  �k

⌘

�

+O
⇣

h2p
⌘

. (77)

Subtracting (77) from (76), we find
⌧u � ⌧ = O(h2p), (78)

where

⌧u B  T
k Hk f k +  

T
k HkD

(2)
k uk �

X

�⇢�B

 T
k RT

�kB�

⇣

D�kuk � w�k
⌘

+
X

�⇢�B

 T
k DT

�kB�

⇣

R�kuk � u�k
⌘

, (79)

⌧ B u

T
k Hk gk + u

T
k HkD

(2)
k  k �

X

�⇢�B

u

T
k RT

�kB�

⇣

D�k k � z�k
⌘

+
X

�⇢�B

u

T
k DT

�kB�

⇣

R�k k �  �k

⌘

. (80)

For an a�ne mapping, the derivative and extrapolation operators in (79) and (80) are exact for polynomials of
degree p, and since all the terms in ⌧u and ⌧ are integrals approximated by quadrature rules of degree � 2p � 1,
it is su�cient if we can show that (68) holds for polynomial integrands of total degree 2p � 1. A similar technique
is used to show quadrature accuracy in [48]. If we set U 2 Pp(⌦k) such that ( U) 2 P2p+1(⌦k), then we have
⌧u = O(h2p) due to the accuracy of the SBP operators and the primal PDE. Similarly, if we set  2 Pp(⌦k) such that
( U) 2 P2p+1(⌦k), then we obtain ⌧ = O(h2p) due to the accuracy of the SBP operators and the adjoint PDE. Hence,
we obtain I(U) � Ih(uh) = O(h2p). On curved elements, the SBP operators are not exact for polynomials of degree
greater than zero. However, since (78) must hold for all combinations ofU and  , we conclude that each of the error
terms, ⌧u and ⌧ , must be O(h2p), which gives I(U) � Ih(uh) = O(h2p), as desired.

5.4.2. Functional error estimate with interior facet SATs
In this subsection, we will show that the functional estimate established in Theorem 5 holds for primal and adjoint

consistent interior facet SATs. We consider two elements ⌦k and ⌦v sharing interface � and introduce the following
vectors and block matrices

uh =
h

u

T
h,k u

T
h,v u

T
h,g1

u

T
h,g2

u

T
h,q1

u

T
h,q2

iT
, H11 = Hk,

u =
h

u

T
k u

T
v u

T
g1

u

T
g2

u

T
q1

u

T
q2

iT
, H22 = Hv,

 h =
h

 T
h,k  T

h,v  T
h,g1

 T
h,g2

 T
h,q1

 T
h,q2

iT
, D11 = Dk,

 =
h

 T
k  T

v  T
g1

 T
g2

 T
q1

 T
q2

iT
, D22 = Dv,

f =
h

f

T
k f

T
v 0 0 0 0

iT
, (D⇤)11 = Dk⇤k,

g =
h

g

T
k g

T
v 0 0 0 0

iT
, (D⇤)22 = Dv⇤v,

(81)

where the vectors in the left column are of size R6np , the matrices in the right column have 6 ⇥ 6 blocks which are of
size Rnp⇥np each. Except for the blocks specified, the entries of the matrices in the right column are all zeros.

We can write the primal residual for the two elements premultiplied by  TH as

 THRh,u = � THDD⇤ (
uh � u

) �  THDD⇤u �  TH f +  TA (
uh � u

) +  TAu +  TB (
uh � u

) +  TBu = 0, (82)

where we have drop all SATs except those at the facet �, and the nonzero entries of block matrices A,B 2 R6np⇥6np are
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given by
A11 = RT

�kT
(1)
�k R�k + RT

�kT
(5)
�⇠1kR⇠1k + RT

�kT
(5)
�⇠2kR⇠2k, A13 = �RT

�kT
(5)
�⇠1g1

R⇠1g1 ,

A12 = �RT
�kT

(1)
�k R�v + RT

�kT
(6)
��1vR�1v + RT

�kT
(6)
��2vR�2v, A14 = �RT

�kT
(5)
�⇠2g2

R⇠2g2 ,

A21 = �RT
�vT

(1)
�v R�k + RT

�vT
(6)
�⇠1kR⇠1k + RT

�vT
(6)
�⇠2kR⇠2k, A15 = �RT

�kT
(6)
��1vR�1q1 ,

A22 = RT
�vT

(1)
�v R�v + RT

�vT
(5)
��1vR�1v + RT

�vT
(5)
��2vR�2v, A16 = �RT

�kT
(6)
��2vR�2q2 ,

B11 = DT
�kT

(2)
�k R�k + RT

�kT
(3)
�k D�k + DT

�kT
(4)
�k D�k, A23 = �RT

�vT
(6)
�⇠1kR⇠1g1 ,

B12 = �DT
�kT

(2)
�k R�v + RT

�kT
(3)
�k D�v + DT

�kT
(4)
�k D�v, A24 = �RT

�vT
(6)
�⇠2kR⇠2g2 ,

B21 = �DT
�vT

(2)
�v R�k + RT

�vT
(3)
�v D�k + DT

�kT
(4)
�v D�v, A25 = �RT

�vT
(5)
��1vR�1q1 ,

B22 = DT
�vT

(2)
�v R�v + RT

�vT
(3)
�v D�v + DT

�vT
(4)
�v D�v, A26 = �RT

�vT
(5)
��2vR�2q2 .

(83)

For the discrete adjoint problem, (58), with extended interior facet SATs grouped as in (64), the truncation error reads

e ⌘ DD⇤ + g �H�1K �H�1L , (84)

where
K11 = RT

�kT
(1)
�k R�k + RT

⇠1kT
(5)
⇠1�kR�k + RT

⇠2kT
(5)
⇠2�kR�k, K31 = �RT

⇠1g1
T(5)
⇠1�kR�k,

K12 = �RT
�kT

(1)
�v R�v + RT

⇠1kT
(6)
⇠1�kR�v + RT

⇠2kT
(6)
⇠2�kR�v, K32 = �RT

⇠1g1
T(6)
⇠1�kR�v,

K21 = �RT
�vT

(1)
�k R�k + RT

�1vT
(6)
�1�vR�k + RT

�2vT
(6)
�2�vR�k, K41 = �RT

⇠2g2
T(5)
⇠2�kR�k,

K22 = RT
�vT

(1)
�v R�v + RT

�1vT
(5)
�1�vR�v + RT

�2vT
(5)
�2�vR�v, K42 = �RT

⇠2g2
T(6)
⇠2�kR�v,

L11 = RT
�k

⇣

T(2)
�k + B�

⌘

D�k + DT
�k

⇣

T(3)
�k � B�

⌘

R�k + DT
�kT

(4)
�k D�k, K51 = �RT

�1q1
T(6)
�1�vR�k,

L12 = �RT
�kT

(2)
�v D�v + DT

�kT
(3)
�v R�v + DT

�kT
(4)
�v D�v, K52 = �RT

�1q1
T(5)
�1�vR�v,

L21 = �RT
�vT

(2)
�k D�k + DT

�vT
(3)
�k R�k + DT

�vT
(4)
�k D�k, K61 = �RT

�2q2
T(6)
�2�vR�k,

L22 = RT
�v

⇣

T(2)
�v + B�

⌘

D�v + DT
�v

⇣

T(3)
�v � B�

⌘

R�v + DT
�vT

(4)
�v D�v, K62 = �RT

�2q2
T(5)
�2�vR�v.

(85)

Theorem 4 ensures that e = O(hp�1) for adjoint consistent SATs . Neglecting the boundary terms, we write the
functional as

I (U) =
Z

⌦

GU d⌦ =
Z

⌦

 F d⌦ = g

THu + O
⇣

h2p
⌘

= f

TH + O
⇣

h2p
⌘

. (86)

Adding (82) to I(U) = g

THu + O(h2p) = g

THuh � g

TH(uh � u) + O(h2p) and simplifying, we obtain

I (U) = Ih (
uh) +

n

 TBH�1 �  THDD⇤H�1 � g

T +  TAH�1
o

H (
uh � u

)

�  THDD⇤u �  TH f +  TAu +  TBu + O
⇣

h2p
⌘

.
(87)

Identity (29) gives
HDD⇤H�1 = DT

⇤D
T � CH�1, (88)

where the nonzero entries of C are

C11 = DT
�kB�R�k � RT

�kB�D�k +
X

✏⇢�k

⇣

DT
✏kB✏R✏k � RT

✏kB✏D✏k
⌘

,

C22 = DT
�vB�R�v � RT

�vB�D�v +
X

�⇢�v

⇣

DT
�vB�R�v � RT

�vB�D�v
⌘

.
(89)

Substituting (88) into (87), we find

I (U) = Ih (
uh) +

n

 T (B + C)H�1 �  TDT
⇤D

T � g

T +  TAH�1
o

H (
uh � u

)

�  THDD⇤u �  TH f +  TAu +  TBu + O
⇣

h2p
⌘

.
(90)
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We define C� as the matrix C without the terms on facets other than �, and replace C in (90) by C�. We then note
that A = KT and B + C� = LT , and the sum of the terms in the curly braces is equal to eT

 , which is O(hp�1) for
adjoint consistent interior facet SATs. Hence, the second term on the RHS of (90) is order h2p+2. Therefore, the
terms remaining due to the inclusion of interior SATs are  TAu and  TBu. These terms are added to ⌧u given in
(79). Similarly, using (86) and (88), it is possible to show that ⌧ must include the adjoint interior SATs, u

TK and
u

TL . Then, applying the same argument used to establish the order of ⌧u in the proof of Theorem 5, we arrive at
I(U) � Ih(uh) = O(h2p) for discretizations with interior facet SATs.

Remark 5. Dropping terms in the matrix C that are associated with facets other than � is not necessary if one considers
all facets for the analysis, but this would require working with bigger matrices.

5.5. Energy stability analysis
In general, energy stability of SBP-SAT discretizations implies

d
dt

⇣

kuhk2H
⌘

= u

T
h H

duh

dt
+

du

T
h

dt
Huh = 2Rh (

uh,uh)  0. (91)

We analyze the time stability of the SBP-SAT discretization (33) to (35) of the homogeneous di↵usion problem. A
class of adjoint inconsistent SATs is considered first, and later we present conditions for stability of a class of adjoint
consistent SATs. The following theorem, whose proof can be found in [49, 50], is useful for the energy analysis.

Theorem 6. For a symmetric matrix of the form Y =
⇥ Y11 Y12

YT
12 Y22

⇤

,

i) Y ⌫ 0 if and only if Y11 ⌫ 0, (I � Y11Y+11)Y12 = 0, and Y22 � YT
12Y+11Y12 ⌫ 0,

ii) Y ⌫ 0 if and only if Y22 ⌫ 0, (I � Y22Y+22)YT
12 = 0, and Y11 � Y12Y+22YT

12 ⌫ 0,

where Y ⌫ 0 indicates that Y is positive semidefinite.

5.6. Energy analysis for adjoint inconsistent SATs
All of the adjoint inconsistent SATs presented in this work do not couple second neighbor elements. Therefore, we

focus on compact adjoint inconsistent SATs and prove the following statement.

Theorem 7. A conservative but adjoint inconsistent SBP-SAT discretization, (33) to (35), of the homogeneous di↵usion
problem (12), i.e., F = 0,UD = 0, andUN = 0, is energy stable with respect to the diagonal norm matrix, H, if

T(3)
�k + T(2)

�k � B� = 0, T(3)
�v � T(2)

�k = 0, T(1)
�k ⌫ 0, T(D)

� �
1
↵�k

B�⌥��kB� ⌫ 0,

T(3)
�v + T(2)

�v � B� = 0, T(3)
�k � T(2)

�v = 0, T(4)
�k = T(4)

�v ⌫ 0, T(5)
abk = �T(6)

abk = 0,

(92)

where for element ⌦k, and facets a, b 2 {�, ✏1, ✏2, �1, �2}
⌥abk ⌘ Cak

⇣

⇤⇤k
⌘�1

CT
bk = NT

akR̄akH̄�1
k ⇤kR̄T

bkNbk. (93)

Proof. We have to show that for the conditions given in (92) the residual satisfies 2Rh (
uh,uh) = Rh (

uh,uh)+RT
h (

uh,uh) 
0, which is the case if all the 4 ⇥ 4 block matrices on the RHS of (41) are positive semidefinite. The positive semidef-
initeness of the 4 ⇥ 4 block matrix in the first and last terms of (41) are analyzed in [29], and it is shown that these
block matrices are positive semidefinite if T(4)

�k ⌫ 0, T(D)
� ⌫ 0, and the Schur complement T(D)

� � (1/↵�k)B�⌥��kB� ⌫ 0.
Substituting T(5)

abk = �T(6)
abk = 0 and T(1)

�k = T(1)
�v (due to conservation) in (41), and regrouping T(1)

�k terms, the last 4 ⇥ 4
block matrix that we need to show is positive semidefinite is A + AT , where

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

T(1)
�k �T(1)

�k

⇣

T(3)
�k � B�

⌘

C�k T(3)
�k C�v

�T(1)
�k T(1)

�k T(3)
�v C�k

⇣

T(3)
��v � B�

⌘

C�v

CT
�kT

(2)
�k �CT

�kT
(2)
�k ↵�k⇤

⇤
k 0

�CT
�vT

(2)
�v CT

�vT
(2)
�v 0 ↵�v⇤

⇤
v

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (94)

The o↵-diagonal block matrices of A + AT vanish for the conditions given in (92). Moreover,
⇥ T(1)

�k �T(1)
�k

�T(1)
�k T(1)

�k

⇤

=
⇥ 1 �1�1 1

⇤ ⌦
T(1)
�k is positive semidefinite if T(1)

�k ⌫ 0 due to properties of Kronecker products and because
⇥ 1 �1�1 1

⇤ ⌫ 0. Finally,
⇥ ↵�k⇤

⇤
k 0

0 ↵�v⇤
⇤
v

⇤ ⌫ 0 since ↵�k > 0, ↵�v > 0, ⇤⇤k ⌫ 0, and ⇤⇤v ⌫ 0. Therefore, A + AT ⌫ 0 which completes the proof.
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5.7. Energy analysis for adjoint consistent SATs
We consider a class of adjoint consistent SATs for which T(3)

�k �T(2)
�k = B� and T(1)

ak is SPD, where a 2 {�, ✏1, ✏2, �1, �2}.
This class covers all types of adjoint consistent SAT studied in this work, and Theorem 8 provides su�cient conditions
for energy stability of discretizations involving these SATs. A class of adjoint consistent SATs for which T(5)

abk = T(6)
abk =

0 in addition to the above two conditions is studied in [29].

Theorem 8. An adjoint consistent SBP-SAT discretization, (33) to (35), of the homogeneous di↵usion problem (12),
i.e., F = 0, UD = 0, and UN = 0, for which Assumption 2 holds, T(3)

�k � T(2)
�k = B�, and T(1)

ak � 0 is energy stable with
respect to the diagonal norm matrix, H, if the SAT coe�cient matrices satisfy

T(1)
�k �

2
⇣

 

1
↵�k

T(2)
�k⌥��kT

(2)
�k +

1
↵�v

T(2)
�v⌥��vT(2)

�v

!

⌫ 0, (95)

T(1)
ak � 64T(5)

abk

⇣

T(1)
bk

⌘�1
T(5)

bak ⌫ 0, (96)

T(D)
� �

1
↵�k

B�⌥�kB� ⌫ 0, (97)

T(4)
�k ⌫ 0, (98)

where ⌥abk is defined in (93), a, b 2 {�, ✏1, ✏2}, ⇣ = 2 for compact stencil SATs, i.e., SATs with T(5)
abk = T(6)

abk = 0,
otherwise ⇣ = 1, and T � 0 indicates T is positive definite.

Proof. We apply the conditions for adjoint consistency given in (65) on the residual (41). Because the residual is
symmetric under these conditions, it is su�cient to show that Rh(uh,uh)  0. The conditions in (97) and (98) are
established in Theorem 7. We rewrite the 4 ⇥ 4 block matrix in X1, the second term in (41), as A =

⇥ A11 A12
AT

12 A22

⇤

, where

A11 =
1
2

2

6

6

6

6

6

4

T(1)
�k �T(1)

�k
�T(1)

�k T(1)
�k

3

7

7

7

7

7

5

, A12 =

2

6

6

6

6

6

4

T(2)
�k C�k �T(2)

�v C�v

�T(2)
�k C�k T(2)

�v C�v

3

7

7

7

7

7

5

, A22 =

"

↵�k⇤
⇤
k

↵�v⇤
⇤
v

#

. (99)

Since A22 is positive definite, Theorem 6 ensures A ⌫ 0 if and only if A11 � A12A�1
22 AT

12 ⌫ 0, i.e.,
"

1 �1
�1 1

#

⌦
"

1
2

T(1)
�k �

 

1
↵�k

T(2)
�k⌥��kT

(2)
�k +

1
↵�v

T(2)
�v⌥��vT(2)

�v

!#

⌫ 0, (100)

which gives the condition for stability in (95) with ⇣ = 1. Setting T(5)
abk = 0 and regrouping T(1)

ak terms as in (94), the
terms with extended SATs in (41) vanish. Imposing T(3)

�k � T(2)
�k = B� and the adjoint consistency conditions, we obtain

A11 =
⇥ T(1)

�k �T(1)
�k

�T(1)
�k T(1)

�k

⇤

while A12 and A22 remain unchanged. This yields the stability condition [29]

T(1)
�k �

 

1
↵�k

T(2)
�k⌥��kT

(2)
�k +

1
↵�v

T(2)
�v⌥��vT(2)

�v

!

⌫ 0. (101)

After applying the conditions for adjoint consistency, the first 4 ⇥ 4 block matrix in X2, the third term in (41), reads

G =
"

G11 G12
GT

12 G22

#

⌘

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1
8 T(1)

�k � 1
8 T(1)

�k T(5)
�✏1k �T(5)

�✏1k

� 1
8 T(1)

�k
1
8 T(1)

�k �T(5)
�✏1k T(5)

�✏1k
T(5)
✏1�k �T(5)

✏1�k
1
8 T(1)

✏1k � 1
8 T(1)

✏1k
�T(5)

✏1�k T(5)
✏1�k � 1

8 T(1)
✏1k

1
8 T(1)

✏1k

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, (102)

where G11, G12, and G22 are 2⇥2 block matrices. Energy stability requires that G ⌫ 0 which, using Theorem 6, implies
we need to find conditions such that

⇣

I � G22G+22

⌘

GT
12 = 0 and G11 � G12G+22GT

12 ⌫ 0 since G22 ⌫ 0. But

G+22 =

 "

1 �1
�1 1

#

⌦ 1
8

T(1)
✏1k

!+

=

"

1 �1
�1 1

#+

⌦
 

1
8

T(1)
✏1k

!+

=

"

1 �1
�1 1

#

⌦
 

1
2

T(1)
✏1k

!�1

, (103)
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where we have used
⇥ 1 �1�1 1

⇤+
= 1

4
⇥ 1 �1�1 1

⇤

and the fact that T(1)
✏1k is invertible for the class of SATs under consideration.

Therefore,

�

I � G22G+22
�

GT
12 =

8

>

>

<

>

>

:

"

I
I

#

�
 "

1 �1
�1 1

#

⌦ 1
8

T(1)
✏1k

!

0

B

B

B

B

B

@

"

1 �1
�1 1

#

⌦
 

1
2

T(1)
✏1k

!�11
C

C

C

C

C

A

9

>

>

=

>

>

;

2

6

6

6

6

6

4

T(5)
✏1�k �T(5)

✏1�k

�T(5)
✏1�k T(5)

✏1�k

3

7

7

7

7

7

5

= 0. (104)

Furthermore, using properties of Kronecker products it can be shown that

G11 � G12G+22GT
12 =

"

1 �1
�1 1

#

⌦
 

1
8

T(1)
�k

!

�
"

1 �1
�1 1

#3

⌦
0

B

B

B

B

B

@

T(5)
�✏1k

 

1
2

T(1)
✏1k

!�1

T(5)
✏1�k

1

C

C

C

C

C

A

=

"

1 �1
�1 1

#

⌦
 

1
8

T(1)
�k � 8T(5)

�✏1k

⇣

T(1)
✏1k

⌘�1
T(5)
✏1�k

!

,

(105)

which implies G11 � G12G+22GT
12 ⌫ 0 if

T(1)
�k � 64T(5)

�✏1k

⇣

T(1)
✏1k

⌘�1
T(5)
✏1�k ⌫ 0. (106)

Similar energy analyses for the rest of the 4 ⇥ 4 block matrices in X2 (or simple geometric arguments) reveal that all
the 4 ⇥ 4 block matrices in X2 are positive semidefinite if

T(1)
ak � 64T(5)

abk

⇣

T(1)
bk

⌘�1
T(5)

bak ⌫ 0, (107)

for a, b 2 {�, ✏1, ✏2}. We have shown that the conditions stated in Theorem 8 are su�cient for all the 4⇥4 block matrices
in the residual (41) to be positive semidefinite; therefore, Rh(uh,uh)  0 as desired.

6. Existing and DG based SATs

The SAT coe�cients associated with di↵erent types of DG fluxes are obtained by discretizing the residual of the
DG primal formulation of the Poisson problem, which has the general form [2, 33]

R(Uh,V) = �
Z

⌦

�rUh · rV d⌦ +
Z

⌦

VF d⌦ �
Z

�I

r
bU �Uh

z
· {�rV} +

n

bU �Uh
o

J�rVK d�

+

Z

�I
JVK ·

n

cW
o

+ {V}
r
cW

z
d� +

Z

�D
(Uh �UD)�rV · n+VcW · nd� +

Z

�N
VUN d� ,

(108)

where bU and cW are numerical fluxes of the solution,Uh, and the auxiliary variableWh, respectively. Equation (108)
is obtained after setting the numerical fluxes of the solution as bU = UD on �D and bU = Uh on �N , and the numerical
fluxes of the auxiliary variable on �N as cW = UN . For schemes with global lifting operators, the auxiliary variable,
the solution, and the flux of the solution are related by

Wh = �rUh � �L
✓r

bU �Uh

z◆

� �S
⇣n

bU �Uh
o⌘

� �SD( bU �Uh). (109)

For compact SATs, the global lifting operators in (109) are replaced by local lifting operators, i.e.,

W�
h = �rUh � �L�

✓r
bU �Uh

z◆

� �S�
⇣n

bU �Uh
o⌘

� �SD( bU �Uh). (110)

The forms of the interior facet SATs in (34) and boundary SATs in (35) are closely related to the integral terms
on the interior and boundary facets in the DG primal formulation. For example, to see how the boundary SATs and
boundary integral terms in (108) are related, integrate by parts the first term on the RHS of (108) and substitute
cW =W�

h on �D, to obtain

R(Uh,V) =
Z

⌦

Vr · (�rUh)d⌦ +
Z

⌦

VF d⌦ �
Z

�I
V(�rUh) · nd�

�
Z

�I

r
bU �Uh

z
· {�rV} +

n

bU �Uh
o

J�rVK d� +
Z

�I
JVK ·

n

cW
o

+ {V}
r
cW

z
d�

+

Z

�D
(Uh �UD)�rV · n�V�SD( bU �Uh) · nd� +

Z

�N
V(UN � (�rUh) · n)d�.

(111)

20



The discrete analogue of the boundary integral terms in the last line of (111) is of the same form as v

T
k s

B
k . The structure

of the boundary SATs remains unchanged for DG fluxes based on global lifting operators due to the definition of the
global lifting operators, (7) and (9), which involve only interior facet integrals. The connection between the interface
coupling terms in the DG formulation and the interior facet SATs can be shown by discretizing the interior surface
integrals in (111), which requires discretization of the lifting operators that appear in the numerical fluxes. To find the
discrete analogues of the global lifting operator for vector functions, we first write (7) for ⌦k as

Z

⌦k

�kLk
�JUhK

� ·Zk d⌦ = �1
2

Z

�I
k

�k JUhK ·Zk d� = �1
2

Z

�I
k

JUhK · �T
kZk d� . (112)

Note that the sum of the lifting operators defined by (112) at an interface shared by two elements is

�1
2

Z

�
JUhK · �T

kZk d� � 1
2

Z

�
JUhK · �T

vZv d� = �
Z

�
JUhK · 1

2

⇣

�T
kZk + �

T
vZv

⌘

d� = �
Z

�
JUhK ·

n

�TZ
o

d� , (113)

which enables (7) to be recovered upon summing over all interfaces. Neglecting truncation error, the discretization of
(112) follows as

"

zx,k
zy,k

#T "

Hk
Hk

# "

Lx,k
Ly,k

#

= �1
2

X

�⇢�I
k

"

zx,k
zy,k

#T "

⇤xx ⇤xy
⇤yx ⇤yy

#

k

"

RT
�k

RT
�k

# "

Nx,�
Ny,�

#

B�

⇣

R�kuk � R�vuv
⌘

, (114)

and thus, the x-coordinate discrete global lifting operator for vector functions, Lx,k, is given by

Lx,k = �1
2

X

�⇢�I
k

H�1
k

⇣

⇤xxRT
�kNx,� + ⇤xyRT

�kNy,�
⌘

B�

⇣

R�kuk � R�vuv
⌘

. (115)

The y-coordinate discrete global lifting operator, Ly,k, has analogues expression. For the same reason, we will state
only the x-coordinate discrete lifting operators for the other types of lifting operators presented below. The local lifting
operator for vector functions on element ⌦k and facet � 2 �I

k is defined as
Z

⌦k

�kL�k
�JUhK

� ·Zk d⌦ = �1
2

Z

�
JUhK · �T

kZk d� , (116)

which upon discretization gives the x-coordinate local lifting operator [29]

L �
x,k = �

1
2

H�1
k

⇣

⇤xxRT
�kNx,� + ⇤xyRT

�kNy,�
⌘

B�

⇣

R�kuk � R�vuv
⌘

. (117)

Applying a similar approach, we write the global lifting operator for scalar valued functions, (9), on a single element
as

Z

⌦k

�kSk
�JUhK · nk

� ·Zk d⌦ = �
Z

�I
k

�JUhK · nk
�

�T
kZk · nk d� = �

X

�⇢�I
k

Z

�

�Uh,k �Uh,v
�

�T
kZk · nk d� , (118)

which gives the x-coordinate discrete analogue of the global lifting operator for scalar functions as,

Sx,k = �
X

�⇢�I
k

H�1
k

⇣

⇤xxRT
�kNx,� + ⇤xyRT

�kNy,�
⌘

B�

⇣

R�kuk � R�vuv
⌘

. (119)

Moreover, the discretization of the local lifting operator for scalar functions at interior facet � 2 �I
k gives

S �
x,k = �H�1

k

⇣

⇤xxRT
�kNx,� + ⇤xyRT

�kNy,�
⌘

B�

⇣

R�kuk � R�vuv
⌘

. (120)

Finally, at Dirichlet boundary facets, the x-coordinate discrete lifting operators is given by

S D
x,k = �H�1

k

⇣

⇤xxRT
�kNx,� + ⇤xyRT

�kNy,�
⌘

B�

⇣

R�kuk � u�k
⌘

. (121)

Before we proceed with identification of SATs pertaining to known DG methods, we state the following two lemmas
which will be useful to analyze energy stability of some of the schemes studied in the following subsections.
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Lemma 2. Let X 2 Rn⇥n and Y 2 Rn⇥n be two SPD matrices, then the inverse of the sum of the matrices satisfies

X�1 + Y�1 � (X + Y)�1 � 0, X�1 � (X + Y)�1 � 0, and Y�1 � (X + Y)�1 � 0, (122)

where Y � 0 indicates that Y is positive definite.

Proof. We start from the following result in [51],

(X + Y)�1 = X�1 � X�1Y (X + Y)�1 , or (X + Y)�1 = Y�1 � Y�1X (X + Y)�1 , (123)

and write
X�1 + Y�1 � (X + Y)�1 = X�1 + Y�1 � X�1 + X�1Y (X + Y)�1 = Y�1 + X�1Y (X + Y)�1 . (124)

Note that X�1Y (X + Y)�1 is symmetric because X�1� (X + Y)�1 is symmetric (since the sum of two symmetric matrices
is symmetric, and the inverse of a symmetric matrix is symmetric). Furthermore, X�1Y (X + Y)�1 is positive definite
because X�1 � 0, Y�1 � 0, (X + Y)�1 � 0, and their product X�1Y (X + Y)�1 is symmetric, i.e., we used the fact
that the product of two SPD matrices is positive definite if their product is symmetric as well. Therefore, we obtain
Y�1 + X�1Y (X + Y)�1 � 0 which implies that (124) yields the first inequality in (122). By a similar argument we can
write

X�1 � (X + Y)�1 = X�1 � X�1 + X�1Y (X + Y)�1 = X�1Y (X + Y)�1 � 0, (125)

Y�1 � (X + Y)�1 = Y�1 � Y�1 + Y�1X (X + Y)�1 = Y�1X (X + Y)�1 � 0. (126)

Lemma 3. Given an SPD matrix X 2 Rn⇥n and a rectangular matrix Y 2 Rn⇥m such that X = YYT , we have

Im � YT X�1Y ⌫ 0, (127)

where Im is an m ⇥ m identity matrix.

Proof. Consider the singular value decomposition Y = U⌃rVT , then

YT X�1Y = YT
⇣

YYT
⌘�1

Y = YT
⇣

Y+T Y+
⌘

Y =
⇣

YT Y+T
⌘

�

Y+Y
�

(128)

=
⇣

V⌃rUT U⌃+r VT
⌘ ⇣

V⌃+r UT U⌃rVT
⌘

=
⇣

VIrVT
⌘ ⇣

VIrVT
⌘

= VIrVT , (129)

where Ir is a diagonal matrix containing unity in its diagonal only up to the n-th row and column indices, i.e., up to the
rank of Y. In the second equality in (128) we made use of the property

⇣

YYT
⌘�1
=

⇣

YYT
⌘+
= Y+T Y+ since X = YYT is

invertible. Noting that the identity matrix can be written as Im = VImVT , we have

Im � YT X�1Y = VImVT � VIrVT = V (Im � Ir) VT ⌫ 0, (130)

which is the desired result.

6.1. BR1 SAT: The first method of Bassi and Rebay

The numerical fluxes for the BR1 method [52] are bU = {Uh} and cW = {Wh}. Substituting these fluxes in (108)
and simplifying, the residual for the BR1 method becomes [2]

R (Uh,V) = �
Z

⌦

�rUh · rV d⌦ +
Z

⌦

VF d⌦ +
Z

�I
JUhK · {�rV} + {�rUh} · JVK d�

�
Z

⌦

�L(JUhK)L(JVK) d⌦ +
Z

�D
(Uh �UD)�rV · nd� +

Z

�D
V(�krUk) · nd�

+

Z

�D
V�SD(Uh �UD) · nd� +

Z

�N
VUN d� .

(131)
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If the surface integrals on the RHS of the global lifting operators in (7) and (9) include all facets, then the dis-
cretization of the BR1 primal formulation gives the boundary SATs:

s

B
k (uh,k,u�k,w�k) =
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�⇢�D

h

RT
�k DT

�k

i

"
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#
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⇣
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⌘

+
1
2

X
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X
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k

RT
�kB�⌥�✏kB✏

�
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� � 1

2

X

�⇢�I
v

X

✏⇢�D
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RT
�vB�⌥�✏kB✏

�

R✏kuh,k � u✏k
�

+
X

�⇢�D
k

X

✏⇢�D
k

RT
�kB�⌥�✏kB✏

�

R✏kuh,k � u✏k
�

.

(132)

Furthermore, the following term must be added to the interior facet SATs given by (34),
1
2

X

�⇢�D
k

X

✏⇢�I
k

v

T
k RT

�kB�⌥�✏kB✏

⇣

R✏kuh,k � R✏gug
⌘

.

With these terms added to the interior and boundary facet SATs, it is possible to show that the SBP-SAT discretizations
based on the primal and flux formulations of the BR1 method are identical. The BR1 SATs based on the flux formu-
lation can be found, e.g., in Theorem 6.2 of [53] by setting � = ↵ = 0 therein. The extended boundary SATs a↵ect
adjoint consistency (and functional superconvergence) adversely, as discussed in Section 5.3; however, not including
them compromises the energy stability of the scheme. We now propose a modified BR1 type SAT that is stable but
does not have extended boundary terms.

Proposition 2. A stabilized version of the BR1 type SAT is recovered if the coe�cient matrices in (38) are set as

T(1)
�k = T(1)

�v =
1
2

B�

"

1
↵�k
⌥��k +

1
↵�v
⌥��v

#

B�, T(3)
�k = T(3)

�v =
1
2

B�, T(2)
�k = T(2)

�v = �
1
2

B�, T(4)
�k = T(4)

�v = 0,

T(5)
�✏k = �T(6)

�✏k =
1

16
B�⌥�✏kB✏ , T(5)

��v = �T(6)
��v =

1
16

B�⌥��vB�, T(D)
� =

1
↵�k

B�⌥��kB�.

Moreover, the BR1 SAT produces a consistent, conservative and adjoint consistent discretization.

Proof. Discretizing (131) using SBP operators and the discrete lifting operators (115) and (121), and comparing the
result with (38) yields all the coe�cients in Proposition 2 except T(1)

�k , T(5)
�✏k, T(5)

��v, and T(D)
� which are modified for

stability reasons. Before modification these coe�cients read T(1)
�k = (1/4)B�[⌥��k + ⌥��v]B�, T(5)

�✏k = (1/4)B�⌥�✏kB✏ ,
T(5)
��v = (1/4)B�⌥��vB�, and T(D)

� = B�⌥��kB�, which do not lead to stable discretization according to Theorem 8. In
order to prove that the coe�cients presented in Proposition 2 lead to stable discretization, we have to show that all
the conditions in Theorem 8 are met. From (97) and (98), we immediately see that the conditions on T(D)

� and T(4)
�k are

satisfied. Substituting T(2)
�k , T(2)

�v , and the modified T(1)
�k in (95) we have

1
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!

= 0. (133)

It remains to show that (96) is satisfied. In Theorem 8 we assumed T(1)
ak � 0 for a 2 {�, ✏1, ✏2}, which implies that T(1)

ak is
invertible. This is achieved by the proposed T(1)

�k coe�cient since ⌥��k � 0. Note that in (93) we have H̄�1
k ⇤k � 0, and

the normals in both x and y directions cannot be zero simultaneously. Using the proposed coe�cients, we have
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128

B�⌥�✏1k

"

1
↵✏1k
⌥✏1✏1k

#�1

⌥✏1�kB�, (134)

where we applied Lemma 2 in the last step. But we can write

⌥�✏1k

"

1
↵✏1k
⌥✏1✏1k

#�1

⌥✏1�k = NT
�kR̄�kH̄�1

k ⇤kR̄T
✏1kN✏1k

 

1
↵✏1k

NT
✏1kR̄✏1kH̄�1

k ⇤kR̄T
✏1kN✏1k

!�1

NT
✏1kR̄✏1kH̄�1

k ⇤kR̄T
�kN�k

= ↵✏1kPT YT
h

YYT
i�1

YP, (135)
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where P =
h

H̄�1
k ⇤k

i

1
2 R̄T

�kN�k and Y = NT
✏1kR̄✏1k

h

H̄�1
k ⇤k

i

1
2 . Lemma 3 implies (I � YT [YYT ]�1Y) ⌫ 0, which gives

↵✏1kPT IP � ⌥�✏1k

"

1
↵✏1k
⌥✏1✏1k

#�1

⌥✏1�k = ↵✏1k⌥��k � ⌥�✏1k

"

1
↵✏1k
⌥✏1✏1k

#�1

⌥✏1�k ⌫ 0. (136)

Since 0 < ↵✏1k < 1, ⌥��k � 0, and ⌥��v � 0, we write

"

1
↵�k
⌥��k +

1
↵�v
⌥��v

#

� ⌥�✏1k

"

1
↵✏1k
⌥✏1✏1k

#�1

⌥✏1�k ⌫ 0, (137)

which, together with (134), yields the inequality

T(5)
�✏1k

⇣

T(1)
✏1k

⌘�1
T(5)
✏1�k �

1
128

B�⌥�✏1k

"

1
↵✏1k
⌥✏1✏1k

#�1

⌥✏1�kB� � 1
128

B�

"

1
↵�k
⌥��k +

1
↵�v
⌥��v

#

B�. (138)

Therefore,

T(1)
�k � 64T(5)

�✏1k

⇣

T(1)
✏1k

⌘�1
T(5)
✏1�k ⌫ T(1)

�k �
1
2

B�

"

1
↵�k
⌥��k +

1
↵�v
⌥��v

#

B� = 0, (139)

which is the result required for (96) to hold. Note that the same analysis can be done for any combination of facets
a, b 2 {�, ✏1, ✏2}, in (96). Finally, from Theorems 2 to 4 it can easily be seen that the BR1 SAT satisfies all the conditions
required for consistency, conservation, and adjoint consistency.

Remark 6. The proposed interior facet BR1 SAT is equivalent to the consistent method of Brezzi et al. [54], the
modified BR1 method in [55], the stabilized central flux in [56], and the penalty approach in [57] in the sense that all
of these methods can be reproduced by considering �1T(1)

�k , �5T(5)
�✏k, and �DT(D)

� in Proposition 2 for �1,�5,�D > 0.

Remark 7. Assuming the source term is zero, it can be shown that the continuous energy estimate satisfies [36]

1
2

d
dt
kUhk2 = R(Uh,Uh) 

X

�⇢�

Z

�

bU JWhK + cW · JUhK � JUhWhK d� . (140)

Substituting the BR1 fluxes into (140) and using the identity

{Uh} JWhK + {Wh} · JUhK � JUhWhK = 0 (141)

gives d/dt(kUhk2)  0, which establishes the energy stability of the BR1 method for di↵usion problems. A discrete
energy stability analysis of the SBP-SAT discretization based on the flux formulation leads to a similar conclusion.
Such a proof follows the same technique used to show the entropy stability of the LDG method in [53] (see, proof
of Theorem 6.2 therein). If the BR1 SAT is applied only on the interior facets, however, the identity (141) cannot be
applied, and the energy stability of the discretization is compromised unless the SAT coe�cients are modified, e.g., as
in Proposition 2. Exceptions apply when the BR1 and LDG SATs are implemented with the SBP diagonal-E operators
for which all the extended SATs vanish (see, Section 7.1). In this case, the discrete form of (141) can be used to show
the energy stability of the SBP-SAT discretization based on the flux formulation, which yields the same discretization
as the primal formulation when implemented with the SBP diagonal-E operators.

6.2. LDG SAT: The local discontinuous Galerkin method
The LDG scheme [13] is obtained by choosing the DG numerical fluxes as bU = {Uh} � � · JUhK and cW =

{Wh}+ � JWhK� µh�1 JUhK on interior facets, and cW =Wh � µh�1(Uh �UD)n on �D [2, 33]. The switch function,
�, is defined on each interface as

� =
1
2

(��k nk + ��vnv), (142)

where �k, �v 2 {0, 1} are switches defined for ⌦k and ⌦v at their shared interface. Furthermore, the switches satisfy

��k + ��v = 1. (143)
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The values of the switches are set to zero at boundary facets, i.e., ��k = ��v = 0 for � ⇢ �B. For interior facets, the
values are determined based on the sign of the dot product n · g, where g is an arbitrary global vector [58], i.e.,

��k =

8

>

>

<

>

>

:

1 if nk · g � 0,
0 if nk · g < 0.

(144)

Although it is possible to use other vectors as switch functions, the form in (142) is necessary to avoid wider stencil
width [33, 58]. For instance, if we set � = 0 and µ = 0, we recover the BR1 fluxes. On curved elements, the normal
vector varies along the facets; hence, ��k is not constant in general. This leads to cases where Assumption 2 does not
hold; particularly, T(1)

�k , (T(1)
�k )T , T(5)

abk , (T(5)
bak)T , T(6)

abk , (T(6)
bak)T . Additionally, it increases the number of elements that

are coupled, resulting in a denser system matrix. To remedy this, we calculate ��k using straight facets in 2D (or flat
facets in 3D) regardless of whether or not the physical elements are curved.

Substituting the numerical fluxes in (108) and simplifying, the residual of the LDG method reads

R (Uh,V) = �
Z

⌦

�rUh · rV d⌦ +
Z

⌦

VF d⌦ +
Z

�I
JUhK · {�rV} + JVK · {�rUh} d�

+

Z

�I
� · JUhK J�rVK + J�rUhK� · JVK d� � µh�1

Z

�I
JVK · JUhK d�

�
Z

⌦

⇥L �JVK� + S �

� · JVK�⇤ · ⇥�L �JUhK
�

+ �S �

� · JUhK
�⇤

d⌦ � µh�1
Z

�D
V (Uh �UD) d�

+

Z

�D
(Uh �UD) �rV · nd� +

Z

�D
V(�rUh) · nd� +

Z

�D
V�SD(Uh �UD) · nd� +

Z

�N
VUN d� .

(145)
The boundary terms resulting from the discretization of (145) are di↵erent from the LDG boundary coupling terms
obtained using global lifting operators defined on all interfaces. We have also used �µh�1

R

�DV(Uh �UD) d� as the
boundary stabilizing term instead of �µh�1

R

�DVUh d�. If these changes are not applied, the LDG boundary SATs
would include extended stencil terms, i.e.,

s

B
k (uh,k,u�k,w�k) =

X

�⇢�D

h

RT
�k DT

�k

i

"

T(D)
�

�B�

#

(R�kuh,k � u�k) +
X

�⇢�N

RT
�kB�

⇣

D�kuh,k � w�k
⌘

+
1 + ��k � ��v

2

X

�⇢�I
k

X

✏⇢�D
k

RT
�kB�⌥�✏kB✏

�

R✏kuh,k � u✏k
�

+
X

�⇢�D
k

X

✏⇢�D
k

RT
�kB�⌥�✏kB✏

�

R✏kuh,k � u✏k
�

� 1 + ��k � ��v

2

X

�⇢�I
v

X

✏⇢�D
k

RT
�vB�⌥�✏kB✏

�

R✏kuh,k � u✏k
�

+ µh�1RT
�kB�uh,k,

(146)
where T(D)

�k = B�⌥��kB�. Moreover, the term

1 + �✏k � �✏v
2

X

�⇢�D
k

X

✏⇢�I
k

v

T
k RT

�kB�⌥�✏kB✏

⇣

R✏kuh,k � R✏gug
⌘

.

must be added to the interior facet SATs given by (34). Similar to the unmodified BR1 SAT, it can be shown that the
unmodified LDG SAT based on the primal and flux formulations are the same. As explained in Remark 7, the LDG
SAT written in flux formulation is energy stable (even when µ = 0); hence, it follows that the unmodified LDG SAT
based on the primal formulation is energy stable. The penalty coe�cients corresponding to the interior LDG SATs can
be obtained by discretizing (145) and comparing the result with (38). The coe�cients T(2)

�k , T(2)
�v , T(3)

�k , T(3)
�v , T(4)

�k and T(4)
�v
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are the same as those presented in Proposition 3 below. The rest of the coe�cients are

T(1)
�k = T(1)

�v = B�

1 +
⇣

�k� � �v�
⌘2
+ 2(�k� � �v�)

4
⌥��k +

1 +
⇣

�k� � �v�
⌘2 � 2(�k� � �v�)

4
⌥��v

�

B� + µh�1B�,

T(5)
�✏k = �T(6)

�✏k =

h

1 + ��k � ��v
i h

1 + �✏k � �✏g
i

4
B�⌥�✏kB✏ ,

T(6)
��v = �T(5)

��v =

h

��k � ��v � 1
i h

1 + ��v � ��q
i

4
B�⌥��vB�,

T(D)
�k = B�⌥��kB� + µh�1B�.

(147)

As expected, the coe�cients in (147) are identical to the unmodified BR1 SAT when � and µ are set to zero. For mesh
independent SAT penalties, i.e., µ = 0, the coe�cients in (147) do not guarantee energy stability. To see this, consider
the case where ��k = 1 and ��v = 0; the stability requirement in (95) demands positive semidefiniteness of

T(1)
�k � 2

 

1
↵�k

T(2)
�k⌥��kT

(2)
�k +

1
↵�v

T(2)
�v⌥��vT(2)

�v

!

= B�⌥��kB� � 2
↵�k

B�⌥��kB�.

However, this cannot be achieved since 0 < ↵�k < 1. It is also clear from (97) that T(D)
� is not large enough to ensure

energy stability. To remedy this, we propose a stabilized form of the LDG scheme that does not have a mesh dependent
stability parameter.

Proposition 3. A consistent, conservative, adjoint consistent, and stable LDG type SAT with no mesh dependent
stabilization parameter, i.e., µ = 0, is obtained if the penalty coe�cients in (38) are chosen such that

T(1)
�k = T(1)

�v = B�

��k � ��v + 1
↵�k

⌥��k +
��v � ��k + 1

↵�v
⌥��v

�

B�, T(D)
� =

1
↵�k

B�⌥��kB�, T(4)
�k = T(4)

�v = 0,

T(5)
�✏k = �T(6)

�✏k =

h

1 + ��k � ��v
i h

1 + �✏k � �✏g
i

16
B�⌥�✏kB✏ , T(2)

�k =
��v � ��k � 1

2
B�, T(3)

�k =
��v � ��k + 1

2
B�,

T(6)
��v = �T(5)

��v =

h

��k � ��v � 1
i h

1 + ��v � ��q
i

16
B�⌥��vB�, T(2)

�v =
��k � ��v � 1

2
B�, T(3)

�v =
��k � ��v + 1

2
B�.

Proof. The proofs for consistency, conservation, and adjoint consistency are straightforward. Moreover, the sti↵ness
matrix arising from the discretization is symmetric since T(3)

�k �T(2)
�k = B�. We see that the energy stability conditions in

(97) and (98) are met. It remains to show that the coe�cients satisfy the energy stability requirements in (95) and (96).
Note that if either or both ��v = 1 and �✏g = 1 then T(5)

�✏k = T(5)
✏�k = 0, and the scheme is stable since (95) is satisfied, i.e.,

T(1)
�k � 2

 

1
↵�k

T(2)
�k⌥��kT

(2)
�k +

1
↵�v

T(2)
�v⌥��vT(2)

�v

!

=
2
↵�v

B�⌥��vB� � 2
↵�v

B�⌥��vB� = 0. (148)

Thus, we only need to consider the case where ��k = �✏k = 1, which gives T(5)
�✏k = (1/4)B�⌥�✏kB✏ , T(5)

✏�k = (1/4)B✏⌥✏�kB�,
and T(1)

✏1k = (2/↵✏1k)B✏1⌥✏1✏1kB✏1 . Hence, we have

T(1)
�k � 2

 

1
↵�k

T(2)
�k⌥��kT

(2)
�k +

1
↵�v

T(2)
�v⌥��vT(2)

�v

!

=
2
↵�k

B�⌥��kB� � 2
↵�k

B�⌥��kB� = 0. (149)

Furthermore, we find

T(5)
�✏1k

⇣

T(1)
✏1k

⌘�1
T(5)
✏1�k =

1
16

B�⌥�✏1kB✏1

"

2
↵✏1k

B✏1⌥✏1✏1kB✏1

#�1

B✏1⌥✏1�kB� =
1
32

B�⌥�✏1k

"

1
↵✏1k
⌥✏1✏1k

#�1

⌥✏1�kB�, (150)

but, as in (136), application of Lemma 3 yields 1
↵�k
⌥��k � ⌥�✏1k[ 1

↵✏1k
⌥✏1✏1k]�1⌥✏1�k ⌫ 0, which implies that

T(5)
�✏1k

⇣

T(1)
✏1k

⌘�1
T(5)
✏1�k �

1
32

B�

"

1
↵�k
⌥��k

#

B�. (151)
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The last condition, (96), that we need to show for energy stability follows as

T(1)
�k � 64T(5)

�✏1k

⇣

T(1)
✏1k

⌘�1
T(5)
✏1�k ⌫ T(1)

�k � 2B�

"

1
↵�k
⌥��k

#

B� = 0. (152)

Therefore, the LDG SAT coe�cients in Proposition 3 lead to an energy stable SBP-SAT discretization.

6.3. CDG SAT: The compact discontinuous Galerkin method
The CDG method [33] has similar numerical fluxes as the LDG scheme, but uses local instead of global lifting

operators. More precisely, the numerical fluxes for the CDG method are bU = {Uh} � � · JUhK and cW =
n

W�
h

o

+

�
q
W�

h

y � µh�1 JUhK on interior facets, and cW =W�
h � µh�1(Uh �UD)n on �D [33]. For this reason, the residual of

the CDG method can be obtained from (145) by replacing the global lifting operators by the corresponding local lifting
operators. The implication of this on the SBP-SAT discretization is the nullification of SAT coe�cients that lead to
extended stencils.

Proposition 4. A consistent, conservative, adjoint consistent, and energy stable version of the CDG scheme with no
mesh dependent stabilization parameter, i.e., µ = 0, has the SAT coe�cients

T(1)
�k = T(1)

�v =
1
2

B�

��k � ��v + 1
↵�k

⌥��k +
��v � ��k + 1

↵�v
⌥��v

�

B�, T(3)
�k =

��v � ��k + 1
2

B�, T(4)
�k = T(4)

�v = 0,

T(2)
�k =

��v � ��k � 1
2

B�, T(3)
�v =

��k � ��v + 1
2

B�, T(5)
�✏k = T(6)

�✏k = 0,

T(2)
�v =

��k � ��v � 1
2

B�, T(D)
� =

1
↵�k

B�⌥��kB�, T(6)
��v = T(5)

��v = 0.

Proof. The proofs for consistency, conservation, and adjoint consistency are straightforward. Energy stability follows
if we can show that (95) holds (note that (97) is satisfied). If ��k = 1 then ��v = 0, and

T(1)
�k �

 

1
↵�k

T(2)
�k⌥��kT

(2)
�k +

1
↵�v

T(2)
�v⌥��vT(2)

�v

!

=
1
↵�k

B�⌥��kB� � 1
↵�k

B�⌥��kB� = 0. (153)

Similarly, if ��v = 1 then ��k = 0, and we have T(1)
�k � ((1/↵�k)T(2)

�k⌥��kT
(2)
�k + (1/↵�v)T(2)

�v⌥��vT
(2)
�v ) = 0. Hence, the

stability condition in (95) is satisfied.

The SAT coe�cients in Proposition 4, except for T(1)
�k and T(D)

� , are found by discretizing the residual resulting from
the CDG method and comparing the result with (38). The coe�cients T(1)

�k and T(D)
� for the original CDG method are the

same as those stated in (147). Similar SAT coe�cients for the CDG method are proposed in [30], where the stability
issue with the original CDG method is discussed. In [59], numerical studies revealed that the original CDG method
can be unstable for variable coe�cient di↵usion problems and for discretizations on quadrilateral grids.

Remark 8. As noted in [33], the LDG SAT and CDG SAT are identical in one space dimension. To see this, consider
an arbitrary global vector, g, pointing to the right and two elements ordered from left to right, ⌦k and ⌦v, respectively;
then ��k = 1, ��v = 0, and �✏k = 0. These values of the switches nullify all T(5) and T(6) SAT coe�cients which cast the
LDG SAT stable with (1/2)T(1)

�k in Proposition 3, thus the CDG SAT and LDG SAT become identical.

6.4. BO SAT: The Baumann-Oden method
Unlike the schemes presented so far, the BO method [12] leads to neither a symmetric sti↵ness matrix nor an adjoint

consistent discretization. The numerical fluxes for the BO method are bU = {U} + n · JUhK, and cW = {�rU} [2], and
the residual is given by

R (Uh,V) = �
Z

⌦

�rUh · rV d⌦ +
Z

⌦

VF d⌦ �
Z

�I
JUhK · {�rV} � JVK · {�rUh} d� �

Z

�D
(Uh �UD)�rV · nd�

+

Z

�D
V (�rUh) · nd� +

Z

�D
V�SD(Uh �UD) · nd� +

Z

�N
VUN d� . (154)

Discretization of (154) and comparison with (38) gives all of the SAT coe�cients in Proposition 5 below, except for
T(D)
� which is modified for stability reasons. The coe�cient 1/↵�k in T(D)

� does not appear in the original BO method.
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Proposition 5. The BO method is reproduced if the SAT coe�cients in (38) are chosen such that

T(1)
�k = T(1)

�v = 0, T(2)
�k = T(2)

�v =
1
2

B�, T(4)
�k = T(4)

�v = 0,

T(D)
� =

1
↵�k

B�⌥��kB�, T(3)
�k = T(3)

�v =
1
2

B�, T(5)
�✏k = T(6)

�✏k = T(5)
��v = T(6)

��v = 0,

and the discretization arising from using these coe�cients is consistent, conservative, and energy stable.

Proof. It can easily be verified that the SAT coe�cients satisfy the conditions for consistency and conservation. The
proof for energy stability follows from Theorem 7.

6.5. CNG SAT: The Carpenter-Nordström-Gottlieb method
The CNG SAT [9] was introduced to resolve the multi-domain problem in high-order finite di↵erence methods.

Although it was originally presented for advection-di↵usion problems, in this work we consider the CNG SAT coe�-
cients that couple the di↵usive terms only. The CNG SAT coe�cients for multidimensional SBP operators are stated
in Proposition 6 below (see [9, 11, 60] for analogous coe�cients in one-dimensional implementations).

Proposition 6. The CNG SAT leads to consistent, conservative, and energy stable discretization, and has the coe�-
cients

T(1)
�k = T(1)

�v =
1
16

B�

"

1
↵�k
⌥��k +

1
↵�v
⌥��v

#

B�, T(3)
�k = T(3)

�v =
1
2

B�, T(D)
� =

1
↵�k

B�⌥��kB�,

T(5)
�✏k = T(6)

�✏k = T(5)
��v = T(6)

��v = 0, T(2)
�k = T(2)

�v = 0, T(4)
�k = T(4)

�v = 0.

Proof. Substituting the SAT coe�cients in (41) and evaluating 2Rh(uh,uh) = Rh(uh,uh) + RT
h (uh,uh), stability follows

if A + AT ⌫ 0, where A is given by (94) (with T(2)
�k = T(2)

�v = 0). From Theorem 6, A + AT is positive semidefinite if
2
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6

6

6

6
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�k �2T(1)

�k
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�k 2T(1)
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3
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7

7

7

7
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�
" � 1

2 B�C�k
1
2 B�C�v

1
2 B�C�k � 1

2 B�C�v

# "

2↵�k⇤
⇤
k 0

0 2↵�v⇤
⇤
v

#�1 " � 1
2 CT

�kB�
1
2 CT

�kB�
1
2 CT

�vB� � 1
2 CT

�vB�

#

⌫ 0, (155)

which, after simplification, gives
"

1 �1
�1 1

#

⌦
 

2T(1)
�k � B�

"

1
8↵�k
⌥��k +

1
8↵�k
⌥��v

#

B�

!

⌫ 0. (156)

The stability constraint T(1)
�k ⌫ B�[1/(16↵�k)⌥��k + 1/(16↵�v)⌥��v]B� is, therefore, satisfied by the proposed SAT

coe�cient. The stability constraint on T(D)
� is the same as the other methods presented earlier. Finally, it follows from

Theorems 2 and 3 that the coe�cients in Proposition 6 lead to consistent and conservative discretizations.

Table 1 summarizes the SAT coe�cients corresponding to eight di↵erent methods. The coe�cients for BR2 and
SIPG were first presented in [29], and the analysis therein shows that the methods lead to consistent, conservative, ad-
joint consistent, and energy stable discretizations. The nonsymmetric interior penalty Galerkin (NIPG) SAT is obtained
by modifying T(1)

�k and T(D)
� in Proposition 5, and it leads to consistent, conservative, and energy stable discretizations.

For the implementations of the SATs in Table 1, we used the facet weight parameter, ↵�k, provided in [29],

↵�k =

8

>

>

>

<

>

>

>

:

A(�)
A(�I

k)+2A(�D
k ) , if � 2 �I ,

2A(�)
A(�I

k)+2A(�D
k ) , if � 2 �D,

(157)

whereA(�) computes the length of facet � in 2D (and area of � in 3D). Moreover, for the LDG and CDG SATs, we set
the arbitrary global vector in (144) as g = [ ⇡2 , e]T .

7. Practical issues

In addition to the properties presented in Section 5, one needs to consider a few practical issues when deciding
which type of SAT to use. In this section, we investigate the relation between the SATs when applied with SBP
diagonal-E operators and quantify the sparsity of the system matrix arising from di↵erent SBP-SAT discretizations.
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Table 1: Interior facet SAT coe�cients for di↵usion problems. In the cases where only one entry is provided, the two coe�cients in the column
heading are equal, e.g., for the BR1 SAT, we have T(2)

�k = T(2)
�v = � 1

2 B�. All the SATs considered have T(4)
�k = T(4)

�v = 0.

SAT T(1)
�k , T(1)

�v T(2)
�k , T(2)

�v T(3)
�k , T(3)

�v T(5)
�✏k, T(6)

��v

BR1 1
2 B�



1
↵�k
⌥��k +

1
↵�v
⌥��v

�

B� � 1
2 B�

1
2 B�

T(5)
�✏k =

1
16 B�⌥�✏kB✏

T(6)
��v =

1
16 B�⌥��vB�

BR2 1
4 B�



1
↵�k
⌥��k +

1
↵�v
⌥��v

�

B� � 1
2 B�

1
2 B� 0

SIPG (�max)kkB
1
2
� R�kH

� 1
2

k k22
4↵�k

+
(�max)vkB

1
2
� R�vH

� 1
2

v k22
4↵�v

B�
� 1

2 B�
1
2 B� 0

LDG B�



��k���v+1
↵�k

⌥��k +
��v���k+1

↵�v
⌥��v

�

B�

T(2)
�k =

��v���k�1
2 B�

T(2)
�v =

��k���v�1
2 B�

T(3)
�k =

��v���k+1
2 B�

T(3)
�v =

��k���v+1
2 B�

T(5)
�✏k =

[1+��k���v][1+�✏k��✏g]
16 B�⌥�✏kB✏

T(6)
��v =

[��k���v�1][1+��v���q]
16 B�⌥��vB�

CDG 1
2 B�



��k���v+1
↵�k

⌥��k +
��v���k+1

↵�v
⌥��v

�

B�

T(2)
�k =

��v���k�1
2 B�

T(2)
�v =

��k���v�1
2 B�

T(3)
�k =

��v���k+1
2 B�

T(3)
�v =

��k���v+1
2 B�

0

BO 0

1
2 B�

1
2 B� 0

NIPG (�max)kkB
1
2
� R�kH

� 1
2

k k22
4↵�k

+
(�max)vkB

1
2
� R�vH

� 1
2

v k22
4↵�v

B�

1
2 B�

1
2 B� 0

CNG 1
16 B�



1
↵�k
⌥��k +

1
↵�v
⌥��v

�

B� 0

1
2 B� 0

Note: The Dirichlet boundary SAT coe�cient is given by T(D)
� = 1/↵�kB�⌥��kB� for all the SATs except for the SIPG and NIPG

SATs for which T(D)
� = (�max)k/↵�k k B

1
2
� R�kH

� 1
2

k k22 B�, where (�max)k is the largest eigenvalue of ⇤k.

(a) R0 (SBP-E), p = 2 (b) Rd�1 (SBP-�), p = 2 (c) Rd (SBP-⌦), p = 2

Figure 2: Examples of degree two SBP operators in the R0, Rd�1, and Rd families on the reference triangle. The circles indicate locations of volume
nodes, and the squares indicate locations of facet quadrature nodes.

7.1. Equivalence of SATs for diagonal-norm R0 SBP operators
Classification of SBP operators based on the dimensions spanned by the extrapolation matrix generalizes the SBP

operator families introduced in [26, 27]. The SBP-⌦ operators [26], which fall under the Rd SBP family, are character-
ized by having no volume nodes on element facets, e.g., the Legendre-Gauss (LG) operator. In general, however, the
Rd operator family allows volume nodes to be positioned on element facets as long as the R matrix spans d dimensions
[28]. SBP-� [25, 26] operators require

⇣

p+d�1
d�1

⌘

volume nodes on each facet that are not collocated with facet quadrature
nodes. In contrast, the Rd�1 family allows more volume nodes per facet; hence, it includes operators that cannot be
categorized under the SBP-� family. SBP operators that have collocated volume and facet nodes on each facet, e.g.,
Legendre-Gauss-Lobatto (LGL), are classified under the SBP diagonal-E [27] family which is equivalent to the R0 SBP
family. Examples of two-dimensional SBP operators in the R0, Rd�1, and Rd families are depicted in Fig. 2.

For diagonal-norm R0 SBP operators, the matrix⌥abk, defined in (93), exhibits an interesting property. In particular,
it vanishes if a , b, where a, b 2 {�, ✏1, ✏2, �1, �2}. Note that for this operator family, the extrapolation matrix simply
picks out the volume nodes that are collocated with facet quadrature nodes, i.e.,

h

R fnk
i

i j
=

8

>

>

<

>

>

:

1 if i + (n � 1)n f = j,
0 if i + (n � 1)n f , j,

(158)
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where n 2 {1, 2, 3} is the facet number, i 2 {1, . . . , n f }, and j 2 {1, . . . , np}. Therefore, we have

[R�kH�1
k ⇤xx,kRT

✏1k]i j =

np
X

m=1

np
X

n=1

[R�k]in[H�1
k ⇤xx,k]nm[RT

✏1k]m j =

np
X

m=1

[R�k]im[H�1
k ⇤xx,k]mm[R✏1k] jm = 0, (159)

where the penultimate equality is a result of the fact that H�1
k ⇤xx,k is diagonal and [RT

✏1k]m j = [R✏1k] jm. The last equality
holds since R�k and R✏1k do not contain 1 in the same column index, as � and ✏1 have di↵erent facet numbers. This
implies that for the R0 operator family with diagonal norm matrix, ⌥�✏1k = NT

�kR̄�kH̄�1
k ⇤kR̄T

✏1kN✏1k = 0, and more
generally

⌥abk = NT
akR̄akH̄�1

k ⇤kR̄T
bkNbk = 0 if a , b, where a, b 2 {�, ✏1, ✏2, �1, �2}. (160)

Hence, the coe�cients T(5) and T(6) for BR1 SAT in Proposition 2 and LDG SAT in Proposition 3 vanish. We, therefore,
have proven the following statement.

Theorem 9. When implemented with diagonal-norm R0 SBP operators, the BR1, BR2 and SIPG SATs are equivalent
in the sense that they can be reproduced by considering �1T(1)

�k and �DT(D)
� in Proposition 2 for �1,�D > 0. Similarly,

the LDG and CDG SATs are equivalent for this family of operators.

The equivalence of the SIPG SAT and BR2 SAT is established in [29]. Similarly, it is shown in [61] that the BR1
and SIPG methods are equivalent when the discretization is restricted to the LGL nodal points, and the LGL quadrature
is used to approximate integrals. In the same paper, this property is exploited to find a sharper estimate of the minimum
penalty coe�cient for stability of the SIPG method. Gassner et al. [36] reported that most drawbacks of the BR1
method are not observed when the Navier-Stokes equations are solved using DG discretization with LGL nodal points
and quadrature. Since discretizations with LGL nodal point and quadrature satisfy the SBP property [3, 5, 24] and
the operator is in the diagonal-norm R0 family, for one-dimensional implementations, the flux used in [36] can also
be regarded as the BR2 SAT implemented with T(1)

�k = (1/4)B�[⌥��k + ⌥��v]B� and T(D)
� = B�⌥��kB� (or with the

stabilization parameter for the BR2 flux set to ⌘0 = 1 in [2]). For tensor-product implementations of the LGL operators
in multiple dimensions, it can be shown, using the structure of the extrapolation matrices as in (159), that the BR1 SAT
is not equivalent to the BR2 SAT. Despite this, when coupled with the BR1 SAT, the LGL operators lead to a smaller
stencil width compared to operators that do not have nodes at the boundaries.

diagonal-norm SBP operators in the R0 family have also found important application in nonlinear stability analyses.
They simplify entropy stability analyses [37, 38, 53], and are computationally less expensive than operators in the Rd

family on conforming grids [62, 63]. However, they exhibit lower solution accuracy and have a larger number of
degrees of freedom compared to operators of the same degree in the Rd SBP family [53].

Remark 9. When implemented with the diagonal-norm R0 SBP operators, the BR1 and LDG SATs are stable with the
T(1)
�k coe�cients specified for the BR2 and CDG SATs in Table 1, respectively. If such a modification is applied, then the

BR1 and BR2 SATs as well as the LDG and CDG SATs become identical. We have not implemented this modification
for the numerical results presented in Section 8.

7.2. Sparsity and storage requirements
It is desirable to reduce the number of nonzero entries of the matrix resulting from a spatial discretization of (12)

to minimize storage requirements and take advantage of e�cient sparse matrix algorithms for implicit time-marching
methods. More generally, fewer nonzero entries lead to fewer floating point operations, and thus lower computational
cost. The sparsity of a matrix is equal to one minus the density of the matrix, which is defined as the ratio of the number
of nonzero entries to the total number of entries.

The linear system of equations resulting from the SBP-SAT discretization on the RHS of (33) is assembled in a
global system matrix. This matrix is equivalent to the product of the inverse of the global mass matrix and the global
sti↵ness matrix in the DG framework. An estimate of the number of nonzero entries of the system matrix depends
on the type of SBP operator and SAT used. We first note that it has diagonal blocks of size n2

p associated with each
element in the domain. Furthermore, for SBP-⌦ operators the R matrix is dense since it spans d dimensions. Therefore,
the number of nonzero entries of the o↵-diagonal block matrices containing terms such as RT

�kT
(1)
�k R�v are dense, i.e.,

they contain n2
p nonzero entries. Assuming simplices are used to tessellate the domain, each element has at most d + 1

immediate neighbors. Thus, we can write an upper bound on the number of nonzero entries of the system matrix arising
from the use of SBP-⌦ operators and any of the compact SATs as

nnz = ne
⇣

n2
p + (d + 1)n2

p

⌘

= (d + 2)n2
pne, (161)
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Table 2: Estimates of the number of nonzero entries of system matrices resulting from di↵erent SBP-SAT discretizations of (164). For LDG and
CDG SATs, straight-edged elements are used. If d = 1, the estimates for the SBP-E family apply for operators that have volume nodes on their
facets, and the estimates for LDG SAT should be replaced by those presented for CDG SAT. The operators d·e and b·c denote the ceiling and floor
functions, respectively.

SAT SBP-⌦ SBP-� SBP-E

BR1 (d2 + 2d + 2)n2
pne

h

n2
p + (d + 1)(2npn f � n2

f ) + (d2 + d)n2
f

i

ne

h

n2
p + (d + 1)(2npn f � n2

f )
i

ne

BR2, SIPG,
BO, NIPG (d + 2) n2

pne

h

n2
p + (d + 1)(2npn f � n2

f )
i

ne

h

n2
p + (d + 1)(2npn f � n2

f )
i

ne

CDG, CNG (d + 2)n2
pne

h

n2
p + (d + 1)npn f

i

ne

h

n2
p + (d + 1)npn f

i

ne

LDG

l

ne
d+1

m

(d2 + 2)n2
p

+
j

ned
d+1

k

(d2 + 1)n2
p

h

n2
p + (d + 1)npn f

i

ne

+
h

(d2 + 1) �
l

ne
d+1

m

(d + 1) �
j

ned
d+1

k

(d + 2)
i

n2
f

h

n2
p + (d + 1)npn f

i

ne

where nnz denotes the number of nonzero entries. When SBP-⌦ operators are implemented with the BR1 SAT, each
element is coupled with d2 + 2d + 1 elements. Therefore, we have

nnz = ne
⇣

n2
p + (d2 + 2d + 1)n2

p

⌘

= (d2 + 2d + 2)n2
pne. (162)

For the LDG SAT, the number of elements coupled with a target element depends on the switch function. The
choice of � in (142) and (144) ensures that there is no element for which all switches point inwards or outwards
simultaneously [58]. Using this fact with the expressions for T(5)

�✏k and T(6)
��v in Proposition 3, it can be shown that the

maximum number of elements coupled with a target element by the LDG SAT is d2 + 1. Moreover, for every element
coupled with d2+1 neighbors there are d number of neighbors that will be coupled with less than d2+1 elements when
d > 1. Therefore, the number of elements that can have d2 + 1 neighbors is limited to dne/(d + 1)e, where d·e denotes
the ceiling operator. Thus, an upper estimate of the number of nonzero entries of the system matrix resulting from the
LDG SAT implemented with SBP-⌦ operator is given by

nnz =
⇠ ne

d + 1

⇡

(d2 + 2)n2
p +

$

ned
d + 1

%

(d2 + 1)n2
p =

"

⇠ ne

d + 1

⇡

(d2 + 2) +
$

ned
d + 1

%

(d2 + 1)
#

n2
p, (163)

where b·c denotes the floor operator. We used a�ne mapping (or straight-edged elements) to obtain (163); otherwise,
the LDG SATs may result in more nonzero entries than the estimate in (163) since the switch function � varies along
curved facets.

Since the R matrix spans d � 1 dimensions for SBP-� operators, it has n f nonzero columns. Therefore, for im-
plementations with SBP-� operators, blocks containing terms such as DT

�kT
(2)
�k R�k have n f nonzero columns. Similarly,

blocks containing terms such as RT
�kT

(3)
�k D�k have n f nonzero rows. Thus, the sum DT

�kT
(2)
�k R�k+RT

�kT
(3)
�k D�k has 2npn f �n2

f
nonzero entries. Identifying the structure of terms in blocks of the system matrix in a similar manner and using the
number of coupled elements, we calculate upper estimates of the number of nonzero entries for di↵erent SBP-SAT
discretizations of the Poisson problem. The estimates obtained are shown in Table 2; similar results for DG imple-
mentation of the BR2 and CDG fluxes are presented in [33]. In deriving the estimates, we assumed that all elements
in the domain are interior; consequently, the number of nonzero entries is overestimated. This assumption, however,
implies that the estimates in Table 2 get better with an increasing ratio of the number of interior to number of boundary
elements in the domain.

From Table 2 it can be deduced that the BR1 SAT yields the largest number of nonzero entries for a given type of
SBP operator. In contrast, the CDG and CNG SATs give the smallest number of nonzero entries. While it is fairly easy
to rank the SATs based on the number of nonzero entries they produce for a given type of operator, such a comparison
involving di↵erent types of SBP operator is not straightforward due to varying number of volume nodes, np.
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8. Numerical results

To verify the theoretical analyses presented in the previous sections, we consider the two-dimensional Poisson
problem

�r · (�rU) = F in ⌦ = [0, 20] ⇥ [�5, 5] ,

n · (�rU) = UN on �N = {(x, y) : y 2 [�5, 5] , x = 20} ,
U = UD on �D = �\�N ,

(164)

where � =
⇥ 4x+1 y

y y2+1
⇤

, and the source term and boundary conditions are determined via the method of manufactured
solution, i.e., we choose the exact solution to be

U = sin
✓⇡

8
x
◆

sin
✓⇡

8
y
◆

, (165)

and evaluate F ,UN ,UD from (164). Similarly, we specify the exact adjoint solution as

 = x + y (166)

and evaluate the source term and boundary conditions associated with the adjoint problem from

�r · (�r ) = G in ⌦ = [0, 20] ⇥ [�5, 5] ,

n · (�r ) =  N on �N = {(x, y) : y 2 [�5, 5] , x = 20} ,
 =  D on �D = �\�N .

(167)

Finally, a linear functional of the form7 (16), i.e.,

I(U) =
Z

⌦

GU d⌦ �
Z

�D
 D(�rU) · nd� +

Z

�N
 NU d� ,

is considered. Since we know the primal solution, the adjoint, the boundary conditions, and the source terms, the linear
functional can be evaluated exactly, and its value, accurate to fifteen significant figures, isI(U) = �27.0912595377575.

The physical domain is tessellated with triangular elements, and the ↵-optimized Lagrange interpolation nodes on
the reference element are mapped through an a�ne mapping to the physical elements. Then the triangular elements
are curved by perturbing the coordinates of the ↵-optimized Lagrange interpolation nodes, xL,k and yL,k, using the
functions [62]

x̃k = xL,k +
5
4

cos
✓ ⇡

20
xL,k � ⇡2

◆

cos
 

3⇡
10

yL,k

!

, ỹk = yL,k +
5
8

sin
✓⇡

5
x̃k � 2⇡

◆

cos
✓ ⇡

10
yL,k

◆

. (168)

The mesh Jacobian remain positive for each element under the curvilinear transformation. Examples of curvilinear
grids with degree two SBP-� and SBP-⌦ operators are shown in Fig. 3. A mapping degree of two is used for all
numerical results presented. In all cases, the numerical solutions are obtained by solving the discrete equations using a
direct method; specifically, the “spsolve” function from the SciPy sparse linear algebra library in Python is used.

8.1. Accuracy
The errors in the primal and adjoint solutions are computed, respectively, as

kuh � ukH =
s

X

⌦k2Th

�

uh,k � uk
�

Hk
�

uh,k � uk
�

,
�

�

� h �  
�

�

�

H =

s

X

⌦k2Th

⇣

 h,k �  k

⌘

Hk
⇣

 h,k �  k

⌘

, (169)

and the functional error is calculated as |Ih(uh) � I(U)|. To study the accuracy and convergence properties of the primal
solution, adjoint solution, and functional under mesh refinement, we consider four successively refined grids with 68,
272, 1088, 4352 elements. The nominal element size is calculated as h ⌘ 20/

p
ne.

7Note that  D and  N are evaluated from  , but usually there is no need to know the adjoint solution. Thus, the functional simply containsU as
an unknown, and the values of  D and  N are given as coe�cients or functions in the expression for the functional.
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(a) SBP-� operator, p = 2, pmap = 2
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(b) SBP-⌦ operator, p = 2, pmap = 2

Figure 3: Physical domain tessellated with 68 curved triangular elements. The circles and squares indicate, respectively, the locations of volume
nodes and facet quadrature points obtained with a degree two curvilinear mapping, and the lines define the facets of each element due to the
perturbation given by (168).

Figure 4 shows the solution errors and convergence rates under mesh refinement for six types of SAT implemented
with three types of SBP operators. Schemes with the BR1, BR2, LDG, and CDG SATs display solution convergence
rates of p + 1 and achieve very similar solution error values. In contrast, schemes with the BO and CNG SATs exhibit
an even-odd convergence phenomenon; schemes with odd degree SBP operators converge at rates of p + 1 while those
with even degree operators converge at reduced rates of p. The even-odd convergence property of the BO method is
well-known, e.g., see [11, 64, 65]. Furthermore, schemes with the BO SAT exhibit the largest solution error values in
almost all cases considered (except for the case with degree three SBP diagonal-E operator).

Numerical experiments in the literature with odd degree, one-dimensional operators show that the BR1 flux results
in suboptimal solution convergence rate of p [40, 56, 64, 65]. However, as can be seen from Fig. 4, this characteristic is
not observed when the BR1 SAT is implemented with SBP operators on unstructured triangular meshes. For the BR1
and LDG SATs, if T(1)

�k and T(D)
� are not modified and the extended boundary SATs are not included, then discretizations

with the SBP-⌦ and SBP-� operators produce system matrices that have eigenvalues with positive real parts. For the
unmodified8 BR1 and LDG SATs, which include extended boundary SATs, positive eigenvalues are not produced with
all types of the SBP operators. Despite being stable, however, functional superconvergence is not observed for the
unmodified BR1 and LDG SATs except when used with the SBP diagonal-E operators. As noted in Section 7.1, when
used with SBP diagonal-E operators, the BR1 and LDG SATs (both modified and unmodified) have compact stencil
width, and they are adjoint consistent for problems with non-homogeneous Dirichlet boundary conditions. When the
unmodified LDG SAT is implemented with µ = 0, suboptimal solution convergence rates are observed for some of
the cases; hence, we implemented the unmodified LDG SAT with T(D)

�k =
3
2 B�⌥��kB�, which corresponds to a nonzero

value of µ at Dirichlet boundary facets. It can be seen from Fig. 4 that the unmodified BR1 and LDG SATs lead to
solution convergence rates of p + 1.

Figure 5 shows the errors produced by the three types of SBP operator when implemented with the BR1 and BO
SATs. In general, solution error is not very sensitive to the type of SBP operator used except in a few cases, e.g., the
cases where the degree three SBP diagonal-E operator is implemented with SATs other than the BO SAT. Except for
the BO SAT, all of the other SATs show very similar solution error convergence behavior as that of the BR1 SAT.

The errors and convergence rates of the adjoint solution under mesh refinement are presented in Fig. 6. All of the
adjoint consistent SATs lead to schemes that converge to the exact adjoint at a rate of p + 1 or larger. In contrast,
schemes with the BO and CNG SATs have error values of O(1). Similar properties as with the primal solution are
observed regarding the sensitivity of the adjoint error values to the type of SBP operator used.

Functional errors and convergence rates are displayed in Fig. 7. As expected, functional superconvergence rates of
2p are observed for schemes with primal and adjoint consistent SATs. The adjoint inconsistent SATs, BO and CNG,
do not display functional superconvergence rates of 2p. While the adjoint consistent schemes achieve comparable
functional error values, the CNG SAT outperforms the BO SAT in this regard in most cases.

8The unmodified BR1 and LDG SATs are denoted by BR1* and LDG*, respectively, in all figures and tables. If used without a qualifier, the
names BR1 and LDG refer to the modified versions of the BR1 and LDG SATs.
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(a) SBP-⌦ operator, p = 3
(b) SBP-� operator, p = 3 (c) SBP-E operator, p = 3

(d) SBP-⌦ operator, p = 4 (e) SBP-� operator, p = 4 (f) SBP-E operator, p = 4

Figure 4: Solution error under grid refinement. Solution convergence rates (shown in parenthesis) are calculated by fitting a line through the last
three error values on the refined meshes. The BR1* and LDG* SATs represent the unmodified BR1 and LDG SATs, which are implemented with
the SBP diagonal-E operators only.

(a) Solution error with BR1 SAT (b) Solution error with BO SAT

Figure 5: Variation of solution error under grid refinement with respect to three types of SBP operators. Slopes corresponding to p+ 1 convergence
rates are shown by short, thin lines.

8.2. Eigenspectra
The maximum time step that can be used with explicit time-marching schemes depends on the spectral radius of

the system matrix. Figure 8 shows the eigenspectra of the system matrices arising from the SBP-SAT discretizations of
(164). While the BO and CNG SATs produce eigenvalues with imaginary parts, all of the adjoint consistent SATs have
eigenvalues on the negative real axis. The BO SAT leads to the smallest spectral radius, ⇢, except when used with SBP
diagonal-E operators. SBP diagonal-E operators achieve their smallest spectral radii when used with the unmodified
BR1 SAT. The modified LDG SAT produces the largest spectral radius regardless of the type of SBP operator it is used
with. In fact, the spectral radius obtained with the LDG SAT is about four times larger than the spectral radius obtained
with the BR2 SAT. In comparison, the BR1 and CDG SATs yield spectral radii about twice as large as that of the BR2
SAT. The spectral radii of the BR1, LDG and CDG SATs can be reduced by approximately a factor of 1/�1 if T(1)

�k is
multiplied by 0 < �1 < 1, but this would compromise the stability of the discretizations. The unmodified BR1 and
LDG SATs have smaller T(1)

�k coe�cients compared to the rest of the adjoint consistent SATs, and they produce smaller
spectral radii, as can be seen from Figs. 8c and 8i.

The variation of the spectral radius with respect to the SBP operators can also be inferred from Fig. 8. The SBP-⌦
and SBP-� operators show comparable spectral radii in all cases. In contrast, the SBP diagonal-E operator produces
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(a) SBP-⌦, p = 3 (b) SBP-�, p = 3 (c) SBP-E, p = 3

(d) SBP-⌦, p = 4 (e) SBP-�, p = 4 (f) SBP-E, p = 4

Figure 6: Adjoint error under grid refinement. Adjoint convergence rates (shown in parenthesis) are calculated by fitting a line through the last
three error values on the refined meshes except for the adjoint consistent SATs with SBP-⌦ operator of degree p = 4 for which the first 3 grids are
used. The BR1* and LDG* SATs represent the unmodified BR1 and LDG SATs.

(a) SBP-⌦, p = 3 (b) SBP-�, p = 3 (c) SBP-E, p = 3

(d) SBP-⌦, p = 4 (e) SBP-�, p = 4 (f) SBP-E, p = 4

Figure 7: Functional error under grid refinement. Functional convergence rates (shown in parenthesis) are calculated by fitting a line through the
last three error values on the refined meshes except for the adjoint consistent SATs with SBP-⌦ and SBP-E operators of degree p = 4 for which the
first 3 grids are used. The BR1* and LDG* SATs represent the unmodified BR1 and LDG SATs.

larger spectral radii than the SBP-⌦ and SBP-� operators. It also exhibits the largest ratio of the magnitudes of the
smallest to the largest eigenvalues for the p = 3 case. It can be seen from Fig. 8 that the eigenvalue with the smallest
magnitude for the case with the p = 3 SBP diagonal-E operator has a magnitude approximately two orders of magnitude
smaller than those produced with the SBP-⌦ and SBP-� operators. This is also reflected in the condition number of
the system matrix presented in Table 3.

8.3. Conditioning
The condition number of a system matrix a↵ects the solution accuracy and the convergence rate of iterative solvers

for implicit methods. Table 3 shows the condition numbers of the system matrices resulting from various SBP-SAT
discretizations of (164). The LDG SAT produces the largest condition numbers, and the BR2 SAT yields the smallest
condition numbers among the adjoint consistent SATs. It can also be inferred from Table 3 that compared to the LDG
SAT, the BO and CNG SATs yield approximately an order of magnitude smaller condition numbers. They also give
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Figure 8: Eigenspectra of the system matrix resulting from SBP-SAT discretization of (164) with ne = 14 elements. The BR1* and LDG* SATs
represent the unmodified BR1 and LDG SATs.

significantly smaller condition numbers compared to the BR1, BR2, and CDG SATs. In contrast, the unmodified LDG
and BR1 SATs yield smaller condition numbers than the rest of the adjoint consistent SATs when used with all but the
degree three SBP diagonal-E operators. A comparison of the condition numbers in Table 3 by the type of SBP operator
reveals that the SBP diagonal-E operators lead to larger condition numbers than the SBP-� and SBP-⌦ operators. As
noted in Section 8.1, the solution and adjoint errors are considerably larger for the case with p = 3 SBP diagonal-E
operator compared to the solutions with the same degree SBP-� and SBP-⌦ operators which yield system matrices
with significantly smaller condition numbers as can be seen from Table 3.

The growth of the condition number with mesh refinement for degree four SBP operators is depicted in Fig. 9. The
figure shows that the scaling factors between the condition numbers resulting from the use of the di↵erent types of SAT
remain roughly the same under mesh refinement. This holds for the lower degree SBP operators as well. Similarly,
Fig. 10 shows that, for the SATs considered, the condition number scales at approximately the same rate as the degree
of the operators increases. For SBP-⌦ and SBP-� operators, the increase in condition number with the polynomial
degree of the operators is roughly linear; a similar observation was made for DG operators in [65]. From Fig. 10c,
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Table 3: Condition number of the system matrix arising from discretization of (164) using ne = 14 elements. The BR1* and LDG* SATs represent
the unmodified BR1 and LDG SATs.

p Operator BR1 BR1* BR2 LDG LDG* CDG BO CNG
SBP-⌦ 5.09e+02 – 2.55e+02 1.01e+03 – 4.96e+02 1.32e+02 7.60e+01

1 SBP-� 5.05e+02 – 3.02e+02 1.29e+03 – 6.88e+02 1.01e+02 1.14e+02
SBP-E 9.13e+02 3.65e+02 4.12e+02 2.01e+03 6.88e+02 9.62e+02 2.36e+02 1.57e+02
SBP-⌦ 3.88e+03 – 1.90e+03 8.59e+03 – 4.30e+03 3.91e+02 5.33e+02

2 SBP-� 6.30e+03 – 3.00e+03 1.70e+04 – 8.36e+03 5.83e+02 8.28e+02
SBP-E 1.06e+04 2.09e+03 4.82e+03 2.49e+04 3.84e+03 1.16e+04 2.86e+03 2.08e+03
SBP-⌦ 1.85e+04 – 8.86e+03 4.30e+04 – 2.11e+04 1.98e+03 2.42e+03

3 SBP-� 2.66e+04 – 1.26e+04 7.22e+04 – 3.54e+04 2.76e+03 3.58e+03
SBP-E 2.65e+06 3.63e+06 1.22e+06 6.69e+06 4.76e+06 3.15e+06 6.60e+05 5.26e+05
SBP-⌦ 5.81e+04 – 2.73e+04 1.46e+05 – 7.05e+04 6.04e+03 7.26e+03

4 SBP-� 8.54e+04 – 3.98e+04 2.27e+05 – 1.10e+05 8.43e+03 1.09e+04
SBP-E 1.49e+05 2.23e+04 6.71e+04 3.86e+05 5.30e+04 1.77e+05 4.29e+04 3.10e+04
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Figure 9: Growth of condition number with respect to mesh refinement. The BR1* and LDG* SATs represent the unmodified BR1 and LDG SATs.
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Figure 10: Growth of condition number with degree of SBP operators. The BR1* and LDG* SATs represent the unmodified BR1 and LDG SATs.

we see that the condition number for the degree three SBP diagonal-E operator is larger than that of the degree four
operator, and this trend is observed in a more pronounced manner for smaller mesh sizes.

8.4. Verification of sparsity and storage requirement estimates
We verify estimates of the number of nonzero entries presented in Table 2 for system matrices resulting from

di↵erent SBP-SAT discretizations of (164). The accuracy of the estimates is measured by the percent error with
respect to the actual number of nonzero entries obtained numerically. We also compute the relative densities of the
system matrices using the density due to the BR1 SAT as a reference for normalization. The results for degree four
SBP operators are shown in Table 4. The largest errors in the estimated number of nonzero entries of the system
matrices resulting from discretizations with SBP-⌦, SBP-�, and SBP diagonal-E operators are 8.34%, 2.10%, and
0.74%, respectively. For fewer elements the errors increase (e.g., ⇡ 20% with 68 elements) because the ratio of the
number of interior elements to boundary elements decreases.

The relative densities in Table 4 show that the storage requirements for discretizations with SBP-⌦ operators
coupled with the BR1 SAT can be reduced by up to ⇡ 60% if instead compact SATs are used. For SBP-� operators
density reductions up to ⇡ 35% are observed if CNG, CDG, or LDG SATs are used. The same set of SATs yield ⇡ 23%
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Table 4: Number of nonzero entries of system matrices resulting from SBP-SAT discretization of (164) with 4352 degree p = 4 curved SBP
elements, percent error of estimated number of nonzero entries compared to actual number of nonzero entries, and relative densities (rel. density) of
system matrices with respect to nonzero entries obtained with BR1 SAT.

SAT
SBP-⌦ SBP-� SBP-E

nnz %error rel. density nnz %error rel. density nnz %error rel. density
BR1 9, 594, 000 +2.06 1.0000 4, 041, 648 +1.11 1.0000 4, 617, 968 +0.74 1.0000
BR2 3, 877, 200 +1.02 0.4041 3, 406, 448 +0.80 0.8428 4, 617, 968 +0.74 1.0000
LDG 4, 820, 400 +8.34 0.5024 2, 674, 048 +2.10 0.6616 3, 523, 168 +0.55 0.7629
CDG 3, 877, 200 +1.02 0.4041 2, 569, 248 +0.62 0.6357 3, 523, 168 +0.55 0.7629
BO 3, 877, 200 +1.02 0.4041 3, 406, 448 +0.80 0.8428 4, 617, 968 +0.74 1.0000
CNG 3, 877, 200 +1.02 0.4041 2, 569, 248 +0.62 0.6357 3, 523, 168 +0.55 0.7629
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Figure 11: Comparison of number of nonzero entries when di↵erent types of SBP operators are implemented with similar SAT. Values obtained
from numerical experiment are denoted by “num.” and those estimated are denoted by “est.” in the legends.

reduction in density when used with SBP diagonal-E operators. Compared to BR2 and BO SATs, we observe ⇡ 20%
reduction in density when LDG, CDG and CNG SATs are used with the SBP-� operator.

Figure 11 shows the variation of the number of nonzero entries due to implementation of di↵erent types of degree
four SBP operator with a single type of SAT. The SBP-� operator produces the fewest nonzero entries regardless of the
choice of SAT. This trend is observed for lower degree operators as well, but for implementations with the BR2 SAT,
the SBP-� and SBP-⌦ operators produce very similar numbers of nonzero entries. For SBP-⌦ and SBP diagonal-E
operators, no conclusive statement can be made regarding which operator produces a smaller number of nonzero entries
when implemented with the same SAT. Combining the observations from Fig. 11 and Table 4, we can conclude that
the minimum number of nonzero entries (highest sparsity and lowest storage requirement) is obtained when SBP-�
operators are used with the CNG SAT. While the CDG SAT also produces the same number of nonzero entries, it
requires storing values of the switch functions for each facet in the discretization.

9. Conclusions

Using a general framework, we have analyzed the numerical properties of discretizations of di↵usion problems with
diagonal-norm multidimensional SBP operators and various types of SAT. The framework enables implementation of
SATs without writing di↵usion problems as a first-order systems of equations. This o↵ers flexibility to switch from
one type of SAT to another with a simple parameter selection of the SAT coe�cients. The main theoretical results can
be summarized as follows.

• Conditions required for consistency, conservation, adjoint consistency, and energy stability of SBP-SAT dis-
cretizations of di↵usion problems with multidimensional SBP operators are established.

• A functional error of order h2p is attained when primal and adjoint consistent SATs are used with degree p
multidimensional SBP operators in curvilinear coordinates.

• Several types of SAT that correspond to known DG fluxes, including those leading to extended stencils, are
identified. Instability issues observed with some these SATs are addressed by modifying the SAT coe�cients.
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• It is shown that the BR1, BR2, and SIPG SATs are equivalent when implemented with diagonal-norm R0 (SBP
diagonal-E) operators, which include the frequently used LGL operator in one space dimension. For the same
family of operators, the LDG and CDG SATs are shown to be equivalent.

• Upper bounds on the number of nonzero entries in the system matrices arising from d-dimensional SBP-SAT
discretizations are derived.

Numerical experiments with the two-dimensional Poisson problem were conducted to study the accuracy, eigen-
spectra, conditioning, and sparsity of various SBP-SAT discretizations. The adjoint consistent SATs display primal and
adjoint solution convergence rates of p + 1. In contrast, the adjoint inconsistent SATs, BO and CNG, show solution
convergence rates of p + 1 and p for odd and even degree operators, respectively. Functional superconvergence rates
of 2p are attained with the adjoint consistent SATs, while the adjoint inconsistent SATs converge at lower rates. The
reduction in the functional error values is more notable than the reduction in the solution error values when adjoint
consistent SATs are used instead of adjoint inconsistent SATs. We summarize the rest of our observations as follows.

• When used with SBP-⌦ and SBP-� operators, the BR1 and LDG SATs couple second neighbor elements; hence,
they are less amenable for code parallelization than the other types of SAT.

• When used with the SBP-⌦ and SBP-� operators, the BR2 SAT leads to a system matrix with the smallest
spectral radius compared to the rest of the adjoint consistent SATs. In contrast, the LDG SAT leads to a system
matrix with the largest spectral radius.

• When used with the SBP diagonal-E operators, the unmodified BR1 and LDG SATs are compact, adjoint con-
sistent, and energy stable. Except for the p = 3 operator, they lead to smaller condition numbers compared to the
other adjoint consistent SATs. Furthermore, the unmodified BR1 SAT leads to system matrices with the smallest
spectral radius while the unmodified LDG SAT produces the sparsest system matrices.

• The BR2 SAT yields about half as large a spectral radius and condition number as the CDG SAT, but the CDG
SAT produces system matrices with up to 25% fewer nonzero entries when implemented with SBP-� and SBP
diagonal-E operators.

• Compared to the adjoint consistent SATs other than the unmodified BR1 and LDG SATs, the BO and CNG SATs
lead to system matrices with significantly smaller spectral radii. This is also reflected in the conditioning of their
system matrices, which have 1.5 to 20 times smaller condition numbers.

• The CNG and CDG SATs produce system matrices with 20% to 60% fewer number of nonzero entries compared
to the other types of SAT.

• If functional superconvergence is not a priority, the CNG SAT o↵ers interesting properties such as a reduced
condition number (about half of that of the BR2 SAT), a larger time step, and a sparse system matrix. However,
the scheme su↵ers from larger solution error and even-odd solution convergence behavior.

We acknowledge that the choice of SATs to solve di↵usion problems is not straightforward due to the competing
numerical properties, which can be problem dependent, but our observations indicate that when used with SBP-⌦
and SBP-� operators, the BR2 and CDG SATs o↵er superior numerical properties in most cases, and the CNG SAT
is a better alternative in some cases. For the SBP diagonal-E operators, the unmodified BR1 and LDG SATs show
significantly better numerical properties compared to the rest of the SATs. It is possible that other types of SAT with
better numerical properties fall under the general framework, and this may be studied in the future.

Appendix A. Construction of SBP operators on curved elements

High-order methods require accurate enough representation of curved geometries to achieve optimal solution con-
vergence rates [56, 66]. One approach to generate curved elements is to reposition facet nodes of linear meshes
generated on physical elements such that they coincide with facet quadrature points on curved physical boundaries,
and propagate the curvature to volume nodes [56]. In this work, however, we assume that a curvilinear mesh is avail-
able or an analytical relation is known such that coordinates of ↵-optimized Lagrange interpolation nodes discussed in
[56] are accessible on each curved physical element. We then apply polynomial interpolation to find the SBP nodal
locations and grid metrics in the physical space.
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Crean et al. [37] showed that SBP operators on curved physical elements preserve design order accuracy, freestream
flow, and the SBP property if the curvilinear mapping satisfies Assumption 1. The geometric mapping from a point in
the reference element, (⇠, ⌘) 2 ⌦̂, to a point in the physical element, (x, y) 2 ⌦k, is defined by

(x, y) =Mk(⇠, ⌘) ⌘
n⇤s
X

j=1

c j�̂ j(⇠, ⌘), (A.1)

where c j is the coordinate of j-th Lagrange interpolation node on the the physical element, �̂ j 2 Ppmap (⌦̂) is the j-th
Lagrange polynomial basis associated with the j-th node on the reference element, and n⇤s =

⇣

pmap+d
d

⌘

is the cardinality
of the polynomial basis for the mapping. At the Lagrange nodes of the reference element, �̂ j satisfies

�̂ j(⇠i, ⌘i) =
n⇤s
X

`=1

k( j)
` '̂`(⇠i, ⌘i) = �i j for j = 1, . . . , n⇤s, (A.2)

where k( j)
` 2 R, '̂ is another basis function, and �i j is the Kronecker delta operator. The basis '̂ is chosen to be the

orthonormalized canonical basis given in [56] as,

'̂m(⇠, ⌘) =
p

2Pi(a)P(2i+1,0)
j (b)(1 � b)i, (A.3)

where P(↵,�)
n is the n-th order Jacobi polynomial, m = j + (pmap + 1)i + 1 � i/2(i � 1), i j � 0, i + j  pmap, a =

2(1 + ⇠)/(1 � ⌘) � 1, and b = ⌘. Writing (A.2) in matrix form we have V̂LK = Ins which yields K = V̂�1
L , where the

coe�cient matrix, K 2 Rn⇤s⇥n⇤s , contains the coe�cient k( j)
` in the j-th column and `-th row, and V̂L is the Vandermonde

matrix constructed using the orthonormal basis in (A.3) and the ↵-optimized Lagrange nodes, Ŝ L = {⇠i, ⌘i}n
⇤
s

i=1, presented
in [56]. The ↵-optimized Lagrange nodes minimize the Lebesgue constant and ensure the Vandermonde matrix is well-
behaved [56]. Using the matrix forms of (A.1) and (A.2), the coordinates of the SBP volume nodes, xk, yk, and facet
node, x�, y�, in the physical element can be calculated as

xk = V̂⌦V̂�1
L x̃k, yk = V̂⌦V̂�1

L ỹk, x� = V̂�V̂�1
L x̃k, y� = V̂�V̂�1

L ỹk, (A.4)

where x̃k, ỹk 2 Rn⇤s are vectors of the x and y coordinates of the Lagrange interpolation nodes in ⌦k. Using the
derivatives of (A.1) with respect to the reference coordinates,
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we compute the exact grid metrics by forming the derivatives of the Vandermonde matrix on Ŝ , i.e.,

x⇠,k = V̂⇠,⌦V̂�1
L x̃k, y⇠,k = V̂⇠,⌦V̂�1

L ỹk, x⌘,k = V̂⌘,⌦V̂�1
L x̃k, y⌘,k = V̂⌘,⌦V̂�1

L ỹk, (A.6)

where the subscripts ⇠ and ⌘ denote partial derivatives with respect to ⇠ and ⌘, e.g., x⇠,k is the restriction of @x/@⇠ on to
the nodes S k. Similarly, the facet grid metrics are computed as

x⇠,�k = V̂⇠,�V̂�1
L x̃k, y⇠,�k = V̂⇠,�V̂�1

L ỹk, x⌘,�k = V̂⌘,�V̂�1
L x̃k, y⌘,�k = V̂⌘,�V̂�1

L ỹk. (A.7)

The mapping Jacobian matrices for the volume, Jk : ⌦̂ ! Rd⇥d, and facets, J f� : l̂� ! Rd⇥(d�1), are given,
respectively, by

Jk =
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where s = s(⇠, ⌘) is the parametric equation of the line, l̂�, connecting the end points of facet � on the reference element.
The outward pointing unit normal vectors on facet � of element ⌦k are given by
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|Jk |
|J f� |
J�T

k n̂� =
1
|J f� |

2

6

6

6

6

6

4

@y
@⌘ � @y

@⇠

� @x
@⌘

@x
@⇠

3

7

7

7

7

7

5

"

n̂�⇠
n̂�⌘

#

, (A.9)
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where |Jk | is the determinant of the Jacobian, and |J f� | =
q

[(J f� )1]2 + [(J f� )2]2. We evaluate |Jk | and |J f� | at the
volume and facet nodes of ⌦k as

Jk = diag
⇣

|x⇠,k � y⌘,k � x⌘,k � y⇠,k |
⌘

, J f1 = diag
 

1p
2

q

(x⌘,�k � x⇠,�k)2 + (y⌘,�k � y⇠,�k)2

!

,

J f2 = diag
✓

q

(�x⌘,�k)2 + (�y⌘,�k)2
◆

, J f3 = diag
✓

q

(x⇠,�k)2 + (y⇠,�k)2
◆

,

(A.10)

respectively, where � denotes the Hadamard (element-wise) product of vectors, and the operator diag(·) takes in a
vector and creates a diagonal matrix with the vector placed in the main diagonal.

The SBP operators on the physical element are constructed following [37, 38]. The norm matrices on the physical
element read

Hk = JkĤ, B� = J f� B̂�. (A.11)

The normals at facet � are stored in the diagonal matrices

Nx�k = J�1
f� [diag(y⌘,�k)n̂�⇠ � diag(y⇠,�k)n̂�⌘], Ny�k = J�1

f� [� diag(x⌘,�k)n̂�⇠ + diag(x⇠,�k)n̂�⌘]. (A.12)

The surface integral matrices in the x and y directions are given by

Exk =
X

�⇢�k

RT
�kB�Nx�kR�k, Eyk =

X

�⇢�k

RT
�kB�Ny�kR�k, (A.13)

and the skew-symmetric matrices are constructed as

Sxk =
1
2

⇣

diag(y⌘,�k)Q̂⇠ � Q̂T
⇠ diag(y⌘,�k)

⌘

+
1
2

⇣

� diag(y⇠,�k)Q̂⌘ + Q̂T
⌘ diag(y⇠,�k)

⌘

,

Syk =
1
2

⇣

� diag(x⌘,�k)Q̂⇠ + Q̂T
⇠ diag(x⌘,�k)

⌘

+
1
2

⇣

diag(x⇠,�k)Q̂⌘ � Q̂T
⌘ diag(x⇠,�k)

⌘

.
(A.14)

Finally, the derivative operators are computed as

Dxk = H�1
k

 

Sxk +
1
2

Exk

!

, Dyk = H�1
k

 

Syk +
1
2

Eyk

!

. (A.15)

Appendix B. Summary of notation

The analysis presented in this work is notation heavy; hence, we tabulate some of the important notation in Ta-
ble B.5 for quick referencing.
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Table B.5: Summary of important notation

Notation Equation Description
Dxk, Dyk (A.15) First derivative operators in the x and y directions
D(2)

k (25) Second derivative operator approximating r · (�r) on element ⌦k

Hk, B� (A.11) Diagonal norm matrices of element ⌦k and facet �, respectively
Ex,k, Ey,k (A.13) Surface integral matrix in the x and y directions
R�k (3) Extrapolation matrix from volume nodes in element ⌦k to facet nodes on facet �
D�k (26) Normal derivative operator approximating n · (�r) on facet � of element ⌦k

Nx�k, Ny�k (A.12) Diagonal matrices with the x and y components of the normal vector on face � of element ⌦k

Mk (28) A positive semidefinite matrix used for the approximation v

T
k Mkuk ⇡

R

⌦
rV · (�rU)d⌦

⇤k (24) A block matrix containing the di↵usivity coe�cients in all combinations of directions
T(i)

ak, T( j)
abk (34) and (35) SAT coe�cient matrices for facets a, b 2 {�, ✏, �}, i = {1, 2, 3, 4,D}, and j = {5, 6}

⌥abk (93) Component of the SAT coe�cient matrices defined for facet a, b 2 {�, ✏, �}
↵�k (157) A facet weight parameter satisfying

P

�⇢�k ↵�k = 1
��k (144) Switch function defined at facet � of element ⌦k
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