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Abstract We develop high-order entropy-conservative semi-discrete schemes for hyperbolic conservation
laws applicable to non-conforming curvilinear grids arising from h-, p-, or hp-adaptivity. More precisely,
building on previous work with conforming grids by Crean et al. (Journal of Computational Physics,
vol. 356, pp. 410-438, Mar. 2018) and Chan et al. (SIAM Journal on Scientific Computing, vol. 41, pp.
A2938-A2966, Oct. 2019), we present two schemes: the first couples neighbouring elements in a skew-
symmetric method, the second in a pointwise fashion. The key ingredients are degree p diagonal-norm
summation-by-parts operators equipped with interface quadrature rules of degree 2p or higher, a skew-
symmetric geometric mapping procedure using suitable polynomial functions, and a numerical flux that
conserves mathematical entropy. Furthermore, entropy-stable schemes are obtained when augmenting the
original schemes with a stabilization term that dissipates mathematical entropy at element interfaces.
We provide both theoretical and numerical analysis for the compressible Euler equations demonstrating
the element-wise conservation, entropy conservation/dissipation, and accuracy properties of the schemes.
While both methods produce comparable results, our studies suggest that the scheme coupling elements
in a pointwise manner is more computationally e�cient.

Keywords Summation-by-Parts – Entropy stability – High order – Non-conforming grids – Curvilinear
grids

1 Introduction

In computational fluid dynamics, a posteriori error estimates can be used to achieve user-requested
error tolerances in an automated, reliable, and e�cient manner by adaptively refining the mesh [1,2,
3]. Discontinuous Galerkin (DG) methods are amenable to error-based hp-adaptivity, since they easily
handle hanging nodes (h-adaptivity) and support local variations in the degree of the domain’s polynomial
space without a�ecting neighbouring elements (p-adaptivity). The numerical quadrature rules used to
perform integration can be independent of these discretization methods and, hence, interface coupling
of neighbouring elements of di�erent degree and size is relatively easily achievable. In contrast, in the
summation-by-parts (SBP) and collocated finite-element communities, the cubature and quadrature
rules are intertwined with the discretization operators. As such, non-conforming interface cubature nodal
distributions arise when performing h-, p-, or hp-adaptivity, and thus schemes constructed for conforming
grids can not be blindly applied on non-conforming grids. Although the embedding of cubature rules in
these discretization methods causes this issue, it has been shown to be of great importance for both
linearly and nonlinearly stable schemes [4,5]. The SBP discrete derivative and integration operators are
constructed such that integration by parts is satisfied discretely. To the best of the authors’ knowledge,
a priori nonlinear stability proofs (without assuming exact integration) for high-order methods have so
far relied on this property – known as the SBP property [6,7,8,9,10,11].
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Fig. 1: Pointwise coupling of two non-conforming blocks using an intermediate interface.

Mattsson and Carpenter [12] first introduced interface interpolation operators to construct a finite-
di�erence SBP scheme that is both conservative and energy stable when applied on non-conforming
multi-block grids for first-order hyperbolic equations (see also the work of Kopriva [13]). This approach
was extended to the second-order wave equation by Wang et al. [14]. Kozdon and Wilcox [15] presented
a methodology in which the interface coupling is performed in a pointwise manner on an intermediate
interface, as illustrated in Figure 1. Their method is also applicable to curved grids with hanging nodes.
Lundquist and Nordström [16] noted that SBP schemes su�er from suboptimal convergence rates on non-
conforming grids; motivated by this issue, they were able to prove that the accuracy of the schemes is
limited by interface interpolation operators which are of degree p≠1 for degree p discretization operators.
In Ref. [17], Friedrich et al. proved that an interface quadrature rule of degree 2p is needed in order to
construct interpolation operators of degree p. Unfortunately, as classical SBP operators are implicitly
equipped with quadrature rules of degree 2p ≠ 1 [4], they do not yield degree-preserving interpolation
operators. To remedy this issue, the authors constructed finite-di�erence SBP operators by increasing
the boundary stencil size of classical SBP operators such that the norm matrices –which hold the weights
of the quadrature rules– are degree 2p. Their scheme accordingly converged at optimal asymptotic rates
on non-conforming grids when coupled with these operators.

The nodal DG method with collocated tensor-product Legendre-Gauss-Lobatto (LGL) solution and
cubature nodes has enjoyed much success in the DG and SBP communities since it satisfies the SBP
property. We refer the interested reader to Refs. [18,19,20,21,22,23,24,25] for details on energy- and
entropy-stable schemes on conforming grids using the LGL operators. These operators, unfortunately,
su�er from under-convergence on non-conforming grids since their mass (or norm) matrices are of degree
2p ≠ 1. Carpenter et al. [26] and Parsani et al. [27] constructed fully-staggered conforming and semi-
staggered non-conforming entropy-stable schemes in which the solution was evolved in time on the
Legendre-Gauss (LG) nodes whereas the flux computations were performed on the LGL nodes. The
semi-staggered technique ensured that the scheme’s convergence rate was optimal, since the interface
nodes were LG nodes equipped with a degree 2p + 1 > 2p quadrature rule. Friedrich et al. [28] developed
an entropy-stable scheme for hp-adaptivity on collocated1, non-conforming a�ne meshes for which the
geometric Jacobian is constant. Their results demonstrated suboptimal convergence rates when using
the LGL operators and optimal convergence rates when using the degree-preserving finite-di�erence
SBP operators of Ref. [17].

In Ref. [29], Del Rey Fernández et al. developed a framework to construct a first-derivative SBP
operator given a quadrature rule in one dimension. This unified many known discretization methods as
SBP operators and enabled the construction of novel tensor-product SBP operators using well-known
quadrature rules. More recently, this framework has been extended to include multidimensional SBP
operators on general elements [30,31] and then used to develop an entropy-stable scheme on curved
conforming meshes by Crean et al. [11]. This scheme couples neighbouring elements in a skew-symmetric
fashion such that it is compatible with operators that do not include boundary nodes, such as the
nodal tensor-product DG methods with collocated solution and cubature LG nodes, without the use of
staggered grids. In Ref. [32], building on previous work (e.g. Ref. [10]), Chan and coauthors constructed
an entropy-stable scheme with the LG operators which couples interior elements in a pointwise manner,
again, without the use of staggered grids.

The primary objective of this paper is to develop high-order, entropy-stable, and element-wise conser-
vative semi-discrete schemes for hyperbolic conservation laws applicable to non-conforming curvilinear

1 The term “collocated mesh” is used here as the opposite of “staggered mesh” and does not refer to a finite-element
method with collocated solution and cubature nodes.
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(unstructured) grids arising from h-, p-, or hp-adaptivity2. We first present an extension of Crean et al.’s
scheme [11] with the skew-symmetric inter-element coupling term. We also develop a second scheme
using the pointwise inter-element coupling procedure of Chan [10]. These schemes can also be viewed as
a generalization of the discretization method by Friedrich et al. [28] to curved grids and to multidimen-
sional SBP operators on general elements with or without boundary nodes. Furthermore, we numerically
compare the e�ciency and robustness of both schemes.

The paper is organized as follows. In Section 2, we introduce the notation, and in Section 3, we present
the ingredients needed to construct our schemes. After introducing the semi-discrete entropy-stable
schemes in Section 4, we demonstrate their properties both theoretically and numerically in Sections 5
and 6, respectively. Finally, in Section 7, we provide our final remarks.

2 Notation

The notation used in this paper closely follows that of the second author’s previous papers (e.g. Refs.
[30,31,11]).

For a given set of partial di�erential equations (PDEs) in the domain � µ Rd, where d = 1, 2,
or 3 is the spatial dimension, we tessellate � into n
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two neighbouring elements (often indicated by Ÿ and ‹). In this work, we exclusively deal with scenarios
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= ÿ and �
h,i
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h

through the imposition of periodic boundary conditions. To indicate a sum
over all the facets of element Ÿ, i.e. �(Ÿ)

h
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q
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· is used. Finally, each physical
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reference domain (e.g. �̂
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The notation #»· is reserved to denote directional vectors of length d; for instance, #»

› © [›
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, ..., ›
d

]T
and #»x © [x

1

, ..., x
d

]T are the vectors of reference and physical spatial coordinates, respectively. We
use script type uppercase letters to denote scalar functions, e.g. S( #»x ) œ R, and bold type for vector-
valued functions, e.g. U( #»x ) œ Rm. The restriction of an m-vector-valued function U( #»x ) on the nodal set
S
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Ÿ

© { #»x
j

}N
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of element Ÿ is denoted by the lowercase bold type letter u
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Ÿ , where the values
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Matrices are denoted by sans-serif uppercase letters, e.g. X œ Rn◊m. The symbols ¶ and ¢ are used to
represent the Hadamard and Kronecker products, respectively. Finally, P and Q œ P

p

(�) are reserved for
functions spanning the degree p polynomial space defined in the domain �; p and q for their restrictions
on a nodal set; 1

n

and 0
n

for column-vectors of length n consisting of all ones and zeros, respectively;
and I

n

for the n ◊ n identity matrix.

3 Theoretical Development

In this section, we present the key concepts needed to construct the two entropy-conservative schemes
of this paper.

3.1 Multidimensional summation-by-parts operators

The first key concept used to develop the schemes in Section 4 is multidimensional SBP operators on
general elements, which were first introduced in Ref. [30]. Their definition is restated here for complete-
ness.

2 While this paper is concerned with schemes applicable to non-conforming grids, a posteriori error estimates are not
used here to drive mesh adaptation.
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Definition 1 (Multidimensional summation-by-parts operators) The operator D̂
›
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degree p is said to be a summation-by-parts approximation of the first-derivative ˆ
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The first condition ensures that the derivative operator D̂
›

i

œ RN◊N accurately approximates first-
order derivative terms to a given degree. The matrix Ĥ œ RN◊N , known as the norm or mass matrix,
is symmetric positive-definite. In this paper, we only consider diagonal-norm SBP operators, for which
the Ĥ matrix is diagonal. The entries of the Ĥ matrix along with the nodal set S
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form a q Ø 2p ≠ 1
cubature rule. This can be written as
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conditions of Definition 1 can be combined to show that the SBP operators discretely mimic integration
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⁄

ˆ

�

V ˆU
ˆ›

i

d�
 ̧           ̊  ̇           ̋

¥

+
⁄

ˆ

�

ˆV
ˆ›

i

U d�
¸            ˚˙            ˝

¥

=
⁄

ˆ

ˆ

�

VUn
›

i

d�
 ̧              ̊  ̇              ̋

¥

v

TQ̂
›

i

u + v

TQ̂T

›

i

u = v

TÊ
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’i œ {1, ..., d}. We emphasize that this exact discrete relationship holds for v, u œ RN corresponding
to any functions V and U that are square integrable and whose weak first derivatives are also square
integrable (i.e. V, U œ H1(�̂)).

Since boundary and inter-element conditions are generally weakly imposed in a pointwise manner
[31], it is important to decompose the surface operators Ê

›

i

into an interpolation/extrapolation operator,
a facet mass matrix, and an outward-pointing normal component for each of the n

f

linear and non-
overlapping facets “̂ of the reference element. Following Ref. [31], this decomposition can be represented
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along its diagonal. To comply with the accuracy requirement of condition 3 of Definition 1, we impose
individual accuracy conditions on the extrapolation operator and the facet mass matrix. Specifically, we
require that4
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where s Ø 2r and, as previously mentioned, r Ø p.

3 For brevity, we will refer to the R
“

matrix as the extrapolation operator instead of the interpolation/extrapolation
operator for the remainder of this work.

4 (2b) is su�cient but not necessary to construct SBP operators. For instance, the LGL operators are equipped with a
quadrature rule of degree s = 2p ≠ 1 ”Ø 2p yet they still satisfy the SBP property. In this work, we exclusively deal with
SBP operators that obey (2b).
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(a) Conforming interface. (b) Non-conforming interface due to
p-adaptivity.

(c) Non-conforming interface due to
h-adaptivity.

Fig. 2: Visualization of coupling of conforming and non-conforming neighbouring elements. Non-
conforming elements require an intermediate interface.

3.1.1 Construction of SBP operators

To satisfy (2b), we choose (or construct) a facet quadrature rule of degree s Ø 2r, which defines both
B̂

“

and S
“̂

for all the n
f

facets of the reference element. Similarly, for the volume cubature rule, we
choose (or construct) a cubature rule of degree q Ø 2p ≠ 1, which defines both Ĥ and S

ˆ

�

. Thereafter,
we construct R

“

as follows: we define n
r

as the cardinality of the monomial basis of total degree r (i.e.
the number of linearly independent basis functions spanning the degree r polynomial space), we assume
that the volume nodal set S

ˆ

�

produces a degree r full-column-rank Vandermonde matrix5 V̂
�

œ RN◊n

r ,
and we let V̂

“

œ RN

“

◊n

r be the degree r
Ÿ

Vandermonde matrix evaluated at the nodal set S
“̂

. We then
construct R

“

as
R

“

© V̂
“

V̂†
�

,

where † denotes the Moore-Penrose pseudo-inverse, e.g. A† © (ATA)≠1AT for a non-square matrix A with
full column rank. Thus, by construction, this operator satisfies (2a). After constructing Ê

›

i

from (1), we
follow the procedure outlined in Theorem 2 of Ref. [31] to construct Q̂

›

i

and D̂
›

i

.
In the case of collocated volume and facet SBP nodes, the extrapolation operator simplifies to the

delta Kronecker operator, i.e. [R
“

]
jl

= ”
jl

, ’j œ {1, ..., N}, l œ {1, ..., N
“

}, and simply picks the facet
nodes that collocate with the volume nodes instead of performing an interpolation or extrapolation.
Furthermore, the surface operators Ê

›

i

are diagonal (accordingly, we refer to this subset of SBP operators
as diagonal-E operators). It has been shown that the inter-element coupling of entropy-stable schemes on
conforming grids with diagonal-E operators, such as the LGL operators, is less computationally expensive
than those with dense-E operators, such as the LG operators (see, for instance, Refs. [33,34,32]). However,
in Ref. [35], our numerical studies suggested that dense-E entropy-stable schemes are computationally
more e�cient than diagonal-E entropy-stable schemes on non-conforming triangular grids primarily due
to the higher accuracy properties provided by dense-E operators compared to diagonal-E operators.

3.2 High-order interface operators

The second key concept used to develop the schemes in Section 4 is high-order intermediate interface
quadrature rules and interpolation/extrapolation operators used to couple elements with non-conforming
interfaces arising from h-, p-, and hp-adaptivity.

3.2.1 Non-conforming elements resulting from p-adaptivity

On conforming grids, neighbouring elements share the same facet nodes, as shown in Figure 2(a) and,
hence, inter-element coupling is usually performed in a pointwise manner. When the degree of one of two
neighbouring elements is changed, the facet nodes no longer conform. In such a case, we introduce a shared
intermediate interface (or mortar element) to enable the pointwise coupling of the elements, as illustrated
in Figure 2(b). The conditions that must be satisfied by the quadrature rule on the intermediate interface
and the interface interpolation/extrapolation operators is provided in Definition 2.

5 In the case that this assumption does not hold, a di�erent cubature rule can be chosen or constructed.
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Definition 2 (High-order intermediate interface operators) Let S
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respectively.

The first condition ensures that the interface extrapolation operators are design-order accurate. Con-
dition 2 enforces that discrete inner products performed on the intermediate interface be equivalent
to discrete inner products performed on the element’s facet. For instance, for element Ÿ, this can be
mathematically represented as

(R
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)TB̂
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The second condition consequently ensures that the SBP property is automatically preserved on non-
conforming grids and is key for the conservation and stability properties of the schemes presented in this
work.

The interface extrapolation operator P
Ÿ“æI

is constructed as follows: we define n
r

Ÿ

as the cardinality
of the monomial basis of total degree r

Ÿ

, we assume that the facet nodal set S
Ÿ“̂

produces a degree
r

Ÿ

full-column-rank Vandermonde matrix V̂
Ÿ“
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Ÿ“

◊n
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Ÿ , and we let V̂
I
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r

Ÿ be the degree r
Ÿ

Vandermonde matrix evaluated at the nodal set S
ˆ

I
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Ÿ“æI

as

P
Ÿ“æI

© V̂
I

V̂†
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.

The interface extrapolation operator P
‹“æI

is constructed in a similar manner. Thus, by construction,
these extrapolation operators satisfy condition 1 of Definition 2. To fulfill condition 2, it su�ces that the
interface’s mass matrix B̂

I

be of degree s
I

Ø max(s
Ÿ

, s
‹

) where s
Ÿ

Ø 2r
Ÿ

and s
‹

Ø 2r
‹

are the degrees
of the facet mass matrices B̂

Ÿ“

and B̂
‹“

respectively. The proof is shown in Lemma 1 of Appendix A. In
this work, to minimize the floating point operations, we set the intermediate interface’s quadrature rule
as the more accurate facet quadrature rule of the two neighbouring elements. For instance, if s

Ÿ

> s
‹

,
then we have S

ˆ

I

= S
Ÿ“̂

and B̂
I

= B̂
Ÿ“

.

3.2.2 Non-conforming elements resulting from h- and hp-adaptivity

In the case of neighbouring elements of constant degree with hanging nodes, we subdivide the largest
element’s facet (parent facet) into subfacets (child facets) that conform in length with the smaller neigh-
bouring element’s facets, as shown in Figure 2(c). The parent facet’s quadrature rule is then a�nely
mapped onto the child facets (e.g. B̂

Ÿ“

Ω 1

n

c

B̂
Ÿ“

, where n
c

is the number of child facets for a given
parent facet). Since the lengths of neighbouring facets are now equal, but the nodal distributions of
the largest element’s parent and child facets are not, we develop high-order intermediate interfaces that
satisfy Definition 2. In the case of neighbouring elements of di�erent degrees with hanging nodes, the
same procedure is followed.

6 Similar to R
“

, we will refer to these operators as interface extrapolation operators for brevity.
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3.3 Curvilinear transformation

When a curved geometry is represented using a linear mesh, the solution error may be limited to
second order independent of the degree of the discretization method. The use of high-order curved
elements is thus essential in such cases to benefit from the accuracy properties of high-order discretization
methods [36,37]. So far, we have introduced SBP and intermediate interface operators on reference
elements. In this subsection, we outline the procedure to construct the SBP and interface operators on
a curved physical element given those of the corresponding reference element. Under Assumption 1, this
procedure, which follows closely that of Crean et al. [11], ensures that the SBP property is preserved,
that constant functions are exactly extrapolated and di�erentiated, and that the physical operators are
design-order accurate7. These properties are required for conservation, freestream preservation, entropy
conservation, and accuracy.

Assumption 1 First, we assume that we have valid SBP and intermediate interface operators, satisfying
Definitions 1 and 2, on the reference element �̂

Ÿ

. Second, we assume that we have a unique and invertible
(time-independent) degree l geometric mapping polynomial function M

Ÿ

: �̂
Ÿ

æ �
Ÿ
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›
k

œ �̂
Ÿ

to the corresponding point #»x
k

œ �
Ÿ

, i.e. #»x
k

= M
Ÿ

( #»
›

k

). Finally, we require that
l Æ p

min

+ 1 in two dimensions, and l Æ Â pmin
2

Ê + 1, in three dimensions, where Â·Ê is the floor operator
and p

min

© min
�

Ÿ

œT
h

{p
Ÿ

} is the lowest degree SBP operator in the tessellated domain.

Before constructing the physical operators, we define the geometric Jacobian of the transformation
in element Ÿ as

[J
Ÿ

( #»
›

k

)]
ij

© ˆx
i

ˆ›
j

( #»
›

k

) = ˆM
Ÿ,i

ˆ›
j

( #»
›

k

), ’i œ {1, ..., d}, j œ {1, ..., d},
#»
›

k

œ �̂
Ÿ

.

Furthermore, [J
Ÿ

( #»
›

k

)]≠1

ij

= ˆ›

i

ˆx

j

( #»
›

k

) and |J
Ÿ

( #»
›

k

)|= | ˆ

#»x
ˆ

#»
›

( #»
›

k

)| are the inverse Jacobian and the deter-
minant of the Jacobian, respectively.

The physical facet operators are constructed as follows:

[B
I

]
ll

= [B̂
I

]
ll

|J
Ÿ

( #»
›

ˆ

I,l

)|, ’ #»
›

ˆ

I,l

œ S
ˆ

I

,

[N(Ÿ)

I,x

j

]
ll

=
dÿ

i=1

n
“,›

i

ˆ›
i

ˆx
j

( #»
›

ˆ

I,l

), ’ #»
›

ˆ

I,l

œ S
ˆ

I

, j œ {1, ..., d}, and

E
x

j

=
ÿ

Ÿ“

RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

j

P
Ÿ“æI

R
Ÿ“

, ’j œ {1, ..., d}.

Note that the normal matrix N(Ÿ)

I,x

j

œ RN

I

◊N

I is diagonal and that the reference extrapolation operators
have been used without modification. The physical element’s mass matrix is constructed as

[H]
kk

= [Ĥ]
kk

|J
Ÿ

( #»
›

k

)|, ’ #»
›

k

œ S
ˆ

�

.

We then construct Q
x

j

, ’j œ {1, ..., d} as Q
x

j

= S
x

j

+ 1

2

E
x

j

, where S
x

j

is a skew-symmetric matrix
defined as

[S
x

j

]
kl

= 1
2

dÿ

i=1

A
|J

Ÿ

( #»
›

k

)| ˆ›
i

ˆx
j

( #»
›

k

)[Q̂
›

i

]
kl

≠ |J
Ÿ

( #»
›

l

)| ˆ›
i

ˆx
j

( #»
›

l

)[Q̂
›

i

]
lk

B
, ’ #»

›
k

,
#»
›

l

œ S
ˆ

�

, j œ {1, ..., d}.

Finally,
D

x

j

= H≠1Q
x

j

, ’j œ {1, ..., d}. (3)
It is important to satisfy the metric identities for freestream preservation [38,39]. For fixed meshes,

the metric identities are:
dÿ

i=1

ˆ

ˆ›
i

3
|J | ˆ›

i

ˆx
j

4
= 0, ’j œ {1, ..., d}. (4)

Due to the definitions of Q
x

j

and D
x

j

, it can be shown that the discrete version of (4) is [11,40]

D
x

j

1 = 0, ’j œ {1, ..., d}, (5)
7 We refer the interested reader to Ref. [11] for the proofs.
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which, unlike its continuous counterpart, is not generally satisfied on curvilinear grids. The underlying
reason is that the physical operators are not explicitly constructed in such a way to satisfy an analogous
polynomial exactness condition to condition 1 of Definition 1. Consequently, the SBP derivative operators
do not exactly di�erentiate polynomials in P

p

(�) on curvilinear grids and, therefore, (5) – which simply
states that the physical derivative operators can exactly di�erentiate constant functions – might not
hold. However, under Assumption 1, (5) is automatically satisfied: by carefully limiting the degree of
the geometric transformation function in two and three dimensional spaces, we ensure that the metric
terms |J | ˆ›

i

ˆx

j

are at most degree p
min

polynomial functions with respect to #»
› and, thus, can be exactly

extrapolated and di�erentiated by reference SBP operators of degree p
min

or higher. In other words, in
such a case, the discrete metric identities follow immediately, since they are equivalent to the continuous
ones. If a higher-order mapping function is required than Â pmin

2

Ê + 1 in three-dimensions to represent
the geometry of interest, the metric terms can be defined such that the discrete metric identities are
enforced, for instance, by using the curl formulation of Ref. [40] (which is based on the work of Refs. [41]
and [42]) or by solving local quadratic optimization problems as performed in Ref. [11].

3.4 Euler equations and the entropy inequality

While the theory presented in this paper is applicable to any hyperbolic system of conservation laws
endowed with an entropy pair, in this work, we focus on the Euler equations which govern compressible
inviscid flows. The d-dimensional Euler equations in (conservative di�erential form) are

ˆU
ˆt

+
dÿ

i=1

ˆF
x

i

ˆx
i

= 0 in � ◊ I (6)

with

U =

S

U
fl

fl #»u
e

T

V , F
x

i

=

S

WU
flu

i

#»
f

(mom)

x

i

flu
i

h

T

XV , #»u =

S

WU
u

1

...
u

d

T

XV , and #»
f

(mom)

x

i

=

S

WU
flu

1

u
i

+ p”
1i

...
flu

d

u
i

+ p”
di

T

XV ,

where I © (0, T ) µ R is a time interval, fl is the density, u
i

is the velocity in the x
i

-direction, e is the
total energy per unit volume, p is the pressure, and h © e+p

fl

is the total enthalpy per unit mass of the
fluid. The vector U( #»x , t) œ H œ Rm holds the conservative variables which belong to the convex set
of physically admissible states denoted by H8. The vector F

x

i

( #»x , t, U) œ Rm holds the inviscid fluxes
in the x

i

-direction, and #»u (U) œ Rd and #»
f

(mom)

x

i

(U) œ Rd are respectively the velocity and x
i

-direction
momentum flux vectors, where m = d+2 is the number of equations in the system. For calorically perfect
gases, the pressure is given by

p = (“ ≠ 1)(e ≠ 1
2fl #»u T #»u ),

where “ is the heat capacity ratio, which is equal to 1.4 for air under standard conditions.
The second law of thermodynamics is a secondary equation that can be derived from the Euler equa-

tions. An equivalent mathematical statement, known as the entropy inequality, in the general (integral)
form

⁄

�

ˆS
ˆt

d� +
dÿ

i=1

⁄

ˆ�

G
x

i

n
x

i

d� Æ 0 (7)

can also be cast for the Euler equations and other conservation laws endowed with an entropy-entropy-
flux pair (S, G

x

i

). The entropy pair satisfies the following conditions:

ˆ2S
ˆU2

=
3

ˆ2S
ˆU2

4
T

, z

T

ˆ2S
ˆU2

z > 0, ’z ”= 0, (8a)

ˆG
x

i

ˆU = WT

ˆF
x

i

ˆU , ’i œ {1, ..., d}, (8b)

8 For the Euler equations, H is the set of conservative variables with positive density and pressure.
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where W(U) © ˆS
ˆU œ Rm is known as the entropy variables. For the Euler and Navier-Stokes equations,

the entropy S © ≠fls/(“ ≠ 1) and entropy flux G
x

i

© u
i

S, where s © ln(p/fl“) is the thermodynamic
entropy per unit mass and U œ H, satisfy (8) [43]. For such a pair, the entropy variables are

W =
Ë

“≠s

“≠1

≠ fl

2p

#»u T #»u , fl

p

#»u T, ≠ fl

p

È
T

.

The entropy inequality and entropy variables satisfying the entropy pair conditions (8) have various
interesting properties if pressure and density are positive. For instance, there is a one-to-one mapping
between U and W due to the strict convexity of S(U); when the Euler equations are written in terms
of the entropy variables, they form a well-posed symmetric hyperbolic system of equations for Cauchy
problems9 [46,47]; and Dafermos [48] showed that a bound on the entropy S provides a bound on the
solution U for hyperbolic conservation laws. To appeal to the stability statement of Dafermos [48], in this
work, we are interested in spatial discretization methods that can discretely mimic the entropy inequality.

We derive the flux terms of the entropy inequality (7) from those of the governing equations (6) to
highlight the steps that must be followed at the semi-discrete level. We left-multiply the flux terms of
the Euler equations by WT, integrate over the domain, and simplify as follows:

⁄

�

WT

ˆF
x

i

ˆx
i

d� =
⁄

�

WT

ˆF
x

i

ˆU
ˆU
ˆx

i

d� =
⁄

�

ˆG
x

i

ˆU · ˆU
ˆx

i

d� =
⁄

�

ˆG
x

i

ˆx
i

d� =
⁄

ˆ�

G
x

i

n
x

i

d�,

’i œ {1, ..., d}, where we used the chain rule for the first and penultimate equalities, the contraction
property (8b) for the second equality, and the divergence theorem for the last step. While the divergence
theorem can be discretely mimicked using SBP operators, the chain rule does not necessarily hold at the
discrete level. Fortunately, we can use numerical fluxes that conserve entropy in the sense of Tadmor [49]
to recover

s
�

ˆG
x

i

ˆx

i

d� from
s

�

WT

ˆF
x

i

ˆx

i

d� without relying on the chain rule.

3.5 Entropy-conservative flux functions

As mentioned above, numerical flux functions that conserve entropy, named entropy-conservative
fluxes, are essential for entropy-stable methods. We also require these fluxes to be symmetric in their
arguments, consistent, and continuously di�erentiable. The last two requirements are needed for high-
order accuracy [11]. Definition 3 formally summarizes these requirements.

Definition 3 (Entropy-conservative flux function) A two-point numerical flux function Fú
x

i

(·, ·) :
H◊H æ Rm is said to be an entropy-conservative, symmetric, consistent, and continuously di�erentiable
flux function in the x

i

-direction if it satisfies the following conditions:

1.
3

W(U
1

) ≠ W(U
2

)
4

T

Fú
x

i

(U
1

, U
2

) = Â
x

i

(U
1

) ≠ Â
x

i

(U
2

),

2. Fú
x

i

(U
1

, U
2

) = Fú
x

i

(U
2

, U
1

),

3. Fú
x

i

(U , U) = F
x

i

(U), and

4. Fú
x

i

(·, ·) œ C1(H, H)

where Â
x

i

© WTF
x

i

≠ G
x

i

œ R is known as the potential flux in the x
i

-direction, and U
1

and U
2

are
two di�erent states.

The first condition of the above definition is known as Tadmor’s condition and was first derived by
Tadmor in Ref. [49]10. In this paper, we denote any flux function that satisfies Definition 3 as Fú,EC

x

i

(·, ·).
It is possible to use numerical flux functions to approximate the derivative of fluxes. At the continuous

level, for any symmetric, consistent, and di�erentiable flux function, we can show that [9,10,11]

ˆF
x

i

ˆx
i

(U) = 2
ˆFú

x

i

ˆx
i

(C, U)
----
C=U

, (9)

9 Well posedness of the Euler equations is a complex subject: see, for example, Refs. [44,45].
10 For the entropy pair of the Euler equations used in this paper, the potential flux is simply the momentum in the

x

i

-direction, i.e. Â

x

i

= flu

i

.
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where we assume U is a function of x
i

, i.e. U = U(x
i

), and C is not. In words, the derivative of the
actual flux is equal to twice the derivative of the numerical flux where we take only the second argument
as a function of x

i

. While in the finite-di�erence community, it is common to approximate the left-hand
side of (9) as

ˆF
x

i

ˆx
i

([u
Ÿ

]
j

) ¥
N

Ÿÿ

k=1

[D
x

i

]
jk

F
x

i

([u
Ÿ

]
k

), ’j œ {1, ..., N
Ÿ

},

for entropy-conservative methods, we must use entropy-conservative flux functions and approximate its
right-hand side as

2
ˆFú,EC

x

i

ˆx
i

(c, [u
Ÿ

]
j

)
----
c=[u

Ÿ

]

j

¥ 2
N

Ÿÿ

k=1

[D
x

i

]
jk

Fú,EC

x

i

([u
Ÿ

]
j

, [u
Ÿ

]
k

), ’j œ {1, ..., N
Ÿ

}. (10)

Linear combinations of two-point entropy-conservative fluxes, such as (10), were first used by LeFloch
et al. [50] (and subsequently by other researchers such as Fisher and Carpenter [7]) to develop high-order
entropy-conservative schemes.

To present the schemes in Section 4 in (compact) matrix form, we note that

Ë;
Ã ¶ F

x

i

(u
Ÿ

, u

‹

)
<

1
‹

È

j

=
N

‹ÿ

k=1

[A]
jk

Fú,EC

x

i

([u
Ÿ

]
j

, [u
‹

]
k

), ’j œ {1, ..., N
Ÿ

},

where Ã © A ¢ I
m

, A œ RN

Ÿ

◊N

‹ is a generic matrix and F
x

i

(·, ·) : Rm·N
Ÿ ◊ Rm·N

‹ æ Rm·N
Ÿ

◊m·N
‹ is

defined as [11]

F
x

i

(u
Ÿ

, u

‹

) ©

S

WWWWWU

diag
5
Fú,EC

x

i

([u
Ÿ

]
1

, [u
‹

]
1

)
6

· · · diag
5
Fú,EC

x

i

([u
Ÿ

]
1

, [u
‹

]
N

‹

)
6

... . . . ...

diag
5
Fú,EC

x

i

([u
Ÿ

]
N

Ÿ

, [u
‹

]
1

)
6

· · · diag
5
Fú,EC

x

i

([u
Ÿ

]
N

Ÿ

, [u
‹

]
N

‹

)
6

T

XXXXXV
.

The entropy-conservative fluxes are diagonally placed in this matrix and Ã is used in order to avoid cou-

pling fluxes associated to di�erent equations. Furthermore, the properties
3

F
x

i

(u
Ÿ

, u

‹

)
4

T

= F
x

i

(u
‹

, u

Ÿ

)

and
3

F
x

i

(u
Ÿ

, u

Ÿ

)
4

T

= F
x

i

(u
Ÿ

, u

Ÿ

), which are a direct consequence of the structure of the matrices and
the symmetry of entropy-conservative fluxes, are used extensively in the proofs of this paper.

3.6 Compact SBP matrices

Here we define some matrices to allow for a clear and concise presentation of the schemes and proofs
in this paper. Important properties of these matrices are also shown.

We define E(Ÿ‹)

x

i

œ RN

Ÿ

◊N

‹ , E(ŸŸ)

x

i

œ RN

Ÿ

◊N

Ÿ , and E(ŸI)

x

i

œ RN

Ÿ

◊N

I as

E(Ÿ‹)

x

i

© RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

i

P
‹“æI

R
‹“

,

E(ŸŸ)

x

i

© RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

i

P
Ÿ“æI

R
Ÿ“

,

E(ŸI)

x

i

© RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

i

,

’i œ {1, ..., d}. We can easily demonstrate that E(Ÿ‹)

x

i

= ≠
3

E(‹Ÿ)

x

i

4
T

(since N(Ÿ)

I,x

i

= ≠N(‹)

I,x

i

), and E
x

i

=
q

Ÿ“

E(ŸŸ)

x

i

. Furthermore, since the extrapolation operators exactly extrapolate constant functions, the
equalities P

Ÿ“æI

R
Ÿ“

1
Ÿ

= P
‹“æI

R
‹“

1
‹

= 1
I

hold and we can show that the properties E(Ÿ‹)

x

i

1
‹

= E(ŸŸ)

x

i

1
Ÿ

and 1T

Ÿ

E(ŸI)

x

i

= 1T

I

B
I

N(Ÿ)

I,x

i

hold as well ’i œ {1, ..., d}.
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4 Non-conforming entropy-stable schemes

In this section, we introduce two entropy-conservative semi-discrete schemes applicable to non-
conforming curvilinear grids with periodic boundary conditions. The first, is an extension of Crean
et al.’s work [11] to non-conforming grids. The scheme is compatible with any diagonal-norm SBP op-
erator equipped with facet quadrature rules of degree 2p or higher; however, for dense-E operators, it
fully couples the volume nodes of neighbouring elements. Accordingly, we term this method the “dense-
coupling entropy-conservative scheme”. The second, named the “pointwise-coupling entropy-conservative
scheme”, uses the penalty term of Chan [10], which couples neighbouring elements in a pointwise manner
via the shared interface nodes. We then introduce an entropy dissipative interface stabilization term
which can augment both schemes to produce entropy-stable schemes. While both semi-discrete methods
are entropy-conservative (or entropy-stable when augmented with the interface stabilization term), they
rely on the assumption that certain quantities, such as density and pressure for the Euler equations,
remain positive. Furthermore, we prove that the diagonal-E entropy-conservative scheme of Ref. [35]
(which is an extension of the tensor-product scheme of Friedrich et al. [28] to general elements) is a
subset of the dense-coupling entropy-conservative scheme on a�ne non-conforming meshes. Finally, we
conclude this section by describing how to implement the algorithms in a step-by-step manner.

4.1 Dense-coupling entropy-conservative scheme

The strong form of the dense-coupling entropy-conservative scheme seeks, for an arbitrary element
Ÿ, the solution u

Ÿ

œ Rm·N
Ÿ such that

du

Ÿ

dt
+

dÿ

i=1

3
2D̃

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
4

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

H̃≠1

I
Ẽ(Ÿ‹)

x

i

¶ F
x

i

(u
Ÿ

, u

‹

)
J

1
‹

+
dÿ

i=1

H̃≠1

I
Ẽ

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
J

1
Ÿ

,

(11)

where E(Ÿ‹)

x

i

© RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

i

P
‹“æI

R
‹“

as defined in Section 3.6. The second term is an approximation

of ˆF
x

i

ˆx

i

at the volume nodes (see Section 3.5), while the right-hand side is a penalty method that
weakly imposes inter-element conditions. To populate F

x

i

(u
Ÿ

, u

‹

) we require the evaluation of entropy-
conservative fluxes between all volume nodes in S

�

Ÿ

and S
�

‹

.

Remark 1 On a conforming grid, the interface extrapolation operators P
Ÿ“æI

and P
‹“æI

in E(Ÿ‹)

x

i

©
RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

i

P
‹“æI

R
‹“

and in E(ŸŸ)

x

i

© RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

i

P
Ÿ“æI

R
Ÿ“

simplify to the identity matrices
and the scheme in Crean et al. [11] is recovered.

The (algebraically equivalent) weak form of (11) is obtained by multiplying by a test function v

Ÿ

œ
Rm·N

Ÿ and integrating by parts (i.e. using Q
x

i

= E
x

i

≠ QT

x

i

):

v

T

Ÿ

H̃du

Ÿ

dt
≠

dÿ

i=1

v

T

Ÿ

3
2Q̃T

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
4

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

v

T

Ÿ

I
Ẽ(Ÿ‹)

x

i

¶ F
x

i

(u
Ÿ

, u

‹

)
J

1
‹

≠
dÿ

i=1

v

T

Ÿ

I
Ẽ

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
J

1
Ÿ

, ’v

Ÿ

œ Rm·N
Ÿ .

(12)

Finally, using the skew-symmetric matrix S
x

i

= ≠QT

x

i

+ 1

2

E
x

i

and removing v

Ÿ

, a third equivalent, but
more compact, form is obtained:

H̃du

Ÿ

dt
+

dÿ

i=1

3
2S̃

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
4

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

I
Ẽ(Ÿ‹)

x

i

¶ F
x

i

(u
Ÿ

, u

‹

)
J

1
‹

. (13)
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4.2 Pointwise-coupling entropy-conservative scheme

To obtain the pointwise-coupling entropy-conservative scheme, we replace the inter-element coupling
term of the dense-coupling entropy-conservative scheme by that of Chan [10]11. Doing so, we enable a
pointwise coupling between neighbouring elements. The strong form of the pointwise-coupling entropy-
conservative scheme seeks, for an arbitrary element Ÿ, the solution u

Ÿ

œ Rm·N
Ÿ such that

du

Ÿ

dt
+

dÿ

i=1

A
2D̃

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
B

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

H̃≠1

I
Ẽ(ŸI)

x

i

¶ F
x

i

(u
Ÿ

, u

ŸI

)
J

1
I

+
ÿ

Ÿ“

dÿ

i=1

H̃≠1R̃T

Ÿ“

P̃T

Ÿ“æI

I
(Ẽ(ŸI)

x

i

)T ¶ F
x

i

(u
ŸI

, u

Ÿ

)
J

1
Ÿ

≠
ÿ

Ÿ“

dÿ

i=1

H̃≠1Ẽ(ŸI)

x

i

f

ú,EC

x

i

(u
ŸI

, u

‹I

)

+
dÿ

i=1

H̃≠1

I
Ẽ

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
J

1
Ÿ

,

(14)

where E(ŸI)

x

i

© RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

i

as defined in Section 3.6, and the entries of f

ú,EC

x

i

(u
ŸI

, u

‹I

) œ Rm·N
I ,

u

ŸI

œ Rm·N
I , and u

‹I

œ Rm·N
I are defined as

[fú,EC

x

i

(u
ŸI

, u

‹I

)]
l

= Fú,EC

x

i

([u
ŸI

]
l

, [u
‹I

]
l

), ’li œ {1, ..., N
I

},

[u
ŸI

]
l

© U
3

[w
ŸI

]
l

4
, [u

‹I

]
l

© U
3

[w
‹I

]
l

4
, ’li œ {1, ..., N

I

},

[w
ŸI

]
l

© [P̃
Ÿ“æI

R̃
Ÿ“

w

Ÿ

]
l

, and [w
‹I

]
l

© [P̃
‹“æI

R̃
‹“

w

‹

]
l

, ’li œ {1, ..., N
I

}.

The entries of w

Ÿ

œ Rm·N
Ÿ and w

‹

œ Rm·N
‹ are the entropy variables evaluated at the volume nodes of

element Ÿ and ‹, respectively. In essence, u

ŸI

œ Rm·N
I and u

‹I

œ Rm·N
I are the conservative variables

corresponding to the extrapolated entropy variables w

ŸI

œ Rm·N
I and w

‹I

œ Rm·N
I , respectively12.

These are important to ensure that Tadmor’s condition (condition 1 of Definition 3) can be invoked
when showing entropy conservation. The first two terms on the right-hand side of (14), which couple the
volume nodes of element Ÿ with the intermediate interface nodes, are nearly the negative of the transpose
of each other. As it will be shown in Section 5, this structure is critical for the conservation and entropy
conservation properties of the scheme and enables the scheme to couple neighbouring elements in a
pointwise manner via the third term on the right-hand side of (14). Again, multiplying by a test function
v

Ÿ

œ Rm·N
Ÿ and integrating by parts, we obtain the weak form:

v

T

Ÿ

H̃du

Ÿ

dt
≠

dÿ

i=1

v

T

Ÿ

A
2Q̃T

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
B

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

v

T

Ÿ

I
Ẽ(ŸI)

x

i

¶ F
x

i

(u
Ÿ

, u

ŸI

)
J

1
I

+
ÿ

Ÿ“

dÿ

i=1

v

T

Ÿ

R̃T

Ÿ“

P̃T

Ÿ“æI

I
(Ẽ(ŸI)

x

i

)T ¶ F
x

i

(u
ŸI

, u

Ÿ

)
J

1
Ÿ

≠
ÿ

Ÿ“

dÿ

i=1

v

T

Ÿ

Ẽ(ŸI)

x

i

f

ú,EC

x

i

(u
ŸI

, u

‹I

)

≠
dÿ

i=1

v

T

Ÿ

I
Ẽ

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
J

1
Ÿ

, ’v

Ÿ

œ Rm·N
Ÿ .

(15)

11 In Ref. [10], the author uses “decoupled” SBP operators which can be viewed as a superset of the (collocated) SBP
operators used in this paper.
12

u

ŸI

and u

‹I

are generally not equal to the extrapolated conservative variables.
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Finally, using S
x

i

= ≠QT

x

i

+ 1

2

E
x

i

and removing v

Ÿ

, the compact form is obtained:

H̃du

Ÿ

dt
+

dÿ

i=1

A
2S̃

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
B

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

I
Ẽ(ŸI)

x

i

¶ F
x

i

(u
Ÿ

, u

ŸI

)
J

1
I

+
ÿ

Ÿ“

dÿ

i=1

R̃T

Ÿ“

P̃T

Ÿ“æI

I
(Ẽ(ŸI)

x

i

)T ¶ F
x

i

(u
ŸI

, u

Ÿ

)
J

1
Ÿ

≠
ÿ

Ÿ“

dÿ

i=1

Ẽ(ŸI)

x

i

f

ú,EC

x

i

(u
ŸI

, u

‹I

).

(16)

Remark 2 When using diagonal-E SBP operators, both (13) and (16) reduce to Carpenter et al.’s [20]
or Chen and Shu’s [9] schemes on conforming quadrilateral and simplex grids, respectively. This can be
shown by using the Kronecker delta property of the extrapolation operators R

“

and by noting that the
interface extrapolation operators P

“æI

simplify to the identity matrix.

4.3 Entropy dissipative term

We follow the approach of Ref. [11] and add the following interface entropy dissipative term to the
right-hand side of the entropy-conservative schemes (13) and (16) such that the resulting schemes are
entropy stable:

≠
ÿ

Ÿ“

R̃T

Ÿ“

P̃T

Ÿ“æI

B̃
I

�
I

(u
ŸI

, u

‹I

; n

(Ÿ)

I

)(w
ŸI

≠ w

‹I

), (17)

where the extrapolated solutions on the intermediate interface u

ŸI

œ Rm·N
I and u

‹I

œ Rm·N
I are

defined as u

ŸI

© P̃
Ÿ“æI

R̃
Ÿ“

u

Ÿ

and u

‹I

© P̃
‹“æI

R̃
‹“

u

‹

respectively, n

(Ÿ)

I

holds the outward-pointing
normal unit vector at each of the intermediate interface nodes in S

I

(with respect to element Ÿ), and
�

I

(u
ŸI

, u

‹I

; n

(Ÿ)

I

) œ Rm·N
I

◊m·N
I is a block-diagonal symmetric positive semidefinite matrix satisfying

the property �
I

(u
ŸI

, u

‹I

; n

(Ÿ)

I

) = �
I

(u
‹I

, u

ŸI

; n

(‹)

I

).

4.4 Diagonal-E entropy-conservative scheme

In this subsection, we show that the non-conforming method of Refs. [28,35] on a�ne meshes is a
subset of the dense-coupling entropy-conservative scheme. Using our notation, the diagonal-E entropy-
conservative scheme used in Refs. [28,35] is written as

H̃du

Ÿ

dt
≠

dÿ

i=1

3
2Q̃T

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
4

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

R̃T

Ÿ“

Ñ
Ÿ“,x

i

B̃
Ÿ“

3
P̃

‹“æŸ“

¶ F
x

i

(u
Ÿ“

, u

‹“

)
4

1
‹“

≠
ÿ

Ÿ“

dÿ

i=1

3
(R̃T

Ÿ“

Ñ
Ÿ“,x

i

B̃
Ÿ“

R̃
Ÿ“

) ¶ F
x

i

(u
Ÿ

, u

Ÿ

)
4

1
Ÿ

,

(18)

for an arbitrary element Ÿ, where u

Ÿ“

œ Rm·N
Ÿ“ and u

‹“

œ Rm·N
‹“ are the facet extrapolated solutions,

N
Ÿ“,x

i

© n
“,x

i

I
N

Ÿ“

, and P
‹“æŸ“

œ RN

Ÿ“

◊N

‹“ is an operator which projects functions from the facet nodal
set S

‹“

onto the facet nodal set S
Ÿ“

. These are defined as u

Ÿ“

© R̃
Ÿ“

u

Ÿ

, u

‹“

© R̃
‹“

u

‹

, and

P
‹“æŸ“

© P
IæŸ“

P
‹“æI

, (19)

where P
IæŸ“

œ RN

Ÿ“

◊N

I satisfies [33,26,27,28,35]

B
Ÿ“

P
IæŸ“

= PT

Ÿ“æI

B
I

. (20)

Property (20) is crucial for the entropy conservation and element-wise conservation properties of the
diagonal-E entropy-conservative scheme (18). Note that, unlike the entropy-conservative schemes (12)
and (15) for which inter-element coupling is performed using the intermediate interface nodal set S

I

,
(18) uses the matrices P

‹“æŸ“

and B
Ÿ“

to couple the element Ÿ with its neighbours on its facet nodal
set S

Ÿ“

. Similarly, each of its neighbours, e.g. ‹, perform the inter-element coupling on their facet nodal
set, e.g. S

‹“

.
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Theorem 1 When using SBP operators equipped with facet quadrature rules of degree s
Ÿ

Ø 2r
Ÿ

(Ø
2p

Ÿ

), ’�
Ÿ

œ T
h

, the entropy-conservative scheme (18) is a subset of the dense-coupling entropy-conservative
scheme (13) on a�ne meshes.

Proof The proof is shown in Appendix B. ⇤

4.5 Algorithm implementation

Here we summarize the steps that can be followed in order to implement the dense-coupling and
pointwise-coupling semi-discrete schemes. For a given element Ÿ:

1. Construct the degree p
Ÿ

reference SBP operators, namely Ĥ, R
Ÿ“

, Ê
›

i

, and Q̂
›

i

in all spatial directions,
as explained in Section 3.1.1.

2. For each neighbouring element ‹ with shared facet “:
(a) Construct the extrapolation operator R

‹“

as explained in Section 3.1.1.
(b) Construct the reference interface operators B̂

I

, P
Ÿ“æI

, and P
‹“æI

following Section 3.2’s expla-
nation.

3. Using the (defined) geometric polynomial mapping function, compute the physical SBP operators,
namely B

I

, N(Ÿ)

I,x

i

, E
x

i

, H, and S
x

i

, as explained in Section 3.3.
4. Store the volumetric discretization term in the spatial residual term [r

Ÿ

]
j

œ Rm, ’j œ {1, ..., N
Ÿ

}:

[r
Ÿ

]
j

= 2
[H]

jj

dÿ

i=1

N

Ÿÿ

k=1

[S
x

i

]
jk

Fú,EC

x

i

([u
Ÿ

]
j

, [u
Ÿ

]
k

).

5. For the dense-coupling scheme (13), add the inter-element coupling term to the residual term:

[r
Ÿ

]
j

= [r
Ÿ

]
j

+ 1
[H]

jj

ÿ

Ÿ“

dÿ

i=1

N

‹ÿ

l=1

[E(Ÿ‹)

x

i

]
jl

Fú,EC

x

i

([u
Ÿ

]
j

, [u
‹

]
l

), ’j œ {1, ..., N
Ÿ

},

where E(Ÿ‹)

x

i

© RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

i

P
‹“æI

R
‹“

.
For the pointwise-coupling scheme (16), add the inter-element coupling term to the residual term:

[r
Ÿ

]
j

= [r
Ÿ

]
j

+ 1
[H]

jj

ÿ

Ÿ“

dÿ

i=1

N

Iÿ

l=1

[E(ŸI)

x

i

]
jl

Fú,EC

x

i

([u
Ÿ

]
j

, [u
ŸI

]
l

)

≠ 1
[H]

jj

ÿ

Ÿ“

dÿ

i=1

N

Iÿ

l=1

N

Ÿÿ

k=1

[P
Ÿ“æI

R
Ÿ“

]
lj

[E(ŸI)

x

i

]
kl

Fú,EC

x

i

([u
ŸI

]
l

, [u
Ÿ

]
k

)

+ 1
[H]

jj

ÿ

Ÿ“

dÿ

i=1

N

Iÿ

l=1

[E(ŸI)

x

i

]
jl

Fú,EC

x

i

([u
ŸI

]
l

, [u
‹I

]
l

), ’j œ {1, ..., N
Ÿ

},

where E(ŸI)

x

i

© RT

Ÿ“

PT

Ÿ“æI

B
I

N(Ÿ)

I,x

i

and the vectors u

ŸI

and u

‹I

are defined in Section 5.2.
6. If dissipation is required, augment the spatial residual term by the interface term (17):

[r
Ÿ

]
j

= [r
Ÿ

]
j

+
ÿ

Ÿ“

N

Iÿ

l=1

[P
Ÿ“æI

R
Ÿ“

]
lj

[B
I

]
ll

�
I

([u
ŸI

]
l

, [u
‹I

]
l

; [n(Ÿ)

I

]
l

)([w
ŸI

]
l

≠ [w
‹I

]
l

), ’j œ {1, ..., N
Ÿ

},

where the matrix �
I

(·, ·; ·) is positive semidefinite, the vectors u

ŸI

and u

‹I

are defined in Section
5.3, and the vectors w

ŸI

and w

‹I

in Section 5.2.

Once the spatial residual term has been computed for all elements in the tessellation, a time-marching
method can be used to solve the resulting ordinary di�erential equations:

du

Ÿ

dt
+ r

Ÿ

= 0
Ÿ

, ’�
Ÿ

œ T
h

.
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5 Theoretical analysis

In this section, we prove that both the dense-coupling and pointwise-coupling semi-discrete schemes
locally and, consequently, globally conserve the conservative variables and entropy. Furthermore, we prove
that the methods are design-order accurate. Finally, we demonstrate that the interface stabilization term
dissipates entropy while maintaining the conservation and accuracy properties of the original schemes.
We note that some of the proofs are the same as the ones shown in Crean et al. [11], while others follow
their work and the work of Chan [10].

5.1 Dense-coupling entropy-conservative scheme

5.1.1 Conservation

For the schemes in this paper to accurately simulate flows with discontinuities, they must be consistent
and conservative such that, if convergent, they converge to a weak solution as per the Lax-Wendro�
theorem [51]. To show conservation of (13), we integrate over element Ÿ by contracting the equation with
the vector 1

Ÿ

and deal with only one equation at a time. For instance, for the continuity equation, we
have

1T

Ÿ

Hdfl

Ÿ

dt
+

dÿ

i=1

1T

Ÿ

3
2S

x

i

¶ F(fl)

x

i

(u
Ÿ

, u

Ÿ

)
4

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

1T

Ÿ

I
E(Ÿ‹)

x

i

¶ F(fl)

x

i

(u
Ÿ

, u

‹

)
J

1
‹

, (21)

where fl

Ÿ

œ RN

Ÿ holds the density at the volume nodes of element Ÿ and F(fl)

x

i

(·, ·) holds the rows
and columns of F

x

i

(·, ·) associated to the continuity equation. Theorem 2 concerns the element-wise
conservation property of the dense-coupling entropy-conservative scheme, while Theorem 3 concerns its
global conservation property.

Theorem 2 Scheme (13) is element-wise conservative. For instance, the discrete integral of the conti-
nuity equation over element Ÿ is

1T

Ÿ

Hdfl

Ÿ

dt
= ≠

ÿ

Ÿ“

dÿ

i=1

1T

Ÿ

I
E(Ÿ‹)

x

i

¶ F(fl)

x

i

(u
Ÿ

, u

‹

)
J

1
‹

,

which states that the time rate of change of mass inside element Ÿ is equal to the net mass flow rate
through its boundaries.

Proof The proof follows directly from Lemma 2 in Appendix C, and is similar to that given by Crean
et al. [11] for their Theorem 3. ⇤

Theorem 3 Scheme (13) is globally conservative. For instance, with periodic boundary conditions, the
discrete integral of the continuity equation over the domain simplifies to

ÿ

�

Ÿ

œT
h

1T

Ÿ

H
Ÿ

dfl

Ÿ

dt
= 0.

Proof The proof is given in Appendix C. ⇤

5.1.2 Entropy conservation

To show that scheme (13) conserves entropy, we left-multiply the PDEs by the entropy variables and
integrate over element Ÿ, which is equivalent to contracting (13) with the entropy variables w

Ÿ

to obtain

w

T

Ÿ

H̃du

Ÿ

dt
+

dÿ

i=1

w

T

Ÿ

3
2S̃

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
4

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

w

T

Ÿ

I
Ẽ(Ÿ‹)

x

i

¶ F
x

i

(u
Ÿ

, u

‹

)
J

1
‹

. (22)

Theorems 4 and 5 concern the element-wise and global entropy conservation properties of the scheme,
respectively.
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Theorem 4 Scheme (13) is element-wise entropy conservative in the sense that (22) simplifies to

1T

Ÿ

Hds

Ÿ

dt
= ≠

ÿ

Ÿ“

dÿ

i=1

w

T

Ÿ

I
Ẽ(Ÿ‹)

x

i

¶ F
x

i

(u
Ÿ

, u

‹

)
J

1
‹

+
dÿ

i=1

1T

Ÿ

E
x

i

Â

Ÿ,x

i

,

where s

Ÿ

œ RN

Ÿ and Â

Ÿ,x

i

œ RN

Ÿ are the entropy and the potential flux in the x
i

-direction at the volume
nodes of element Ÿ, respectively. Only the surface terms contribute to the net change of entropy, similar
to the continuous case.

Proof The proof is shown in Crean et al. [11]. It also follows directly from Lemmas 3 and 4 in Appendix D.
⇤

Theorem 5 Scheme (13) globally conserves entropy. For instance, with periodic boundary conditions,
ÿ

�

Ÿ

œT
h

1T

Ÿ

H
Ÿ

ds

Ÿ

dt
= 0.

Proof The proof directly follows from E
x

i

=
q

Ÿ“

E(ŸŸ)

x

i

, Theorem 4 and Lemma 5 in Appendix D. ⇤

5.1.3 Design-order accuracy

To show that the dense-coupling entropy-conservative scheme is design-order accurate, we deal with
its strong form equation (11). We invoke Theorem 1 of Ref. [11] to prove that the spatial derivative term
in (11) is design-order accurate. Theorem 6 concern the accuracy of the penalty term in (11).

Theorem 6 The penalty term on the right-hand side of (11) is at least design-order accurate. More
precisely, for U œ Crmin+1(� ◊ I,Rm), the following relation is satisfied:

C;
Ẽ(Ÿ‹)

x

i

¶ F
x

i

(u
Ÿ

, u

‹

)
<

1
‹

≠
;

Ẽ(ŸŸ)

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
<

1
Ÿ

D

j

= O(hrmin
max

), ’ i œ {1, ..., d}, j œ {1, ..., N
Ÿ

},

where r
min

© min(r
Ÿ

, r
‹

), h
max

© max(h
Ÿ

, h
‹

), h
Ÿ

© max
x

j

,x

k

œS

Ÿ

||x
j

≠ x

k

||
2

, and
h

‹

© max
x

j

,x

k

œS

‹

||x
j

≠ x

k

||
2

.

Proof The proof is shown in Appendix E. ⇤

5.2 Pointwise-coupling entropy-conservative scheme

5.2.1 Conservation

To show that (16) is conservative, similar to the dense-coupling entropy-conservative scheme, we
contract it with the vector 1

Ÿ

and deal with each equation separately. For the continuity equation, we
have

1T

Ÿ

Hdfl

Ÿ

dt
+

dÿ

i=1

1T

Ÿ

3
2S

x

i

¶ F(fl)

x

i

(u
Ÿ

, u

Ÿ

)
4

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

1T

Ÿ

I
E(ŸI)

x

i

¶ F(fl)

x

i

(u
Ÿ

, u

ŸI

)
J

1
I

+
ÿ

Ÿ“

dÿ

i=1

1T

Ÿ

RT

Ÿ“

PT

Ÿ“æI

I
(E(ŸI)

x

i

)T ¶ F(fl)

x

i

(u
ŸI

, u

Ÿ

)
J

1
Ÿ

≠
ÿ

Ÿ“

dÿ

i=1

1T

Ÿ

E(ŸI)

x

i

f

ú,EC,fl

x

i

(u
ŸI

, u

‹I

),

(23)

where f

ú,EC,fl(·, ·) holds the elements in f

ú,EC(·, ·) associated to the continuity equation. Theorem 7
addresses the element-wise conservation property of the pointwise-coupling entropy-conservative method,
while theorem 8 addresses its global conservation property.
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Theorem 7 Scheme (16) is element-wise conservative. For instance, the discrete integral of the conti-
nuity equation over element Ÿ is

1T

Ÿ

Hdfl

Ÿ

dt
= ≠

ÿ

Ÿ“

dÿ

i=1

1T

Ÿ

E(ŸI)

x

i

f

ú,EC,fl

x

i

(u
ŸI

, u

‹I

).

Proof The proof is shown in Appendix F. ⇤

Theorem 8 Scheme (16) is globally conservative. For instance, with periodic boundary conditions, the
discrete integral of the continuity equation over the domain simplifies to

ÿ

�

Ÿ

œT
h

1T

Ÿ

H
Ÿ

dfl

Ÿ

dt
= 0.

Proof The proof is shown in Appendix F. ⇤

5.2.2 Entropy conservation

To show that (16) is entropy conservative, we contract it with the entropy variables w

Ÿ

, which is
equivalent to multiplying the PDEs by the entropy variables and integrating over element Ÿ:

w

T

Ÿ

H̃du

Ÿ

dt
+

dÿ

i=1

w

T

Ÿ

A
2S̃

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
B

1
Ÿ

= ≠
ÿ

Ÿ“

dÿ

i=1

w

T

Ÿ

I
Ẽ(ŸI)

x

i

¶ F
x

i

(u
Ÿ

, u

ŸI

)
J

1
I

+
ÿ

Ÿ“

dÿ

i=1

w

T

Ÿ

R̃T

Ÿ“

P̃T

Ÿ“æI

I
(Ẽ(ŸI)

x

i

)T ¶ F
x

i

(u
ŸI

, u

Ÿ

)
J

1
Ÿ

≠
ÿ

Ÿ“

dÿ

i=1

w

T

Ÿ
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(24)

Theorems 9 and 10 concern the element-wise and global conservation properties of the scheme, respec-
tively.

Theorem 9 Scheme (16) is element-wise entropy conservative in the sense that (24) simplifies to
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where [Â
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i

]
l

© Â
x
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([u
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]
l

), ’l œ {1, ..., N
I

} is the potential flux vector in the x
i

-direction corresponding
to the extrapolated entropy variables w

ŸI

.

Proof The proof follows directly from Lemmas 3 and 4 in Appendix D, and Lemma 6 in Appendix G. ⇤

Theorem 10 Scheme (16) globally conserves entropy. For instance, with periodic boundary conditions,
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ds
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dt
= 0,

Proof The proof is shown in Appendix G. ⇤



18 Siavosh Shadpey, David W. Zingg

5.2.3 Design-order accuracy

For the accuracy proof of the pointwise-coupling entropy-conservative scheme, we deal with its strong
form (14). We invoke Theorem 1 of Ref. [11] for the accuracy of the volumetric terms. Theorem 11
concerns the accuracy of the penalty term.

Theorem 11 The penalty term on the right-hand side of (14) is at least design-order accurate. More
precisely, for U œ Crmin+1(� ◊ I,Rm), W œ Crmin+1(H,Rm), the following relation holds:

C
≠

;
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where, as previously defined, r
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© min(r
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, r
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) and h
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, h
‹

).

Proof The proof is shown in Appendix H. ⇤

5.3 Entropy dissipative term

As previously mentioned, the dissipative interface term (17) can be added to the right-hand side of
both entropy-conservative schemes (13) and (16) to obtain entropy-stable schemes. Here we show that
the interface term (17) is conservative, entropy dissipative, and design-order accurate in Theorems 12, 13,
and 14, respectively.

5.3.1 Conservation

Theorem 12 The dissipative term (17) maintains the conservation property of the original schemes.
For instance, for the continuity equation, at a given interface shared by two neighbouring elements Ÿ and
‹,
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) corresponding to the continuity equation.

Proof The proof is shown in Appendix I. ⇤

5.3.2 Entropy dissipation

Theorem 13 The term (17) dissipates entropy at each interface, i.e.
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Proof The proof is shown in Appendix J and follows from the fact that the interface term penalizes the
jump in entropy. ⇤
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(a) Grid with triangles. (b) Grid with quadrilaterals.

Fig. 3: 2 examples of coarse non-conforming curved grids with hanging nodes and di�erent degree oper-
ators.

5.3.3 Design-order accuracy

Theorem 14 The dissipative term (17) maintains the design-order accuracy of the original schemes.
More precisely, for W œ Crmin+1(H,Rm), the following relation holds:
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where, as previously defined, r
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, r
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) and h
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, h
‹

).

Proof The proof is shown in Appendix K. ⇤

6 Results

In this section, we numerically validate the conservation, entropy conservation/dissipation, and design-
order accuracy properties of both schemes. Furthermore, we compare the schemes in terms of robustness
and e�ciency.

6.1 Solver settings

The traditional explicit fourth-order Runge-Kutta time-marching method [52] is used to evolve the
solution in time with a su�ciently small CFL condition to ensure that the temporal discretization errors
are negligible compared to the spatial discretization errors. Ismail and Roe’s [53] entropy-conservative flux
is used with the extended Taylor series expansion proposed in Ref. [11] to compute logarithms of values
near zero. This numerical flux satisfies Definition 3, as it was shown to be continuously di�erentiable in
Ref. [11] for conservative variables with positive density and pressure. A matrix-type interface dissipation
term is used by defining the symmetric positive semi-definite matrix of (17) as RTDR, where R has as its
columns the right eigenvectors of the Jacobian of the Ismail and Roe flux in the normal direction, and
D is the diagonal matrix of the absolute values of the corresponding scaled eigenvalues (both of which
are defined in Ref. [53]).

To generate a curvilinear grid with non-conforming interfaces, we first randomly assign di�erent degree
p operators (e.g. from p = 1 to p = 4) to the elements of a conforming a�ne mesh and then randomly
isotropically subdivide some of the elements. Finally, we curve the grid using a geometric mapping
function. An example of the outcome of this procedure is shown in Figure 3 for grids constructed with
triangles and quadrilaterals. We use the � SBP operators of Ref. [31] on triangular elements and the
tensor-product LG operators on quadrilateral and hexahedral elements.
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6.2 Test cases

6.2.1 Two-dimensional isentropic vortex

A two-dimensional unsteady isentropic vortex problem with smooth solution is used for the con-
vergence and e�ciency studies, and to show that the schemes are conservative and entropy conserva-
tive/dissipative. The variant of the problem solved in this paper has the following analytical solution
[54]:
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. Here, we set the vortex strength to – = 3, initially center

the vortex at (x(c)

1

, x
(c)

2

) = (5, 0) on a (0, 20)◊ (≠5, 5) domain, impose periodic boundary conditions, and
numerically solve the test case until t = T = 5. Note that although the perturbation in the flow is not
machine precision zero away from the vortex, the imposition of periodic boundary conditions introduces
negligible error since the domain is relatively large (we refer the interested reader to Section IV.B. of
Ref. [55] for further information).

The grids generated for this problem are curved using the perturbation function [32]
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where #»
x̂ represents the nodal coordinates of the a�ne meshes (i.e. before performing the curvilinear

mapping). Using the aforementioned perturbation function, we perturb the elements at the nodal coor-
dinates coinciding with the nodes of degree l = 2 multidimensional Lagrange finite elements. We then
perform a degree l = 2 polynomial interpolation of these nodal sets to the nodes of the SBP operators.
Finally, we follow the approach of Section 3.3 to construct the SBP operators on the physical elements.
This procedure ensures that Assumption 1 holds.

6.2.2 Three-dimensional isentropic vortex

To verify the accuracy of the schemes for three-dimensional test cases, a three-dimensional unsteady
isentropic vortex problem with smooth solution, obtained from an extrusion of its two-dimensional coun-
terpart, is solved. In this work, the following analytical solution is used [56]:
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T. We impose periodic boundary
conditions on a � © (≠10, 10)3 domain and numerically solve the test case until t = T = 2.5. The grid
used for this problem is curved using the perturbation function

x
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+ 0.05 sin
3

fix̂
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2

4
, ’i œ {1, 2, 3},

at the nodes of degree l = 2 Lagrange elements, which satisfies Assumption 1 when all SBP operators
are at least degree p = 3.
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(a) Dense-coupling entropy-stable scheme.
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(b) Pointwise-coupling entropy-stable scheme.

Fig. 4: Two-dimensional isentropic vortex test case. Conservation of mass, momentum, and energy on a
coarse non-conforming curved grid.

6.2.3 Three-dimensional inviscid Taylor-Green vortex

The viscous Taylor-Green vortex is often studied in the turbulence community, while its inviscid
counterpart is used to assess the robustness of discretization methods. The initial three-dimensional
vortices stretch and, over time, generate small eddies which do not decay in the inviscid case due to
the lack of viscosity. The flow is thus rendered under-resolved and can pose stability issues for some
numerical methods. The initial condition is given by [57]
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on a (≠fi, fi)3 periodic domain. Here, the Mach number is set to M
0

= 0.1 and the solution is solved
until t = T = 20. Furthermore, the grid is curved according to [40]
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at the nodes of degree l = 2 Lagrange elements, which satisfies Assumption 1 when all SBP operators
are at least degree p = 3.

6.3 Conservation

As previously mentioned, it is important to ensure that the schemes developed in this work are con-
servative in the Lax-Wendro� sense [51] such that they can be used to simulate flows with discontinuities.
In Figure 4, we plot the evolution of the conservation metrics defined as
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for the two-dimensional isentropic vortex test case, which are the discrete analogue to individually inte-
grating the di�erence in the conservative variables over the domain. The results, obtained for a coarse
curved grid with 4 ◊ 4 ◊ 2 triangular elements (before the random hp-refinement procedure) with degree
p = 1 to p = 4 operators, show that mass, momentum, and energy are conserved (up to machine precision
zero) for both entropy-stable schemes on non-conforming curved grids. A coarse grid is used to emphasize
that the conservation property of these schemes holds for arbitrarily coarse grids and not only in the
limit of mesh refinement. Similar results were obtained for the entropy-conservative schemes.
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(a) Dense-coupling schemes.
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(b) Pointwise-coupling schemes.

Fig. 5: Two-dimensional isentropic vortex test case. Conservation and dissipation of entropy on a coarse
non-conforming curved grid.

Table 1: Two-dimensional isentropic vortex test case. Entropy generated by the dense- and pointwise-
coupling entropy-stable schemes on coarse and fine curved grids.

Grid Degree of operators Entropy at time T

Dense-coupling Pointwise-coupling
Coarse (4 ◊ 4 ◊ 2 elements) 1, 2, 3, 4 -0.430 -0.428
Fine (10 ◊ 10 ◊ 2 elements) 3, 4 -0.035 -0.030

6.4 Entropy conservation and dissipation

Figure 5 shows the evolution of the discrete approximation to the integral of the entropy computed
as

ÿ
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h
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H
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s
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(t), ’t œ I,

over time for the two-dimensional isentropic vortex problem on a curved grid with 4 ◊ 4 ◊ 2 triangular
elements (before the random hp-refinement procedure) and degree p = 1 to p = 4 operators. The results
show that both entropy-conservative methods (13) and (16) conserve entropy and, when augmented with
the interface stabilization term (17), dissipate entropy on non-conforming curved meshes. Both entropy-
stable schemes dissipate entropy in a similar manner since they utilize the same dissipative term. Once
again, a coarse grid is used to show that the entropy conservation and dissipation properties of these
schemes hold for arbitrarily coarse grids. Furthermore, the significant dissipative behaviour is primarily
because a coarse grid is used in which approximately half the elements are associated with relatively
low-degree (p = 1 and p = 2) operators. On a finer curved grid with 10 ◊ 10 ◊ 2 elements (before the
random hp-refinement procedure) and only p = 3 and p = 4 operators, we observed a decay in entropy
of 92% and 93% for the dense- and pointwise-coupling entropy-stable schemes, respectively (see Table
1).

While we observed in Figure 5 that the entropy-conservative methods conserve entropy, the entropy
generated at the fully-discrete level is not machine precision zero since the fourth-order Runge-Kutta
time-marching method is not entropy-conservative. Figure 6 shows the entropy generation on a non-
conforming curved grid with 4 ◊ 4 ◊ 2 triangular elements (before the random hp-refinement procedure)
for both entropy-conservative schemes as a function of the CFL. The results demonstrate that the entropy
generated by the time-marching method converges to zero at a rate of O(�t4.9), where �t is the time
step. Similar convergence rates have also been observed for conforming schemes [11,10,40].
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Fig. 6: Two-dimensional isentropic vortex test case. Convergence of entropy generation as a function of
the CFL on a curved non-conforming grid (the convergence rates of the three smallest time steps are

provided).

6.5 Accuracy and e�ciency

6.5.1 Two-dimensional test cases

We test the accuracy of the schemes on non-conforming curved grids arising from h-, p-, and hp-
refinement. We first generate a sequence of a�ne meshes with n element edges in each direction where
n œ {25, 50, 75, 100, 125}. For hp-refinement, as before, we randomly assign di�erent degree p operators
to the elements (from p = 1 to p = 4), then randomly isotropically subdivide some of the elements, and
curve the grids. For p-refinement, we randomly assign di�erent degree p operators to the elements (from
p = 1 to p = 4) and curve the grids. Finally, for h-refinement, we assign a constant degree p operator
(p = 1, p = 2, p = 3, or p = 4), then randomly isotropically subdivide some of the elements, and curve
the grids. This set of grids is then used to perform convergence studies of the entropy-conservative and
entropy-stable schemes. Figures 7 and 8 show the L2 error in the conservative variables, i.e.
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versus the mesh spacing (1/n) for the two-dimensional isentropic vortex problem. To compute the L2

solution error, we interpolate the solutions from the SBP nodes onto the nodes of a cubature rule of
degree 3p

Ÿ

+ 1 for each element Ÿ in the tessellation, and then integrate the square of the solution error
over the domain. The convergence rates calculated from the least squares regression line of the 3 finest
grids are also shown in the figures.

The results show that the entropy-stable schemes generally achieve p
min

+ 1 asymptotic convergence
rates, with the lowest convergence rate being p

min

+ 0.69. The entropy-conservative schemes converge at
rates between p

min

and p
min

+ 1 with the exception of the dense-coupling entropy-conservative scheme
with p = 4 LG and � operators on the h-refinement grid, which converge at a rate slightly higher than
p

min

+ 1. Convergence rates between p and p + 1 have also been observed for entropy-conservative and
entropy-stable schemes on conforming grids (e.g. [20,21,11]) and on staggered grids (e.g. [27]). Moreover,
the dense-coupling and pointwise-coupling schemes achieve comparable errors on a given grid. Finally,
the LG operators attain slightly lower errors than the � operators for a given mesh spacing.

The purpose of the e�ciency study performed in this paper is simply to compare the dense-coupling
scheme to the pointwise-coupling scheme (and not to compare tensor-product operators with multidi-
mensional operators). Figure 9 shows the L2 solution error as a function of the normalized average spatial
residual computation time for one time step. In this plot, “EC” represents entropy-conservative, “SS”
entropy-stable, “DC” dense-coupling scheme, and “PC” pointwise-coupling scheme. The results show that
the pointwise-coupling scheme is computationally more e�cient than the dense-coupling scheme: while
both methods achieve similar errors, the pointwise-coupling scheme requires fewer entropy-conservative



24 Siavosh Shadpey, David W. Zingg

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

1.62

3.07

3.13

5.26

L
2
 s

o
lu

ti
o
n
 e

rr
o
r

mesh spacing

LG hp
LG p

LG h (p=1)
LG h (p=2)
LG h (p=3)
LG h (p=4)

Ω hp
Ω p

Ω h (p=1)
Ω h (p=2)
Ω h (p=3)
Ω h (p=4)

(a) Dense-coupling entropy-conservative scheme.
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Fig. 7: Two-dimensional isentropic vortex test case. Convergence studies of the entropy-conservative
schemes on curved non-conforming grids (the convergence rates of the three finest grids are provided).
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(a) Dense-coupling entropy-stable scheme.
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Fig. 8: Two-dimensional isentropic vortex test case. Convergence studies of the entropy-stable schemes
on curved non-conforming grids (the convergence rates of the three finest grids are provided).

flux functions to couple neighbouring elements since it does not fully couple their volume nodes. The e�-
ciency benefit provided by the pointwise-coupling scheme is even more pronounced for three-dimensional
problems since the number of volume nodes per element for a given degree p scales as O(pd), where d is
the number of dimensions. Finally, augmenting the entropy-conservative schemes with the entropy dissi-
pative term considerably improves the accuracy of the schemes with a negligible impact on computational
time.

6.5.2 Three-dimensional test cases

We also verify that the accuracy properties of the schemes generalize to three-dimensional problems
by randomly hp-refining a sequence of hexahedral curved grids with n element edges in each direction,
where n œ {15, 25, 35, 45}, and degree p = 3 and p = 4 tensor-product LG operators for the three-
dimensional isentropic vortex problem. Similar to the two-dimensional scenario, the convergence rate
is between p

min

and p
min

+ 1 for the entropy-conservative schemes and approximately p
min

+ 1 for the
entropy-stable schemes as shown in Figure 10.
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Fig. 9: Two-dimensional isentropic vortex test case. E�ciency study of the entropy-conservative and
entropy-stable schemes on curved non-conforming grids.
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Fig. 10: Three-dimensional isentropic vortex test case. Convergence studies of the entropy-conservative
and entropy-stable schemes on curved non-conforming grids (the convergence rates of the three finest

grids are provided).

6.6 Robustness

Gassner et al. [21] numerically showed the robustness benefit of kinetic-energy-preserving, entropy-
conservative, and entropy-stable methods over standard DG spectral-element methods. Figure 11(a)
shows that both entropy-conservative methods (without interface dissipation) are stable for the inviscid
Taylor-Green vortex test case on a coarse curved grid with 4 ◊ 4 ◊ 4 hexahedral elements (before the
random hp-refinement procedure) and degree p = 3 and p = 4 tensor-product LG operators, similar
to the entropy-conservative schemes used in Ref. [21] on conforming grids. Since the schemes utilize the
Ismail and Roe numerical flux, which is not kinetic-energy-preserving in the sense of Jameson [58], kinetic
energy is not conserved as shown in Figure 11(b).

7 Conclusions

We presented two entropy-stable semi-discrete schemes for hyperbolic conservation laws applicable to
curved non-conforming grids caused by h-, p-, or hp-adaptivity: one is characterized by dense coupling, the
other by pointwise coupling. Both methods are compatible with any degree p diagonal-norm SBP operator
equipped with degree 2p or higher interface quadrature rules, such as the collocated DG operators
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Fig. 11: Inviscid Taylor-Green vortex test case. Evolution of entropy and kinetic energy over time using
both entropy-conservative schemes on a coarse curved non-conforming grid.

constructed on the tensor-product LG nodes and the multidimensional � SBP operators of Ref. [31].
The conservation, entropy conservation/dissipation, and accuracy properties of the schemes were first
theoretically proven and then numerically validated. Similar to their conforming counterparts, the non-
conforming schemes are stable for the inviscid Taylor-Green vortex problem on a coarse curved grid
without any interface dissipation. The “pointwise-coupling” scheme was shown to be computationally
more e�cient than the “dense-coupling” scheme, since the former couples neighbouring elements only at
interface nodes, whereas the latter performs the coupling at the volume nodes. Furthermore, we showed
that the entropy-conservative method of Friedrich et al. [28] applicable on non-conforming a�ne meshes
and compatible with tensor-product SBP operators with boundary nodes is a subset of the dense-coupling
entropy-conservative scheme (when the SBP operators are equipped with degree 2p or higher quadrature
rules). While in this paper we assumed periodic boundary conditions, other entropy-stable boundary
conditions developed primarily for tensor-product SBP operators with boundary nodes (e.g. the ones
in Refs. [59,8]) are compatible with the pointwise-coupling scheme even when using SBP operators
without boundary nodes. The underlying reason is that this scheme, similar to entropy-stable schemes
compatible only with SBP operators with boundary nodes, can weakly impose boundary conditions in
a pointwise manner. A critical assumption made in this work is the positivity of certain quantities, such
as density and pressure for the Euler equations. Since this assumption can be violated in practice and
thus undermine the robustness of the algorithms, a recommendation for future research is to carefully
integrate positivity-preserving techniques, such as Zhang and Shu’s [60], in these non-conforming methods
such that the resulting schemes are both entropy stable and positivity preserving. Moreover, a natural
extension of the current work is to expand the theory to include the compressible Navier-Stokes equations.
The main challenge is to construct viscous inter-element coupling terms between non-conforming curved
elements that are compatible with SBP operators without boundary nodes. Finally, we believe the results
of this paper provide a sound foundation for the development of tensor-product and multidimensional
entropy-stable hp-adaptive SBP methods driven by output-based a posteriori error estimates.
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Appendix A Condition 2 of Definition 2

Here we show that condition 2 of Definition 2, i.e.
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holds under mild assumptions. For simplicity we show the proof for an arbitrary element and thus drop
the subscripts Ÿ and ‹.

Assumption 2 We assume that the reference element’s facet quadrature rule and the intermediate refer-
ence interface’s facet quadrature rule exactly integrate polynomials of at least degree s Ø 2r. Furthermore,
we assume that the volume nodal set S

ˆ

�

and facet nodal set S
“̂

produce degree r full-column-rank Van-
dermonde matrices V̂

�

œ RN◊n

r and V̂
“
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r , respectively.

Lemma 1 If Assumption 2 holds, then
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r be the degree r Vandermonde matrix evaluated at the nodal set S
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which is the desired result. ⇤

Appendix B Proof of Theorem 1

To show that the diagonal-E entropy-conservative scheme (18) and the dense-coupling entropy-
conservative scheme (13) are equivalent on a�ne meshes for SBP operators equipped with facet quadra-
ture rules of degree s Ø 2r Ø 2p, we individually deal with the transient, volumetric, and inter-element
coupling terms.

The transient terms in (18) and (13) are the same. Furthermore, noting that on a�ne meshes N
Ÿ“,x
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=
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i

I
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and invoking condition 2 of Definition 2, we can regain the volumetric terms of (13) from the
volumetric terms of (18) as follows:
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Ẽ(ŸŸ)

x

i

4
¶ F

x

i

(u
Ÿ

, u

Ÿ

)
J

1
Ÿ

=
I3

≠ 2Q̃T

x

i

+ Ẽ
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where we used the property E
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in the penultimate step and S
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in the last
step. The last term to consider is the facet coupling terms of the two schemes. We start with the cou-
pling term of the dense-coupling entropy-stable scheme and utilize the property [R
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]
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= ”
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, ’ ji œ
{1, ..., N}, li œ {1, ..., N
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} of diagonal-E SBP operators. For ji œ {1, ..., N
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}, we have
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where we used the properties of the Kronecker delta and substituted ”
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and we can write the above expression in
matrix form as
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, in the second and last
steps, respectively. Finally, we can pull out the diagonal mass matrix and write the normal as a matrix
to obtain
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which is exactly the coupling term in (18).

Appendix C Dense-coupling entropy-conservative scheme – conservation proof
(Theorems 2 and 3)

C.1 Element-wise conservation

Lemma 2 The spatial derivative term in (21) simplifies to
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) is a symmetric matrix, their Hadamard
product, i.e. S
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), is a skew-symmetric matrix as well. Therefore, the term above is zero.
⇤

C.2 Global conservation

The proof of Theorem 3 follows from the element-wise conservation theorem (Theorem 2), the sym-
metry of the flux functions, and the skew-symmetric property
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. Using Theorem 2, we
add the element-wise conservation equation for element Ÿ to the equivalent equation for its neighbouring



Entropy-Stable SBP Discretizations on hp-adaptive Curvilinear Grids 31

element ‹ (and drop the terms not associated with the shared facet) to obtain
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where we took the transpose of the second (scalar) term in the second step and used the properties1
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in the penultimate step. Repeating these steps
for all facets in �
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= �
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, we arrive at the desired result.

Appendix D Dense-coupling entropy-conservative scheme – entropy conservation proof
(Theorems 4 and 5)

D.1 Element-wise entropy conservation

Lemma 3 The transient term in (22) simplifies to
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Proof Writing the term in index notation and noting that the H matrix is diagonal, we obtain
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Lemma 4 The spatial derivative term in (22) simplifies to
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Proof The proof relies on the SBP property, the symmetry and the entropy conservation property of the
entropy-conservative flux function, and the exactness of the derivative operator for constant functions.
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w

T

Ÿ

3
2S̃

x

i

¶ F
x

i

(u
Ÿ

, u

Ÿ

)
4

1
Ÿ

=
N

Ÿÿ

j=1

N

Ÿÿ

k=1

2[w
Ÿ

]T
j

[S
x

i

]
jk

Fú,EC

x

i

([u
Ÿ

]
j

, [u
Ÿ

]
k

)

=
N

Ÿÿ

j=1

N

Ÿÿ

k=1

[w
Ÿ

]T
j

1
[Q

x

i

]
jk

≠ [Q
x

i

]
kj

2
Fú,EC

x

i

([u
Ÿ

]
j

, [u
Ÿ

]
k

)

=
N

Ÿÿ

j=1

N

Ÿÿ

k=1

[w
Ÿ

]T
j

[Q
x

i

]
jk

Fú,EC

x

i

([u
Ÿ

]
j

, [u
Ÿ

]
k

)

≠
N

Ÿÿ

j=1

N

Ÿÿ

k=1

[w
Ÿ

]T
k

[Q
x

i

]
jk

Fú,EC

x

i

([u
Ÿ

]
k

, [u
Ÿ

]
j

),



32 Siavosh Shadpey, David W. Zingg

where we flipped the indices of the second (scalar) term in the last line. Invoking the symmetry of the
entropy-conservative flux and Tadmor’s condition (from Definition 3), we find
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Since SBP operators exactly di�erentiate constant functions, i.e. Q
x

i

1 = 0, we can drop the first term
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= 0 to obtain
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where we used the SBP property for the last equality. ⇤

D.2 Global entropy conservation

Lemma 5 Adding the interface coupling term of two neighbouring elements Ÿ and ‹ in each direction,
we obtain
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Proof The proof relies on the property
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, the symmetry and the entropy conservation
property of the entropy-conservative flux function, and the exactness of the extrapolation operators for
constant functions. Taking the transpose of the second (scalar) term on the left-hand side, we obtain
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Switching to index notation and invoking Tadmor’s condition, we obtain
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Switching back to matrix notation and using the property
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Adding the element-wise entropy conservation equation of Theorem 4 for 2 neighbouring elements
and dropping the terms not associated with the shared facet, we obtain
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Ẽ(‹Ÿ)

x

i

¶ F
x

i

(u
‹

, u

Ÿ

)
J

1
Ÿ

+ 1T

Ÿ

E(ŸŸ)

x

i

Â

Ÿ,x

i

+ 1T

‹

E(‹‹)

x

i

Â

‹,x

i

.

Invoking Lemma 5, we see that the right-hand side is zero. Repeating this step for all facets in
�
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= �
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, we obtain the desired result of Theorem 5.

Appendix E Dense-coupling entropy-conservative scheme – design-order accuracy
(Theorem 6)
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where we used the accuracy properties of R
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to arrive at the penultimate step.
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Appendix F Pointwise-coupling entropy-conservative scheme – conservation proof
(Theorems 7 and 8)

F.1 Element-wise conservation

The proof of Theorem 7 is as follows. Taking the transpose of the second term on the right-hand side
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), this term cancels out
with the first term. Furthermore, invoking Lemma 2 for the volumetric terms, we arrive at the desired
result.

F.2 Global conservation

The proof of Theorem 8 follows from the element-wise conservation theorem (Theorem 7) and the
symmetry of the entropy-conservative numerical flux. Using Theorem 7, we add the element-wise conser-
vation equation for two neighbouring elements Ÿ and ‹, drop the terms not associated with the shared
facet, and use the properties 1T
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where, to arrive at the last step, we used the symmetry of the numerical flux and N(‹)
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.
Repeating these steps for all facets in �

h

= �
h,i

, we arrive at the desired result.

Appendix G Pointwise-coupling entropy-conservative scheme – entropy conservation
proof (Theorems 9 and 10)

G.1 Element-wise entropy conservation

Lemma 6 The first and second terms on the right-hand side of (24) simplify to

ÿ

Ÿ“

≠w

T

Ÿ

I
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where, as previously defined, [Â
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), ’li œ {1, ..., N
I

} is the potential flux vector in the
x

i

-direction corresponding to the extrapolated entropy variables w

ŸI

.

Proof The proof relies on the symmetry and the entropy conservation property of the entropy-conservative
flux function and the exactness of the extrapolation operators for constant functions. Using w

ŸI

©
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where we invoked the symmetry of the numerical flux in the second step, and Tadmor’s condition in the
penultimate step. Using 1T
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which is the desired result. ⇤

G.2 Global entropy conservation

The proof of Theorem 10 follows from the element-wise entropy conservation theorem (Theorem 9),
and the symmetry and the entropy conservation property of the entropy-conservative numerical flux.
Using Theorem 9, we add the element-wise entropy conservation equation for two neighbouring elements
Ÿ and ‹ and, dropping the terms not associated with the shared facet, we obtain
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and the symmetry of the numerical flux. Writing the last term in index
notation and invoking Tadmor’s condition, we see that
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Plugging this back into the first equation gives
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, we arrive at the desired result:
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Appendix H Pointwise-coupling entropy-conservative scheme – design-order accuracy
(Theorem 11)

To prove Theorem 11, it is su�cient to show that the penalty term of (14) vanishes for Fú,EC
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where we used the accuracy properties of the extrapolation operators R
Ÿ“

and P
Ÿ“æI

in the last step.
Furthermore, since both W(U(·)) and U(·) are in the degree r

min

polynomial space, the conservative
variables evaluated at the extrapolated entropy variables are equal to the extrapolated conservative
variables, i.e. u

ŸI

= u

I

. Therefore, the two terms in the last line above cancel each other.
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Continuing, the second and third term in the right-hand side of (14) simplify, for i œ {1, ..., d}, toC
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≠Ẽ(ŸI)

x

i

f

ú,EC

x

i

(u
ŸI

, u

‹I

)
D

j

=
C

R̃T

Ÿ“

P̃T

Ÿ“æI

;
(R̃T

Ÿ“

P̃T

Ÿ“æI
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where we used the accuracy properties of R
Ÿ“

and P
Ÿ“æI

in the last step. Again, noting that u
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=
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= u
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(since both W(U(·)) and U(·) are in the degree r
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polynomial space), the last line sums to
zero.

Appendix I Entropy dissipative term – conservation proof (Theorem 12)

The proof of Theorem 12 is as follows. Invoking the exactness of the extrapolation operators for
constant functions (i.e. P
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which is the desired result.

Appendix J Entropy dissipative term – entropy dissipation proof (Theorem 13)

The proof of Theorem 13 is as follows. Using the definitions w
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is symmetric positive semi-definite.
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Appendix K Entropy dissipative term – design-order accuracy proof (Theorem 14)

To prove Theorem 14, it is su�cient to show that the interface penalty term (17) vanishes for
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where we used the accuracy properties of R
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.
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