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HIGH-ACCURACY FINITE-DIFFERENCE SCHEMES FOR LINEAR WAVE
PROPAGATION*

DAVID W. ZINGGt, HARVARD LOMAXt, AND HENRY JURGENSt

Abstract. Two high-accuracy finite-difference schemes forsimulating long-range linear wave propagation are
presented: a maximum-order scheme and an optimized scheme. The schemes combine a seven-point spatial operator
and an explicit six-stage low-storage time-march method of Runge-Kutta type. The maximum-order scheme can
accurately simulate the propagation of waves over distances greater than five hundred wavelengths with a grid
resolution of less than twenty points per wavelength. The optimized scheme is found by minimizing the maximum
phase and amplitude errors for waves which are resolved with at least ten points per wavelength, based on Fourier
error analysis. It is intended for simulations in which waves travel under three hundred wavelengths. For such cases,
good accuracy is obtained with roughly ten points per wavelength.
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1. Introduction. In the past few years, interest has grown in time-domain numerical sim-
ulations of linear wave phenomena using finite-difference or related methods. Applications
include electromagnetic [12, 13, 20], acoustic [3, 6, 14], and elastic waves [10, 11]. It is gen-
erally recognized that in order to avoid excessively fine meshes for many practical problems,
high-order discretizations are required. Consequently, many high-order differencing methods
have been developed for problems involving wave phenomena [1, 4, 5, 7, 10].

Furthermore, optimized or spectral-like finite-difference schemes have been proposed
which can provide improvements in accuracy over high-order schemes with the same com-
putational effort [8, 9]. In an optimized finite-difference scheme, the error behavior over
a range of spatial wavenumbers is optimized according to some criterion, usually based on
Fourier error analysis. This contrasts with conventional schemes, which generally maximize
the order of accuracy, i.e., the order of the leading error term. Detailed studies of optimized
schemes have been performed by Lele [9] and Holberg [8], who optimized the spatial operator
only. Sguazzero, Kindelan, and Kamel 11] have developed optimized fully discrete schemes
based on Holberg’s spatial operators. Tam and Webb 15] present an optimized scheme which
consists of a seven-point centered-difference operator in space combined with a four-step
time-marching method of the Adams-Bashforth type.

In this paper, we present two fully discrete finite-difference schemes for linear wave
propagation: a maximum-order scheme and an optimized scheme. The schemes are suitable
for problems requiring high accuracy with relatively large distances of travel. Both schemes
combine a seven-point spatial operator and an explicit six-stage time-march method of the
Runge-Kutta type. The spatial operator is divided into an antisymmetric component, i.e., a
centered difference operator, and a symmetric component or filter. The optimized scheme is
developed by minimizing the maximum phase and amplitude errors obtained using Fourier
error analysis for waves which are resolved with at least ten points per wavelength.

The maximum-order scheme and the optimized scheme are presented in the next two
sections. The two schemes are then analyzed and compared. Next, their stability is discussed
andnumerical boundary schemes are presented. After presenting the results ofsome numerical
experiments, we conclude with a discussion ofsome ofthe considerations involved in choosing
a difference scheme for a given problem.
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2. Maximum-order scheme. We consider first the spatial difference operator, which is
divided into an antisymmetric component, i.e., a centered difference operator, and a symmetric
component, or filter, which provides dissipation of high wavenumber modes. The grid is
uniform with xj j Ax. The function values at the grid nodes are uj u(xj). For the
linear convection equation with a positive phase speed, the first derivative of u at node j is
approximated as

(1)

1
(SxU)j X-X [(d3 a3)uj-3 -f- (d2 a.)uj_2 + (dl al)uj-1 -+- douj

-t- (dl -+- al)Uj+l 4c- (d2 + a2)uj+2 at- (d3 at- a3)uj+3],

where the ai are the coefficients ofthe antisymmetric component and the di are the coefficients
of the filter. The maximum order of accuracy possible for this operator is sixth-order. This is
obtained with al 3/4, a2 -3/20, a3 1/60, do dl d2 d3 0. With a nonzero
value of do, fifth-order accuracy is obtained with dl -3d0/4, d2 3do/10, d3 -d0/20.

Since the time-marching method described below is unstable for pure imaginary eigen-
values, a nonzero value of do is required. We have chosen do 0.1. Although this introduces
some amplitude error, the amplitude error ofthe fully discrete scheme is generally less than the
phase error, as will be shown later. Furthermore, the resulting operator produces dissipation
for high wavenumber components of the solution which are not propagated accurately.

In order to apply this spatial operator to a hyperbolic system of equations in the form

(2)
0u 0(Au)

-t- 0,
t 0x

the operator must be split into the antisymmetric part, Bxa (with the ai coefficients), and the sym-
metric part, (with the di coefficients). The spatial derivative in equation (2) is approximated
as

(3)
0(Au)
0x

B,Au + 8xlAlu

where

IAI-- XIAIx-1
and X is the matrix of right eigenvectors and A the matrix of eigenvalues of A.

The time-marching method is an explicit six-stage method of the following form:

U
(1)

Un "Jr" hotlfnn-l-Ot

U(2) e(1)
n+2 un "+- hot2 a n+u
(3) _,.(2)

(4)
Un+c3 bin -t- hot3 Jn+a2,

.(3)
nWc4 bin -[" hot4Jr+o3,
(5) e(4)Un_l_ot bln -1I-- hol5 j nat-or4

he(5)Un+ tn -- an+c5,

where un u (tn), h is the time step, and

f(l
du(
dt
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With c5 1/2, this method is second-order accurate. With or5 1/2, Ct4 1/3, ct3 1/4,
ct2 1/5, ctl 1/6, it produces sixth-order accuracy for linear homogeneous ordinary
differential equations. In [19], this six-stage method is shown to be more accurate than the
classical fourth-order Runge-Kutta method when combined with the above spatial operator
for both homogeneous and inhomogeneous linear problems. The extra stages were accounted
for by performing the comparison for an equal number of derivative function evaluations.
Furthermore, the six-stage method requires less computer memory than the classical fourth-
order Runge-Kutta method.

3. Optimized scheme. Optimized finite-difference schemes are obtained by dropping
the requirement of maximum order of accuracy and selecting the resulting free parameters to
achieve some desired error behavior. The spatial operator given in (1) is at least first-order
accurate if

(5) do q- 2dl + 2d2 + 2d3 0

and

1
(6) al + 2a2 + 3a3 .
A value of do 0.1 was selected based on stability considerations and the need for high
wavenumber damping, as discussed above. Therefore, by reducing the order of accuracy of
the spatial operator to first order, four free parameters are obtained. The time-march method,
(4), is at least second-order accurate as long as ct5 0.5. With this constraint, four free
parameters are available in the time-march method as well. Consequently, eight parameters
are available to optimize the fully discrete scheme.

The present optimized scheme was developed to minimize the maximum error for waves
resolved with at least ten grid points per wavelength (PPW) for Courant numbers less than
or equal to one. There are numerous ways to find such an optimized scheme. We used
the following approach. First, we determined the optimal spatial operator for the specified
wavenumber range in one dimension. Using this spatial operator, we then optimized the time-
march method at a Courant number of one, also in one dimension. The resulting coefficients
are listed below:

al 0.7599613, a2 -0.1581220, a3 0.01876090,

(7) do 0.1, dl -0.07638461, d2 0.03228961, d3 -0.005904994,

0.168850, ct2 0.197348, or3 0.250038, Ct4 0.333306, ct5 0.5.

4. Fourier error analysis. In order to analyze finite-difference schemes for wave prop-
agation problems, we consider the linear convection equation 16], given in one dimension
by

(8)
0u 0u
+c =0,

Ot Ox

where U U(x, t) and c, the phase speed, is a positive real constant. With an initial condition
given by

(9) U(x, O) Uoexp(itcx),

the exact solution on an infinite domain is

(10) U(x, t) U0 exp[ic (x ct)],
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where c is the spatial wavenumber. Assuming a solution in the form

(11) U(x, t) u(t) exp(icx)

and replacing the spatial derivative appearing in (8) by a numerical approximation, the fol-
lowing ordinary differential equation is obtained:

(12)
du

cc *u )u
dt

where c* is the numerical (or modified) wavenumber, which depends on the spatial operator,
and . -icK*.

This ordinary differential equation can be numerically advanced in time using a time-
march method. For linear time-march methods, the characteristic polynomial has one or more
roots, a, which are functions of .h, where h is the time step. We consider here only methods
which produce one a root. The numerical solution to (12) is then

(13) Un UoO’n

where tln U(tn) u(nh). Writing a R exp(iq), the numerical solution to (8) is thus

(14) Unum(X, t) UoR exp[i (tcx + nO)].

This numerical solution can differ from the exact solution in both amplitude and phase. We
can rewrite the numerical solution as

(15) Unum(X, t) UoRn exp[itc(x c’t)],

where c* is the numerical phase speed given by c* /xh. Comparing (15) with (10), we
define the normalized error components as

(16) era lal- 1 R- 1,

c*
(17) ere 1 1

c ctch

where era and erp denote amplitude and phase error, respectively.
In one dimension, the error resulting from a given numerical scheme depends on the

product z c Ax where Ax is the grid spacing and the Courant number is C ch/Ax. In
two or three dimensions, the error has a further dependence on the direction of propagation.
The two-dimensional linear convection equation is given by

(18)
OU OU OU

+ c cos 0 + c sin 0 0.
Ot x Oy

This equation governs a plane wave convecting a scalar U with speed c along a straight line
making an angle 0 with respect to the x-axis. On a square grid, when the same difference op-
erator is used to approximate the two spatial derivatives in (8), the two-dimensional numerical
wavenumber Cd can be written as

(19) :d(Z 0) COS0tC* (ZCOS0) + sin *
ld OtCld(ZSinO),

where C’d is determined from the one-dimensional analysis.
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For the spatial operator given in (1), the numerical wavenumber is given by

1
[do + 2(dl cos z + d2 cos 2z + d3 cos 3z)itc* A--(0)
+ 2i(al sinz + a2 sin2z + a3 sin3z)].

For the time-marching method (4), cr is given by

cr 1 + .h + fl2(.h)2 -+- fl3(,h)3 q- fl4(Zh)4 q-/35(.h)5 + fl6(.h)6,(21)

where

/2 O5, /3 O50/4, /4 050/403,

The procedure for determining the errors for given values of z, 0, and C proceeds as follows.
First, tca must be calculated from (19) with tc’a determined from (20). The parameter . is
then found using . -icx*. Equation (21) is used to determine or, which then produces the
phase and amplitude errors from (16) and (17).

Figures 1 and 2 show the numerical phase speed and amplitude at a Courant number
of unity in one dimension for the following three fully discrete finite-difference schemes:
(1) second-order centered differences in space with fourth-order Runge-Kutta time marching
(designated RK4C2 on the figures), (2) fourth-order centered differences with fourth-order
Runge-Kutta time marching (designated RK4C4) and (3) the maximum-order spatial scheme
given by (1) with do 0.1 and the time-marching method given by (4) with the values of
the coefficients which produce the maximum order (designated maximum-order). Care must
be taken in assessing schemes at individual values of 0 and C. However, for the schemes
considered here, the errors in the practical range of wavenumbers are generally largest for
0 0 and decrease with decreasing Courant number.

Lele [9] defines the resolving efficiency of a scheme as the fraction of the domain 0 <

z < zr for which the errors lie below a specified tolerance. Table 1 shows the resolving
efficiency of the three schemes above for four different values of error tolerance e. In all three
cases, the phase error is larger than the amplitude error and hence the resolving efficiency is
determined by the phase error. Note that as the error tolerance decreases, the higher-order
schemes become relatively more efficient. For example, at the largest error tolerance shown,
the resolving efficiency of the maximum-order scheme is less than twice that of scheme
RK4C4 while, at the smallest tolerance, the maximum-order scheme has almost three times
the resolving efficiency of scheme RK4C4. The parameter z tc Ax is related to the number
of points per wavelength by which a given wave is resolved through the relation PPW 2rr/z.
Table 2 shows the PPW required to produce errors below the specified error tolerance values.

The procedure used to develop the optimized scheme is not sufficient to guarantee that
the maximum error obtained over the specified wavenumber range in one dimension is not
exceeded at nonzero values of 0. However, in the present case, the maximum phase and
amplitude errors are obtained at 0 0 at a Courant number of unity. These errors are shown
in Figures 3 and 4 in comparison with the maximum-order scheme for 0 < z < zr/5. The
errors produced by the optimized scheme are bounded by 2 10-5 while the maximum-order
scheme produces errors up to 4 10-4. For the range 0.4 < z < 0.7, the optimized scheme
gives much smaller errors than the maximum-order scheme. This corresponds roughly to 9 to
16 PPW. For larger wavenumbers the advantage is reduced, while for smaller wavenumbers,
the maximum-order scheme is more accurate.

Table 3 shows the resolving efficiency r andrequired PPWvalues for the optimized scheme
with the four error tolerances as in the preceding tables. The advantage of the optimized
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FIG. 1. Numerical phase speed for second-order centered differences with fourth-order Runge-Kutta time
marching (RK4C2), fourth-order centered differences withfourth-order Runge-Kutta time marching (RK4C4), and
the maximum-order scheme.
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F. 2. Il for second-order centered differences with fourth-order Runge-Kutta time marching (RK4C2),
fourth-order centered differences withfourth-order Runge-Kutta time marching (RK4C4), and the maximum-order
scheme.

scheme is largest at the "design" error tolerance 2 10-5. For this error tolerance, it produces
1.6 times the resolving efficiency of the maximum-order scheme and four times the resolving
efficiency of the fourth-order scheme. For error tolerances below 2 10-5, the optimized



334 DAVID W. ZINGG, HARVARD LOMAX, AND HENRY JURGENS

TABLE
Resolving efficiency ofRK4C2, RK4C4, and the maximum-order scheme.

e,---

Scheme 10-5 2 x 10-5 10-4 3 10-3

RK4C2 <0.01. <0.01 <0.01 0.04
RK4C4 0.04 0.05 0.07 0.17

Maximum order 0.11 0.12 0.16 0.29

TABLE 2
PPWrequiredfor specified error tolerances.

e--

Scheme 10-5 2 x 10-5 10-4 3 x 10-3

RK4C2 >200 >200 >200 50
RK4C4 50 40 29 12

Maximum order 18 17 13 7

erp
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-2.5

x 10
.4

’w’

Maximum-order Scheme
Optimized Sch

-4) ,,I

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 3. Phase errorfor the maximum-order scheme and the optimized scheme.

scheme is substantially inferior to the maximum-order scheme. For higher values of error
tolerance, the advantage of the optimized scheme is reduced in comparison with both the
maximum-order scheme and the fourth-order scheme.

Another useful approach for assessing finite-difference schemes for wave propagation is
to determine the PPW required to maintain global phase and amplitude errors below a speci-
fied level as a function of the number of wavelengths travelled. The global amplitude error is

given by

(22) Era= 1-1cr (z, C) cz
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FIG. 4. Amplitude errorfor the maximum-order scheme and the optimized scheme.

TABLE 3
Resolving eciency and PPWrequiredfor optimized scheme.

e---

10-5 2 x 10-5 10-4 3 x 10-3

0.05 0.20 0.22 0.32
PPW 40 10 9 6

where no is the number of wavelengths travelled. The global phase error is

(23) Erp
2rnw
Cz

I(C, z) + Czl.

Figure 5 shows the PPWrequired to maintain Era and Erp less than 0.1. The maximum-order
scheme can accurately simulate the propagation ofwaves over distances greater than five hun-
dred wavelengths with a grid resolution of less than twenty points per wavelength. This is
less than half of the PPW required by the combination of fourth-order centered differences
and fourth-order Runge-Kutta time marching. In three dimensions, this translates to more
than eight times fewer grid nodes. The optimized scheme is superior for simulations in which
waves travel under three hundred wavelengths. For such cases, good accuracy is obtained
with roughly ten points per wavelength. In [21] several other finite-difference schemes are
compared on this basis.

5. Stability and numerical boundary schemes. From Fourier analysis, the maximum-
order fully discrete scheme is stable up to a Courant number of roughly 1.5 in one dimension
and the optimized scheme is unconditionally unstable. Stability by Fourier analysis is a
necessary condition for Lax-Richtmyer stability. However, the instability of the optimized
scheme is very mild and we now show that on a finite domain asymptotic (or time) stability is
achieved. Consider a semidiscrete approximation to (8) obtained by dividing the domain into
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FIG. 5. PPW requirements for the maximum-order scheme, the optimized scheme, and the combination of
fourth-order centered differences andfourth-order Runge-Kutta time marching.

M subintervals of length Ax 1/M and approximating the spatial derivative in the interior
by (1). At the inflow boundary, the derivative is approximated by [18]"

1
(xU)l [-12u0 -65Ul -+- 120u2 -60u3 -+- 20u4 3u5],

60Ax
(24)

1
(6xU)2 [6.6u0- 51.6ul + 34u2- 12u3 + 39u4- 19.6u5 + 3.6u6].

60Ax

These operators are fifth-order accurate and hence do not compromise the global accuracy of
the method. At the outflow boundary, the difference operators for the last three points in the
grid are formed using fifth-order space extrapolation together with the interior differencing
scheme. The space extrapolation can be written in the form

(25) (1 E-1)PuM+I O,

where the shift operator E is defined by Euj Uj+l and the order of the approximation is
p 1. When this approach is applied to hyperbolic systems, flux-vector splitting is required
near boundaries [20].

The semidiscrete form can be written as

(26) d--u-u u, where / c-f-A,
dt Ax

I1 [Ul, /22 //M-l, ut]r. Figure 6 shows the eigenvalues of A for the maximum-
order and optimized spatial schemes with M 100. Each scheme produces two boundary-
condition-dependent eigenvalues [2] but these lie in the left half-plane and hence do not pose
a problem. These eigenvalue spectra both lie well within the stability contours of the respec-
tive time-marching methods, as shown in Figure 7, and thus the fully discrete methods are
asymptotically stable at a Courant number of unity.
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FIG. 6. Eigenvalue spectra ofsemidiscrete operators.
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FIG. 7. Stability contours ofthe time-marching methods.

Asymptotic stability is a necessary condition for Lax-Richtmyer stability but it is not
sufficient. Thus we now consider the amplification matrix G given by

(27) G I -’l-" CA --/2(CA)2 -’i-"/3(CA)3 "l’-/4(CA)4 +/5(CA)5 "l"/6(CA)6.
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FIG. 8. Variation ofthe L2-norm ofthe amplification matrix ofthe maximum-order scheme.

A necessary and sufficient condition for stability of a fully discrete finite-difference scheme
is that there exists a constant K > such that

(28) II(G(mx, h))nll < K

for all n > O, 0 < nh < T with T fixed. For hyperbolic problems, the Courant number must
be kept constant as n is increased. Figure 8 shows Gn 112 for the maximum-order scheme for
three different values of M and a Courant number of unity. Figure 9 shows similar results
for the optimized scheme. In both cases, IIGn 112 is clearly bounded and hence both schemes
appear to be stable. This is consistent with the results of [20], in which both schemes were used
for simulations of electromagnetic waves with no evidence of instability. However, a singular
value decomposition of G shows that the growth in Gn shown in Figure 9 is associated
with the numerical boundary scheme at the inflow boundary. This obscures the very slow
growth of the unstable modes of the optimized scheme, which is revealed if the numerical
boundary scheme at inflow is removed. Nevertheless, Figure 9 provides some reassurance
that the instability causes no immediate difficulties. As shown in Figure 4, the maximum
value of Irl predicted using Fourier analysis is 1.00002 at a Courant number of unity. Since
1.0000234,000 < 2, the scheme can safely be used for well over 34,000 time steps without the
solution exhibiting any instability. However, the optimized scheme is not intended for such
long simulations since the maximum-order scheme becomes more accurate if the distance
travelled becomes very large, as shown in Figure 5.

6. Numerical experiments. We now consider several numerical experiments in order
to further compare the four schemes discussed above. The one-dimensional linear convection
equation with c 1 is solved with periodic boundary conditions on the domain 0 _< x _< 1.
The initial condition is given by a Gaussian-modulated cosine function as follows:

U (x, 0) (cos xx)e-5(x-5)/’g12
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Fro. 9. Variation ofthe L2-norm ofthe amplification matrix ofthe optimized scheme.

with various values of rg and to. For the present schemes, the errors in the practical range of
wavenumbers are generally largest at 0 0 and decrease with decreasing Courant number.
Therefore, one-dimensional numerical experiments with a Courant number of unity represent
the worst case.

For the first experiment, we consider a Gaussian (x 0) with trg 0.04. The grid is
uniform with 100 points across the domain. Figure 10 shows the result after 100 time steps
with a Courant number of unity, i.e., at 1. The exact solution is identical to the initial
condition. The solution produced by scheme RK4C2 is poor, while the other schemes are
very accurate. After 1000 time steps, the solution produced by RK4C4 is inadequate for many
purposes, while the maximum-order and optimized schemes remain very accurate, as shown
in Figure 11.

Figures 12-15 compare the maximum-order and optimized schemes for Gaussian initial
conditions with four different values of Crg. The results are again shown for C 1 and 1.
The figures show the difference between the computed solution and the exact solution. For
O’g 0.04 and Crg 0.03, the L2-norm of the error produced by the optimized scheme is less
than half of that produced by the maximum-order scheme. For Crg 0.02 the improvement
from the optimized scheme is reduced and for trg 0.05 the optimized scheme produces more
error than the maximum-order scheme.

These results can be better understood by considering the normalized power spectra of
these Gaussians, which are shown in Figure 16. These spectra show the wavenumber content
of the Gaussians as a function of z based on a 100-point grid. They can be compared with
Figures 3 and 4, which show the numerical errors also as a function of z. For example, Figures
3 and 4 show that the optimized scheme is much more accurate than the maximum-order
scheme for roughly 0.4 _< z _< 0.7. With rg 0.05, there is virtually no content in this region
and hence the optimized scheme is inferior to the maximum-order scheme since it produces
more error at low wavenumbers. For Crg 0.04 and crg 0.03, there is some content in the
range 0.4 < z _< 0.7 and little content at higher wavenumbers. Consequently, the error is
dominated by these modes and the optimized scheme is superior. Finally, for Crg 0.02, the
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FIG. 11. Solution at 10.

error is dominated by wavenumbers with z > 0.7 and thus the optimized scheme is not much
superior to the maximum-order scheme.

The gains produced by the optimized scheme for Gaussians are quite modest, even for
Crg = 0.03 and ag 0.04. This occurs because Gaussians always have considerable low
wavenumber content, which is convected more accurately by the maximum-order scheme.
The optimized scheme is more effective for functions with a narrower bandwidth. Figures
17-19 show results for Gaussian-modulated cosine functions with trg 0.1 and c 24zr,
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FIG. 12. Errorfor crg 0.05.
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FIG. 13. Errorfor o’g 0.04.

32rr, and 40rr, on a 200-point grid. The results are shown after 200 time steps at a Courant
number of unity, i.e., at 1. The corresponding normalized power spectra are shown in
Figure 20. In each case, these functions have considerable spectral content in the range for
which the optimized scheme is superior. For x 32rr, the L2-norm of the error produced by
the optimized scheme is more than ten times less than that produced by the maximum-order
scheme.
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7. Discussion. In this section, we discuss some considerations in selecting and develop-
ing finite-difference schemes for wave propagation problems, initially an error tolerance must
be determined. This is based on two factors: (1) the level of accuracy required of the simula-
tion in order to produce meaningful results and (2) an estimate of the largest distance a wave
will travel during the simulation. Next an estimate must be made of the shortest wavelength
which must be accurately resolved. This is also based on the accuracy requirements ofthe sim-
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ulation. For a given scheme, the grid spacing can then be determined to produce the required
accuracy in phase and amplitude for the shortest wavelength of interest based on Fourier error
analysis. The grid resolution must be sufficient to satisfy the accuracy requirements for the
worst combination of Courant number and propagation direction.

The compromise involved in optimizing a scheme is clearly revealed in Figure 5. For
small distances of travel, the optimized scheme is superior but as the distance is increased the
maximum-order scheme eventually requires fewer PPW. [21] includes a scheme similar to
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that presented here which is optimized for waves resolved with at least 7.5 PPW. This scheme
is slightly superior to the present optimized scheme for distances of travel less than roughly
75 wavelengths but is inferior for longer distances.

For some wave propagation applications, it is essential that the numerical scheme produce
no dissipation, i.e., no amplitude error. The schemes presented here are inappropriate for such
problems. However, for most problems it is sufficient that the amplitude error be less than or
comparable to the phase error. Furthermore, the damping ofhighwavenumbermodes produced
by the present schemes can be helpful in some applications 17]. If reduced dissipation is
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desired, the present spatial,scheme can be used without the filter. Fourth-order Runge-Kutta
time marching should then be used for stability.

8. Conclusions. The two finite-difference schemes presented here provide a promising
option for simulating long-range propagation of linear waves. Potential applications include
electromagnetics and acoustics. Both schemes combine a seven-point spatial operator and an
explicit six-stage low-storage time-marching method ofthe Runge-Kutta type. The optimized
scheme was developed by minimizing the maximum phase and amplitude errors for waves
which are resolved with at least ten points per wavelength. The maximum-order scheme
can accurately simulate the propagation of waves over distances greater than five hundred
wavelengths with a grid resolution of less than twenty points per wavelength. The optimized
scheme is intended for simulations in which waves travel under three hundred wavelengths.
For such cases, good accuracy is obtained with roughly ten points per wavelength. Future
work will address the application of these schemes to complex geometries.
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