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We present a parallel Newton-Krylov algorithm for solving the three-dimensional Euler
equations on multi-block structured meshes. The Euler equations are discretized on each
block independently using second-order accurate summation-by-parts operators and scalar
numerical dissipation. Boundary conditions are imposed and block interfaces are coupled
using simultaneous approximation terms (SATs). The resulting discrete equations are
solved iteratively using an inexact Newton method. At each Newton iteration, the linear
system is solved inexactly using a Krylov subspace iterative method, and both additive
Schwarz and approximate Schur preconditioners are considered. The algorithm is tested
on the ONERA M6 wing. The results show that a discretization based on SATs is well
suited to a parallel Newton-Krylov solution strategy, and that the approximate Schur
preconditioner is more efficient than the Schwarz preconditioner in terms of CPU time and
Krylov iterations, for both flow and adjoint solves.

I. Introduction

State-of-the-art flow solvers are capable of finding accurate solutions for flows with moderate separation;1

however, run times remain an issue for three-dimensional configurations, especially for applications such as
unsteady flows and optimization. This motivates the development of efficient parallel flow solvers. While
serial solvers will continue to have a role in, for example, preliminary design, improvements in parallel
computing architectures and libraries fuel interest in ever more complex large-scale problems. In this paper
we describe an algorithm to tackle such problems; the algorithm combines a technique for handling block
interfaces and boundaries (simultaneous approximation terms) and a solution strategy (Newton-Krylov)
which together produce an efficient parallel solver.

Our choice of grid type and discretization is based on experience with serial two- and three-dimensional
flow solvers.2–4 The semi-structured, or multi-block, approach provides the flexibility to fit complex shapes
while permitting accurate and efficient discretizations. In particular, multi-block finite-difference discretiza-
tions can be readily extended to high-order schemes.

The use of multi-block finite-difference schemes in parallel does present some challenges. In particular,
how do we discretize the equations of motion at points on the edges and corners of blocks? The treatment of
these “exceptional” points can be difficult, even for serial finite-difference solvers. In parallel computations
the exceptional points can introduce additional communication overhead if not treated carefully.

The problems associated with exceptional points can be avoided with simultaneous approximation terms
(SATs). The SAT methodology was originally developed to enforce boundary conditions in an accurate and
time-stable manner,5 but the method has also been extended to handle domain interfaces.6–8 SATs have
been successfully used by Mattsson et al.9 for 3rd- and 5th-order discretizations of the Euler equations.
In the present work we use a second-order discretization, so our primary interest in SATs is the elegant
parallelization they provide; however, future work will consider high-order discretizations.

Coupling blocks with SAT penalties has been shown to reduce the effective CFL number significantly.10, 11

This suggests that a Newton-Krylov solution strategy may be well suited to SAT discretizations. For serial
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computations, Newton-Krylov solution strategies have proven to be efficient, both in flow simulation4, 12–17

and optimization.3, 18 There are also many examples demonstrating that the excellent serial performance of
Newton-Krylov algorithms can be extended to parallel algorithms.19–23

Krylov solvers are easily parallelizable with the possible exception of the preconditioner. The precon-
ditioner poses a difficulty, because many of the best serial preconditioners tend to be inefficient when par-
allelized directly — consider, for example, incomplete lower upper factorizations24 — and many parallel
preconditioners tend to scale poorly. In the current work we consider an additive Schwarz preconditioner24

and an approximately factored Schur complement preconditioner.25

In summary, the objectives of this work are as follows:

• to develop SAT penalty terms suitable for flows with shocks and vanishing wave speeds,

• to evaluate and compare two parallel preconditioners, and

• to demonstrate that a discretization employing SATs is well matched to a parallel Newton-Krylov
solution algorithm.

The paper is divided as follows. Section II focuses on the governing equations and their discretization.
In particular, we summarize the use of SATs for one-dimensional problems. In Section III we review the
Newton-Krylov method for solving the nonlinear equations and resulting distributed linear systems. Results
are presented in Section IV, including an assessment of the discretization and a comparison of the parallel
preconditioners applied to flow and adjoint problems. Conclusions can be found in Section V.

II. Governing Equations and Discretization

A. The Transformed Euler Equations

We consider the three-dimensional Euler equations:

∂tQ + ∂xi
Ei = 0, (1)

where (x1, x2, x3) = (x, y, z),

Q =










ρ

ρu1

ρu2

ρu3

e










, and Ei =










ρui

ρu1ui + pδ1i

ρu2ui + pδ2i

ρu2ui + pδ3i

(e + p)ui










.

δij is the Kronecker delta symbol. Our objective is to solve for the conservative flow variables, Q, on
multi-block structured grids; thus, we consider diffeomorphisms of the following form.

x = F(ξ),

F : D → P and F ∈ C1 on D \ ∂D,

D =
{
ξ ∈ R

3|ξi ∈ [0, Li], i = 1, 2, 3
}

.

The hexahedral domain D represents one block in computational space. Applying the diffeomorphism, the
Euler equations become

∂tQ̂ + ∂ξi
Êi = 0, (2)

where (ξ1, ξ2, ξ3) = (ξ, η, ζ),

Q̂ =
1

J










ρ

ρu1

ρu2

ρu3

e










, and Êi =
1

J










ρUi

ρu1Ui + p∂xξi

ρu2Ui + p∂yξi

ρu2Ui + p∂zξi

(e + p)Ui










.
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The scalar J denotes the Jacobian of the mapping, and the Ui are the contravariant velocities defined by
Ui = uj∂xj

ξi.
The discretization of the transformed Euler equations (2) is performed independently on each computa-

tional block using second-order centered differences in the interior and first-order one-sided differences at the
block sides. Boundary conditions are introduced and blocks are coupled using simultaneous approximation
terms (SATs).5 Section II.B introduces the SAT methodology in a one-dimensional setting; the results can
be extended to three-dimensions using Kronecker products; see, for example, Nordström and Carpenter.8

B. Discretization for One-Dimensional Problems

In an effort to keep our presentation self-contained, this section summarizes summation-by-parts (SBP)
operators and SATs applied to one-dimensional problems, specifically constant-coefficient advection and the
quasi-one-dimensional Euler equations. For further information on SBP operators and SATs, we direct the
reader to the literature on these topics.5, 7–9, 26

1. Summation-By-Parts Operators

In both the boundary and interface cases, the SAT method relies on difference operators that satisfy a
discrete SBP property. The difference operator P−1Q is an SBP operator if it satisfies the following three
properties:27

1. The vector of discrete derivatives, ux, has the form

Pux −Qu = 0,

P∂xv −Qv = PT,

where u is the discrete solution vector, v is the exact solution evaluated at the node locations, and T

is the truncation error. For an mth order operator, the truncation error satisfies ‖T‖ = O(∆xm
max).

This form of discrete first derivative encompasses both compact and non-compact schemes.

2. The matrix P is symmetric positive definite. In particular,

c∆x ≤ λ(P) ≤ C∆x

where λ(P) denotes an eigenvalue of P , and c, C are real, positive constants independent of the number
of grid points.

3. The matrix Q is nearly skew-symmetric in the sense that Q+QT = D, where D is a diagonal matrix
of the form D = diag(−1, 0, . . . , 0, 1). Furthermore, Q0,0 = − 1

2 and QN,N = 1
2 .

The SBP definition encompasses operators of all orders; however, for the present work we consider
only second-order operators. Note, the standard second-order centred-difference operator with first-order
differences at the boundaries is an SBP operator if we define

Q =
1

2













−1 1

−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 1













, P =









∆x0

∆x1

. . .

∆xN









,

where ∆x0 = (x1 − x0)/2, ∆xN = (xN − xN−1)/2, and ∆xi = (xi+1 − xi−1)/2, i = 2, 3, . . . , N − 1.

2. Constant-Coefficient Advection

The SAT method adds a penalty term that forces the solution at the boundary or interface towards the
desired value. To introduce the method, we consider a constant-coefficient one-dimensional linear advection
problem

∂tu + a∂xu = 0, (3)
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Figure 1. Example domain consisting of two subdomains with an interface at xi = xi+1.

where a is the advection speed. Equation (3) is discretized on the mesh x = (x0, x1, . . . , xi, xi+1, . . . , xN )T

with N + 1 points and an interface at xi = xi+1; see Figure 1. For simplicity, we will apply the SAT at the
interface only; the application of SATs for the boundary conditions is similar.5

Let the discrete solutions on the left and right domains be uL = (u0, u1, . . . , ui)
T and uR = (ui+1, ui+2, . . . , uN)T ,

respectively. The systems to be solved on each domain are

PL∂tuL + aQLuL = σ1(ui − ui+1)eL, (4)

PR∂tuR + aQRuR = σ2(ui+1 − ui)eR. (5)

Note that the unit vectors eL = (0, 0, . . . , 1)T and eR = (1, 0, . . . , 0)T have lengths (i + 1) and (N − i),
respectively.

The terms appearing on the right sides of (4) and (5) are the penalty terms that couple the two domains.
For smooth solutions they introduce no truncation errors since the points coincide. As an aside, if we were
applying a boundary condition at xi instead of an interface condition, ui+1 would be replaced with uBC in
equation (4), where uBC is the appropriate boundary value of u.

The coefficients σ1 and σ2 are determined using time-stability and conservation arguments. First, con-
sider conservation. Premultiplying (4) by the constant vector 1 = (1, 1, . . . , 1)T , and ignoring boundary
contributions, we obtain

1TPL∂tuL + a1TQLuL = σ1(ui − ui+1)1
Te(i)

d

dt
(1TPLuL) + a1T (DL −Q

T
L)uL = σ1(ui − ui+1)

d

dt
(1TPLuL)− auT

LQL1 = σ1(ui − ui+1)− aui

d

dt
(1TPLuL) = σ1(ui − ui+1)− aui

Note that uT
LQL1 = 0, since the constant vector is in the null space of QL. Adding a similar expression for

the right domain we find

d

dt
(1TPLuL + 1TPRuR) = (ui − ui+1)(σ1 − σ2 − a). (6)

We want the right-hand side of (6) to vanish for conservation. In general, ui and ui+1 will not have the same
value. Thus, to ensure conservation on the whole domain, the expression (6) implies

σ2 = σ1 − a. (7)

The relation (7) has also been shown to hold for nonlinear fluxes using a weak form of conservation.7

To further fix the penalty parameters, a time-stability requirement is imposed. Consider the time evolu-
tion of the norm ‖u‖2P = uT

LPLuL +uT
RPRuR. Premultiplying equation (4) from the left by uT

L, and adding
the transpose, we find

d

dt
(uT

LPLuL) + auT
L(QL +QT

L)uL = 2σ1(u
2
i − uiui+1)

d

dt
(uT

LPLuL) + auT
LDLuL = 2σ1(u

2
i − uiui+1)

d

dt
(uT

LPLuL) = 2σ1(u
2
i − uiui+1)− au2

i
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Adding a similar expression for the right domain, we obtain the following “energy” estimate:

d

dt
‖u‖2P =

(

ui ui+1

)
[

2σ1 − a −(σ1 + σ2)

−(σ1 + σ2) 2σ2 + a

](

ui

ui+1

)

. (8)

The eigenvalues of the symmetric matrix on the right-hand-side of (8) are λ1 = 0 and λ2 = −2a + 4σ1.
To ensure that the norm does not grow with time, we need λ2 ≤ 0 which implies σ1 ≤

a
2 . To satisfy this

stability requirement, as well as the conservation requirement (7), we tentatively adopt the following values
for σ1 and σ2, although other choices are possible:

σ1 = 0, σ2 = −a, if a ≥ 0,

σ1 = a, σ2 = 0, if a < 0.
(9)

If we use (9) without modification, both penalty parameters vanish if a = 0. This can cause problems
for Euler flows if the interface is located at a sonic or stagnation point; thus, in analogy with Swanson and
Turkel’s matrix dissipation model,28 we propose limiting the penalty parameters as follows:

σ1 = −
1

2
[max (|a|, V )− a] ,

σ2 = −
1

2
[max (|a|, V ) + a] ,

(10)

where V > 0 is a constant. These values of the penalty parameters satisfy the conservation requirement
(7). What about time-stability? If |a| ≥ V , then λ2 = −2|a| < 0 as required. Moreover, if |a| < V
then λ2 = −2V < 0, so the penalty parameters defined by (10) ensure stability. Notice that the SAT
penalties are activated depending on the direction of wave propagation, which gives this boundary treatment
a characteristic variable “flavour.”

3. The Quasi-One-Dimensional Euler Equations

In this section, we review the use of SBP operators and SATs in discretizing the Euler equations. Consider
the (transformed) quasi-one-dimensional Euler equations applied to a converging-diverging nozzle:

∂tQ̂ + ∂ξÊ− Ĝ = 0, (11)

where

Q̂ =
1

J






ρS

ρuS

ρES




 , Ê =

1

J






ξxρuS

ξx(ρu2 + p)S

ξxρuHS




 , Ĝ =

1

J






0

p∂xS

0




 ,

J = ξx = (xξ)
−1 is the metric Jacobian, and S is the nozzle area.

Suppose the one-dimensional domain is divided into two subdomains. As before, assume the grid points
are located at x = (x0, x1, . . . , xi, xi+1, . . . , xN )T , and let xi = xi+1 define the interface between the two
subdomains. The semi-discrete form of (11) becomes

PL∂tqL +QLfL − PLgL = sL,

PR∂tqR +QRfR − PRgR = sR,
(12)

where

qL = (Q̂T
0 , Q̂T

1 , . . . , Q̂T
i )T , qR = (Q̂T

i+1, Q̂
T
i+2, . . . , Q̂

T
N )T ,

fL = (ÊT
0 , ÊT

1 , . . . , ÊT
i )T , fR = (ÊT

i+1, Ê
T
i+2, . . . , Ê

T
N )T ,

gL = (ĜT
0 , ĜT

1 , . . . , ĜT
i )T , gR = (ĜT

i+1, Ĝ
T
i+2, . . . , Ĝ

T
N )T

The subscript denotes the location of the variable or flux (e.g. Q̂i = Q̂(xi)).
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The penalty terms in (12) are 3(i + 1) and 3(N − i) column vectors given by

sL =









0

0
...

− 1
2 (|A| −A)(Q̂i − Q̂i+1)









, sR =









− 1
2 (|A|+ A)(Q̂i+1 − Q̂i)

0
...

0









where A is the flux Jacobian matrix at an averaged state; for the present work we use the simple average
1
2 (Qi + Qi+1). The matrix |A| = X |Λ|X−1 where X denotes the right eigenvectors of A, and

|Λ| =






λ1 0 0

0 λ2 0

0 0 λ3






where

λ1 = max (|u + a|, Vnρ(A))

λ2 = max (|u− a|, Vnρ(A)),

λ3 = max (|u|, Vlρ(A)).

ρ(A) denotes the spectral radius of A. The constants Vn and Vl are used to scale the spectral radius. For
subsonic flows Vn = 0.025 and for transonic flows Vn = 0.25. Vl = 0.025 is used for all flows.

We have omitted numerical dissipation in (12) to focus on the SATs. In the present work we use the JST
scalar dissipation model,29, 30 with second- and fourth-difference dissipation. Mattsson et al.9 have shown
that the dissipation based on the standard difference operators does not produce an energy estimate. Their
result does not imply that the standard dissipation operators will always produce time-unstable schemes,
but that conclusions regarding time-stability must be carried out on a grid-by-grid basis.9 Indeed, we
have not experienced problems when using the standard dissipation operators in conjunction with SATs for

steady-state flows solved using implicit methods; however, unsteady simulations may require us to revisit
the dissipation operators.

III. Solution Method

A. Newton-Krylov Approach

Discretizing the transformed, steady Euler equations at each computational node produces a set of nonlinear
algebraic equations, represented by the vector equation

F(q) = 0, (13)

where q is a block column vector; each block represents the conservative flow variables, Q, at a node.
Applying Newton’s method to the discrete equations (13) we obtain the following linear equation for each

(outer) iteration n:

A(n)∆q(n) = −F
(n), (14)

where F
(n) = F(qn), ∆q(n) = q(n+1) − q(n), and

A
(n)
ij =

∂Fi

∂qj

(

q(n)
)

.

Newton’s method will converge quadratically provided that the initial iterate, q(0), is sufficiently close to the
solution of (13).31 As is well known, finding a suitable initial iterate for Newton’s method can be difficult;
thus, our algorithm is broken into two phases:

1. an approximate-Newton, start-up phase whose objective is to find a suitable initial iterate, as efficiently
as possible, and;

2. the inexact-Newton phase, which uses the initial iterate and a slightly modified form of equation (14).

6 of 22

American Institute of Aeronautics and Astronautics



1. Approximate-Newton Phase

The approximate-Newton phase uses a form of pseudo-transient continuation to find the initial iterate.23, 30, 32

This strategy is similar to discretizing the unsteady equations (1) using implicit Euler in time; however, since
we are seeking an initial iterate for Newton’s method, and not a time accurate solution, there are several
important modifications that we can make to the implicit Euler scheme. These modifications include a
first-order Jacobian matrix, a lagged Jacobian update, and a spatially varying time step.

A first-order Jacobian matrix can be effective during start-up,4, 32 and is obtained here by eliminating
the fourth-difference dissipation terms from A(n), and increasing the coefficient for the second-difference
dissipation. Let κ4 and κ2 denote the fourth- and second-difference dissipation coefficients used in the
discrete equations, F , and let κ̃4 and κ̃2 denote the corresponding coefficients used in the modified Jacobian
matrix during start-up. Then,

κ̃4 = 0, κ̃2 = κ2 + σκ4

Previous work suggests that the optimal value for the lumping coefficient σ is between 4 and 6 for three-
dimensional inviscid flows.4 Lumping the dissipation coefficients in this way produces a modified Jacobian
which is only first-order accurate: this does not affect the accuracy of the steady solution. We will use
A1 to denote the first-order Jacobian, in order to emphasize its accuracy and distinguish it from the exact
Jacobian.

The first-order Jacobian is factored using ILU (or block ILU) with a level of fill p to produce the pre-
conditioners during both phases. Factoring the matrix is one of the most expensive tasks required by the
algorithm. The approximate-Newton phase often requires many outer iterations, so the cost of the factor-
ization can be particularly acute if it is performed each iteration. This suggests periodically updating the
first-order Jacobian and, therefore, the factorization.33 Let m be the number of outer iterations between
updates. Then, A1 is updated and factored on iteration n if mod(n, m) = 0. In Section IV we will investigate
the influence of the update period m on efficiency.

Finally, a spatially varying time step has been shown to improve the rate of convergence for schemes
based on approximate factorizations30 as well as Newton-Krylov algorithms.4, 34 The time step used in the
current work is, for node (j, k, m),

∆t
(n)
j,k,m =

∆t
(n)
ref

Jj,k,m(1 + 3

√
Jj,k,m)

. (15)

This time step roughly approximates a constant CFL. The appearance of the first J in the denominator of
(15) is due to the use of Q rather than Q̂ in the column vector q; see equation (2). The reference time step
is steadily increased according to the geometric formula

∆t
(n)
ref = a(b)m⌊ n

m
⌋,

where ⌊·⌋ is the floor operatora; this operator ensures that updates to ∆t
(n)
ref are consistent with the update

period m. Typical values for a and b in the present work are a = 0.1 and b ∈ [1.2, 1.7].
To summarize, during start-up we replace (14) with the approximate-Newton update equation

Ã(n)∆q(n) = −F
(n), (16)

with

Ã(n) ≡ T (n∗) +A
(n∗)
1 ,

where n∗ = m⌊n/m⌋ and T (n) is a diagonal matrix containing the (inverse) local time steps appropriate
to each equation. Finally, we emphasize that the update equation (16) is not solved exactly, but rather
inexactly to a relative tolerance of 0.5 using a Krylov iterative solver; the solution of the linear system is
outlined in Section III.B.

a⌊x⌋ gives the largest integer less than or equal to x
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2. Switching Between Phases

The algorithm should switch to the inexact-Newton phase as soon as a suitable initial (Newton) iterate has
been obtained; thus, we must determine what qualifies as a suitable initial “guess.” Several authors have
suggested switching when the nonlinear relative residual is reduced below a certain threshold.4, 34 For the
present discretization using SATs, we have found that the residual by itself is a poor measure for convergence
during start-up: the nodes on interfaces and boundaries typically have much larger residuals than the interior
nodes. Hence, our algorithm switches to the inexact-Newton phase if

‖F (n)‖2

‖F (0)‖2
≡ R

(n)
d ≤ τ and

‖∆q(n)‖2
‖∆q(m)‖2

≡ S
(n)
d ≤ τ

where τ = 0.1. The additional condition on ∆q(n) safe-guards against switching to the inexact-Newton
phase prematurely. Notice that ‖∆q(n)‖2 is measured relative to the norm of the solution update after
the first Jacobian update period; this is because the updates produced during the initial period fluctuate
considerably.

3. Inexact-Newton Phase

As with the start-up phase, a diagonal matrix of spatially varying time-steps is used during the inexact-
Newton phase. The reference time step during the Newton phase is based on a method first used by Mulder
and van Leer:35

∆t
(n)
ref = max

[

α
(

R
(n)
d

)−β

, ∆t
(n−1)
ref

]

,

where, for the present results, we have used β = 2. The value of α is calculated to avoid an abrupt change
between the approximate Newton and inexact-Newton time steps. Specifically, if nNewt is the first inexact-
Newton iteration, then

α = a(b)m⌊nNewt

m
⌋
(

R
(nNewt)
d

)β

Each outer iteration during the inexact-Newton phase produces the following linear system:

(

T (n) +A(n)
)

∆q(n) = −F
(n), (17)

where, as before, T (n) is a diagonal matrix of inverse time steps. Note that the diagonal time step matrix

tends to the zero matrix quadratically with R
(n)
d due to the value β = 2. Unlike the approximate Newton

phase, the matrices on the left-hand side of (17) are recomputed at each iteration, and the Jacobian matrix,
A(n), is not explicitly modified. Indeed, since we use Krylov subspace methods, we need only the Jacobian-
vector products. These products can be approximated using a first-order accurate, forward difference:

A(n)v ≈
F(qn + ǫv) −F(qn)

ǫ
.

The perturbation parameter must be chosen carefully to minimize truncation error and avoid round-off
errors.36 For this work we have used13

ǫ =

√

Nδ

vT v
,

where δ = 10−13 and N is the number of unknowns.
The inexact-Newton algorithm does not solve equation (17) exactly, but rather to a certain relative

tolerance: ∥
∥
∥F

(n) −
(

T (n) +A(n)
)

∆q(n)
∥
∥
∥

2
≤ ηn‖F

(n)‖2.

The forcing parameter ηn ∈ [0, 1) controls the accuracy of solution update ∆q(n) and the convergence rate of
the inexact-Newton method. If ηn is too small, we obtain quadratic convergence at the expense of oversolving
the linear system. If ηn is too large, the linear system will be cheap to solve, but outer iterations will not
converge quadratically.
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For this work we use the following formula for the forcing parameter, originally proposed by Eisenstat
and Walker:37

ηn =

∣
∣
∣‖F(n)‖2 − ‖F

(n−1) −
(

T (n−1) +A(n−1)
)

∆q(n−1)‖
∣
∣
∣

‖F(n−1)‖2
, (18)

together with the safeguard

ηn ← min
{

0.5, max
{

ηn, η
(1+

√
5)/2

n−1

}}

, whenever η
(1+

√
5)/2

n−1 > 0.1

With this choice of forcing parameter, the inexact-Newton method can be shown to converge q-superlinearly.37

We limit the number of Krylov iterations to between 60 and 80 per iteration, so the asymptotic convergence
of our algorithm is often linear; nevertheless, we have found that formula (18) is very useful, because it
avoids oversolving during the early iterations of the inexact-Newton phase.

B. Solving The Distributed Linear System

During both the start-up and Newton phases we use a Krylov solver — for example, the generalized minimal
residual method (GMRES)38 — to inexactly solve sparse systems of the form

Ax = b. (19)

To solve the above equation in parallel, the unknowns, x, and their corresponding equations are assigned to
unique processes according to some domain decomposition; for the present work each block is assigned to a
process. For a given process, i, three types of unknowns can be identified for the linear system (19):

1. internal unknowns which appear only in equations on the process i;

2. internal-interface unknowns which are assigned to process i but coupled to unknowns on another process
j 6= i, and;

3. external-interface unknowns assigned to other subdomains but appearing in equations on process i.

For example, when the Euler equations are discretized using SATs, the internal- and external-interface
unknowns correspond to nodes which are coincident for adjacent blocks.

If the unknowns and equations are grouped, i.e. ordered, by subdomain, then we can write the equations
corresponding to process i as

Aix(i) + Eiy(i,ext) = b(i), (20)

where x(i) and b(i) denote the unknowns and right-hand-sides assigned to process i, and y(i,ext) are the
external-interface unknowns coupled with unknowns on process i. With this grouping, the global linear
system for four subdomains has the structure shown in Figure 2. Note that internal-interface unknowns are
ordered last in each subdomain. This convention allows more efficient interprocessor communication, and
reduced local indirect addressing during matrix-vector multiplication.25

With the internal-interface unknowns ordered last, we obtain the (local) partitioning

x(i) =

(

u(i)

y(i)

)

, b(i) =

(

f(i)

g(i)

)

,

where u(i) are the local internal variables, and y(i) are the local internal-interface variables. The subvectors
f(i) and g(i) are the analogous partitions of b(i). Hence, the local equations (20) on process i take the form

(

Bi Fi

Ei Ci

)(

u(i)

y(i)

)

+

(

0
∑

j∈Ni
Eijy(j)

)

=

(

f(i)

g(i)

)

. (21)

The neighbouring subdomains of subdomain i are denoted by the set Ni.
In using a Krylov-subspace method to solve the distributed system (19), we must parallelize the inner-

products, the matrix-vector products, and the preconditioner. The inner-products are straightforward: they
are computed by summing the local products, e.g. vT

(i)z(i), using the MPI command MPI_Allreduce().
Parallelizing the matrix-vector products and the preconditioner requires more care.
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Figure 2. The sparsity structure of the global system matrix with unknowns grouped by subdomain,
and internal-interface variables listed last. Sparse submatrices with non-zero elements are shaded.

For the matrix-vector products, we see that only internal-interface unknowns are affected by the product
Eiy(i,ext) =

∑

j∈Ni
Eijy(j). Thus, communication time can be partially hidden by using a non-blocking

communication of the interface variables.39 During the communication the local matrix is multiplied, and,
once the external-interface unknowns are received, the contribution due to Eiy(i,ext) is calculated and added
to y(i). Note that explicit matrix-vector products are only required for the approximate-Newton stage or for
adjoint solves.

Preconditioners are the most critical component of an efficient parallel implicit linear solver. While
excellent serial preconditioners exist for Newton-Krylov flow solvers,4, 15, 16 these preconditioners cannot be
implemented efficiently in parallel; for example, while using ILU(p) on the global system matrix, A, has
proven to work well in serial, a parallel version results in substantial idle time and communication. The
essence of the challenge is that a good parallel preconditioner must balance the competing objectives of
scalability and serial performance.

C. Preconditioning

For the current work, two parallel preconditioners were investigated: one based on the additive Schwarz
method and one based on an approximate Schur method. Both of the underlying methods require an exact
or inexact inversion of local submatrices. The preconditioners presented here use an incomplete lower-upper
factorization of the local submatrix of the modified Jacobian:

LiUi =
[

T (n) +A
(n)
1

]

i
+ Ri,

where Ri is the error in the factorization. Incomplete lower-upper factorization with a level of fill p, ILU(p)40

is used to obtain the factorization LiUi. Notice that the factorization itself does not require inter-processor
communication, since ILU(p) is applied to the local submatrices only. For the remaining sections, the

submatrix Ai refers to the modified Jacobian submatrix [T (n) +A
(n)
1 ]i.

1. Additive Schwarz Preconditioner

The simplest form of additive Schwarz preconditioning is essentially a block Jacobi iteration; see, for example,
Saad.41 Given the vector w, the local component of the preconditioned vector z is given by the exact or
inexact solution to the system

Aizi = wi. (22)

Equation (22) can be solved using a direct method or iteratively using, for example, GMRES. For this work,
we solve (22) approximately using a single application of the ILU factorization: zi = U−1

i L−1
i wi. We have
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investigated the use of preconditioned GMRES to solve (22), but solving the local system more accurately
in this way was not found to be competitive.

Additive Schwarz methods can employ overlapping domains to improve the quality of the preconditioner,
i.e. reduce the number of Krylov iterations. Numerical experiments by Gropp et al.42 suggest that domain
overlap, while capable of reducing the number of Krylov iterations, increases the overall CPU time; hence,
we do not consider overlapping as a convergence strategy in this work.

2. Approximate Schur Preconditioner

The idea behind Schur complement methods is the elimination of the internal unknowns to form a reduced
system of equations, called the Schur complement system. Saad and Sosonkina25 have proposed a precondi-
tioning technique based on an approximate factorization of the Schur complement system. Their contribution
is summarized below.

Considering (21), we see that the internal variables can be written as

u(i) = B−1
i (f(i) − Fiy(i)). (23)

Substituting u(i) into the equation for y(i) we obtain the following system for the internal-interface variables
on process i:

Siy(i) +
∑

j∈Ni

Eijy(j) = g(i) − EiB
−1
i f(i) ≡ g′

(i). (24)

where Si = Ci−EiB
−1
i Fi is the “local” Schur complement matrix. Assembling all the local Schur complement

systems for each process, we obtain a linear system for all the internal-interface unknowns:









S1 E12 . . . E1P

E21 S2 . . . E2P

...
. . .

...

EP1 EP2 . . . SP









︸ ︷︷ ︸

S









y(1)

y(2)

...

y(P )









=









g′
(1)

g′
(2)

...

g′
(P )









. (25)

The coefficient matrix, S, appearing in (25) is the Schur complement.41 We will refer to this matrix as the
global Schur complement to distinguish it from the Si, which are the diagonal blocks of S.

We could assemble the global Schur complement matrix, solve the system (25), and then solve for the
local internal unknowns on each process using (23). In practice, however, forming the Schur complement
matrix and solving for the interface unknowns exactly is not competitive with other methods.25 Instead, we
consider systems that approximate (25) and act as preconditioners for the global system (19).

Consider the following block factorization of Ai;

Ai =

(

Bi Fi

Ei Ci

)

=

(

Bi 0

Ei Si

)(

I B−1
i Fi

0 I

)

. (26)

Next, suppose Ai has been factored instead into Ai = LiUi, where

Li =

(

LBi
0

EiU
−1
Bi

LSi

)

, and Ui =

(

UBi
L−1

Bi
Fi

0 USi

)

.

Comparing the factors in (26) with Li and Ui we can show that25

Si = LSi
USi

. (27)

So, we can obtain an LU decomposition of the local Schur complement by extracting the relevant blocks from
the LU decomposition of Ai. Similarly, and more relevant to preconditioning, we can obtain an approximate

factorization of Si by extracting the relevant blocks from the ILU factorization of Ai.
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Suppose the local matrix has been factored as Ai = LiUi + Ri. Then we can define the following
approximate local-Schur complement system using (27) and (24);

y(i) = U−1
Si

L−1
Si



g′
(i) −

∑

j∈Ni

Eijy(j)



 . (28)

The above equation is a single iteration of block Jacobi on the local internal-interface unknowns. This system
can be further accelerated using a Krylov-subspace method such as GMRES.41 Once the approximations to
the y(i) have been exchanged, we can substitute the y(i,ext) into (20), and apply the ILU factorization to
obtain approximate values for x(i).

We have implemented an approximate Schur preconditioner which is closely based on algorithm 3.1 of
Saad and Sosonkina.25 Two important changes to the original algorithm involve the complete forward and
backward solves, (LiUi)

−1, on lines 5 and 25 of their algorithm. These forward-backward solves are modified
with partial operations involving USi

and LSi
, such that, mathematically our algorithm is equivalent, but

computationally it is approximately 20% more efficient. The relevant modifications can be found on lines 1,
22, and 23 of algorithm 1 in the appendix. These modifications, while transparent in a mathematical sense,
are essential if the approximate Schur preconditioner is to be competitive with additive Schwarz.

A linear solver that uses the approximate Schur preconditioner must be a flexible variant, that is, the
solver must be compatible with preconditioning that varies from iteration to iteration. For this reason, we
use Flexible GMRES (FGMRES)43 with the Schur preconditioner. FGMRES uses approximately twice the
memory of GMRES, although it is essentially identical in terms of CPU time.

In the context of the approximate Schur preconditioner, one advantage of using SATs to couple the blocks
is that the reduced system size is independent of the order of the interior scheme; therefore, we anticipate
that the approximate Schur preconditioner will be well suited to parallel implicit high-order finite-difference
schemes.

IV. Results

The results presented in the following subsections have been obtained on grids for the ONERA M6 wing.
The dimensions of the grids are listed in Table 1. All grids use an HH topology and 25 chord lengths to the
far field. For a given grid, each block has identical Nj , Nk, and Nm dimensions. Sizing the blocks this way
allows for better load balancing; future work may consider block decomposition as a means of load balancing
arbitrary structured grids.

Table 1. ONERA M6 grids and their dimensions.

grid name blocks dimensions grid size

(Nj ×Nk ×Nm)

M6-12-1094 12 45× 45× 45 1093500

M6-12-146 12 23× 23× 23 146004

M6-48-458 48 33× 17× 17 457776

A. Mitigation of Memory Contention Issues

We have obtained all results on an SMP HP Itanium Beowolf-class cluster. Each node on the cluster consists
of 4 Itanium 2 processors with 6 MBytes L3 cache and a clock speed of 1500 MHz. The nodes each have at
least 8 GBytes of RAM, and are connected with a high-bandwidth low-latency Myrinet network.

While validating the parallel solver, we observed that some operations which should have been close to
100% efficient were not. Memory contention was identified as the problem; when the same cases were run
with 1 process per node the efficiency improved to the expected levels. Clearly, running with only 1 process
per node is not a suitable resolution of the memory contention issue.

One way to reduce memory contention for this architecture is by improving cache residency. If the
number of floating point operations per memory access can be increased, i.e. fewer cache misses, then the
likelihood of contention should decrease. The subroutines that experience the most cache misses are the
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Figure 3. Ratio of solver run times using 4 processors per node to solver run times using 1 processor
per node, as a function of number of processors.

explicit matrix-vector products and the U−1
i L−1

i forward-backward solves. These subroutines loop through
compressed matrix rows and access non-sequential elements of a vector. This non-sequential access of vector
elements is responsible for most of the memory contention.

The Jacobian matrix for the Euler and Navier-Stokes equations has a natural 5 × 5 block structure. If
the matrix is stored as rows of blocks rather than rows of numbers then matrix-vector operations should
experience fewer cache misses. This matrix storage scheme is referred to as a block compressed row (bcr)
storage format; the original code used the traditional compressed sparse row (csr) storage scheme.

For the csr format, the ILU(p) factorization is slightly modified to allow fill-in for any block that contains
non-zeros, i.e. Block-Fill ILU(p) (BFILU(p)44). For the bcr format, we use block ILU(p) (BILU(p)), which
is analogous to ILU(p) except that matrix operations replace scalar operations. For the Euler equations
with scalar dissipation, BFILU(p) and BILU(p) lead to almost identical ILU factorizations for csr and bcr
formats, respectively; the only differences are due to the 5× 5 SAT blocks at interface nodes. It follows that
differences in CPU time between the two formats are attributable primarily to changes in cache residency.

Flow solutions for the M6-48-458 grid were obtained for 4, 8, and 12 processors at a Mach number of
0.699 and an angle of attack of 3.06 degrees. Both the csr and bcr matrix formats were used together
with the approximate Schur and additive Schwarz preconditioners. Run times using 4 processors per node,
T(4 proc/node), were scaled by run times using 1 processor per node, T(1 proc/node); these ratios are
plotted in Figure 3. For all cases, memory contention decreases as the number of processors increases,
since the local vectors become smaller. The results demonstrate that the bcr format outperforms the csr
format on this architecture, independent of preconditioner. The figure also shows that the additive Schwarz
preconditioner suffers more memory contention than the approximate Schur. More GMRES iterations are
required when using the Schwarz preconditioner, which means more calls to the subroutines that suffer the
greatest memory contention.

The remaining results presented in this paper use the bcr format and BILU(1) factorizations.

B. Preconditioner Comparison

To test the parallel efficiency of the preconditioners, flow solutions were timed for the M6-12-146 and M6-
48-458 grids. The operating conditions were fixed at a Mach number of 0.699 and an angle of attack of
3.06 degrees. The discrete equations were solved to a relative tolerance of 10−10 using the Newton-Krylov
algorithm. The linear sub-problems were solved using FGMRES limited to 60 and 80 iterations for the 12
and 48 block grids, respectively.

Figure 4 compares the speed-up and parallel efficiency of the additive Schwarz and approximate Schur
preconditioners for the M6-12-146 grid. In the figure, T is the run time and Tref the reference serial run
time: both preconditioners reduce to ILU(1) for serial computations. To avoid complications introduced by
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Figure 4. Speed-up and parallel efficiency of the approximate Schur and additive Schwarz precondi-
tioners for the grid M6-12-146. Results were obtained for 1 processor per node to eliminate issues
related to memory contention.

memory contention, the timings for this grid were obtained using 1 processor per node. Except for the runs
with 2 and 3 processors, the approximate Schur preconditioner has the best efficiency. Moreover, the Schur
preconditioner demonstrates excellent scalability as the number of processors increases.

Speed-up and efficiency results for the M6-48-458 grid are presented in Figure 5. The reference time was
chosen, arbitrarily, to be the 24 processor approximate Schur timing: Tref = 24 × TSchur(24 proc). In order
to obtain results for 48 processors, it was necessary to run with 4 processors per node; hence, the results
in Figure 5 are confounded by memory contention. The effects of contention are reflected in the increase
in efficiency as the number of processors increases from 4 to 24. The approximate Schur preconditioner
performs slightly better than the additive Schwarz preconditioner for the M6-48-458 grid, but not to the
degree of the 12 block grid. It is not clear why the additive Schwarz preconditioner performs poorly on the
smaller grid.

The preconditioners can also be assessed by comparing the total number of FGMRES iterations used
during a flow solution. Figure 6 shows that the iterations required by the approximate Schur preconditioner
are relatively independent of the number of processors, for both grids considered here. In contrast, the
additive Schwarz preconditioner requires more iterations as more processors as added. This difference reflects
the implicit coupling between domains achieved by the approximate Schur preconditioner.

For the grids considered, the results suggest that the approximate Schur preconditioner is a better
choice than the additive Schwarz preconditioner, in terms of CPU time and Krylov iterations. The Schwarz
preconditioner may be useful if memory considerations are important, since the Schur preconditioner requires
FGMRES while the Schwarz preconditioner can use GMRES (see the discussion at the end of Section III.C.2).

C. Jacobian Update Period

Recall that the parameter m controls the frequency with which the modified Jacobian matrix is calculated
and factored during the approximate-Newton phase. The M6-12-146 ONERA M6 wing grid was used to
obtain flow solutions for the update period range m ∈ {1, 2, . . . , 7}. Mach numbers of 0.5, 0.699, and 0.84
were considered.

Figure 7 plots the solution time versus the number of iterations between Jacobian updates. The time is
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given in equivalent function evaluations (EFEs); this measure scales the CPU time by the time required to
evaluate F once. The result shows that m can have a significant impact on the algorithm, reducing CPU
time between 20% and 30% as m increases from 1 to 5. As the update period increases beyond m = 5,
convergence success becomes less likely and non-physical pressures and densities are encountered. These
results suggest that values of m ∈ {3, 4, 5} provide a good tradeoff between CPU time and convergence
success. We have used m = 5 for the results presented in this paper.

D. Solution Quality

The flow over the ONERA M6 wing was used to validate the flow solver. Solutions were obtained for the
ONERA M6 grid M6-12-1094 at Mach numbers 0.699 and 0.84. The angle of attack was fixed at 3.06 degrees.

Figures 9 and 10 compare the numerical solutions with the experimental results of Schmitt and Charpin.45

The comparisons are purely qualitative, since viscous effects are neglected in the numerical results. The
comparisons are intended to verify the discretization based on the SBP operators and the SATs.

Figure 8 plots the contours of pressure on the symmetry plane of the ONERA M6 computation, at a
Mach number of 0.699. A multivalued solution, permitted by the SAT formulation, is evident near the
leading edge; however, the grid used is coarse, and the discrepancy between blocks does not affect stability
or accuracy.

E. Adjoint Solution

The inexact-Newton strategy used in the flow solver requires relatively few FGMRES (or GMRES) iterations.
This is an important point, since the computational work needed by GMRES grows quadratically with the
number of iterations. If we decrease the desired tolerance, a preconditioner which requires fewer iterations
becomes more attractive.

The discrete adjoint variables, ψ, used in optimization are solutions to equations of the form

ATψ = b (29)

where (b)i = ∂J /∂qi and J is an objective function. The adjoint equation (29) must be solved to a
sufficiently small tolerance to ensure that the gradient calculation is accurate.46 This leads us to the question:
how do the two preconditioners compare when used to solve the adjoint problem?
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To answer this question, the adjoint equations for J = Cl/Cd were formed and solved on the ONERA
M6 grids M6-12-146 and M6-48-458. The same flow conditions, M = 0.699 and α = 3.06, were used for both
grids, and 12 and 48 processors were used for the small and large grids, respectively. The flow equations were
first solved to a relative tolerance of 10−10, and the adjoint systems were subsequently formed and solved to
a relative tolerance of 10−6.

In addition to comparing the two preconditioners, we also consider the use of BiCGSTAB47 in the
solution of the adjoint system (29). Recent work in two-dimensional, unsteady optimization48 suggests that
BiCGSTAB is significantly faster than GMRES in this context. No flexible variant of BiCGSTAB exists, so
we only consider the additive Schwarz preconditioner for this solver.

Table 2 compares the preconditioner-solver pairs applied to the adjoint equations on the two grids.
When using FGMRES, we see that the approximate Schur preconditioner is 50% faster than the additive
Schwarz preconditioner. The approximate Schur-FGMRES pair is also significantly faster than the Schwarz-
BiCGSTAB combination, but this difference reduces as the problem size grows. The reason, as mentioned
above, is that work increases quadratically with the number of iterations for FGMRES while it increases
linearly for BiCGSTAB. Thus, for larger problems BiCGSTAB will eventually be faster than FGMRES.

Memory is another consideration that may favour BiCGSTAB for larger problems. For example, on the
larger grid the approximate Schur-FGMRES pair requires 384 Krylov subspace vectors (768 vectors total),
which is equivalent in terms of memory to approximately 12 Jacobian matrices. Similarly, the memory
required by additive Schwarz-GMRES is approximately 10 Jacobian matrices on the larger grid. Precondi-
tioned BiCGSTAB requires only 8 vectors, independent of the number of iterations.

Table 2. Comparison of the preconditioner-solver pairs applied to the adjoint system.

Grid M6-12-146 Grid M6-48-458

solver preconditioner CPU Time (s) Krylov Iterations CPU Time (s) Krylov Iterations

BiCGSTAB Schwarz (0 iter) 86.40 411 141.63 857

FGMRES Schwarz (0 iter) 73.41 365 165.54 676

FGMRES Schur 35.23 179 91.75 384
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V. Conclusions

We draw the following conclusions.

• A second-order discretization of the Euler equations using SATs at the boundaries and interfaces is
well suited to a parallel Newton-Krylov solution strategy.

• For the Euler equations, the approximate Schur preconditioner outperforms the additive Schwarz pre-
conditioner in terms of CPU time and Krylov iterations.

• The approximate Schur preconditioner must use FGMRES, which requires approximately twice the
memory of GMRES; therefore, the Schwarz preconditioner is a good choice when memory is limited.

• For the grids considered, with between 105 to 106 nodes, the most efficient choice for the adjoint
equations is FGMRES with the approximate Schur preconditioner. For larger grids, BiCGSTAB with
additive Schwarz may be a better choice, but further investigation is needed.

Appendix

Algorithm 1: Approximate Schur Preconditioner

Data: m, η, u

Result: v

v = U−1
Si

L−1
i u // get residual of reduced system for a guess of zero1

w
(1)
(i) = Pv // P projects onto the space of internal-interface unknowns2

set β = ‖w
(1)
(i) ‖2, w

(1)
(i) ← w

(1)
(i) /β, and H = 03

for j = 1, m do4

obtain external interface values, w
(j)
(i,ext)5

w
(j+1)
(i) = Eiw

(j)
(i,ext) // perform external matrix-vector product6

w
(j+1)
(i) ← U−1

Si
L−1

Si
w

(j+1)
(i) // apply diagonal block of Schur complement7

w
(j+1)
(i) ← w

(j)
(i) + w

(j+1)
(i) // finish the matrix-vector product, equation (28)8

for k = 1, j do Gram-Schmidt orthogonalization9

Hk,j = (w
(j+1)
(i) )T w

(k)
(i)10

w
(j+1)
(i) ← w

(j+1)
(i) −Hk,jw

(k)
(i)11

end12

Hj+1,j = ‖w
(j+1)
(i) ‖213

w
(j+1)
(i) ← w

(j+1)
(i) /Hj+1,j14

if reduced system residual tolerance ≤ η then15

set m = j and exit16

end17

end18

Define Wm = [w
(1)
(i) , . . . ,w

(m)
(i) ]19

Compute y(i) = Wmz(m) where z(m) = minz ‖βe1 −Hz‖2 and e1 = [1, 0, . . . , 0]T20

obtain external interface preconditioned values, y(i,ext)21

v← v + PT P (u− Eiy(i,ext) − v) // updates internal-interface only22

v← U−1
i

[
I + PT P (L−1

i − I)
]
v // forward solve is applied to interface only23
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Figure 9. Comparison of the coefficient of pressure at a Mach number of 0.699 around the ONERA M6 wing.
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Figure 10. Comparison of the coefficient of pressure at a Mach number of 0.84 around the ONERA M6 wing.
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9Mattsson, K., Svärd, M., and Nordström, J., “Stable and accurate artificial dissipation,” Journal of Scientific Computing ,
Vol. 21, No. 1, 2004, pp. 57–79.

10Hesthaven, J. S. and Gottlieb, D., “A stable penalty method for the compressible Navier-Stokes equations: I. open
boundary conditions,” SIAM Journal of Scientific Computing , Vol. 17, No. 3, 1996, pp. 579–612.

11Nordström, J. and Carpenter, M. H., “Boundary and interface conditions for high-order finite-difference methods applied
to the Euler and Navier-Stokes equations,” Journal of Computational Physics, , No. 148, 1999, pp. 621–645.

12Johan, Z., Hughes, T. J. R., and Shakib, F., “A globally convergent matrix-free algorithm for implicit time-marching
schemes arising in finite element analysis in fluids,” Computer Methods in applied mechanics and engineering, , No. 87, 1991,
pp. 281–304.

13Nielsen, E. J., Walters, R. W., Anderson, W. K., and Keyes, D. E., “Application of Newton-Krylov methodology to a
three-dimensional unstructured Euler code,” 12th AIAA Computational Fluid Dynamics Conference, San Diego, CA, 1995,
AIAA Paper 95–1733.

14Anderson, W. K., Rausch, R. D., and Bonhaus, D. L., “Implicit/multigrid algorithms for incompressible turbulent flows
on unstructured grids,” Journal of Computational Physics, , No. 128, 1996, pp. 391–408.

15Pueyo, A. and Zingg, D. W., “Efficient Newton-Krylov solver for aerodynamic computations,” AIAA Journal , Vol. 36,
No. 11, Nov. 1998, pp. 1991–1997.

16Blanco, M. and Zingg, D. W., “Fast Newton-Krylov method for unstructured grids,” AIAA Journal , Vol. 36, No. 4, April
1998, pp. 607–612.

17Chisholm, T. T. and Zingg, D. W., “A Newton-Krylov algorithm for turbulent aerodynamic flows,” 39th AIAA Aerospace

Sciences Meeting and Exhibit , No. AIAA 2003–0071, Reno, Nevada, 2003.
18Pulliam, T., Nemec, M., Holst, T., and Zingg, D., “Comparison of evolutionary (genetic) algorithm and adjoint methods

for multi-objective viscous airfoil optimizations,” AIAA Paper 2003–0298, Jan. 2003.
19Barth, T. J. and Linton, S. W., “An unstructured mesh Newton solver for compressible fluid flow and its parallel

implementation,” 33rd AIAA Aerospace Sciences Meeting and Exhibit, No. AIAA–95–0221, Reno, Nevada, 1995.
20Keyes, D. E., “Aerodynamic applications of Newton-Krylov-Schwarz solvers,” Proceedings of the 14th International

Conference on Numerical Methods in Fluid Dynamics, Springer, New York, 1995, pp. 1–20.
21Kaushik, D. K., Keyes, D. E., and Smith, B. F., “Newton-Krylov-Schwarz methods for aerodynamics problems: com-

pressible and incompressible flows on unstructured grids,” 11th International Conference on Domain Decomposition Methods,
1998.

22Groth, C. P. and Northrup, S. A., “Parallel implicit adaptive mesh refinement scheme for body-fitted multi-block mesh,”
17th AIAA Computational Fluid Dynamics Conference, No. AIAA–2005–5333, Toronto, Ontario, Canada, June 2005.

23Knoll, D. and Keyes, D., “Jacobian-free Newton-Krylov methods: a survey of approaches and applications,” Journal of

Computational Physics, , No. 193, 2004, pp. 357–397.
24Cai, X.-C., Gropp, W. D., Keyes, D. E., and Tidriri, M. D., “Newton-Krylov-Schwarz methods in CFD,” International

Workshop on Numerical Methods for the Navier-Stokes Equations, Heidelberg, 1993.
25Saad, Y. and Sosonkina, M., “Distributed Schur complement techniques for general sparse linear systems,” SIAM Journal

of Scientific Computing , Vol. 21, No. 4, 1999, pp. 1337–1357.
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