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The ADjoint method is applied to a three-dimensional Computational Fluid Dynamics
(CFD) solver to generate the sensitivities required for aerodynamic shape optimization.
The ADjoint approach selectively uses Automatic Differentiation (AD) to generate the
partial derivative terms in the discrete adjoint equations. By selectively applying AD
techniques, the computational cost and memory overhead incurred by using AD are signif-
icantly reduced, while still allowing for the the accurate treatment of arbitrarily complex
governing equations and boundary conditions. Once formulated, the discrete adjoint equa-
tions are solved using the Portable, Extensible Toolkit for Scientific computation (PETSc).
With this approach, the computed adjoint vector can be used to calculate the total sensi-
tivities required for aerodynamic shape optimization of a complete aircraft configuration.
The resulting sensitivities are compared with complex-step derivatives to establish their
accuracy. The tools developed are applied to an infinite wing test case to demonstrate the
accuracy and efficiency of the method.

I. Introduction

Adjoint methods for sensitivity analysis involving partial differential equations (PDEs) have been known
and used for over three decades. They were first applied to solve optimal control problems and thereafter
were used to perform sensitivity analysis of linear structural finite-element models. The usefulness of the
adjoint method, particularly in the case of design optimization, lies in the fact that it is an extremely efficient
approach for computing the sensitivity of one function of interest with respect to many parameters. When
using gradient-based optimization algorithms, the efficiency and accuracy of the sensitivity computations has
a significant effect on the overall performance of the optimization. Thus, having an efficient and accurate
sensitivity analysis is of paramount importance.

The first application of the adjoint method to fluid dynamics is due to Pironneau.1 The method was
then extended by Jameson to perform airfoil shape optimization2 and since then it has been used to design
laminar flow airfoils3 and to optimize airfoils suitable for multipoint operation.4 The method has also been
extended to three dimensional problems, leading to applications in in aerodynamic5 and aero-structural6,7

shape optimization.
However, one of the complications in dealing with adjoint methods is that, as the adjoint equations

are typically derived by hand, several assumptions are often made during the formulation of the adjoint
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equations. In some cases this is simply to expedite the code development phase, while in others, it is
required just to make the derivation of the adjoint possible. For example, the viscous effects of the flow
might not be modeled. Furthermore, even when they are modeled,8 the flow is typically assumed laminar,
thus no turbulence model is used. In the latter case, the viscosity and heat transfer ratio are usually assumed
to be independent of the flow and are kept constant when deriving the adjoint. This is often true even if
the flow solver uses the RANS equations because the derivation of the adjoint typically assumes a constant
eddy viscosity, thus ignoring the turbulence equations.

Any simplifications made while deriving the adjoint equations for the flow solver might have a significant
impact on the adjoint-based gradients computed, as demonstrated by Dwight.9 In order to tackle this defi-
ciency, the authors have built an efficient design framework which uses an automated approach – involving
AD tools – to develop the adjoint solver. This approach is described by Martins10 and requires relatively
little coding effort. It automatically produces the discrete adjoint equations for any flow solver and has been
successfully tested for both the Euler equations11 and the low magnetic Reynolds number magnetohydrody-
namic (MHD) equations12 using thousands of design variables. A similar approach using complex variables
is discussed by Nielsen13

The eventual goal of this work is to extend this automated approach to develop the discrete adjoint
equations for the RANS equations and to be able to compute gradients with respect to a variety of design
variables based on the adjoint solution. The application of the method in the present work is limited to
the mesh coordinate sensitivities of the CFD solver using the Euler equations. These sensitivities are then
validated against results from the complex step derivative approximation14 for a simple infinite wing test
case.

II. Physical Model

A. Governing Equations

The governing equations used here are the three-dimensional Euler equations which can be written as follows,

∂w

∂t
+

∂fi

∂xi
= 0, (1)

where xi are the coordinates in the ith direction, and the state and the fluxes for each cell are

w =


ρ

ρu1

ρu2

ρu3

ρE

 , fi =


ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiu3 + pδi3

ρuiH

 . (2)

A coordinate transformation to computational coordinates (ξ1, ξ2, ξ3) is used. This transformation is
defined by the following metrics,

Kij =
[
∂Xi

∂ξj

]
, J = det(K), (3)

K−1
ij =

[
∂ξi

∂Xj

]
, S = JK−1, (4)

where S represents the areas of the face of each cell projected on to each of the physical coordinate directions.
Details about generalized coordinate transformations can be found in Hoffmann.15

The Euler equations in computational coordinates can then be written as,

∂Jw

∂t
+

∂Fi

∂ξi
= 0, (5)

where the fluxes in the computational cell faces are given by Fi = Sijfj .
In semi-discrete form the Euler equations are,

dwijk

dt
+Rijk(w) = 0, (6)
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where R is the residual with all of its components (fluxes, boundary conditions, artificial dissipation, etc.).
The resulting set of coupled ODEs (6) are marched in time using an explicit five-stage modified Runge–Kutta
scheme to steady state.

It must be noted that while the derivation presented in following text is presented only for the Euler
equations, because the ADjoint approach is only based on the existence of code that computes the residual
of the governing equations, the procedure can be extended to the full Reynolds-averaged Navier–Stokes
equations without modification. Note that the code for the residual computation is assumed to include the
application of the required boundary conditions (however complex they may be) and any artificial dissipation
terms that may need to be added for numerical stability.

III. Numerical Model

The NSSUS solver is a new finite-difference, higher-order solver that has been developed at Stanford
University under the Advanced Simulation and Computing (ASC) program sponsored by the Department
of Energy.16 It is a generic node-centred, multi-block, multi-processor solver, tested for the Euler equations,
and currently being extended to the Reynolds-Averaged Navier–Stokes equations. The finite-difference op-
erators and artificial dissipation terms follow the work by Mattsson17,18 and the boundary conditions are
implemented by means of penalty terms, according to the work by Carpenter.19,20 Despite being capable of
performing computations up to eight-order accuracy, the implementation of the adjoint solver was restricted
to second-order for simplicity. The extension to higher order should be straightforward to accomplish.

The internal discretization is straightforward and only requires the first neighbours in each coordinate
direction for the inviscid fluxes and the first and second neighbours for the artificial dissipation fluxes, see
Figure 1. However, the boundary treatment needs to be explained in more detail. As the finite-difference

Figure 1. Stencil for the vertex-centred residual computation.

scheme only operates on the nodes of a block, one-sided difference formulae are used near block boundaries
(be it a physical or an internal boundary). Consequently, the nodes on the interface of internal boundaries
are multiply defined, see Figure 2.

These multiple instances of the same physical node are driven to the same value by means of a penalty
term, i.e. an additional term is added to the residual R which is proportional to the difference between the
instances. This reads

Ri
blockA = Ri

blockA + τ(wi
blockB − wi

blockA) (7)
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Figure 2. Block-to-block boundary stencil.

with a similar expression existing for Ri
blockB. In equation (7), τ controls the strength of the penalty and

is a combination of a user defined parameter and the local flow conditions, see Mattsson17 for more details.
Hence, the residual of nodes on a internal block boundary is a function of its local neighbours in the block
and the corresponding instance in the neighbouring block.

The boundary condition (BC) treatment is very similar to the approach described above except that the
penalty state used in equation (7) is now determined by the boundary conditions.

IV. Discrete Adjoint Formulation

The control theory approach has been used extensively in recent years for both aerodynamic shape
optimization and aero-structural design5 and has recently also been proved successful in MHD design12,21

by the authors. This approach is well known for its capability to effectively handle design problems involving
a large number of design variables and a small number of objective functions.

The sensitivities are obtained by solving a system of equations of size equivalent to the governing equa-
tions of the flow. When compared to traditional finite-difference methods, the adjoint approach enables
large computational savings, at the expense of a more complex implementation.22 This work employs a
discrete adjoint formulation, meaning that the adjoint system of equations is obtained by differentiating the
discretized form of the governing equations.

To put this discussion in context, consider a typical optimization problem. Let U(α) be the set of all flow
variables at discrete grid points arising from an approximate solution of the governing equations and α be
the set of design variables which influence the flow. Further, let J(U(α), α) be a scalar function of both α
and U(α) which approximates the desired cost function. Then, in the context of control theory, the design
problem can be posed as

Minimize J(U(α), α)
w.r.t. α (8)

subject to R(U(α), α) = 0
Ci(U(α), α) = 0 i = 1, ...,m

where R(U(α), α) = 0 represents the discrete flow equations and boundary conditions that must be satisfied
and Ci(U(α), α) = 0 are m additional constraints.

When using a gradient-based optimizer to solve the problem (8), the sensitivity of both the cost function
J and the constraints Ci with respect to the design variables are required. If one constructs the following
adjoint system of equations [

∂R
∂U

]T

λ =
[

∂J

∂U

]T

, (9)

and solves for the adjoint variables λ, the sensitivity of the cost function is given by

dJ

dα
=

∂J

∂α
− λT ∂R

∂α
. (10)

An additional adjoint system has to be solved for each additional constraint function C, which implies
computing a new right-hand side for the system (9).

The sensitivity obtained from (10) can then be used to find the search direction of the gradient based
optimization algorithm as shown in Figure 3.
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Figure 3. Schematic of the adjoint-based optimization algorithm.

The advantage of the adjoint approach can be seen from equation (10), which is independent of δU . This
independence allows the gradient of J with respect to an arbitrarily large vector of design variables α can
be determined without the need for additional flow-field evaluations.

A. Discrete Adjoint Solver

The theory of the implementation of the discrete adjoint solver for this work follows that of the authors
previous work.10–12 The discrete adjoint system of equations (9) was constructed by differentiating all
the numerical fluxes that comprised the residual Rijk in the discretized governing equations (6). This
differentiation has been automated using an AD tool, namely Tapenade,23–26 which is a non-commercial tool
that supports Fortran 90.

The way the flow solver was coded, the residual is computed with loops over the nodes of each compu-
tational block in each processor. To make the implementation more efficient, it was necessary to re-write
the flow residual routine such that it computed the residual for a single specified node. This required a
considerable amount of copy-and-paste from the original code but this proved to be easy and did not signif-
icantly affect development. The re-engineered residual routine became a function with the residual rAdj as
an output argument and the stencil of flow variables wAdj that affected that residual as an input argument

subroutine residualAdj(wAdj,rAdj,i,j,k).

Note that the general flow state U(α) is written as W in this code. The stencil of flow variables wAdj
extended two nodes in each direction to allow for second-order discretization as shown in Figure 4.

The boundary condition penalty terms were moved to a separate routine that also had the boundary
subface mm and the corresponding flow variable that was donor to the penalty state wDonorAdj as input
parameters

subroutine residualPenaltyAdj(wAdj,dwAdj,mm,wDonorAdj,i,j,k)

This penalty residual routine was only called when the node (i,j,k) was located at a boundary face.
Having verified the re-written residual routines by comparing the residual values to the ones computed

with the original code, these routines were then fed into Tapenade. Using the reverse mode in Tapenade,
the automatically differentiated routines were

SUBROUTINE RESIDUALADJ_B(wAdj,wadjb,rAdj,radjb,i,j,k)

and

SUBROUTINE RESIDUALPENALTYADJ_B(wAdj,wadjb,rAdj,radjb,mm,wdonoradj,wdonoradjb,i,j,k)

These AD routines readily compute the entries of ∂R
∂W since

wAdjb(ii, jj, kk, n) =
∂R(i, j, k,m)

∂W (i + ii, j + jj, k + kk, n)
. (11)

This allowed for an easy assembly of the flux Jacobian matrix ∂R
∂W .
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Figure 4. Flow variables stencil wAdj used in the AD.

In order to solve the large discrete adjoint matrix problem (9), the Portable, Extensible Toolkit for
Scientific Computation (PETSc) 27–29 was used. This allows for MPI implementations, has several linear
iterative solvers available and performs extremely well, provided a careful object creation and assembly
procedure is followed.

B. Mesh sensitivities

The last term in equation 10, the partial sensitivity of the residuals with respect to the mesh coordinates,
∂R/∂X(i, j, k), where α = X(i, j, k), was computed using an extension of the method used to compute
the flux jacobian, ∂R/∂W . The stencil based approach still applies. However in this situation, the metric
transformations – equations (3) and (4) – need to be taken into account in the residual computation. Once
again the first two layers of adjacent nodes in each of the three coordinate directions are required for
each nodal residual. This leads to the same size and shape stencil that was present in the flux Jacobian
computation. Therefore, to streamline the code, the stencil based residual routine discussed above was
modified to include the metric transformations, making it a function of both the states w and the grid
coordinates X(i, j, k). The modified routine was then re-differentiated, simultaneously, with respect to both
w and X(i, j, k), allowing for the computation of both sets of derivatives. Once again, the matrix is very
sparse, so PETSc data structures are used to store the matrix.

The final partial derivative term required for the total sensitivity equation (10) is the explicit effect of
the mesh coordinates on the force and moment coefficients. Unlike the residual routine, which depends on
a limited stencil, the force and moment coefficients are a sum over the entire wall surface in the grid. Thus,
the small stencil used to compute the flux Jacobian is no longer valid. In this case, to be general, the stencil
must become the entire mesh. While this does cause some complications (additional memory requirements
for example), it does provide some benefits. One key benefit is that a single reverse mode differentiation
will now return all of the sensitivities required for one force or moment coefficient. While this does lead to
slightly higher memory costs for this computation, it also leads to a very efficient derivative computation.

With all of the adjoint and partial sensitivity matrices and vectors created as PETSc objects, the adjoint
system of equations (9) were solved using a Krylov subspace method, more specifically, the Generalized
Minimum Residual (GMRES) method. Finally, the total sensitivity – equation (10) – was computed using
the provided matrix-vector operation routines.

V. Results

For this work we are using an infinite wing test case. The mesh for this case, shown in Figure 5, is a single
block, C-mesh with 9,471 nodes. The wing section is a standard airfoil section modelled with Euler wall
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boundary conditions and has been extended to infinity at either end with symmetry boundary conditions.
This case was run at a Mach number of 0.9 and and angle of attack of 5 degrees. A two dimensional cross
section of the flow solution is shown in Figure 6.

Figure 5. Computational domain

1

Figure 6. Density solution for a cross section of the wing

Figures 7 and 8 show a comparison of the sensitivities of drag and lift coefficients with repect to the
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z-coordinates of the grid points for spanwise and chordwise slices through the wing. The spanwise section
shows symmetry, which is expected for an infinite wing while the chordwise section through the wing shows
much more variability, which is again expected. Note that both ADjoint sensitivities and complex step
sensitivities are shown in the figure. The fact that for each case the lines for complex step and ADjoint are
indistiguishable indicates good agreement. The L-2 norm of the error for the spanwise case is 3.40E − 9
for the drag coefficient sensitivities and 1.209E − 8 for the lift coefficient sensitivities. For the chordwise
case, the L-2 norm of the error is 1.50E − 6 for the drag coefficient sensitivities and 2.129E − 5 for the lift
coefficient sensitivities. These results are consistent with the accuracy requested of the solver, which was
1.0E − 8 for the spanwise case and 1.0E − 6 for the chordwise case. A more detailed accuracy comparison
is shown in Table 1.
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ADjoint Value: dCD/dz

Complex−Step Value: dCL/dz

ADjoint Value: dCL/dz

Figure 7. Spanwise comparison of sensitvity values with respect to the mesh z-coordinate

The same sensitivities are shown for the wing surface in Figure 9. Though the sensitivity values span the
whole domain, only a section of the wing has been shown. The sensitivities shown here correspond to the
lift and drag sensitivities of the wing.

The sensitivities obtained using the discrete adjoint approach were verified using the complex step re-
sults.14 The comparison was made using four sample points on the surface of the wing, two on the top
surface and two on the bottom surface, and the results are summarized in Table 1. The sensitivities shown
are for a perturbation of the vertical coordinate of the wing surface. The values in Table 1 shows that the
agreement between the two different approaches is excellent. The worst case shows 7 digits agreement and
the best case shows as many as 11 digits agreement. When considering the fact that the solver itself was
only convereged to 1.0E−10, this is excellent agreement.

In addition to the accuracy verification, timing results were obtained to ensure the efficiency of the
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Figure 8. Chordwise comparison of sensitvity values with respect to the mesh z-coordinate
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(a) Z coordinate sensitivity J = CL : top view (b) Z coordinate sensitivity J = CD : top
view

Figure 9. Sensitivity with respect to the mesh z-coordinates.

CL 1.03737827205E-002 1.03737827112E-2

CD -4.2921761724E-003 -4.2921761667E-3

10,1,3 CMx -3.44421800547E-002 -3.44421800306E-2

CMy -3.9976406323E-002 -3.9976406273E-2

CMz -1.59291147470E-002 -1.59291147259E-2

CL 1.03737827228E-002 1.03737827112E-2

CD -4.2921761722E-003 -4.2921761667E-3

10,1,5 CMx -4.5239521327E-002 -4.5239521281E-2

CMy -3.9976406328E-002 -3.9976406273E-2

CMz -2.551081401E-002 -2.551081398E-2

CL 1.70505774790E-003 1.70505774414E-3

CD 6.21953590692E-003 6.21953590701E-3

30,1,3 CMx -7.1419627827E-003 -7.14196277110E-3

CMy -1.8257562646240E-002 -1.8257562646434E-2

CMz 1.8512382304326E-002 1.8512382304184E-2

CL 1.70505774756E-003 1.70505774414E-3

CD 6.219535907229E-003 6.219535907011E-3

30,1,5 CMx -1.07832034589E-002 -1.07832034431E-2

CMy -1.825756264730E-002 -1.825756264643E-2

CMz 2.9865698889194E-002 2.9865698889621E-2

Table 1. CFD mesh coordinate sensitivity verification: dJ
dX(i,j,k)

.

approach. Table 2 shows the computational time breakdown of the ADjoint method for this test case. These
timing results clearly demonstrate the efficiency of the method. The solution of the adjoint system take
less than 3% of the computational time of the flow solution, while the computation of the partial derivative
terms requires only 5%. Overall the total cost of obtaining the adjoint sensitivities is less than 1/10th the
cost of a flow solution. Putting this in context: to get the flow solver to converge, starting from the baseline
solution every time a design variable was perturbed, took over 1 1

2 minutes. Extrapolating to include three
degrees of freedom on all nodes, giving 28,413 design variables, it would have taken a month to obtain the
same results that took mere seconds to compute with the adjoint method described.

VI. Conclusion

In this work we applied the ADjoint method to the NSSUS flow solver to generate the mesh coordinate
sensitivities required to perform aerodynamic shape optimization. We validated the resulting sensitivities
by comparing them to complex step result and achieved a 7-11 digit agreement. The implementation has
also been shown to be very efficient, with the total ADjoint solution taking only a small fraction of the time
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Infinite Wing

No. Nodes 9471

Flow solution 241.57

ADjoint 17.39

Breakdown:

Setup PETSc Variables 0.03

Compute flux Jacobian 5.43

Compute grid partial 5.73

Compute RHS 0.00

Solve the adjoint equations 6.16

Compute the total sensitivity 0.04

Table 2. ADjoint computational cost breakdown (times in seconds)

required for the flow solver. Finally, we showed some overall sensitivity distributions for an infinite wing
case, as an example of the results that the ADjoint implementation on NSSUS can generate. These results
also form the basis of the sensitivities required for aerodynamic shape optimization.
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