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A Newton-Krylov algorithm for aerodynamic optimization is applied to the multipoint
design of an airfoil for eighteen different operating conditions. The operating conditions
include four cruise conditions and four long-range cruise conditions at maximum and mini-
mum cruise weights and altitudes. In addition, eight operating points are included in order
to provide adequate maneuvering capabilities under dive conditions at the same maximum
and minimum weights and altitudes with two different load factors. Finally, two low-speed
operating conditions are included at the maximum and minimum weights. The problem
is posed as a multipoint optimization problem with a composite objective function that
is formed by a weighted sum of the individual objective functions. The Newton-Krylov
algorithm, which employs the discrete-adjoint method, has been extended to include the
lift constraint among the governing equations, leading to an improved lift-constrained drag
minimization capability. The optimized airfoil performs well throughout the flight enve-
lope. This example demonstrates how numerical optimization can be applied to practical
aerodynamic design.

I. Introduction

Beginning with the work of Hicks et al.1 and Hicks and Henne,2 numerical algorithms for aerodynamic
optimization based on computational fluid dynamics have progressed rapidly over the past thirty-odd years.
The introduction of adjoint methods by Pironneau3 and Jameson4 greatly improved the efficiency of gradient-
based algorithms.5–9 Numerical optimization provides the following capabilities to aid the designer:

• a rapid search of the design space for the optimum;

• a thorough understanding of trade-offs;

• rapid evaluation and comparison of competing concepts;

• the ability to produce aerodynamic shapes that formerly required extensive aerodynamic expertise,
such as the Liebeck sections of the 1970’s,10 which were redesigned using optimization by Driver and
Zingg11 without exploiting any knowledge of Stratford pressure recovery.

The designer must provide a complete specification of the optimization problem, including off-design condi-
tions for which there are specific requirements.

Most papers describing aerodynamic optimization algorithms contain examples of single-point optimiza-
tions, i.e. an airfoil or wing is optimized for one operating condition. While this is useful for proving the
effectiveness of the optimization algorithm, single-point optimization is rarely the best approach for a prac-
tical design. A wing must be able to operate efficiently in several different areas of the flight envelope. While
it is accepted that flaps and possibly slats be deployed for take-off, climb, and landing, a single wing shape
is used for most other conditions. For example, a wing must operate over a range of flight Mach numbers
and a range of lift coefficients. In addition, satisfactory performance is required under dive and high-lift
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conditions. This leads to a complex multipoint multi-objective optimization problem, and the resulting
wing’s performance at a given condition is compromised by the need for good performance under other
conditions. In order to achieve a design that is truly optimal with respect to the designer’s priorities without
being constrained by any assumptions that may not be applicable, the design problem must be specified
much more precisely and completely than previously. This requires the designer to place more emphasis on
the definition of off-design requirements, which in turn will necessitate a deeper quantitative understanding
of uncertainties and risks. More stringent off-design requirements will compromise on-design performance;
therefore, it is important that the off-design requirements not be excessively stringent.

In this paper we apply a Newton-Krylov algorithm for aerodynamic shape optimization based on the
Reynolds-averaged Navier-Stokes equations known as Optima2D8,9 to a complex eighteen-point airfoil opti-
mization problem involving both on- and off-design operating conditions. The objective is to demonstrate
how to apply optimization to practical aerodynamic design. Although the present example is itself not a
practical design, since manufacturing and structural constraints are not considered in detail, further oper-
ating requirements may be needed, and three-dimensional and laminar-turbulent transition effects are not
considered, it contains the key elements of a practical design and therefore provides a suitable platform to
investigate the issues associated with the application of aerodynamic optimization to practical problems.

II. Newton-Krylov Algorithm For Aerodynamic Shape Optimization

The Newton-Krylov approach of Nemec and Zingg8,9 is briefly described. For a complete description
of Optima2D, see Nemec.12 The geometry is parameterized through B-splines. The vertical coordinates
of the B-spline control points are the design variables for the optimization. Depending on the objective
function, the angle of attack can also be a design variable. The compressible Navier-Stokes equations are
solved with a Newton-Krylov method in which the linear system arising at each Newton iteration is solved
using the generalized minimal residual method (GMRES) preconditioned with an incomplete lower-upper
(ILU) factorization of an approximate Jacobian matrix with limited fill. The Spalart-Allmaras turbulence
model is used to compute the eddy viscosity. The spatial derivatives in the governing equations are dis-
cretized using second-order centered finite differences with added scalar numerical dissipation through a
curvilinear coordinate transformation. The gradient is calculated using the discrete adjoint method; solu-
tion of the adjoint equation is accomplished through the same preconditioned Krylov method. Geometric
constraints are added to the objective function as penalty terms. A new set of design variables is computed
using a quasi-Newton optimizer in which an estimate of the inverse Hessian based on the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) rank-two update formula is used to compute a search direction.13 The step size
is determined using a line search, which terminates when the strong Wolfe conditions are satisfied.13 Each
time a new shape is calculated, the initial grid is perturbed using a simple algebraic technique.

The handling of a lift constraint in Optima2D has been improved. Previously, this constraint was lifted
into the objective function in the same manner as the geometric constraints, and the angle of attack was
included among the design variables. The lift constraint is now treated as one of the governing equations.
The equation for the lift coefficient constraint is added to the residual vector for the discretized flow equa-
tions. The angle of incidence is added to the vector of conservative flow variables and is no longer a design
variable. For the flow solution, the matrix-vector products needed by GMRES are obtained in a matrix-free
manner. Therefore, the additional entries in the Jacobian matrix associated with the partial derivatives of
the lift coefficient constraint with respect to the flow variables and the angle of incidence and the partial
derivatives of the flow equations with respect to the angle of incidence appear automatically. The approxi-
mate Jacobian matrix used to form the ILU preconditioner is based on nearest neighbour contributions only,
so only the partial derivative of the lift constraint with respect to the angle of incidence is required. This is
determined analytically. In order to compute accurate gradients, all of the additional entries in the Jacobian
are determined analytically for the calculation of the adjoint variables. For details, see Billing.14

The accuracy of the flow solver has been studied extensively.15 The optimization is performed using a
relatively coarse mesh which can be expected to produce drag coefficients that are substantially higher than
the grid converged values. However, differences in drag are predicted very accurately. Therefore, we have a
high degree of confidence in the optimized airfoil, which is subsequently analyzed using a much finer mesh.

2 of 11

American Institute of Aeronautics and Astronautics



Table 1. Operating conditions for eighteen-point optimization.

Operating Point Reynolds Number Mach Number Lift Coefficient

A 27.32× 106 0.72 0.17
B 27.32× 106 0.72 0.28
C 18.57× 106 0.72 0.27
D 18.57× 106 0.72 0.45
E 24.22× 106 0.64 0.21
F 24.22× 106 0.64 0.36
G 16.46× 106 0.64 0.34
H 16.46× 106 0.64 0.57
I 28.88× 106 0.76 0.28
J 28.88× 106 0.76 0.15
K 28.88× 106 0.76 0.46
L 28.88× 106 0.76 0.25
M 19.62× 106 0.76 0.45
N 19.62× 106 0.76 0.24
O 19.62× 106 0.76 0.74
P 19.62× 106 0.76 0.40
Q 11.8× 106 0.16 –
R 15.0× 106 0.20 –

III. Design Problem Definition

In order to define a practical multipoint optimization problem, we consider a hypothetical aircraft with
a maximum weight of 100,000 lbs., a wing area of 1000 square feet, and a maximum cruise Mach number of
0.88. We consider the section at the mean aerodynamic chord and assume that the sectional lift coefficient
is equal to the wing lift coefficient. The target thickness to chord ratio is 0.14. The operating conditions on
which the multipoint optimization is based are cruise, long-range cruise, maneuvering under dive conditions,
and low-speed performance.

The first four operating conditions, labelled A–D in Table 1, correspond to cruise. The effective Mach
number is 0.72, based on a sweep angle of 35 degrees. For operating point A the altitude is 29,000 feet,
the weight is 60,000 lbs.; for B the altitude is the same, but the weight is 100,000 lbs.; for C the altitude is
39,000 feet, the weight is 60,000 lbs.; for D the altitude is 39,000 feet, the weight is 100,000 lbs. This leads
to the Reynolds numbers and lift coefficients given in Table 1. The objective for these four operating points
is to minimize the drag while maintaining the specified lift coefficient.

The next four operating conditions, labelled E–H, correspond to long-range cruise. The altitudes and
weights are the same as for A–D respectively. The Mach number is 0.78, producing an effective Mach number
of 0.64. The objective function is to maximize the product of the Mach number and the lift-to-drag ratio.
Since the Mach number and the lift coefficient are specified, this again requires that the drag coefficient be
minimized.

The next eight operating conditions (I–P) are associated with the requirement for maneuvering under
dive conditions. The Mach number is 0.93, the effective Mach number 0.76. For operating point I, the
altitude is 29,000 ft., the weight 60,000 lbs., and the load factor is 1.3. For operating point J, the altitude
and weight are the same, but the load factor is 0.7. Operating points K and L have an altitude of 29,000
ft., a weight of 100,000 lbs., and load factors 1.3 and 0.7, respectively. For operating points M and N, the
altitude is 39,000 ft., the weight is 60,000 lbs., and the load factors are 1.3 and 0.7, respectively. Operating
points O and P have the same altitude and load factors, but the weight is 100,000 lbs. The objective is
to keep shock strengths modest, such that the upstream Mach number at all shocks is less than 1.35. The
actual objective function used is lift-constrained drag minimization, since this tends to weaken or eliminate

3 of 11

American Institute of Aeronautics and Astronautics



shocks.
The final two operating points require an adequate maximum lift coefficient at low speed conditions. For

operating condition Q, the altitude is sea level, the weight is 60,000 lbs., and the effective Mach number is
0.16. For operating point R the weight is 100,000 lbs., and the effective Mach number is 0.20. The objective
is to ensure that the maximum lift coefficient under these conditions is at least 1.75.

The first eight cases, A–H, represent multiple, potentially competing, objectives. A complete problem
specification could involve some sort of prioritization of these operating conditions based on the aircraft
mission requirements. For this study we assume that they are all of equal importance. The last ten cases,
I-R, can be considered constraints. If the targets are satisfied, there is no particular benefit to exceeding
them.

These eighteen operating points span the flight envelope. However, there is no guarantee that good per-
formance under these particular operating conditions will lead to adequate performance under intermediate
conditions. Furthermore, some of these operating points may be redundant, i.e. adequate performance at
these points can be achieved even if they are excluded from the composite objective function. Neither the
operating points needed to achieve optimal performance throughout the flight envelope nor the appropriate
weights are known a priori. Therefore, we begin with equal weights and modify them as the optimization
progresses. This is further discussed below. Zingg and Elias16 have developed an automated procedure for
determining operating points and their weights. It would be worthwhile to extend this procedure to more
complicated multipoint optimization problems such as the current eighteen-point optimization.

IV. Multipoint Optimization

The geometry is parameterized using 15 B-spline control points, with the NACA 0015 as the initial
geometry. Three control points are frozen at the leading edge and two at the trailing edge. Hence there
are ten design variables, five on each surface. A floating thickness constraint of 14.2% chord is imposed to
ensure a thickness of at least 14% chord. In addition, a thickness of 1% chord is imposed at 95% chord and
0.2% at 99% chord in order to prevent crossover. The meshes used have a C topology with 289 nodes in the
streamwise direction and 65 in the normal direction; the off-wall spacing is 1× 10−6 chords. Fully turbulent
flow is assumed.

For operating points A through P, the objective is lift-constrained drag minimization; this is accomplished
using the new approach for handling the lift constraint described in Section II. The objective function is
the drag coefficient normalized by the drag coefficient of the initial geometry at the specified operating
conditions. The objective function for operating points Q and R is given by:

J =
(

1− Cl

C∗
l

)2

(1)

where C∗
l is a target lift coefficient. In order to maximize the maximum lift coefficient, a target lift coefficient

is chosen that is somewhat higher than can be achieved, and the angle of attack is included among the design
variables. This objective function is again normalized by the initial value.

A composite objective function is formed by a weighted sum of the individual objective functions, which
include the thickness constraints, as follows:

J = ωAJA + ωBJB + . . . + ωRJR (2)

where the subscripts indicate the operating points, and the ω’s are the weights. The normalization of
the individual objective functions by their initial values is important in forming the composite objective
function. If this is not done, the objective functions associated with lift maximization will greatly exceed
those associated with drag minimization and can dominate the gradient. In order to determine suitable
values for the weights, the optimization proceeds in four steps. The objective function for each operating
condition is initially assigned a weight of unity. The multipoint optimization is then run to convergence. If
the drag coefficient for any of operating points A through H is not significantly decreased, the corresponding
weight is increased. This is repeated three times (steps 2, 3, and 4). During the fourth step, the weights
on any of operating conditions I through R that do not meet their targets are also increased. The weights
for each step are listed in Table 2. This process could be continued until precise goals are met with respect
to the relative performance at each operating condition. However, the four steps presented are sufficient
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Table 2. Weights used in the composite objective function for each optimization step.

Operating Point 1 2 3 4

A 1.0 1.5 1.5 1.5
B 1.0 1.5 1.5 1.5
C 1.0 1.5 1.5 1.5
D 1.0 2.0 3.0 3.0
E 1.0 2.0 3.0 4.0
F 1.0 1.5 2.5 2.5
G 1.0 1.5 2.5 2.5
H 1.0 1.0 1.2 1.2
I 1.0 1.0 1.0 1.0
J 1.0 1.0 1.0 1.0
K 1.0 1.0 1.0 1.0
L 1.0 1.0 1.0 1.0
M 1.0 1.0 1.0 1.0
N 1.0 1.0 1.0 1.0
O 1.0 1.0 1.0 8.0
P 1.0 1.0 1.0 1.0
Q 1.0 1.0 1.0 5.0
R 1.0 1.0 1.0 5.0

Figure 1. Designed airfoil section

to demonstrate the process and to produce an airfoil that generally performs as desired. The weights for
operating points A through H are determined by the requirement that at each operating point the drag
coefficient must be significantly lower than the initial value. This is somewhat arbitrary, and other criteria
could be used.

Table 3 summarizes the performance of the resulting airfoil, which is depicted in Fig. 1. The airfoil
shape has no undesirable features despite the absence of curvature constraints. The drag coefficients are
reasonably low for operating points A through H, and all of the off-design targets are satisfied. Note that
these drag coefficients are computed on a coarse mesh and are much higher than those computed on a finer
mesh, which are reported below. For some of the off-design operating conditions, the performance exceeds
the requirement. This indicates either that the weight on this point is too high or that the point is not
critical, i.e. satisfactory performance is achieved even if the point is given zero weight. In the former case, a
reduction in the weight could lead to an improvement at the on-design operating points (A-H). However, such
an improvement is likely to be small, since the most difficult off-design condition (operating point O) is the
critical one, and it is just barely satisfied. Overall, the airfoil designed using the eighteen-point optimization
provides excellent performance over the entire range of operating conditions. Pressure distributions for
operating points A-H are shown in Figs. 2 and 3. The solutions are shock-free at all eight operating points.
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Table 3. Performance of airfoil designed through eighteen-point optimization. The maximum Mach number
column gives the maximum local Mach number upstream of a shock wave.

Operating Point Cl Cd Maximum Mach Number Clmax

A 0.17 0.0125 – –
B 0.28 0.0126 – –
C 0.27 0.0128 – –
D 0.45 0.0134 – –
E 0.21 0.0122 – –
F 0.36 0.0125 – –
G 0.34 0.0126 – –
H 0.57 0.0136 – –
I 0.28 0.0139 1.19 –
J 0.15 0.0143 1.26 –
K 0.46 0.0171 1.28 –
L 0.25 0.0138 1.17 –
M 0.45 0.0170 1.27 –
N 0.24 0.0139 1.17 –
O 0.74 0.0562 1.34 –
P 0.40 0.0158 1.25 –
Q – – – 1.77
R – – – 1.78

The requirements of operating points O, Q, and R significantly compromise the performance at operating
points A-H. This emphasizes the importance of careful specification of off-design performance requirements.
Another interesting observation based on Table 3 is that the drag coefficient at operating point O is high,
indicating shock-induced turbulent boundary-layer separation. This suggests that the target for the Mach
number upstream of shocks for operating points I through P should perhaps be reduced. However, it must
be recognized that this will penalize the performance at operating points A through H and therefore should
only be done if there is a good reason to do so.

When performing aerodynamic optimization based on specific points in the operating envelope, one must
ensure that performance is also satisfactory at intermediate operating conditions not represented in the
composite objective function. If unsatisfactory performance is found, additional operating points must be
added and the optimization repeated. Fig. 4 displays the variation of the drag coefficient with Mach number
at fixed values of lift coefficient for the designed airfoil for Mach numbers ranging from 0.60 to 0.78 and lift
coefficients from 0.10 to 0.80. Similarly, Fig. 5 shows the variation of the drag coefficient with lift coefficient
at fixed Mach number. For both figures, the Reynolds number is 20 million. These results were computed
on a fine mesh with 579 nodes in the streamwise direction and 130 in the normal direction and an off-wall
normal spacing of 5×10−7 chords. Performance throughout this range of Mach numbers and lift coefficients
is consistent with that at the operating points included in the composite objective function. Consequently,
no additional operating points need to be added. Furthermore, the drag coefficients computed on the fine
mesh are much lower than those computed on the coarse mesh used for optimization. The reason that
consistent aerodynamic performance of the airfoil is found throughout the flight envelope, even at operating
points that are not part of the optimization, is that for this example the number of operating points and
constraints used in the optimization substantially exceeds the number of design variables. Consequently, the
optimizer does not have the freedom to produce substantial improvements at the specific operating points
without improving the performance throughout the flight envelope.

Fig. 6 displays the low-speed performance of the optimized airfoil at a Mach number of 0.20 and a
Reynolds number of ten million computed on the fine mesh. The maximum lift coefficient is 2.05 at an angle
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of attack of 18.5 degrees. This exceeds the target maximum lift coefficient; hence the weights on operating
points Q and R can be reduced.

V. Conclusions

We have presented an eighteen-point optimization problem that serves as an example of a practical
aerodynamic design problem, thereby demonstrating a methodology for performing aerodynamic design using
numerical optimization and revealing many of the issues which arise. Overall, the Newton-Krylov approach
to multipoint optimization, which is based on a composite objective function with user-specified weights
that evolve over several optimization steps, is seen to be effective. The resulting optimized airfoil performs
well throughout the prescribed flight envelope. In order to fully exploit this optimization capability, desired
aerodynamic performance must be completely prescribed throughout the flight envelope, and off-design
requirements must be precisely specified based on a thorough understanding of uncertainties and risks.

It is desirable to automate the weight selection process; therefore, future work will concentrate on extend-
ing the ideas of Zingg and Elias16 to complex multipoint problems such as that presented here. Furthermore,
it is of interest to extend the present optimization capability to three dimensions in order to facilitate the
design of wings and complete aircraft.
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Figure 2. Surface pressure coefficient distributions for operating points A–D.
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Figure 3. Surface pressure coefficient distributions for operating points E–H.
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Figure 4. Drag coefficient vs. Mach number at various values of the lift coefficient for the designed airfoil at
a Reynolds number of 20 million.
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