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The discrete adjoint equations for an aerodynamic optimizer are augmented to explic-

itly include the sensitivities of the grid perturbation. The Newton-Krylov optimizer is

paired with grid perturbations via the elasticity method with incremental stiffening. The

elasticity method is computationally expensive, but exceptionally robust—high quality

grids are produced, even for large shape changes. For the gradient calculation, instead of

encompassing grid sensitivities in finite differenced terms for the adjoint equations, they

are treated explicitly. This results in additional adjoint equations that must be solved.

This augmented adjoint method requires less computational time than a function evalua-

tion, and retains its speed as dimensionality is increased. The accuracy of the augmented

adjoint method is excellent, allowing the optimizer to converge more fully. A discussion

of the trade-off between lengthy development time and increased performance indicates

that the method would be particularly well-suited to complicated three-dimensional con-

figurations.
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Chapter 1

Introduction

The use of computational fluid dynamics in a numerical optimization framework is a

valuable aerodynamic design tool. The viability of such tools is dependent on their

ability to solve optimization problems in a reasonable amount of time, and on providing

the robustness required for a fully automated solution process.

This work addresses these requirements, focusing on efficient gradient computation

for an aerodynamic optimizer using a robust, but computationally expensive, grid pertur-

bation method. It is shown that augmenting the discrete adjoint equations to explicitly

include the grid perturbation can result in significantly improved run time and gradient

convergence.

In this chapter, gradient evaluation and grid perturbation are first presented sepa-

rately, then the resulting issue of grid sensitivities is discussed. This gives rise to the

motivation and objectives of the thesis.

1.1 Gradient Evaluation Methods

While many optimization techniques make use of only the objective function value, the

methods that are most computationally efficient are generally those that also use the

value of the objective function gradient. Efficient gradient evaluation is essential to fast

gradient-based optimizers.

The most straightforward way of computing a gradient is by means of finite differences.

While this has the advantage of simple implementation, it has limited accuracy due to

truncation error for large step sizes, and due to subtractive cancellation error for small

step sizes. Additionally, the time required to evaluate a finite difference for all partial

1
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derivatives in the gradient is long when compared to a flow solve, and the total time

scales linearly with the number of design variables. The subtractive cancellation errors

can be eliminated by using the complex step method. The theory for this method is laid

out by Squire and Trapp [39], and its implementation is discussed by Martins et al. [22].

It allows very small step sizes to be used, thereby all but eliminating truncation error.

However, the gradient calculation time is similar to that of finite differences.

Alternatively, the partial derivatives can be computed analytically. Differentiated

code can be produced quickly with algorithmic differentiation programs in either of the

forward or reverse modes. Griewank [13] provides a thorough discussion of the methods.

In the forward mode, the differentiated code must be run once for each design variable,

but in the reverse mode, the code must only be run once for each dependent variable

(of which there is one1), so has a run-time that is independent of the number of design

variables. The speed advantages of the reverse mode are offset by a very large memory

requirement: the intermediate values of each variable must be stored.

A semi-analytic approach to derivative calculation is the adjoint method. It was origi-

nally introduced to aerodynamic shape optimization by Pironneau [32] and Jameson [15].

As with reverse mode algorithmic differentiation, this provides a gradient computation

time that is independent of the number of design variables; this time is typically on the

order of the time taken by one function evaluation. This is achieved by manipulating

the calculation such that the bulk of the computation involves solving a linear system

whose size is independent of the number of design variables. The memory requirement

is more reasonable than that of reverse mode algorithmic differentiation, but it takes

considerable development time to hand-code the derivatives required to form the adjoint

equations.

The accuracy of the derivatives produced from an adjoint method is dependent on

which of the two varieties of the method are used: continuous or discrete. In the continu-

ous approach, the adjoint equations are derived from the continuous flow equations, then

the equations are discretized and solved. Any discretization of the continuous adjoint

equations may be used, and a carefully chosen discretization can result in computational

savings. However, the computed gradients are different for each possible discretization of

the adjoint system. This appears as an inconsistency between the computed gradient and

the gradient one would expect when examining the behaviour discretized objective func-

1Even in multiobjective optimization, the objectives are usually summed together to give a single
dependent variable.
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tion; the discrepancy is on the order of the truncation error of the method and disappears

as the meshes for the flow and adjoint solvers are refined.

For the discrete adjoint approach, the process is reversed: the discretized adjoint

equations are derived from the discrete flow equations. The discrete adjoint equations

are one of the possible discretizations of the continuous ones and, by construction, this

is the same discretization as was used for the objective function. The aforementioned

error is therefore nil, and the gradient accuracy is regulated by the tolerance to which the

equations are solved. As a result, the optimizer may be able to converge more tightly [1].

In accordance with a philosophy favouring tightly converged solutions while main-

taining the speed advantages of the adjoint method, the discrete adjoint method has

been selected by Nemec [25], whose work is the foundation for this thesis. For the opti-

mization of the objective function F̃ of the flow variables, Q̃, and the design variables,

X, the objective function gradient can be evaluated as follows. First, the flow solver is

converged, as represented by setting its residual to zero.

R̃(Q̃,X) = 0 (1.1)

Next, the adjoint vector, ψ, is found by solving the linear system[
∂R̃

∂Q̃

]T

ψ = −
[
∂F̃
∂Q̃

]T

(1.2)

where the derivatives are evaluated at the converged values of Q̄. Then, the gradient of

the objective function is found by evaluating

∂F̃
∂X

=
∂F̃
∂X

∣∣∣∣∣
Q̃

+ ψT ∂R̃

∂X

∣∣∣∣∣
Q̃

(1.3)

where the |Q̃ notation indicates that Q̃ is held constant in the differentiation. As the

flow solution is retained from computing the objective function, the solution of (1.2)

represents the bulk of the computational work required in the gradient evaluation; it is

the size of this system that is independent of the length of X, resulting in the speed

benefits of the method.

1.2 Grid Perturbation Methods

When the shape of the airfoil is altered in the optimization process, the boundary of the

computational domain that touches the airfoil must be altered accordingly. To compute
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the flow solution for the altered airfoil, a new computational mesh that matches this

altered boundary position must therefore be created.

One way to create meshes for the altered airfoils is simply to generate a new grid for

each airfoil. While some authors have used this technique in optimization [7, 19, 35], it

is undesirable for two reasons. First, grids that are suitable for turbulent calculations

must usually be smoothed by elliptic or hyperbolic smoothers, which can take about as

much time to run as the flow solver. Secondly, grid generation is a process that is difficult

to automate, especially for complex geometries. A better alternative is to produce one

high-quality mesh to use as a parent for all other meshes, then to perturb the parent

mesh to give one that matches the required boundary shape.2

A simple grid perturbation technique for structured grids is to perturb each grid line

running from the airfoil surface to the outer boundary individually. Burgreen et al. [6]

computed the perturbation of each node on the grid line by linearly interpolating the

perturbation between the airfoil and the far field. The method was later improved for

highly curved grid lines by basing the interpolation on the arc length along the line [5]. In

multiblock meshes, grid lines may not touch the airfoil or the far field boundary, and the

method needs to be modified. Nemec [25] uses trigonometric functions to preserve orthog-

onality for 2D multi-element airfoils. Jones and Samareh-Abolhassani [16] implemented

an algebraic perturber that perturbs the block boundaries and interiors separately, using

transfinite interpolation in an arc length parameter space. As they are strictly algebraic,

these methods have a very short run time. However, for large perturbations, they can

generate poor quality or tangled meshes. This can result in the need for the user to

generate a new mesh during the optimization process. This is a notable deficiency, as an

optimizer using such a method lacks complete automation.

Some grid perturbation schemes draw on the extensive research carried out by the

unsteady flow computation community in the area of dynamic meshing. One of these

schemes involves considering each grid line segment to be a linear spring attached to

the two nodes. A linear system that represents this network of fictitious springs can

be formulated and solved, yielding the nodal perturbations due to a given boundary

movement. While it has been found to be fairly efficient and is applicable to unstructured

or structured meshes, this approach can give tangled meshes for large shape changes.

2A tempting variation on this is to obtain a grid by perturbing the most recently used grid instead
of perturbing the parent grid. This is not advisable, as it results in an objective function that is path-
dependent, and thus non-unique and non-differentiable.
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Farhat et al. [11] improved the robustness of the method by adding torsional springs.

This was later extended to three dimensions [9]. Samareh [38] used quaternion algebra

to improve the treatment of three-dimensional rotations and to help preserve the near-

surface quality of viscous meshes.

A more physically meaningful alternative is to consider the computational domain

as an elastic medium. Like a block of rubber, when the boundaries of the medium are

deformed, the interior deforms according to the equations of linear elasticity. Tezduyar

et al. [41] use a finite element method to compute the interior deformations. They relate

the stiffness of each element to the element size, making the grid stiffer near the airfoil,

and causing the deformations to propagate further into the mesh. This linear elastic

theory inherently breaks down for large deformations, so can give rise to tangled meshes.

To correct this, Bar-Yoseph et al. [2] proposed a quasi-linear approach, wherein the

deformed shape is computed through a series of linear increments. At each increment,

the stiffness is locally increased in highly strained areas. The result is a scheme that has

a relatively high computational cost, yet is robust even to large shape changes. This has

been adopted by Nielsen and Anderson [28], Stein et al. [40], and Truong [42].

1.3 Grid Sensitivities in the Discrete Adjoint Method

Considering that the evaluation of an aerodynamic objective function involves perturb-

ing the grid, it is to be expected that the sensitivities of the objective function to the

design variables will in some way involve sensitivities of the grid perturbation algorithm.

When evaluating the gradient using the discrete adjoint method (1.2–1.3), these mesh

sensitivities are implicitly included in the terms ∂F̃/∂X|Q̃ and ∂R̃/∂X|Q̃. In contrast

to this, Anderson and Venkatakrishnan [1] show that grid sensitivities do not explicitly

appear in the continuous adjoint formulation.3

Within the discrete adjoint method, a number of different approaches to computing

grid sensitivities have been used. Kim et al. [17, 18] found that it is possible to neglect

the grid sensitivities for design variables that do not involve the translation of a body,

and when the flow is considered to be inviscid.

Nemec [25] and Martins et al. [21] used finite differences for the grid sensitivities.

Since their optimizers both use algebraic grid perturbation, it is not computationally

3However, they note that it is important to consider grid sensitivities, and suggest a hybrid continuous-
discrete approach.
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onerous to repeatedly perturb the grid when forming the derivatives in this way. Burgreen

and Baysal [5] and Le Moigne and Qin [20] hand differentiated arc length-based algebraic

grid perturbers analytically. Bischof et al. [4] used automatic differentiation to reduce the

human effort required to differentiate the more complicated algebraic grid perturbation

method of Jones and Samareh-Abolhassani [16].

For three-dimensional unstructured meshes, Samareh [37, 36] introduced a new surface

parameterization. It is a novel approach based on soft object animation, where a volume

of space is deformed according to the design variables, causing the boundaries and the grid

to be perturbed together. It was analytically differentiated to provide grid sensitivities.

More computationally expensive grid perturbation algorithms, such as the spring anal-

ogy and elasticity methods, have been differentiated using an adjoint approach. Maute

et al. [23] present an aeroelastic optimizer for three-dimensional Euler flows. They use

the spring analogy mesh perturber of Farhat et al. [11]. The adjoint problem is posed

as a large linear system that includes the coupled aerodynamic, structural, and mesh

movement terms. It is solved using a staggered procedure, giving adjoint variables for

each of the flow, grid perturbation, and structural solvers. The method is shown to be

efficient, but it is noted that both the time and memory requirements for the derivative

of the the flow residual with respect to the interior node locations are considerable.

Recently, Nielsen and Park [30] presented an adjoint method for aerodynamic opti-

mization. It computes an adjoint vector for the flow solver and then for the grid per-

turber. This was performed for an unstructured grid that is perturbed using an algorithm

based on linear elasticity. The accuracy of the sensitivities was comparable to that ob-

tained using direct differentiation, and the computational time was reduced dramatically.

Mavriplis [24] took a similar approach using the spring analogy for grid perturbation.

While grid perturbation is more popular than regeneration in optimization, analytic

and semi-analytic methods have also been used to differentiate grid generation codes.

Sadrehaghighi et al. [35] use an algebraic grid generator to regenerate a grid at each

optimizer iteration. Their sensitivity analysis includes analytic differentiation of the grid

generation equations. Korivi et al. [19] provide grid sensitivities through algorithmic

differentiation of the algebraic grid generator of Barger et al. [3]. For aerodynamic sensi-

tivity analysis, Pagaldipti and Chattopadhyay [31] differentiated the equations governing

elliptic and hyperbolic grid generation, yielding a system of equations that can be solved

for the sensitivities of the grid generator.
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1.4 Objectives

The objective of the current work is to provide an efficient and accurate sensitivity

analysis for a code combining the efficient aerodynamic shape optimizer of Nemec [25,

26, 27] with the robust elasticity grid perturber of Truong [42]. This grid perturbation

method has been selected for its robustness, which eliminates the need for remeshing,

even for large airfoil shape changes.

Simply inserting the elasticity method into the original optimizer of Nemec [25] results

in considerable computational expense, because the finite element solver must be run

several times to compute the derivatives in (1.3). Furthermore, as the finite differences

must be evaluated for each design variable, one would expect the CPU time to increase

linearly with the number of design variables. This undermines the usual claim that an

adjoint method provides a gradient computation time that is nearly independent of the

number of design variables—and that is the adjoint method’s principal advantage.

Instead, an adjoint approach will be used to treat the grid sensitivities. The method

can be expected to give a gradient calculation time that is virtually independent of the

number of design variables. Additionally, the method’s accuracy may be increased over

that of finite differences, because of the inherent errors in finite differences. While this

accuracy is not important in itself, it is anticipated that it may allow the optimizer to

converge in fewer iterations.

It is also expected that creating the adjoint code will involve considerable effort. It is

therefore important to not only evaluate the above expected advantages of the method,

but to weigh them against the development time. This feasibility assessment will indicate

whether the approach should be adopted by the three-dimensional optimizer currently

under development.



Chapter 2

Design Evaluation

In order to attempt numerical aerodynamic shape optimization, one must first develop

a design evaluation capability that is sufficiently automated for a numerical optimizer to

interface with it. The present algorithm for the analysis of the performance of an airfoil

can be broken into four components. They are

1. the use of design variables to represent a wide variety of designs;

2. the perturbation of a computational mesh so that it can conform to these designs;

3. the flow analysis on the perturbed mesh; and

4. the use of the flow solution to produce a meaningful design objective.

These components are described in the following sections.

2.1 Airfoil Parameterization

For the optimizer, the design is fully defined by a set of design variables. These variables,

represented by the vector X, may determine the shape of the airfoil and the angle of

attack. While a 1:1 correspondence between the angle of attack and one of the elements

of X is reasonable, the representation of the airfoil shape by the remaining elements is

more complicated.

It is desirable to allow the airfoil to take on a wide variety of shapes while retaining

the same chord length1. However, it is also expected that any optimum airfoil will be

1The analysis uses only non-dimensional values, so this non-dimensional chord length is unity.

8
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smooth (except at the trailing edge). In the interest of simplifying the optimization

problem, it is desirable to use the smallest practical number of design variables and to

ensure that a given design variable has only a localized impact on airfoil shape.

To achieve this, the airfoil surface is represented by a B-spline, whereby the vertical

position of some of the control points are given by design variables. The jth point on the

B-spline is given by

Aj =

 ∑iX
c
iBi(wj)∑

i Y
c
i Bi(wj)

 (2.1)

where A is the vector of positions on the airfoil surface, wj is the parameter value for

the jth point on the airfoil surface, and Bi(wj) are B-spline basis functions. The basis

functions are defined with a recursive relation, but computed using de Boor’s efficient

sequential implementation [8]. Xc and Y c are the locations of the B-spline control points,

and as stated above, some of Y c correspond to design variables, X. This is described

further in [25].

2.2 Grid Perturbation Scheme

Using the process developed by Truong [42], the grid is perturbed by treating the com-

putational domain as an elastically deformable material. The edges of the material are

fixed to the outer boundary and to the airfoil boundary, so when the airfoil is perturbed,

the material deforms.

Using the same computational mesh as is used for flow analysis, the equations of

linear elasticity are discretized and solved using a finite element method. Since the flow

solver uses a structured C-mesh, the elements are quadrilaterals.

Linear elasticity is a theory that is only valid for small deformations, while the defor-

mations encountered in an aerodynamic shape optimization problem may be large. This

gives the possibility of producing a perturbed material that is entangled. While solving

non-linear elasticity equations could solve this, it was deemed to be too computationally

expensive. Instead, a quasi-linear method is used.

The quasi-linear algorithm computes the deformation in a series of linear steps. So,

the airfoil surface is moved from the parent shape to the perturbed shape in a series of

equal increments,

A(i) = A(0) +
i

n

(
A(n) − A(0)

)
(2.2)
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where A(i) is the vector of coordinates on the airfoil surface for the ith increment in a

perturbation having a total of n increments2. A(0) is the parent airfoil, and A(n) = A is

the fully perturbed airfoil. At each increment, the stiffness of the material is adjusted,

then the mesh deformation is computed using a linear finite element code.3

The elastic properties of the material are chosen such that the high quality of the

initial mesh is retained as much as possible. Young’s modulus, E, is set to be proportional

to the inverse of the cell area, so that small cells near the airfoil deform less. In addition,

the change in stiffness from one increment to the next is based on cell distortion such

that E increases to infinity as mesh entanglement is approached.

The exact formulation of Young’s modulus and the discretization of linear elastic

equations to form the element stiffness matrix, Ke, are included in Appendix C. It is

shown that the total strain energy stored in the elastic medium is given by

Ep =
1

2

∑
e

UT
e KeUe (2.3)

where Ue is an 8-element vector containing the x- and y-direction displacements of each

of the corner nodes of the quadrilateral element e. This can also be written as

Ep =
1

2
UT

t KtUt (2.4)

Where Ut and Kt are the displacement vector and stiffness matrix for the entire system.

The dimensionality of these quantities is the number of degrees of freedom in the system

(2 × number of nodes in two dimensions). Each entry in Kt is formed by summing the

corresponding entries in each overlapping Ke.

The total strain energy is the sum of the potential energy, Π, and the external work,

UT
t Ft, where Ft is the vector of external forces acting on each of the nodes.

1

2
UT

t KtUt = Π + UT
t Ft (2.5)

The steady solution of this system is such that the potential energy is minimized.

This is obtained by setting the derivative of Π with respect to Ut to 0, which yields the

following linear system:

KtUt = Ft (2.6)

2This is defined for i ∈ {1, 2, . . . , n}. For the C++ implementation, i ∈ {0, 1, . . . , n − 1}, so the
equation must be altered accordingly.

3Though it is tempting to allow the number of increments to be chosen automatically based on how
large the perturbation is, n is kept fixed for the entire optimization process. Failing to do so may
introduce discontinuities into the design space.
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At the interior nodes, Ft is set to zero, and the nodal displacements are unknown.

However, at the boundary nodes, the nodal displacements are specified, and the reactions

are unknown. Splitting the system into interior (i), outer boundary (o), and airfoil

boundary (a) nodes,


Ki Kio Kia

Koi Ko Koa

Kai Kao Ka




Ui

0

A(i) −G(i−1)
a

 =


0

Fo

Fa

 (2.7)

where G(i−1) is the solution for the grid at increment i − 1. G(i−1) has two entries per

node, which correspond to the x- and y-coordinates of the node. The reactions Fo and

Fa are not required. Removing the respective equations gives

KiUi = −Kia

[
A(i) −G(i−1)

a

]
(2.8)

This allows the displacements of the interior nodes to be solved for. Writing this

explicitly as the change in the grid from one increment to the next, and including the

grid movement at the boundaries, results in


Ki

[
G

(i)
i −G

(i−1)
i

]
G(i)

o

G(i)
a

 =


−Kia

[
A(i) −G(i−1)

a

]
G(0)

o

A(i)

 (2.9)

The boundary entries in G(i) can be found directly, but computing the interior entries

in G(i) requires the inversion of a sparse, symmetric, positive definite linear system. The

IML++ implementation [10] of the conjugate gradient method, with an ILU precondi-

tioner, is used for this. Although the rest of the optimizer is written in FORTRAN, the

grid perturber is a C++ code.

For the purposes of the sensitivity analysis, the grid perturbation equations are writ-

ten as setting a residual, r(i), to zero.

0 = r(i) =


r
(i)
i

r(i)
o

r(i)
a

 =


Ki

[
G

(i)
i −G

(i−1)
i

]
+Kia

[
A(i) −G(i−1)

a

]
G(i)

o −G(0)
o

G(i)
a − A(i)

 (2.10)

Or, more simply,

0 = r(i) = r(i)(G(i), G(i−1), A(i)(X)) (2.11)
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2.3 Flow Solver

The flow around the airfoil is computed by using an efficient Newton-Krylov method to

solve the discretized Reynolds-averaged Navier-Stokes equations. Turbulent effects are

predicted by the Spalart-Allmaras turbulence model. On a structured C-mesh, spatial

derivatives are approximated using second-order centred finite differences, plus scalar

artificial dissipation. The start-up algorithm uses implicit Euler time marching with

the linear solve simplified using approximate factorization, and with explicit boundary

conditions. Final convergence, however, is achieved using Newton’s method, with implicit

boundary treatment. The linear system at each Newton step is solved efficiently using

the generalized minimum residual (GMRES) Krylov subspace method. The efficiency

of the method is significantly improved through the use of an ILU preconditioner with

limited fill, a Jacobian-free implementation of GMRES [34], and inexact convergence of

the linear system. Nemec [25] provides a description of the present solver, which is based

on the work of Pueyo [33]. The overall discretized equations are presented here.

Consider first the Reynolds-Averaged Navier-Stokes equations, written in differential

form:
∂Q

∂t
+
∂E

∂x
+
∂F

∂y
=

1

Re

(
∂Ev

∂x
+
∂Fv

∂y

)
(2.12)

where x and y are the Cartesian coordinates in physical space, Q is the vector of conserved

variables (mass, momentum, and energy), the spatial derivatives of E and F are inviscid

fluxes, the spatial derivatives of Ev and Fv are viscous fluxes, and Re is the freestream

Reynolds number. At the node (j, k), Q is given by

Qj,k =


ρ

ρu

ρv

e


j,k

(2.13)

The components of Q are all non-dimensional: ρ is density, u and v are the x- and

y-components of velocity, and e is total energy.

The flow equations are transformed from the curved grid in rectangular physical

coordinates, (x, y), to an equi-spaced rectangular grid in curvilinear computational co-

ordinates, (ξ, η). This simplifies the finite differencing stencils to be used in the discrete

equations. The computational coordinates, as shown in Figure 2.1, are

ξ = ξ(x, y) η = η(x, y) (2.14)



Chapter 2. Design Evaluation 13

Physical coordinates

-

6
y

x

�

?η
ξ

ss

s

s

AB

C D

E

F

Computational coordinates

-

6
η

ξs s s s

ss

A

B C D

EF

airfoil boundary

Figure 2.1: Coordinate transformation

In transforming to these coordinates, we use the following metrics

ξx = Jyη ξy = −Jxη

ηx = −Jyξ ηy = Jxξ

(2.15)

Jj,k =

(
1

xξyη − xηyξ

)
j,k

(2.16)

where J is the Jacobian of the coordinate transformation—a diagonal matrix of size

j × k with entries Jj,k. Notice that these metrics are all computed at each node using

second-order centred differences:

xξ = δξx xη = δηx

yξ = δξy yη = δηy
(2.17)

When the governing equations, (2.12), are transformed into computational coordi-

nates, unsteadiness is neglected, and the thin-layer approximation is used, they become

0 =
∂Ê

∂ξ
+
∂F̂

∂η
− 1

Re
∂Ŝ

∂η
(2.18)

where the fluxes are functions of the dependent conserved flow variables in computational

space,

Q̂ = J−1Q (2.19)

Discretizing the equations, one obtains

R = δξÊ + δηF̂ −
1

Re
δηŜ −∇ξÊd −∇ηF̂d = 0 (2.20)
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where R is the flow solver residual, to be set to zero. On the right-hand side, the first

two terms are inviscid fluxes, the middle term is the viscous flux, and the rightmost two

terms are artificial dissipation (to control high wavenumber fluctuations in the solution).

These terms and the turbulence model are described in Appendix B and in [25]. Here,

we need only note that these terms are functions of the flow variables, the metrics of the

transformation, and the angle of attack.4,5 This allows the discretized flow equations to

be written as

R(Q, G, X) = 0 (2.21)

2.4 Design Objectives

Once the flow around an airfoil has been computed, the results can be used to evaluate

the performance of that airfoil. Performance is represented by a single value, the design

objective, O.

Design objectives may be, for example, drag minimization at fixed lift, or drag to lift

ratio:

O = wL

(
1− CL

C∗L

)2

+ wDH(CD − C∗D)

(
1− CD

C∗D

)2

, O =
CD

CL

(2.22)

where CD and CL are the drag and lift coefficients, computed by integrating pressure

and viscous stresses around the airfoil. C∗L is the target lift, C∗D is an unattainably low

target drag, wL and wD are weights, and H() is the Heaviside step function.

The design objective depends on of the flow solution, represented by the conserved

quantities, Q, as they determine the pressures and viscous stresses acting on the airfoil.

It is also a function of the coordinates of the grid nodes, G, as they affect the calculation

of viscous stresses and determine the path of the line integral used to find the net force

on the airfoil. Finally, it is a function of the design variables, X, as the angle of attack

determines the direction in which the lift and drag components are resolved. The design

objective can then be generally represented as

O = O(Q,G,X) (2.23)

If O were used as the objective function in an optimization, it is possible that the

optimum found would represent an infeasible design due to structural, operational, or

4In contrast to 2.13, the discretized Q (and Q̂) has a fifth element at each node; it is the dependent
variable of the one-equation turbulence model

5Recall that the angle of attack is one of the design variables, X.
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off-design considerations. These could be airfoils in which the upper and lower surfaces

cross each other, the maximum thickness is too thin for a structural member to fit inside,

the trailing edge bends abruptly up or down, the leading edge is a point, or the enclosed

area is too small (i.e. for a fuel tank). An ideal way of avoiding these and other infeasible

designs would be to use a multidisciplinary, multipoint approach, where other aspects of

the aircraft, such as structural members in the airfoil, are also modelled, and where a

variety of operating points are considered.

While multidisciplinary, multipoint optimization may offer a more complete design

capability, it is somewhat more involved than strictly aerodynamic optimization. This

added complexity makes multidisciplinary, multipoint optimization a poor choice for

evaluating new concepts such as the present one. Therefore, in this work a simplified

approach is taken: infeasible airfoils are avoided by constraining the airfoil geometry.

Any combination of the following constraints may be used:

• the airfoil thickness must exceed specified minimum thicknesses at specified chord-

wise stations,

• the airfoil thickness must exceed a specified minimum thickness at any one point

within specified range of chordwise stations,

• the area enclosed by the airfoil must exceed a specified minimum area, and

• the radius of curvature of the airfoil surface must exceed a minimum value, specified

as a piecewise linear function of the chordwise station.

These inequality constraints depend solely on the design variables that determine the

shape of the airfoil. They are implemented using a quadratic external penalty method.

For the constraints ci(X) ≤ 0 having weights wi, the constrained design objective is

J (Q, G, X) = O(Q, G, X) +
∑

i

wic
2
i (X)H (ci(X)) (2.24)



Chapter 3

Adjoint Formulation

A rigorous method of deriving the discrete adjoint equations is through the use of La-

grange multipliers, as presented by Gunzburger [14]. Using this method, the variables

X, G(i), and Q are considered to be independent. The optimization problem can then

be posed as minimizing the design objective with respect to all these variables, subject

to the constraint that the flow solver must have converged. The is augmented to also

consider the convergence of the grid perturbation as a constraint. This is expressed as

min J (Q,G(n), X)

w.r.t. Q,G(n), X

s.t. 0 = r(i)(G(i), G(i−1), A(i)(X)), i ∈ {1, 2, . . . , n}
0 = R(Q,G(n), X)

To enforce the constraints, let the Lagrangian, L, be defined as follows:

L = L(λ(i), ψ, Q, G(i), X), i ∈ {1, 2, . . . , n}

= J +
n∑

i=1

λ(i)Tr(i) + ψTR (3.1)

where ψ and λ(i) are the Lagrange multipliers.

Setting each of the partial derivatives of the Lagrangian to zero then provides opti-

mality conditions for a physically meaningful objective function:

∂L
∂λ(i)

= 0 = r(i), i ∈ {1, 2, . . . , n} (3.2)

∂L
∂ψ

= 0 = R (3.3)

∂L
∂Q

= 0 =
∂J
∂Q

+ ψT∂R

∂Q
(3.4)

16
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∂L
∂G(n)

= 0 =
∂J
∂G(n)

+ λ(n)T ∂r
(n)

∂G(n)
+ ψT ∂R

∂G(n)
(3.5)

∂L
∂G(i)

= 0 = λ(i)T ∂r
(i)

∂G(i)
+ λ(i+1)T∂r

(i+1)

∂G(i)
, i ∈ {n− 1, n− 2, . . . , 1} (3.6)

∂L
∂X

= 0 =
∂J
∂X

+
n∑

i=1

(
λ(i)T ∂r

(i)

∂A(i)

∂A(i)

∂X

)
+ ψT ∂R

∂X
(3.7)

A number of approaches could be taken to find a solution to these optimality con-

ditions to minimize the Lagrangian, including possibilities such as solving for all of the

variables simultaneously—the approach that defines simultaneous analysis and design

(SAND). Using this one-shot approach, a large-scale solver sets the entire gradient of the

Lagrangian (the KKT system) to zero.

However, instead of attempting to minimize a function of so many variables, the

approach taken here is one that delegates a great deal of the computation to the existing

specialized solvers. For a given X, (3.2) can be solved using the grid perturbation code

to yield each G(i). Using that solution, the flow solver can be used to solve (3.3) and

yield Q. The linear systems in (3.4–3.6) can then be solved in the order they appear to

give ψ and each λ(i). Finally, the right-hand side of (3.7) can be evaluated to yield a

value for ∂L/∂X.

The process above is one that, for a given X, sets most of the entries in the gradient

of the Lagrangian to zero, leaving only ∂L/∂X nonzero:

∂L
∂ {λ(i), ψ,Q,G(i), X}

=

[
0 0 0 0

∂L
∂X

]
(3.8)

The optimizer therefore only needs to consider X, L, and ∂L/∂X, provided that (3.2–3.6)

are solved at X. This can be denoted as the following objective function:

F(X) = L,
{
λ(i), ψ,Q,G(i)

∣∣∣∣∣ ∂L
∂ {λ(i), ψ,Q,G(i)}

= 0

}
, i ∈ {1, 2, . . . , n} (3.9)

having a gradient given by

∂F
∂X

=
∂L
∂X

,

{
λ(i), ψ,Q,G(i)

∣∣∣∣∣ ∂L
∂ {λ(i), ψ,Q,G(i)}

= 0

}
, i ∈ {1, 2, . . . , n} (3.10)

The function F and the gradient ∂F/∂X are sent to the optimizer.

Notice that in evaluating the gradient, the adjoint equations, (3.4–3.6), are linear

systems whose sizes are independent of the number of design variables. In evaluating the
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gradient, the only step whose computational time depends on the number of design vari-

ables is the evaluation of ∂L/∂X in (3.7). This step requires only matrix multiplication

and addition, so is not computationally demanding. The time required to evaluate the

gradient should therefore be nearly independent of the number of design variables.

Another common way of deriving adjoint equations is through the use of the chain rule,

with careful attention paid to which functions are “implicit”, and which are “explicit”.

It allows one to visualize ψ as a total derivative of F with respect to R, and λ(i) as a total

derivative of F with respect to r(i). In this case, however, the chain rule approach to the

derivation is considerably longer than the above, and is difficult to extend to different

values of n. This alternate derivation, for n = 2, can be found in Appendix A.



Chapter 4

Implementation

Most of the computational effort required to solve these adjoint equations is in the linear

and non-linear solvers, but the bulk of the human effort is in forming the terms for the

equations. A summary of the required terms is provided in Table 4.1. An overview of

the computation of each term follows a brief discussion of the treatment of the wake cut.

4.1 Wake Cut

Along the wake cut, there is a minor difference between the grids used by the flow solver

and by the grid perturber. In the flow solver, G has two sets of overlapping nodes along

the wake cut, while in the grid perturbation, G(n) has only one set of wake cut nodes.

These quantities are related according to
Gnwc

Gwc1

Gwc2

 =


I 0

0 I

0 I


 G(n)

nwc

G(n)
wc

 (4.1)

Q G(i) A(i) X

J ∂J /∂Q ∂J /∂G(n) ∂J /∂X
R ∂R/∂Q ∂R/∂G(n) ∂R/∂X

r(i) ∂r(i)/∂G(i) ∂r(i)/∂A(i)

r(i+1) ∂r(i+1)/∂G(i)

A(i) ∂A(i)/∂X

Table 4.1: Summary of required Jacobian matrices

19
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where the subscripts ‘nwc’ indicates nodes not on the wake cut, ‘wc1’ and ‘wc2’ indicate

the two sets of overlapping wake cut nodes in G, and ‘wc’ indicate the single set of wake

cut nodes in G(n). The derivatives of J and R with respect to G(n) are therefore expanded

as

∂J
∂G(n)

=
∂J
∂G

∂G

∂G(n)
,

∂R

∂G(n)
=
∂R

∂G

∂G

∂G(n)
,

∂G

∂G(n)
=


I 0

0 I

0 I

 (4.2)

This results in the overlapping wake cut terms being summed together in (3.5).

4.2 Differentiating the Design Objectives

The design objectives are expressed in terms of lift, drag and moment coefficients. These

quantities are calculated by numerically integrating the pressure and viscous stresses

acting on the airfoil.

First, the moment coefficient and net force coefficients in the chordwise and normal

(x and y) directions are found; the trapezoidal rule is used for each of these integrals of

the local pressure forces and the viscous stresses. The force coefficients are then resolved

into the lift and drag directions (perpendicular and parallel to the freestream flow), which

are rotated from the coordinate directions by the angle of attack, α. The lift, drag, and

moment coefficients are then used in the calculation of the design objective, J .

The design objective thus has a dependency on the flow solution, the grid node

locations, and the angle of attack (a design variable). The terms ∂J /∂Q, ∂J /∂G,

∂J /∂X are computed analytically. The derivations of these terms are omitted, as they

are all relatively straightforward.

4.3 Differentiating the Flow Solver Residual

4.3.1 Derivative with Respect to the Conserved Flow Variables

In the flow solver, the fact that Newton’s method is used to set R = 0 makes the

calculation of ∂R/∂Q for the adjoint system far simpler. In iteration i of Newton’s

method, the following linear system is solved

∂R

∂Q̂

∣∣∣∣∣
(i)

G,X

∆Q̂(i) = R(i) (4.3)
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The notation |G,X on the flow Jacobian indicates that G and X are held constant while

the partial differentiation is performed. This notation is discussed further in Appendix A.

When the flow solver has converged, the flow Jacobian in (4.3) is very similar to ∂R/∂Q,

required for the adjoint system. This relation is found using (2.19):

∂R

∂Q
=
∂R

∂Q̂

∣∣∣∣∣
G,X

∂Q̂

∂Q
=
∂R

∂Q̂

∣∣∣∣∣
G,X

J−1 (4.4)

Using this and noting that J is a diagonal matrix, (3.4) can be multiplied by J as

follows:  ∂R
∂Q̂

∣∣∣∣∣
G,X

T

ψ = −J
(
∂J
∂Q

)T

(4.5)

With the adjoint equation written in this from, the subroutines that compute ∂R/∂Q̂|G,X

for the flow solver can be re-used to form the left-hand side1. Additionally, because the

left-hand side of this equation is nominally the same as that of the flow solver, the same

ILU-preconditioned GMRES algorithm is used to solve this adjoint system.

4.3.2 Derivative with Respect to the Grid

While the finite differencing stencils are much simpler as a result of the transformation

from physical space to computational space with unit grid spacing, the transformation

does not simplify ∂R/∂G. The flow residual has a heavy dependency on the metrics of the

coordinate transformation, and as seen in (2.15–2.17), these are all formed through finite

differences of the grid node locations. ∂R/∂G must therefore be formed by differentiating

first R with respect to the metrics, then the metrics with respect to G.

The storage requirements for ∂R/∂G are immense. However, when the Jacobian

matrix is used in (3.4), it is pre-multiplied by ψT. So, instead of storing the entire

Jacobian in memory, only the product ψT(∂R/∂G) is stored. It is formed by multiplying

by ψ as each term is computed.

The full details of the differentiation of each term of R with respect to G can be found

in Appendix B.

1The flow solver uses Jacobian-free GMRES, so the left-hand side in the flow solver is only an
approximation of ∂R/∂Q̂|G,X . The preconditioner used in the flow solver, however, uses an analytically-
formed flow Jacobian, and this is what is re-used in forming the left-hand side of the flow adjoint
equation.
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4.3.3 Derivative with Respect to the Angle of Attack

In the flow solver, the angle of attack is used to determine the flow direction of the

freestream. For the flow residual, this results in a dependence on the angle of attack at

the inflow/outflow boundary conditions. This is easily differentiated to give ∂R/∂α—the

only nonzero term in ∂R/∂X.

4.4 Differentiating the Grid Perturbation Residual

The derivatives of the grid perturbation residual, r(i), can be found from (2.10) as follows:

∂r(i)

∂G(i)
=


K

(i)
i 0 0

0 I 0

0 0 I

 (4.6)

∂r(i+1)

∂G(i)
=


−K(i+1)

i 0 −K(i+1)
ia

0 0 0

0 0 0

+


∂K

(i+1)
i

∂G(i)

[
G

(i+1)
i −G

(i)
i

]
+

∂K
(i+1)
ia

∂G(i)

[
A(i+1) −G(i)

a

]
0

0


(4.7)

∂r(i)

∂A(i)
=


K

(i)
ia

0

−I

 (4.8)

All of these terms are straightforward to form, with the exception of the derivatives

of K
(i+1)
i and K

(i+1)
ia with respect to G(i). Considering that each entry in the stiffness

matrix, Kt, is the sum of the appropriate entries in the element stiffness matrices, Ke,

the derivatives of the stiffness matrix can be formed by similarly adding together the

derivatives of the element stiffness matrices. Therefore, the intensive part of deriving

∂K
(i+1)
i /∂G(i) and ∂K

(i+1)
ia /∂G(i) is the derivation of ∂K(i+1)

e /∂G(i)
e . This derivation is

included in Appendix C.

The memory requirement of these Jacobian matrices is massive. However, they only

appear in the adjoint equations when pre-multiplied by the adjoint vector. Specifically,

the following two terms appear in (3.6, 3.7):

λ(i+1)T∂r
(i+1)

∂G(i)
λ(i)T ∂r

(i)

∂A(i)

The memory requirement is reduced by storing only the vector-matrix products: each en-

try in the matrix is immediately pre-multiplied by the adjoint vector when it is computed.
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A similar approach is used to avoid storing the third-order tensor, ∂K(i+1)
e /∂G(i)

e , which

only appears when post-multiplied by the vectors given in (4.7), and when pre-multiplied

by the adjoint vector.

The boundary terms in (4.6–4.8) are rather simple, so some simplifications can be

made when solving the adjoint equations. In particular, notice that when (3.5, 3.6) are

rearranged into the form in which they are solved for λ(n) and λ(i), the boundary terms

of the left-hand side matrices are identity entries:[
∂r(n)

∂G(n)

]T

λ(n) =

[
− ∂J
∂G(n)

− ψT ∂R

∂G(n)

]T

(4.9)

[
∂r(i)

∂G(i)

]T

λ(i) =

[
−λ(i+1)T∂r

(i+1)

∂G(i)

]T

, i ∈ {n− 1, n− 2, . . . , 1} (4.10)

Hence, the outer boundary and airfoil boundary entries in the adjoint vectors can be

computed directly, and the linear solution need only consider the interior scheme. This

is expected, as the same simplification can be made when originally perturbing the grid.

The left-hand side for the interior scheme is simply the transpose of the stiffness ma-

trix; as the stiffness matrix is symmetric, this is identical to the left-hand side of the

interior scheme of the grid perturbation. It is therefore reasonable to reuse the same

ILU-preconditioned conjugate gradient method for solving these adjoint equations.

Simplifying the boundaries further, λ(i)
o and λ(i)

a are zero for i 6= n, and λo need not

be computed at all, as it is not used in (3.6) or in (3.7).

While the rest of the adjoint code is written in FORTRAN, these portions, like the

grid perturbation code, are written in C++.

4.5 Differentiating the Airfoil Boundary Location

B-splines are used for the airfoil surface parameterization, where the design variables

are some of the control point locations. As a result, the sensitivity of the airfoil surface

node locations to the design variables is also simple to compute. The B-spline shape is

evaluated using (2.1).

The derivative of the airfoil node locations with respect to the design variables is thus

∂Aj

∂Xi

=

 0

Bi′(wj)

 (4.11)

where i′ is the index of the control point corresponding to the ith design variable.
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4.6 Application to Algebraic Grid Perturbation

An alternative to using the elasticity method to perturb the grid is to use an algebraic

approach. One such method is that used by Nemec [25]. Each grid line of constant ξ,

extending from the airfoil to the outer boundary, is perturbed individually. The grid is

moved according to

Ḡj,k(Aj) = G
(0)
j,k +

(
Aj − A

(0)
j

)(
1− Lj,k

Lj,kmax

)
(4.12)

where Lj,k is the arc length along the grid line.

Lj,k =
k∑

k′=2

√(
x

(0)
j,k′ − x

(0)
j,k′−1

)2
+
(
y

(0)
j,k′ − y

(0)
j,k′−1

)2
(4.13)

Just as only the y-coordinates of the airfoil surface are perturbed, the grid is also only

perturbed vertically. The mesh remains unperturbed downstream of the airfoil, where

the grid lines to not touch the airfoil.

When using this perturbation method, the augmented adjoint system is derived using

the following definitions for the design objective and flow residual

J̄ = J̄
(
Q, Ḡ(X), X

)
(4.14)

R̄ = R̄
(
Q, Ḡ(X), X

)
(4.15)

An appropriate Lagrangian is

L̄(ψ,Q,X) = J̄ + ψTR̄ (4.16)

The adjoint equation and gradient evaluation are then

∂L̄
∂Q

= 0 =
∂J̄
∂Q

+ ψT∂R̄

∂Q
(4.17)

∂L̄
∂X

= 0 =
∂J̄
∂X

∣∣∣∣∣
Ḡ

+
∂J̄
∂Ḡ

∂Ḡ

∂A

∂A

∂X
+ ψT

(
∂R̄

∂X̄

∣∣∣∣∣
Ḡ

+
∂R̄

∂Ḡ

∂Ḡ

∂A

∂A

∂X

)
(4.18)

Most of the terms in this equation have the same form as those used in the augmented

adjoint method, for elasticity grid perturbation. The one new term here relates to the

algebraic grid perturbation. It can be differentiated easily:

∂Ḡj,k

∂Aj

=

(
1− Lj,k

Lj,kmax

)
(4.19)
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Figure 4.1: An undesirable optimum

4.7 Radius of Curvature Constraint

Four different geometric constraints are introduced in Section 2.4. Three of these con-

straints were implemented in the legacy code, but the radius of curvature constraint is a

new addition.

This constraint is motivated by the avoidance of designs with highly curved portions

that the optimizer may find to be beneficial for the selected operating condition, but that

do not exhibit good design practice. For example, Figure 4.1 shows an optimized airfoil

having a pointed nose that would result in considerable off-design separation. The airfoil

also has an abruptly down-turned trailing edge that may not be found to be beneficial

at all if the grid were refined.

The ideal solution to these problems is to solve a multipoint optimization problem

on a fine mesh. However, for the purpose of verifying the present adjoint method, a less

computationally demanding method is sufficient. One alternative is to rely on maintain-

ing the quality of the initial airfoil, and to freeze a number of the control points near the

nose and the tail. This approach is relatively effective at the nose, and also reduces the

number of design variables. However, when starting with an un-cambered airfoil, it can

result in an optimized tail that is abruptly upturned (or rather, the camber line abruptly

changes from a downward to a zero slope). The exact effect of freezing a given number of

control points is also difficult for the designer to visualize, and results in different shape

limitations for different B-spline parameterizations.

Setting a minimum radius of curvature as a constraint allows the designer to set

more intuitive targets that apply directly to the geometry, and do not depend on the

parameterization. This comes at the expense of increased design variables and a more

highly curved design space.
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Constraining the radius just at the nose and tail would allow the optimizer to simply

move the highly curved areas to just a small distance from the nose and tail. Therefore,

the constraint is specified over the entire airfoil, using a piecewise linear target minimum

radius of curvature.

The radius of curvature itself is computed at a given node as the radius of the circle

passing through it and its two neighbouring airfoil surface nodes. For node j having

neighbours a and b, this is given by

rj =

√√√√((xb − xj)2 + (yb − yj)2) ((xb − xa)2 + (yb − ya)2) ((xa − xj)2 + (ya − yj)2)

xayj − xayb − xjya + xjyb + xbya − xby2
j

(4.20)

The penalty for radius of curvature constraint violation is then given by:

wrc

∑
j

(
rj

r∗j
− 1

)2

H
(
r∗j − rj

)
(4.21)

where wrc is a user-specified weight, r∗j is the target minimum radius of curvature at the

x-coordinate of node j, and H() is the Heaviside step function.

In the formulation of ∂J /∂G, the derivative of the radius of curvature penalty is

formed analytically.
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Validation

5.1 Test Case Details

Three test cases are used. In case A, the design objective is to minimize the drag to

lift ratio for a subsonic airfoil. The Mach number is 0.25, and the Reynolds number is

2.88×106. The turbulent flow is computed on a 225×49 mesh (11025 nodes). The initial

airfoil is a NACA0012, which is parametrized by a B-spline having 13 control points, as

shown in Figure 5.1. The three control points at the leading edge and the two at the

trailing edge are held fixed, while the y-coordinates of the remaining 8 control points

are used as design variables. The angle of attack, initially 4◦, is also a design variable.

Six minimum thickness targets, given in Table 5.1, are used (enforced with a weight

of 0.05). A piecewise linear distribution for the radius of curvature target is given in

Table 5.2, and is shown graphically in Figure 5.2 (enforced with a weight of 0.001). The

respective properties of the NACA0012 airfoil are included for reference. The radius of

curvature target was chosen to be less than the radius of curvature of the NACA0012

and of the RAE2822 airfoil used in case C. In the critical areas of the nose and tail, the

specified minimum radius of curvature is relatively close to the radius of curvature of the

RAE2822.

The second case is a transonic airfoil, where the design objective is to minimize drag

at a fixed lift coefficient. The Mach and Reynolds numbers are 0.78 and 2.0 × 107,

respectively. The target lift coefficient is 0.75, and the target drag coefficient is 0.008.

An enclosed area target of 0.8 times the area of the initial airfoil, a NACA0012, is used.

Thickness constraints are 0.012 at a chordwise coordinate of 0.95, and a 0.11 anywhere

between chordwise coordinates 0.15 and 0.4. Radius of curvature targets are the same

27
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NACA0012

control points

design variables

Figure 5.1: Airfoil parameterization and design variables, cases A and B

Table 5.1: Thickness targets (case A)

Chordwise coordinate Target thickness NACA0012 thickness

0.05 0.04 0.0706

0.35 0.11 0.1177

0.65 0.04 0.0809

0.75 0.03 0.0612

0.85 0.026 0.0389

0.95 0.012 0.0137

0.99 0.002 0.0028

Table 5.2: Radius of curvature target

Chordwise coordinate Target radius of curvature NACA0012 radius of curvature

0 0.01 0.016

0.005 0.01 0.030

0.2 0.3 1.357

0.8 0.3 7.528

1 0.2 5.551
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Figure 5.2: Radius of curvature target

as in case A. The weights for lift, drag, area, thickness, and radius of curvature are 10,

0.1, 1, 1, and 0.005, respectively.

In the third test case, the initial airfoil is the RAE2822, and a 198×60 mesh (11880

nodes) is used. As shown in Figure 5.3, the airfoil is parameterized with a B-spline

having 15 control points, 10 of which are used as design variables. The objective, flow

conditions, and constraints match those used in case B (note that 0.8 times the area of

the NACA0012 is equivalent to 0.82958 times the area of the RAE2822). A comparison

between the results of cases B and C can help in assessing the globality of the optimum,

as well as the influence of the computational mesh and the airfoil parameterization.

The test cases were run using an Athlon64 3500+ processor with a clock speed of

2.2 GHz.

5.2 Gradient Accuracy

The accuracy of the gradient computed by the augmented adjoint method can be deter-

mined by comparing the gradient to a benchmark. The simplest benchmark is the finite

difference method. Second-order centred finite differences are selected as a compromise

between accuracy and computational expense.
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RAE2822

control points

design variables

Figure 5.3: Airfoil parameterization and design variables, case C

f(x+ ε) =

f(x− ε) =

f(x+ ε)− f(x− ε) =

accurate digits

erroneous digits

Figure 5.4: Cancellation error in second-order centred differencing

∂f

∂x
=
f(x+ ε)− f(x− ε)

2ε
+O(ε2) (5.1)

Finite differences are susceptible to two types of errors. First is the truncation of the

Taylor series, as shown by the error term in (5.1). The second error is the cancellation

error that occurs when subtracting the floating point numbers f(x+ ε) and f(x− ε), as

shown in Figure 5.4. The first error usually decreases as ε → 0, while the second error

increases as ε→ 0, so there is generally an optimal step size ε′ that gives the least error.

In order to improve the ability to validate the augmented adjoint method, some effort

was made to estimate the finite differencing error, and to find the optimal step size.

The truncation error was estimated by computing a fourth-order finite difference

using the same step size. The difference between the second- and fourth-order estimates

is taken as the truncation error.

The cancellation error is more difficult to predict. The number of bits of agreement

between the mantissas of f(x+ ε) and f(x− ε) gives an estimate of how many additional

bits are erroneous in their difference. However, the total error in the difference depends

ultimately on the amount of error in f(x + ε) and f(x − ε). For the function being

differentiated, this error is impractical to compute. Therefore, the cancellation error is

avoided, and error estimation is done by selecting a step size where the truncation error

dominates. This can be identified by plotting the truncation errors for several step sizes
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Figure 5.5: Truncation error estimate in finite differences

on logarithmic axes, and selecting the linear region having a slope of about 2 (the order

of the method). An example of this is shown in Figure 5.5. The jagged shape to the left

indicates that cancellation errors are corrupting the truncation error estimate, and the

circled region shows step sizes where the truncation error estimate dominates and where

the error is reasonably low.

Another gradient calculation method that is a useful benchmark is the original adjoint

formulation, as described in Section 1.1. In (1.3), the terms ∂J̃ /∂X and ψT∂R̃/∂X are

formed using finite differences. As in the basic finite difference approach, some effort was

made here to estimate the error at a near-optimal step size.1 Once the same technique

is used to find the error in each of ∂J̃ /∂X and ψT∂R̃/∂X, they are summed to estimate

the error in the gradient. This does not include error incurred in the finite difference

approximation used to compute ∂J̃ /∂Q̃, or in the solution of the flow adjoint system.

Using this technique, Figure 5.6 was constructed for case A, using the elasticity grid

perturbation method with n = 2. It shows the relative difference between the initial

gradient computed using the augmented adjoint method and that computed using each

1This error estimation process is much more computationally intensive than a simple finite difference,
and the step size selection is not automated, so it is used only for validating the derivatives, and not in
the optimization runs in later sections.
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Figure 5.6: Validation of augmented adjoint gradient, case A

of the two benchmarks: finite differencing and the original adjoint method. The multiple

points on the plot refer to different entries in the gradient vector. As both benchmarks

have error in them, the estimate of this error is included on the horizontal axis. The fact

that all points lie beneath the dashed line indicates that the augmented method is at

least as accurate as both of the benchmarks. Referring to the relative difference, at least

the first five nonzero digits are accurate.

For case B, the comparison of the augmented adjoint gradient to the benchmarks is

shown in Figure 5.7. It can be seen that the method agrees very well with the original

adjoint method. When comparing against finite differences, at least four digits agree, but

one would expect better agreement, given the error estimate for the finite differences.

The principal cause of this lack of agreement is that the flow residual is a non-smooth

function. In Appendix B, examples of absolute values and switches in the calculation of

R can be found in the artificial dissipation (B.25, B.40) and turbulence modelling (B.70,

B.74) terms, as well as in the choice between inflow (B.120) and outflow (B.122) at the

far-field boundary.2 A discussion of the treatment of a specific portion of the artificial

dissipation terms is provided in Section B.3. Nemec [25] also found these effects to limit

2The pressure switch in the artificial dissipation and the circulation correction could also cause similar
problems. Both of these features have been deactivated in the cases presented here.
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Figure 5.7: Validation of augmented adjoint gradient, case B

the gradient accuracy, and noted a similar magnitude of discrepancy between the finite

differenced and adjoint gradients. As this error is in the flow Jacobian, a term common

to both the original and augmented adjoint methods, it is reasonable that both adjoint

methods differ from finite difference results by about the same amount.

Other factors that may contribute to this disagreement between the augmented ad-

joint gradient and the finite difference gradient are less important, and include

• Inaccurate estimation of finite differencing errors. The errors in the finite differences

may not be adequately estimated by only the next two terms in the Taylor series

(i.e. comparing second- and fourth-order finite differences);

• Errors in the solution of the augmented adjoint equations. For these equations,

residual convergence was attained to a tolerance of 10−15.

• Numerical errors that occur in the double precision operations involved in forming

the terms for the augmented adjoint method.

A similar plot of the gradient accuracy for case C is shown in Figure 5.8. It exhibits

similar characteristics to those found in case B, and has the same explanation for the

apparent disagreement with finite differences.
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Figure 5.8: Validation of augmented adjoint gradient, case C

5.3 Gradient Evaluation Time

The CPU time required to evaluate the gradient was investigated, considering different

grid perturbation techniques, gradient evaluation methods, and numbers of design vari-

ables. The number of design variables is varied by using a B-spline having five more

control points than the desired number of design variables, so that the two control points

at the trailing edge and the three at the leading edge remain fixed.

In each of Figures 5.9–5.11, the gradient evaluation time for the second design step in

case A is plotted against the number of B-spline design variables (i.e. all design variables

except the angle of attack), and the augmented adjoint method is contrasted with the

original adjoint method. In Figure 5.9, algebraic grid perturbation is used. This shows

little difference between the two gradient evaluation techniques, although the original

method is slightly slower, and takes longer as the number of design variables is increased.

This difference is indicative of the speed of the analytic calculation of ∂R/∂G. The time

taken by the augmented method actually decreases some with an increasing number of

design variables; this is likely noise due to slightly different convergence of the solvers,

as the airfoils for different surface parameterizations are not exactly the same.

Figures 5.10 and 5.11 use the elasticity grid perturbation method, with the number

of increments, n, being 1 and 2, respectively. The time taken by the augmented method

varies by less than 5% with differing numbers of design variables, and does not show an
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Figure 5.9: Gradient calculation time: algebraic method, case A

increasing trend. Additionally, the augmented adjoint method is several times faster than

the original adjoint method, whose time requirements increase linearly with the number

of design variables. The evaluation time for the original adjoint method is several times

longer than that of a flow solve (near 50 seconds), so is the dominant computational cost

in an optimization.

In an entire optimization, the gradient evaluation time is essentially constant, de-

spite warm-starting each λ(i). This is shown in Figure 5.12, for case A with 8 design

variables, using the elasticity grid perturbation with n = 2. The figure also shows that

the function evaluation (grid perturbation plus flow solution) grows increasingly faster

as the optimization progresses. This is due to warm-starting; the flow solve gradually

becomes faster, while the grid perturbation accelerates abruptly near the end of the op-

timization. The gradient calculation initially requires about 80% as much time as the

function evaluation.

The timing results for case B, shown in Figures 5.13–5.15, are very similar to those

found in case A. Near the beginning of the optimization, the gradient calculation using

the augmented adjoint method was found to require about 70% of the time required for

a function evaluation.

The timing was not studied in great detail for case C, but near the beginning of the



Chapter 5. Validation 36

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n 

tim
e 

[s
]

Augmented adjoint
Original adjoint

Figure 5.10: Gradient calculation time: elasticity method with n = 1, case A
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Figure 5.11: Gradient calculation time: elasticity method with n = 2, case A
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Figure 5.12: Change in evaluation times during optimization
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Figure 5.13: Gradient calculation time: algebraic method, case B
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Figure 5.14: Gradient calculation time: elasticity method with n = 1, case B
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Figure 5.15: Gradient calculation time: elasticity method with n = 2, case B
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Figure 5.16: Optimizer convergence for case A: algebraic method

optimization, the augmented adjoint gradient evaluation required about three quarters

of the time of a flow solve, and about one fifth of the time of a gradient evaluation by

the original adjoint method. This is comparable to the results found in the other cases.

5.4 Optimizer Convergence

The convergence history for case A is shown in Figure 5.16 for the algebraic grid per-

turbation, and in Figures 5.17 and 5.18 for the elasticity grid perturbation with n = 1

and 2, respectively. The figures show the norm of the objective function gradient, and a

normalization of objective function, given by

Fnormalized =
F
Fmin

− 1 (5.2)

where Fmin is the minimum objective function value found. This accentuates the differ-

ence between the objective function at a given increment and the optimal value. The

tolerance for gradient convergence was set lower than could be attained, so that the op-

timizer eventually stalls in each case, and each method’s convergence ability is exposed.

The curves for the normalized objective function show that the first two nonzero digits

of the objective function value are determined after the first 15–20 iterations. At the end
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Figure 5.17: Optimizer convergence for case A: elasticity method with n = 1
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Figure 5.18: Optimizer convergence for case A: elasticity method with n = 2
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of the optimization, between 5 and 10 digits of the objective function are unchanging.

In all cases, the original and augmented adjoint methods are very similar for the first

several iterations. As the optimization progresses, the differences between the methods

accumulate and their convergence histories diverge. In the end, it can be seen that the

gradient converges to about the same level for both gradient calculation methods, when

using the algebraic grid perturbation scheme.

When the elasticity method is used to perturb the grid, however, the augmented

adjoint method allows much tighter convergence of the gradient than does the original

adjoint method (about 4 orders of magnitude difference). This is due to convergence

difficulties experienced when using the original adjoint method, and can be explained

by gradient inaccuracy. Considering the gradient evaluation (1.3), some accuracy is lost

in the finite differencing used to find ∂F̃/∂X|Q̃ and ∂R̃/∂X|Q̃. The two quantities are

then added together. Near convergence of the optimizer, their sum is a near-zero quan-

tity, and so several of the leading digits cancel, and more cancellation error is incurred.

When using the elasticity method, this effect is aggravated by increased error in the flow

solver residual calculation, because the grid perturbation equations are solved imperfectly

(though tolerance of 10−15 is used).

To verify that this is the cause, an error estimation like that in Section 5.2 was

performed using the optimized airfoil produced using the augmented adjoint method

(n = 2). At this optimal point, the error (estimated as in Section 5.2) in the gradient

computed using the original adjoint method is so large that the sign of some entries in the

gradient vector is uncertain.3 This would clearly prevent the optimizer from converging as

tightly as is permitted by the augmented adjoint method. Furthermore, these errors can

be expected to be even larger in the actual optimization run, where the finite differencing

step sizes are not as meticulously chosen.

Despite the fact that the convergence histories are different when using the original

and augmented adjoint methods, they result in very similar optimized airfoils. The

largest vertical displacement between the optimized airfoils is less than 10−6, when the

algebraic grid perturbation is used. For the elasticity grid perturbation, the difference is

less than 10−3; this is expected, given the loose convergence obtained with the original

adjoint method.

The optimized airfoils found using the augmented adjoint method, for case A, are

3The same is true of the accuracy of the gradient computed with finite differences.
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Figure 5.19: Optimized airfoils for case A

shown in Figure 5.19. While the optimal airfoil shape does not depend much on the

gradient calculation method, the figure shows that the shape is noticeably dependent

on the grid perturbation technique used. The two variants of the elasticity give very

similar results, but the algebraic method gives a noticeably different shape. This may

be a sign that the optimizer is manipulating the grid perturbation algorithm to alter

the flow solution. These changes in the flow solution are likely due to errors resulting

from the thin layer approximation: the algebraic grid perturbation does not maintain

grid orthogonality near the airfoil’s surface. It is important to use a grid perturbation

algorithm that resists this sort of exploitation in order to ensure a physically realistic

optimum.

To explore this, a new mesh was regenerated for each of the optimized airfoils, and the

objective functions were recomputed on the new meshes. These objective functions in-

clude the constraint penalties; to maintain consistency, the penalties are not recomputed

on the regenerated mesh, but are retained from the optimized result. These values, given

in Table 5.3, show that the elasticity method with n = 2 provides the shape having the

best performance, as computed on the regenerated mesh. Also, the comparison between

the result computed on the perturbed and regenerated meshes is best for the elasticity

method with n = 2, and worst for the algebraic method. This favours the elasticity

method with n = 2.

Using the regenerated mesh for the shape optimized with algebraic grid perturbation,

the optimizer was restarted. At the first iteration of this restart, the objective function

value was 0.017005—noticeably larger than the result found with the regenerated mesh

matching the optimized shape from the first optimization. The reason for this is differing
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Table 5.3: Optimized airfoil performance using perturbed and regenerated meshes

Perturbation Objective function

method Perturbed mesh Regenerated mesh Difference

Algebraic 0.016993 0.016685 0.000307

Algebraic, restarted 0.016791 0.016807 0.000016

Elasticity (n = 1) 0.016694 0.016744 0.000050

Elasticity (n = 2) 0.016681 0.016668 0.000013

treatment of constraints: when computing the objective function for the regenerated

mesh matching the optimized shape from the first optimization, the numeric values for

the constraint penalties were taken from those computed at the end of the optimization.

However, for the first iteration of the restart, the constraints are computed using the

new B-spline parameterization, distribution of airfoil surface nodes, and grid. There are

therefore numerical differences between the two constraint penalties. Table 5.3 shows that

the restart, which involves smaller shape changes, achieves better agreement between the

optimized objective function found on the perturbed and the regenerated meshes. Due

to the new B-spline, the restart is not the same optimization problem as before, so the

actual objective function should not be compared to the other methods. However, the

optimized airfoil is quite similar to that obtained with the elasticity method.

The effect of increased dimensionality on the airfoil shape is also interesting. If the

number of design variables is increased to 24, then the optimizer has more control over the

shape of the airfoil, and tries to circumvent the active constraints. This is clearly visible

in Figure 5.20, where the optimized airfoils are thinner between thickness constraints.

As mentioned in Section 2.4, multidisciplinary, multipoint optimization could be used to

yield a more realistic design.

The optimizer convergence for case B shows trends similar to those found in case

A. The normalized function and gradient convergence for the case where the elasticity

method is used with n = 2 is shown in Figure 5.21. The figure shows that the augmented

adjoint method actually takes one iteration longer to converge, but that it converges

about three orders of magnitude more tightly.

Using the same grid perturbation, the difference between the y-coordinates of the

optimized airfoils obtained using the original and augmented adjoint methods is less

than 10−4. The shape of the optimized airfoil is shown in Figure 5.22. The difference
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Figure 5.20: Optimal airfoils for case A, using 24 B-spline design variables
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Figure 5.21: Optimizer convergence for case B: elasticity method with n = 2
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Figure 5.22: Optimized airfoil for case B
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Figure 5.23: Optimized pressure distribution for case B

between the airfoils obtained with different grid perturbation methods is not significant

in this case—less than 10−3. This differs from case A, where using the algebraic grid

perturbation gave a noticeably different airfoil. The reason for the difference is likely

that shock elimination dominates the transonic problem, whereas viscous drag is more

important for the subsonic airfoil—and thus so is mesh orthogonality. The optimized

airfoil for case B is shock-free, as can be seen in the pressure distribution, Figure 5.23.

One of the fundamental limitations the BFGS optimizer is that it drives toward local,

rather than global, optima. However, starting the BFGS optimizer from different starting

points can increase confidence in the globality of the optimum—just as confidence is

gained by multiple runs of a stochastic optimizer. In case C, the starting point is different
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Case C

Case B

Figure 5.24: Optimized airfoils for cases B and C

from case B, but the optimization problem is essentially the same. The optimized shapes

obtained in both cases are shown in Figure 5.24.

It can be seen that the two cases result in fairly similar airfoils; the upper surfaces

are nearly identical. There is a small but noticeable difference between the lower surfaces

near the nose and the tail. This agreement in shape is quite good, considering that the

two cases have different numbers of design variables, and that increasing the number of

design variables resulted in quite different optimal shapes in case A (see Figures 5.19

and 5.20). The agreement between the two optimized airfoils can also be viewed as good

when considering that grids of only moderate density are used, so that grid convergence

of the drag coefficient is not expected. This suggests that the globally optimal shape,

free of parameterization and discretization limitations, is relatively well-described by the

solutions to cases B and C.

Finally, the optimizer convergence plot for case C is shown in Figure 5.25. As in

the previous cases, it shows the augmented adjoint method to allow considerably tighter

gradient convergence than does the original adjoint method. Considerable improvement

is made in the first dozen iterations, then the bulk of the optimization time is spent

finding the active constraints, and the quadratic convergence of the optimizer is clearly

visible at the end of the plot.
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Figure 5.25: Optimizer convergence for case C
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Conclusion

6.1 Contributions

For an aerodynamic shape optimizer using either an algebraic method or the elasticity

method for grid perturbation, the discrete adjoint equations have been augmented to

explicitly include the grid perturbation. The accuracy and speed of the method have

been studied, as has its effect on the optimizer performance.

Unlike previous adjoint methods that explicitly include grid sensitivities [23, 30, 24],

this method treats a grid perturbation scheme that perturbs the grid in several incre-

ments.

A direct comparison of derivative accuracy, using finite differences and the original

adjoint method as benchmarks, shows the augmented adjoint method is accurate. Ad-

ditionally, the use of the augmented adjoint method allowed the optimizer to converge

much more tightly than was possible using the original adjoint method. This is indicative

of increased gradient accuracy, and provides the designer with increased confidence in

the validity of the solution to the optimization problem.

The augmented adjoint method met the expectation of having a run time that is

independent of the number of design variables. This run time is found to be about 70–

80% of that of a function evaluation (grid perturbation plus flow solve), and represents a

drastic improvement over the original adjoint method. When using the augmented adjoint

method, the optimizer was sometimes able to converge in up to 30% fewer iterations,

further decreasing the run time.

For subsonic airfoils, the optimized airfoil shape was found to be different, depending

on whether the elasticity grid perturbation method or an algebraic grid perturbation

48
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method was used. The optimized airfoil computed with the elasticity method with mul-

tiple increments was the best solution to the optimization problem.

The price paid for these performance improvements is the human time required to

derive and program the augmented adjoint equations. The months taken to complete

the implementation were mainly spent hand-coding functions to compute each of the

terms required by the adjoint equations. Of the several terms to be handled, two were

particularly time consuming: ∂R/∂G and ∂r(i+1)/∂G(i). The application of this method

to different flow solvers and grid perturbers will therefore be toilsome.

6.2 Cost-Benefit Assessment

The underlying question of this thesis is whether the savings in CPU time gained from

using an augmented adjoint method is worth the development cost. The factors to con-

sider in answering this question are the number of design variables, the grid perturbation

requirements, and the frequency of use of the code.

The results show that the benefits of the augmented adjoint method become more

pronounced as the number of design variables increases. Therefore, problems with a

large number of design variables, such as three-dimensional problems or two-dimensional

problems with complex geometries, would receive the most benefit from the use of this

method. It is noteworthy, however, that even for a modest eight design variables, the

augmented adjoint method computed the gradient at least five times faster than the

original method.

The augmented adjoint method is of little benefit if algebraic grid perturbation is

used, and considerable hand-coding is required to augment the adjoint equations for any

perturbation method (∂R/∂G must be computed). The augmented method is therefore

a poor investment of time if algebraic perturbation is adequate. This was found to be

the case for transonic airfoils, but not for subsonic airfoils. It can be expected that the

elasticity perturbation be required for problems involving large shape changes, important

viscous effects, complicated topologies, or unstructured meshes.

Looking further into this issue, it may be worth considering the implementation of a

linear elastic grid perturber (i.e. n = 1). This is because it eliminates the need to code the

term ∂r(i+1)/∂G(i)—one of the more time-consuming parts of the implementation. This

may be reasonable for simple two-dimensional geometries with modest shape changes,

because the optimized airfoils computed using n = 1 and n = 2 were found to be very
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similar here.

The final consideration noted above is the frequency of use of the code. Obviously,

if a code is only to be used once, then very little development time can be justified, and

the method presented here is not worthwhile. Even the adjoint to the flow equations

may not be worth the development time in a little-used code. For a code used on a daily

basis, the scale tips the other way.

A factor that overwhelms this discussion, however, is that when using the elasticity

grid perturbation with the original adjoint method, the optimizer is not able to converge

reliably due to gradient inaccuracy. The elasticity grid perturbation method and its

differentiation with the augmented adjoint equations should therefore be considered an

inseparable unit. In a discrete adjoint optimization code used frequently enough to merit

implementing this robust grid perturbation scheme, the augmented adjoint approach is

essential.

6.3 Implementation Recommendations

In the implementation of the augmented adjoint method, the bulk of the work done is in

hand-coding the required Jacobian matrix calculations, and in verifying the accuracy of

each Jacobian matrix against finite difference approximations. Hand-coding derivatives

is error-prone and fairly mechanical; there is potential instead to use some automated

process, such as the complex step method or algorithmic differentiation.

Application of these automated tools is not a trivial task. Nielsen and Kleb [29]

required automatic scripting routines to generate complex-variable code while allowing

their real-variable Fortran95 code to coexist. Another option is to use templated C++

code, which would allow the same code to be reused for both purposes. Nielsen and

Kleb [29] also noted that future work is required to handle the memory requirements of

storing large Jacobian matrices. Maute et al. [23] experienced similar memory troubles

as well as lengthy run-time for forming ∂R/∂G. While the method presented here was

hand-coded at length, both of these problems were avoided.

If an efficient, automatic means for computing the Jacobian matrices is not used in

the optimizer, even an inefficient implementation would be very useful for verifying hand-

coded derivatives. This would expediate the code development by removing uncertainty

about the accuracy of finite differences used as benchmarks.
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6.4 Applicability

The augmented adjoint method presented here has been demonstrated only for a specific

class of high-fidelity optimization problems. However, one would expect the overall con-

cepts to be applicable to a wide variety of other gradient-based optimization methods,

grid topologies, grid perturbation schemes, and high-fidelity analyses.

For example, the optimality conditions in (3.2–3.7) are directly applicable to a fully

coupled optimization approach, just as the original adjoint method was solved in coupled

form by Gatsis and Zingg [12]. The method can also be extended to any grid topology for

which the elasticity grid perturbation is valid, such as unstructured finite volume meshes.

The grid sensitivities occurring in a spring analogy perturbation can be treated with an

augmented adjoint method, as shown by Mavriplis [24]. Finally, similar concepts could

also be used for treating grid sensitivities when using other flow solvers, finite-element

models for structures or heat transfer, and high-fidelity multi-disciplinary analyses, such

as aero-structural analysis.
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Appendix A

Chain Rule Adjoint Derivation

In evaluating the objective function, F , at a given set of values for the design variables,

X, the following steps are required.

First, each of the increments of the grid perturbation are converged, as represented

by setting the residuals to zero:

0 = r(i)(G(i), G(i−1), A(i)(X)), i ∈ {1, 2, . . . , n} (A.1)

This implicitly defines each incremental grid as a function of the previous one. For n = 2,

this is

G(1) = G(1)(A(1)(X)) (A.2)

G(2) = G(2)(G(1), A(2)(X)) (A.3)

Next, the flow solver is converged, as represented by setting the residual to zero:

0 = R(Q,G,X) (A.4)

This implicitly defines the flow solution as a function of the grid and the design variables:

Q = Q(G,X) (A.5)

Finally, the objective function is evaluated.

J = J (Q,G,X) (A.6)

Or, when including all of the functional dependencies, this is

F = F
(
Q
(
G(2)

(
G(1)(A(1)(X)), A(2)(X)

)
, X

)
, G(2)

(
G(1)(A(1)(X)), A(2)(X)

)
, X

)
(A.7)

56
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This could simply be written as F(X), but it is useful to retain the intermediate

dependencies when forming the gradient of F with respect to X. Using the chain rule

and considering n = 2, this gradient is

∂F
∂X

=
∂F
∂Q

(
∂Q
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∂A(2)

∂A(2)
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+
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)

+
∂F
∂G(2)

∣∣∣∣∣
Q

(
∂G(2)

∂G(1)

∂G(1)

∂A(1)

∂A(1)

∂X
+
∂G(2)

∂A(2)

∂A(2)

∂X

)
+
∂F
∂X

∣∣∣∣∣
Q,G(2)

(A.8)

This makes use of the following notation for partial derivatives. Given the function

f(x), where both f and x are vectors, the Jacobian matrix representing the derivatives

of f with respect to x is ∂f
∂x

. Now suppose that f could also be written as f(g(x), x),

where g is also a vector. The derivatives of f with respect to x are then

∂f

∂x
=
∂f

∂g

∂g

∂x
+
∂f

∂x

∣∣∣∣∣
g

(A.9)

Here, the notation ∂f
∂x

∣∣∣
g

is used to represent the partial derivatives of f with respect to

x, where variations in g are excluded. Specifically,

∂f

∂x

∣∣∣∣∣
g

=

 ∂f
∂x1

∣∣∣∣∣
g

∂f

∂x2

∣∣∣∣∣
g

· · · ∂f

∂xi

∣∣∣∣∣
g

· · · ∂f

∂xn−1

∣∣∣∣∣
g

∂f

∂xn

∣∣∣∣∣
g

 (A.10)

∂f

∂xi

∣∣∣∣∣
g

= lim
ε→0

f(g(x), x+ ûiε)− f(g(x), x)

ε
(A.11)

where ûi is a unit vector in the ith coordinate direction.

In (A.8), Q, G(2), and G(1) are implicitly defined functions, so their derivatives are

difficult to compute. Consider first the derivatives of Q. Differentiating (A.4) with

respect to G gives

0 =
∂R

∂Q

∂Q

∂G
+
∂R

∂G

∣∣∣∣∣
Q

⇒ ∂Q

∂G
= −

[
∂R

∂Q

]−1
∂R

∂G

∣∣∣∣∣
Q

(A.12)

Differentiating (A.4) with respect to X, while holding G constant, gives

0 =
∂R

∂Q

∂Q

∂X

∣∣∣∣∣
G

+
∂R

∂X

∣∣∣∣∣
Q,G

⇒ ∂Q

∂X

∣∣∣∣∣
G

= −
[
∂R

∂Q

]−1
∂R

∂X

∣∣∣∣∣
Q,G

(A.13)

These expressions for the derivatives of Q can now be substituted into (A.8) as follows:
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∂F
∂X

= −∂F
∂Q

[
∂R

∂Q

]−1
 ∂R

∂G(2)

∣∣∣∣∣
Q

(
∂G(2)

∂G(1)

∂G(1)

∂A(1)

∂A(1)

∂X
+
∂G(2)

∂A(2)

∂A(2)

∂X

)
+
∂R

∂X

∣∣∣∣∣
Q,G(2)


+

∂F
∂G(2)

∣∣∣∣∣
Q

(
∂G(2)

∂G(1)

∂G(1)

∂A(1)

∂A(1)

∂X
+
∂G(2)

∂A(2)

∂A(2)

∂X

)
+
∂F
∂X

∣∣∣∣∣
Q,G(2)

(A.14)

Now let the adjoint vector ψ be defined by the linear system,

ψT = −∂F
∂Q

[
∂R

∂Q

]−1

⇒
[
∂R

∂Q

]T

Ψ = −
[
∂F
∂Q

]T

(A.15)

Incorporating this and rearranging gives

∂F
∂X

=

ψT ∂R

∂G(2)

∣∣∣∣∣
Q

+
∂F
∂G(2)

∣∣∣∣∣
Q

(∂G(2)

∂G(1)

∂G(1)

∂A(1)

∂A(1)

∂X
+
∂G(2)

∂A(2)

∂A(2)

∂X

)

+ψT ∂R

∂X

∣∣∣∣∣
Q,G(2)

+
∂F
∂X

∣∣∣∣∣
Q,G(2)

(A.16)

Differentiating (A.1) with respect to A(2), with i = 2, gives

0 =
∂r(2)

∂G(2)

∂G(2)

∂A(2)
+

∂r(2)

∂A(2)

∣∣∣∣∣
G(2)

⇒ ∂G(2)

∂A(2)
= −

[
∂r(2)

∂G(2)

]−1
∂r(2)

∂A(2)

∣∣∣∣∣
G(2)

(A.17)

Differentiating (A.1) with respect to G(1), with i = 2, gives

0 =
∂r(2)

∂G(2)

∂G(2)

∂G(1)
+

∂r(2)

∂G(1)

∣∣∣∣∣
G(2)

⇒ ∂G(2)

∂G(1)
= −

[
∂r(2)

∂G(2)

]−1
∂r(2)

∂G(1)

∣∣∣∣∣
G(2)

(A.18)

These expressions for the derivatives of r(2) can now be substituted into (A.16) as

follows:

∂F
∂X

= −

ψT ∂R

∂G(2)

∣∣∣∣∣
Q

+
∂F
∂G(2)

∣∣∣∣∣
Q

[ ∂r(2)

∂G(2)

]−1 (
∂r(2)

∂G(1)

∣∣∣∣∣
G(2)

∂G(1)

∂A(1)

∂A(1)

∂X
+

∂r(2)

∂A(2)

∣∣∣∣∣
G(2)

∂A(2)

∂X

)

+ψT ∂R

∂X

∣∣∣∣∣
Q,G(2)

+
∂F
∂X

∣∣∣∣∣
Q,G(2)

(A.19)

Now let the adjoint vector λ(2) be defined by the linear system,

λ(2)T = −

ψT ∂R

∂G(2)

∣∣∣∣∣
Q

+
∂F
∂G(2)

∣∣∣∣∣
Q

[ ∂r(2)

∂G(2)

]−1
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[
∂r(2)

∂G(2)

]T

λ(2) = −

ψT ∂R

∂G(2)

∣∣∣∣∣
Q

+
∂F
∂G(2)

∣∣∣∣∣
Q

T

(A.20)

Substituting this into (A.19) gives

∂F
∂X

= λ(2)T

(
∂r(2)

∂G(1)

∣∣∣∣∣
G(2)

∂G(1)

∂A(1)

∂A(1)

∂X
+

∂r(2)

∂A(2)

∣∣∣∣∣
G(2)

∂A(2)

∂X

)

+ψT ∂R

∂X

∣∣∣∣∣
Q,G(2)

+
∂F
∂X

∣∣∣∣∣
Q,G(2)

(A.21)

Differentiating (A.1) with respect to A(1), with i = 1, gives

0 =
∂r(1)

∂G(1)

∂G(1)

∂A(1)
+

∂r(1)

∂A(1)

∣∣∣∣∣
G(1)

⇒ ∂G(1)

∂A(1)
= −

[
∂r(1)

∂G(1)

]−1
∂r(1)

∂A(1)

∣∣∣∣∣
G(1)

(A.22)

Substituting this into (A.21) gives

∂F
∂X

= λ(2)T

− ∂r(2)

∂G(1)

∣∣∣∣∣
G(2)

[
∂r(1)

∂G(1)

]−1
∂r(1)

∂A(1)

∣∣∣∣∣
G(1)

∂A(1)

∂X
+

∂r(2)

∂A(2)

∣∣∣∣∣
G(2)

∂A(2)

∂X


+ψT ∂R

∂X

∣∣∣∣∣
Q,G(2)

+
∂F
∂X

∣∣∣∣∣
Q,G(2)

(A.23)

Now let the adjoint vector λ(1) be defined by the linear system,

λ(1)T = −λ(2)T ∂r(2)

∂G(1)

∣∣∣∣∣
G(2)

[
∂r(1)

∂G(1)

]−1

⇒
[
∂r(1)

∂G(1)

]T

λ(1) = −
[
λ(2)T ∂r(2)

∂G(1)

∣∣∣∣∣
G(2)

]T

(A.24)

Substituting this into (A.23) gives

∂F
∂X

= λ(1)T ∂r(1)

∂A(1)

∣∣∣∣∣
G(1)

∂A(1)

∂X
+ λ(2)T ∂r(2)

∂A(2)

∣∣∣∣∣
G(2)

∂A(2)

∂X

+ψT ∂R

∂X

∣∣∣∣∣
Q,G(2)

+
∂F
∂X

∣∣∣∣∣
Q,G(2)

(A.25)

This is the same system of equations as was derived in Chapter 3. The evaluation

of F in (A.7) requires that a grid perturbation and flow solve be completed, and so is

equivalent to (3.2, 3.3). The flow adjoint system, (A.15), is identical to (3.3). For the

grid adjoint systems, (A.20, A.24) match up with (3.5, 3.6), respectively, where n = 2.

Then the objective function gradient is given equivalently by (A.25) or by(3.7).



Appendix B

Forming ∂R/∂G

The sensitivity of the flow residual, R, with respect to the grid node locations, G, involves

several terms which can be considered independently. The Jacobian matrix is given by

∂R

∂G
=
∂
(
δξÊ

)
∂G

+
∂
(
δηF̂

)
∂G

− 1

Re
∂
(
δηŜ

)
∂G

−
∂
(
∇ξÊd

)
∂G

−
∂
(
∇ηF̂d

)
∂G

(B.1)

Rather than storing the entire Jacobian matrix ∂R/∂G, only its product with the row

vector ψT is stored (see Section 4.3.2). This product is formed by computing a single

row of ∂R/∂G at a time,1 and immediately multiplying it by the appropriate element of

ψT , and adding the result to the product.

The dependency of the flow residual on the grid node locations is almost exclusively

via the metrics of the coordinate transformation between physical and computational

space. The metrics are therefore outlined next, followed by a discussion of each term in

R and ∂R/∂G.

B.1 Metrics

The metrics of the coordinate transformation can be summarized by

ξx = Jyη ξy = −Jxη (B.2)

ηx = −Jyξ ηy = Jxξ (B.3)

1A row of ∂R/∂G represents the derivative of one element of the residual with respect to the entire
grid. Considering that when R is calculated, one element is computed—as a function of the entire
grid—at a time, this order of calculation of the derivative follows naturally.

60
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J =
1

xξyη − xηyξ

(B.4)

U = ξxu+ ξyv = J (yηu− xηv) (B.5)

V = ηxu+ ηyv = J (−yξu+ xξv) (B.6)

These quantities are computed by first forming xξ, xη, yξ, and yη using centred second-

order finite differences, then using them to compute the other quantities. For example,

(xξ)j,k ≈ δξxj,k =
xj+1,k − xj−1,k

2
(B.7)

The stencil is modified to a one-sided second-order finite difference at the boundaries.

For example,

(xξ)jmax,k ≈ δξxjmax,k =
3xjmax,k − 4xjmax−1,k + xjmax−2,k

2
(B.8)

B.2 Inviscid Fluxes

The inviscid flux in ξ is given by

δξÊ = δξ

J
−1


ρU

ρuU + ξxp

ρvU + ξyp

U(e+ p)



 (B.9)

This can be rewritten as

δξÊ = δξ




ρ(yηu− xηv)

ρu(yηu− xηv) + yηp

ρv(yηu− xηv)− xηp

(yηu− xηv)(e+ p)



 (B.10)

The term in [ ] represents a block column vector of which it is a typical block. It can be

separated as follows

δξÊ = δξ




−ρv ρu

−ρuv ρu2 + p

−ρv2 − p ρuv

−v(e+ p) u(e+ p)


D

 xη

yη


 (B.11)
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The subscript D on the 4×2 block indicates that it represents a block diagonal matrix

(overall dimensions: 4jmaxkmax×2jmaxkmax) of which it is a typical block on the diagonal.

For example,

 a b

c d


D

=



 a b

c d


1,1  a b

c d


2,1

. . .  a b

c d


jmax−1,kmax  a b

c d


jmax,kmax


(B.12)

The 2×1 block represents a block column vector (overall dimensions: 2jmaxkmax × 1),

and can also be written as δηG. The differentiation of this with respect to G (and

pre-multiplication by ψT) then yields

ψT
∂
(
δξÊ

)
∂G

= ψTδξ




−ρv ρu

−ρuv ρu2 + p

−ρv2 − p ρuv

−v(e+ p) u(e+ p)


D

(δηI)

 (B.13)

where I is the identity matrix (with 2jmaxkmax rows). The derivative can be expressed

in this form only because when the discrete operator δη() acts on some vector, the result

is a linear combination of the elements of that vector. In a one-dimensional example,

for the vector a, one could write δa = Ma, where M is a matrix that represents the

finite difference stencil. For example, in the case of second-order finite differences in one

dimension, M is given by

M =



−3
2

2 −1
2

−1
2

0 1
2

−1
2

0 1
2

. . . . . . . . .

−1
2

0 1
2

−1
2

0 1
2

1
2

−2 3
2


(B.14)
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

. . .
...

...
...

0 1
2

0 0 0 0 0 0 0

· · · −1
2

0 1
2

· · · 0 0 0 · · · 0 0 0 · · ·
0 −1

2
0 0 0 0 0 0 0

...
. . .

...
...

0 0 0 0 1
2

0 0 0 0

· · · 0 0 0 · · · −1
2

0 1
2

· · · 0 0 0 · · ·
0 0 0 0 −1

2
0 0 0 0

...
...

. . .
...

0 0 0 0 0 0 0 1
2

0

· · · 0 0 0 · · · 0 0 0 · · · −1
2

0 1
2

· · ·
0 0 0 0 0 0 0 −1

2
0

...
...

...
. . .



Grid indices

j − 1, k − 1

j , k − 1

j + 1, k − 1
...

j − 1, k

j , k

j + 1, k
...

j − 1, k + 1

j , k + 1

j + 1, k + 1

Figure B.1: The interior scheme of δξI

Using this, one finds that

∂

∂a
(δa) =

∂

∂a
(Ma) = M

∂a

∂a
= MI = δI = M (B.15)

So, the term δI is to be interpreted as a matrix representation of the finite difference

stencil used to compute δ(·).

For the two-dimensional case, the interior schemes for δξI (which appears later) and

δηI are given in Figures B.1 and B.2, where each entry represents a 2× 2 diagonal block

(as each block of G has 2 elements). The boundary scheme is similar to that in (B.14).

In a general interior row of the Jacobian matrix, ∂Rj,k/∂G, the only nonzero terms

are the following four:

∂
(
δξÊj,k

)
∂Gj−1,k−1

=
(−1

2

)


−ρv ρu

−ρuv ρu2 + p

−ρv2 − p ρuv

−v(e+ p) u(e+ p)


j−1,k

(−1

2

)
(B.16)
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

. . .
...

...
...

0 0 0 1
2

0 0 0 0 0

· · · 0 0 0 · · · 0 1
2

0 · · · 0 0 0 · · ·
0 0 0 0 0 1

2
0 0 0

...
. . .

...
...

−1
2

0 0 0 0 0 1
2

0 0

· · · 0 −1
2

0 · · · 0 0 0 · · · 0 1
2

0 · · ·
0 0 −1

2
0 0 0 0 0 1

2
...

...
. . .

...

0 0 0 −1
2

0 0 0 0 0

· · · 0 0 0 · · · 0 −1
2

0 · · · 0 0 0 · · ·
0 0 0 0 0 −1

2
0 0 0

...
...

...
. . .



Grid indices

j − 1, k − 1

j , k − 1

j + 1, k − 1
...

j − 1, k

j , k

j + 1, k
...

j − 1, k + 1

j , k + 1

j + 1, k + 1

Figure B.2: The interior scheme of δηI

∂
(
δξÊj,k

)
∂Gj−1,k+1

=
(−1

2

)


−ρv ρu

−ρuv ρu2 + p

−ρv2 − p ρuv

−v(e+ p) u(e+ p)


j−1,k

(
1

2

)
(B.17)

∂
(
δξÊj,k

)
∂Gj+1,k−1

=
(

1

2

)


−ρv ρu

−ρuv ρu2 + p

−ρv2 − p ρuv

−v(e+ p) u(e+ p)


j+1,k

(−1

2

)
(B.18)

∂
(
δξÊj,k

)
∂Gj+1,k+1

=
(

1

2

)


−ρv ρu

−ρuv ρu2 + p

−ρv2 − p ρuv

−v(e+ p) u(e+ p)


j+1,k

(
1

2

)
(B.19)

The code that evaluates (B.13) takes advantage of the high degree of similarity of

the above four equations. For a given point in the δξ() stencil in (B.13), all but (δηI) is

evaluated, and the result is sent to a separate function that handles the multiplication by

the appropriate nonzero entries in (δηI). The benefits of this implementation are small



Appendix B. Forming ∂R/∂G 65

in this case, but the same method greatly simplifies the code for the more complicated

terms in ∂R/∂G. It also provides simpler treatment of boundaries in the stencils used for

the metrics, and can be more readily expanded to higher order stencils for the metrics.

Similarly, the η-direction inviscid flux, when differentiated with respect to the grid

node locations, is

∂
(
δηF̂

)
∂G

= δη




ρv −ρu
ρuv −ρu2 − p

ρv2 + p −ρuv
v(e+ p) −u(e+ p)


D

(δξI)

 (B.20)

B.3 Artificial Dissipation

The ξ-direction artificial dissipation is expressed as

−∇ξ(Êd)j,k = −∇ξ

(
d

(2)

j+ 1
2
,k
∆ξQj,k − d

(4)

j+ 1
2
,k
∆ξ∇ξ∆ξQj,k

)
(B.21)

where ∇ξ and ∆ξ are backward and forward difference operators in the ξ-direction:

∇ξ(·)j,k = (·)j,k − (·)j−1,k ∆ξ(·)j,k = (·)j+1,k − (·)j,k (B.22)

The combinations of these operators acting on Q are adjusted near the boundaries.

The other coefficients are given by

d
(2)

j+ 1
2
,k

= 2(εσJ−1)j+ 1
2
,k (B.23)

d
(4)

j+ 1
2
,k

= max
[
0, 2κ4(σJ

−1)j+ 1
2
,k − d

(2)

j+ 1
2
,k

]
(B.24)

σj,k =
(
|U |+ a

√
ξ2
x + ξ2

y

)
j,k

(B.25)

εj,k = κ2

[
1

2
Υ∗

j,k +
1

4

(
Υ∗

j−1,k + Υ∗
j+1,k

)]
(B.26)

Υ∗
j,k = max (Υj−1,k, Υj,k, Υj+1,k) (B.27)

Υj,k =
|pj−1,k − 2pj,k + pj+1,k|
|pj−1,k + 2pj,k + pj+1,k|

(B.28)

where κ2 and κ4 are user-defined constants. Mean properties are used at half-nodes, and

can be expressed using an operator defined as:

(·)j+ 1
2
,k = $ξ(·)j,k =

(·)j,k + (·)j+1,k

2
(B.29)
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Notice that both ε and Q are independent of the grid node locations, G. As a result,

the only dependency on G is through the spectral radius and metric Jacobian, σJ−1.

With this in mind, the derivative of the artificial dissipation with respect to G can be

formed as follows. We begin by expressing the artificial dissipation for the interior nodes

in matrix form:

−∇ξÊd = −∇ξ

[(
$ξd

(2)
)

D
∆ξQ−

(
$ξd

(4)
)

D
∆ξ∇ξ∆ξQ

]
(B.30)

This can be rearranged as

−∇ξÊd = −∇ξ

[
(∆ξQ)D $ξd

(2) − (∆ξ∇ξ∆ξQ)D $ξd
(4)
]

(B.31)

whose differentiation is more straightforward.

∂(−∇ξÊd)

∂G
= −∇ξ

[
(∆ξQ)D $ξ

∂d(2)

∂G
− (∆ξ∇ξ∆ξQ)D $ξ

∂d(4)

∂G

]
(B.32)

Here,
∂d(2)

∂G
= 2εD

∂(σJ−1)

∂G
(B.33)

and

∂d(4)

∂G
=

 0 , $ξ

(
2κ4σJ

−1 − d(2)
)
≤ 0

2 (κ4 − ε)D
∂(σJ−1)

∂G
, $ξ

(
2κ4σJ

−1 − d(2)
)
> 0

(B.34)

Finally, consider σJ−1.

σJ−1 =
(
|ξxu+ ξyv|+ a

√
ξ2
x + ξ2

y

)
J−1 (B.35)

=
(
|Jyηu− Jxηv|+ aJ

√
x2

η + y2
η

)
J−1 (B.36)

Now J is always positive, so

σJ−1 = |yηu− xηv|+ a
√
x2

η + y2
η (B.37)

Differentiation yields

∂(σJ−1)

∂G1

=

sign (yηu− xηv) (−v) +
axη√
x2

η + y2
η


D

δηI (B.38)

∂(σJ−1)

∂G2

=

sign (yηu− xηv)u+
ayη√
x2

η + y2
η


D

δηI (B.39)

This applies to the interior scheme. The artificial dissipation term is not required

at the boundary nodes themselves, but is required at the next-to-boundary nodes. The
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leading backward difference operator in (B.32) is well defined there. However, near the

boundaries, the stencils for ∆ξQ and ∆ξ∇ξ∆ξQ are altered just as in (B.21). For the

calculation of ∂Êd/∂G, these alterations change the constants by which ∂d(2)/∂G and

∂d(4)/∂G are multiplied by, but have no other effect.

The artificial dissipation in the η-direction is similar. However, (B.27) is omitted, and

the spectral radius is defined as

σj,k =
(
|V |+ a

√
η2

x + η2
y

)
j,k

(B.40)

As a result, in the η-direction, we have

∂(σJ−1)

∂G1

=

sign (xξv − yξu) v +
axξ√
x2

ξ + y2
ξ


D

δξI (B.41)

∂(σJ−1)

∂G1

=

sign (xξv − yξu) (−u) +
ayξ√
x2

ξ + y2
ξ


D

δξI (B.42)

There is one wrinkle in this derivation. That is that the absolute value function used

in the calculation of σ has an undefined derivative at U = 0 (or V = 0). For a viscous

analysis, the no-slip boundary condition at the airfoil surface sets U = V = 0, and for

an inviscid analysis, the condition Vn = 0 at the same boundary is equivalent to setting

V = 0. The normal velocity, Vn is given in (B.106).

In a numerical calculation, one would expect that U and V not converge to exactly

0, but rather that they be very small positive or negative numbers. As a result, one can

expect the derivative of σJ−1 to be well-defined. However, the exact values that U and

V converge to are unpredictable, as are the signs of these values. This can be expected

to hold even for flow solutions to very similar problems. That is, even towards the end

of an optimization, when one flow solve very much resembles the next, the signs of U

and V at the airfoil are random. This randomness would cascade into the derivative

of the artificial dissipation with respect to the grid node locations, and eventually into

the overall objective function gradient, producing noise in the design space. So, in the

context of gradient-based optimization, calculating the derivative in the most strictly

correct sense may cause convergence problems in the optimizer. Instead, the derivatives

of |U | and |V | (only |V | for an inviscid analysis) with respect to G are set to 0 at the

boundary nodes where U and V are set to 0.2 This approach is implemented in the

2When using centred differences to compute these terms, the step size is usually so large that one value
(of U , V ) is positive and the other is negative. Thus the finite difference gives a near-zero derivative,
and agrees relatively well with the analytic approach.
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interest of maintaining a smooth design space.

B.4 Viscous Fluxes

When using the thin layer approximation, the viscous flux in the streamwise direction is

considered to be negligible, so is omitted. There is therefore only one viscous flux that

appears in the residual; it is given by

−1

Re

∂Ŝ

∂η
(B.43)

where

Ŝ = J−1


0

ηxm1 + ηym2

ηxm2 + ηym3

ηx (um1 + vm2 +m4) + ηy (um2 + vm3 +m5)

 (B.44)

m1 = (µ+ µt)
(

4

3
ηxuη −

2

3
ηyvη

)
(B.45)

m2 = (µ+ µt) (ηyuη + ηxvη) (B.46)

m3 = (µ+ µt)
(
−2

3
ηxuη +

4

3
ηyvη

)
(B.47)

m4 =

(
µPr−1 + µtPr

−1
t

γ − 1

)
ηx∂η(a

2) (B.48)

m5 =

(
µPr−1 + µtPr

−1
t

γ − 1

)
ηy∂η(a

2) (B.49)

Re =
ρ∞ca∞
µ∞

Pr =
c̄pµ̄

κ̄t

(B.50)

This includes derivatives of the form ∂η(αDβD∂ηθ), where α is a term like (µ + µt),

β is a term like 4
3
η2

x/J , and θ is one of u, v, or a2. This combination of operators is

discretized as

∂η(αDβD∂ηθ) ≈ ∇η

[
($ηα)D ($ηβ)D (∆ηθ)

]
(B.51)

Consider the differentiation of the viscous flux with respect to the grid node locations,

G, one element of Ŝ at a time. The derivative of the first element is simply zero.

∂

∂G

(
−Re−1∂Ŝ1

∂η

)
= 0 (B.52)
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The derivatives of the second and third elements are

∂

∂G

(
−1

Re

∂Ŝ2

∂η

)
=
−1

Re
∇η

{
[$η(µ+ µt)]D

[
(∆ηu)D

4

3
$η

∂(η2
x/J)

∂G

+ (∆ηv)D
1

3
$η

∂(ηxηy/J)

∂G

+ (∆ηu)D$η

∂(η2
y/J)

∂G

]}
(B.53)

∂

∂G

(
−1

Re

∂Ŝ3

∂η

)
=
−1

Re
∇η

{
[$η(µ+ µt)]D

[
(∆ηv)D$η

∂(η2
x/J)

∂G

+(∆ηu)D
1

3
$η

∂(ηxηy/J)

∂G

+ (∆ηv)D
4

3
$η

∂(η2
y/J)

∂G

]}
(B.54)

The derivative of the fourth element is:

∂

∂G

(
−1

Re

∂Ŝ4

∂η

)
= ($ηu)D

∂

∂G

(
−1

Re

∂Ŝ2

∂η

)
+ ($ηv)D

∂

∂G

(
−1

Re

∂Ŝ3

∂η

)

+
−1

Re
∇η


$η

(
µ

Pr
+ µt

Prt

)
γ − 1


D

(∆ηa
2)D$η

(
∂(η2

x/J)

∂G
+
∂(η2

y/J

∂G

) (B.55)

These equations include the derivatives of various combinations of the metrics with

respect to G. One of these is

∂(η2
x/J)

∂G
=

∂

∂G

(
y2

ξ

xξyη − xηyξ

)
(B.56)

Carrying out the differentiation and simplifying gives

∂(η2
x/J)

∂G
=
[
− η2

xyη η2
xxη − 2ηx

]
D
δξI +

[
η2

xyξ − η2
xxξ

]
D
δηI (B.57)

Similarly, the derivatives of the other two combinations of metrics are

∂(ηxηy/J)

∂G
=
[
ηx − ηxηyyη ηxηyxη − ηy

]
D
δξI +

[
ηxηxyξ ηxηyxξ

]
D
δηI (B.58)

∂(η2
y/J)

∂G
=
[
2ηy − η2

yyη η2
yxη

]
D
δξI +

[
η2

yyξ − η2
yxξ

]
D
δηI (B.59)
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B.5 Turbulence Model

Turbulent effects are modelled using the Spalart-Allmaras turbulence model. It is a one-

equation model, so for turbulent cases, there is one more conserved variable for each

node:

Q5 = ν̃, Q̂5 =
ν̃

J
(B.60)

The turbulent viscosity can be computed from this working variable using

νt = ν̃fv1 (B.61)

where

fv1 =
χ3

χ3 + c3v1

(B.62)

χ =
ν̃

ν
(B.63)

The steady-state model is rewritten in curvilinear coordinates, and expressed as set-

ting a residual to zero. So, the overall flow residual has one extra element per grid node.

These elements have convection (M), production (P ), destruction (D), and diffusion (N)

terms as follows.

R5 = J−1(M − P +D −N) (B.64)

where

M = Uν̃ξ + V ν̃η (B.65)

P =
cb1S̃ν̃

Re
(B.66)

D =
cw1fw

Re

(
ν̃

dw

)2

(B.67)

N =
1

σRe
[(1 + cb2)T1 − cb2T2] (B.68)

S̃ is given in terms of the magnitude of the vorticity, S, and fv2:

S̃ = SRe+
ν̃fv2

κ2d2
w

(B.69)

S = |S ′| = |ξxvξ + ηxvη − ξyuξ − ηyuη| (B.70)

fv2 = 1− χ

1 + χfv1

(B.71)

The wall function is

fw = g

(
1 + c6w3

g6 + c6w3

)1/6

(B.72)
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where

g = r + cw2

(
r6 − r

)
(B.73)

and

r = min

(
10,

ν̃

S̃κ2d2
w

)
(B.74)

dw is the distance from the nearest wall (the airfoil).

For the diffusion term, T1 and T2 are given by

T1 = ξx
∂

∂ξ
((ν + ν̃)ξxν̃ξ) + ηx

∂

∂η
((ν + ν̃)ηxν̃η)

+ ξy
∂

∂ξ
((ν + ν̃)ξyν̃ξ) + ηy

∂

∂η
((ν + ν̃)ηyν̃η) (B.75)

T2 = (ν + ν̃)

(
ξx
∂

∂ξ
(ξxν̃ξ) + ηx

∂

∂η
(ηxν̃η) + ξy

∂

∂ξ
(ξyν̃ξ) + ηy

∂

∂η
(ηyν̃η)

)
(B.76)

The parameters for the Spalart-Allmaras model are

cb1 = 0.1355, cb2 = 0.622, cv1 = 7.1 (B.77)

cw1 =
cb1
κ2

+
1 + cb2
σ

, cw2 = 0.3, cw3 = 2.0 (B.78)

κ = 0.41, σ = 2/3 (B.79)

When discretized, the convection term uses a first-order upwind stencil:

ν̃ξ =

 ∇ξν̃ , U ≥ 0

∆ξν̃ , U < 0
ν̃η =

 ∇ην̃ , V ≥ 0

∆ην̃ , V < 0
(B.80)

The vorticity is computed with the usual second-order centred stencil, but with a

limit on how small it can be.

S = max
(
8.5× 10−10, |S ′|

)
, S ′ = ξxδξv + ηxδηv − ξyδξu− ηyδηu (B.81)

When discretized, the distance from the wall is evaluated as

dw =
√

(x−Wx)2 + (y −Wy)2 (B.82)

where the operator W(·) returns the value at the nearest node on the airfoil surface.

That is,

W(·)j,k = (·)j′,1, j′ = max (jtail1, min(jtail2, j)) (B.83)
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Finally, T1 and T2 contain terms like those found in the viscous flux, and are discretized

using the operator given in (B.51), in both the ξ- and η-directions. So, the discrete T1

and T2 are

T1 + ηy∇η

[
($η(ν + ν̃))D ($ηηy)D ∆ην̃

]
+ ηx∇η

[
($η(ν + ν̃))D ($ηηx)D ∆ην̃

]
+ ξy∇ξ

[
($ξ(ν + ν̃))D ($ξξy)D ∆ξν̃

]
= ξx∇ξ

[
($ξ(ν + ν̃))D ($ξξx)D ∆ξν̃

]
(B.84)

T2 = (ν + ν̃)D

{
ηy∇η

[
($ηηy)D ∆ην̃

]
+ ηx∇η

[
($ηηx)D ∆ην̃

]
+ ξy∇ξ

[
($ξξy)D ∆ξν̃

]
+ ξx∇ξ

[
($ξξx)D ∆ξν̃

] }
(B.85)

B.5.1 Convection

The derivative of the convection term, M/J , with respect to the grid can be written as

∂

∂G

(
M

J

)
=

∆ην̃ , if V < 0

∇ην̃ , if V ≥ 0


D

∂

∂G
(−yξu+ xξv)

+

∆ξν̃ , if U < 0

∇ξν̃ , if U ≥ 0


D

∂

∂G
(yηu− xηv) (B.86)

This becomes

∂

∂G

(
M

J

)
=

∆ην̃ , if V < 0

∇ην̃ , if V ≥ 0


D

[v − u]DδξI

+

∆ξν̃ , if U < 0

∇ξν̃ , if U ≥ 0


D

[− v u]DδηI (B.87)

B.5.2 Production

In the production term of the Spalart-Allmaras turbulence model, −P/J , the dependency

on the grid node locations is via J , S, and dw. So, one can express the derivative as

∂

∂G

(
−P
J

)
= −cb1ν̃

∂

∂G

(
S

J

)
− cb1ν̃

2fv2

Reκ2

∂

∂G

(
1

Jd2
w

)
(B.88)
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For the derivative of S/J , when |S ′| > 8.5× 10−10,

∂

∂G

(
S

J

)
= sign(S ′)

{[
− δηu − δηv

]
D
δξI +

[
δξu δξv

]
D
δηI

}
(B.89)

However, when |S ′| < 8.5× 10−10, S is independent of G, and

∂

∂G

(
S

J

)
= S

{[
yη − xη

]
D
δξI +

[
− yξ xξ

]
D
δηI

}
(B.90)

The derivative of 1/(Jd2
w) is given by

∂

∂G

(
1

Jd2
w

)
=

1

d2
w

{[
yη − xη

]
D
δξI +

[
− yξ xξ

]
D
δηI

}
− 2

Jd4
w

[
(x−Wx) (y −Wy)

]
D
(I −WI) (B.91)

Note that like the δξ(·) operator, W(·) can be expressed as a premultiplication of its

argument by a matrix. Thus, WI is interpreted in the same fashion as δξI, that is,

WI =
∂W(·)
∂(·)

(B.92)

B.5.3 Destruction

In the destruction term of the Spalart-Allmaras turbulence model, fw, J , and dw depend

on G. So,
∂(D/J)

∂G
=
cw1ν̃

2

Re

(
∂fw

∂G

1

Jd2
w

+ fw
∂

∂G

(
1

Jd2
w

))
(B.93)

The derivative of 1/(Jd2
w) is computed as in the production term. The derivative of

fw is lengthy, but straightforward:

∂fw

∂G
=
c6w3 (1 + c6w3)

1/6

(g6 + c6w3)
7/6

(
1− cw2 + 6cw2r

5
)(
−r

2Reκ2

ν̃

)(
d2

w

∂S

∂G
+ S

∂(d2
w)

∂G

)
(B.94)

The derivative of S with respect to G, for nodes where |S ′| > 8.5× 10−10, is

∂S

∂G
= Jsign(S ′)

{[
− δηu − δηv

]
D
δξI +

[
δξu δξv

]
D
δηI

}
JS

{[
− yη xη

]
D
δξI +

[
yξ − xξ

]
D
δηI

}
(B.95)

However, when |S ′| < 8.5× 10−10, S becomes independent of G, and

∂S

∂G
= 0 (B.96)

The square of the distance from the wall is differentiated as

∂(d2
w)

∂G
= 2

[
(x−Wx) (y −Wy)

]
D
(I −WI) (B.97)
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B.5.4 Diffusion

In the diffusion term of the Spalart-Allmaras model, both T1 and T2 depend on G, so the

grid sensitivity is

∂

∂G

(
−N
J

)
=
−1

σRe

(
(1 + cb2)

∂(T1/J)

∂G
− cb2

∂(T2/J)

∂G

)
(B.98)

with

∂(T1/J)

∂G
=
[
∇η (AD$ηηy) −∇η (AD$ηηx)

]
D
δξI

+
[
−∇ξ (BD$ξξy) ∇ξ (BD$ξξx)

]
D
δηI

+ xξ∇η

(
AD$η

∂ηy

∂G

)
− yξ∇η

(
AD$η

∂ηx

∂G

)

− xη∇ξ

(
BD$ξ

∂ξy
∂G

)
+ yη∇ξ

(
BD$ξ

∂ξx
∂G

)
(B.99)

where

AD = ($η(ν + ν̃))D (∆ην̃)D BD = ($ξ(ν + ν̃))D (∆ξν̃)D (B.100)

and

∂(T2/J)

∂G
= (ν + ν̃)D

{ [
∇η ((∆ην̃)D$ηηy) −∇η ((∆ην̃)D$ηηx)

]
D
δξI

+
[
−∇ξ ((∆ξν̃)D$ξξy) ∇ξ ((∆ξν̃)D$ξξx)

]
D
δηI

+ xξ∇η

(
(∆ην̃)D$η

∂ηy

∂G

)
− yξ∇η

(
(∆ην̃)D$η

∂ηx

∂G

)

− xη∇ξ

(
(∆ξν̃)D$ξ

∂ξy
∂G

)
+ yη∇ξ

(
(∆ξν̃)D$ξ

∂ξx
∂G

)}
(B.101)

Here, the derivative of ξx is derived as

∂ξx
∂G

=
∂

∂G

(
yη

xξyη − xηyξ

)
=
[
− yηJ

2yη yηJ
2xη

]
D
δξI +

[
yηJ

2yξ − yηJ
2xξ + J

]
D
δηI

= −
[
ξ2
x ξxξy

]
D
δξI −

[
ξxηx ξxηy − J

]
D
δηI (B.102)

Similarly,
∂ξy
∂G

= −
[
ξyξx ξ2

y

]
D
δξI −

[
ξyηx + J ξyηy

]
D
δηI (B.103)
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Figure B.3: Domain boundaries

∂ηx

∂G
= −

[
ηxξx ηxξy + J

]
D
δξI −

[
η2

x ηxηy

]
D
δηI (B.104)

∂ηy

∂G
= −

[
ηyξx − J ηyξy

]
D
δξI −

[
ηyηx η2

y

]
D
δηI (B.105)

B.6 Boundary Conditions

The implicit boundary conditions used by the flow solver appear as extra blocks in the

residual vector. These must be differentiated to compute ∂Ri,j/∂G, where (i, j) lies on

a boundary. The boundaries of the domain are shown in Figure B.3. The following

subsections discuss each boundary in detail. The boundary conditions are computed

using the components of the flow velocity that are normal and tangential to the domain

boundary. These components, Vn and Vt, are shown for each boundary in Figure B.3,

and will be considered first.

B.6.1 Normal and Tangential Velocity Components

The normal and tangential velocity components are computed differently, depending on

which set of grid lines are aligned with the boundary. For the boundaries that lie on
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ξ grid lines (i.e. the inflow/outflow boundary and the airfoil boundary), the velocity

components are calculated using

Vn =
ηxu+ ηyv√
η2

x + η2
y

=
−yξu+ xξv√

y2
ξ + x2

ξ

(B.106)

Vt =
ηyu− ηxv√
η2

x + η2
y

=
xξu+ yξv√
y2

ξ + x2
ξ

(B.107)

Differentiating with respect to the grid node locations yields

∂Vn

∂G
=
[
vA− xξB − uA− yξB

]
D
(δξI) (B.108)

∂Vt

∂G
=
[
uA− xξC vA− yξC

]
D
(δξI) (B.109)

where

A = (y2
ξ + x2

ξ)
−1/2 (B.110)

B = (−yξu+ xξv)(y
2
ξ + x2

ξ)
−3/2 (B.111)

C = (xξu+ yξv)(y
2
ξ + x2

ξ)
−3/2 (B.112)

For the boundaries that lie on η grid lines (i.e. the two outflow boundaries), the

velocity components are calculated using

Vn =
ξxu+ ξyv√
ξ2
x + ξ2

y

=
yηu− xηv√
y2

η + x2
η

(B.113)

Vt =
−ξyu+ ξxv√

ξ2
x + ξ2

y

=
xηu+ yηv√
y2

η + x2
η

(B.114)

Differentiating with respect to the grid node locations yields

∂Vn

∂G
=
[
− vA− xηB uA− yηB

]
D
(δηI) (B.115)

∂Vt

∂G
=
[
uA− xηC vA− yηC

]
D
(δηI) (B.116)

where

A = (y2
η + x2

η)
−1/2 (B.117)

B = (yηu− xηv)(y
2
η + x2

η)
−3/2 (B.118)

C = (xηu+ yηv)(y
2
η + x2

η)
−3/2 (B.119)
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B.6.2 Inflow/Outflow Boundary

The inflow/outflow boundary conditions are derived using Riemann invariants. When

the flow direction is into the domain (inflow, Vn ≤ 0), the residual terms are

Rj,kmax =



(
Vn − 2a

γ−1

)
j,kmax

−
(
(Vn,∞)j,kmax

− 2a∞
γ−1

)
(
Vn + 2a

γ−1

)
j,kmax

−
(
Vn + 2a

γ−1

)
j,kmax−1(

ργ

p

)
j,kmax

− S∞

(Vt)j,kmax
− (Vt,∞)j,kmax

ν̃j,kmax − ν̃∞


(B.120)

where (Vn,∞)j,kmax
is the freestream velocity component that is normal to the grid at node

j, kmax, and (Vt,∞)j,kmax
is similar. They can be differentiated as laid out in Section B.6.1.

When differentiated with respect to the grid node locations, this becomes

Rj,kmax

∂G
=



∂(Vn)j,kmax

∂G
− ∂(Vn,∞)j,kmax

∂G
∂(Vn)j,kmax

∂G
− ∂(Vn)j,kmax−1

∂G

0
∂(Vt)j,kmax

∂G
− ∂(Vt,∞)j,kmax

∂G

0


(B.121)

The freestream quantities (Vn)∞ and (Vt)∞ differ from (Vn)j,k and (Vt)j,k

The equations for outflow have more terms that are extrapolated from the solution:

Rj,kmax =



(
Vn − 2a

γ−1

)
j,kmax

−
(
(Vn,∞)j,kmax

− 2a∞
γ−1

)
(
Vn + 2a

γ−1

)
j,kmax

−
(
Vn + 2a

γ−1

)
j,kmax−1(

ργ

p

)
j,kmax

−
(

ργ

p

)
j,kmax−1

(Vt)j,kmax
− (Vt)j,kmax−1

ν̃j,kmax − ν̃j,kmax−1


(B.122)

When differentiated with respect to the grid node locations, this becomes

Rj,kmax

∂G
=



∂(Vn)j,kmax

∂G
− ∂(Vn,∞)j,kmax

∂G
∂(Vn)j,kmax

∂G
− ∂(Vn)j,kmax−1

∂G

0
∂(Vt)j,kmax

∂G
− ∂(Vt)j,kmax−1

∂G

0


(B.123)
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B.6.3 Outflow Boundary

For an inviscid analysis, Riemann invariants are also used at the two outflow boundaries

downstream of the airfoil. The only differences between the treatment of these boundaries

and the inflow/outflow boundary discussed above are the nodal indices and the calculation

of Vn and Vt (see Section B.6.1).

When the flow is viscous, however, the Riemann invariants are replaced with first-

order extrapolation at the outflow boundaries. At j = 1,

R1,k =



ρ1,k − ρ2,k

(ρu)1,k − (ρu)2,k

(ρv)1,k − (ρv)2,k

p1,k − p2,k

ν̃1,k − ν̃2,k


(B.124)

This is independent of the grid node locations, so these elements of ∂R/∂G are zero. The

same result is found for the outflow boundary at j = jmax.

B.6.4 Airfoil Boundary

The airfoil boundary is treated differently, depending on whether the flow is viscous or

inviscid. For viscous flow,

Rj,1 =



ρj,1 − ρj,2

(ρu)j,1

(ρv)j,1

pj,1 − pj,2

ν̃j,1


(B.125)

Thus for viscous flow, the residual along the airfoil boundary is independent of the grid

node locations. However, for inviscid flow,

Rj,1 =


(Vn)j,1

(Vt)j,1 − 2(Vt)j,2 + (Vt)j,3

pj,1 − 2pj,2 + pj,3

γpj,1

γ−1
+ ρj,1

2
(u2

j,1 + v2
j,1)− ρj,1h∞

 (B.126)
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So

∂Rj,1

∂G
=



∂(Vn)j,1

∂G
∂(Vt)j,1

∂G
− 2∂(Vt)j,2

∂G
+ ∂(Vt)j,3

∂G

0

0

 (B.127)

B.6.5 Wake Cut

The residual at the wake cut is computed as

Rj,1 =



(Q1)j,1 − 1
2
((Q1)j,2 + (Q1)jmax−j+1,2)

(Q2)j,1 − 1
2
((Q2)j,2 + (Q2)jmax−j+1,2)

(Q3)j,1 − 1
2
((Q3)j,2 + (Q3)jmax−j+1,2)

pj,1 − 1
2
(pj,2 + pjmax−j+1,2)

(Q5)j,1 − 1
2
((Q5)j,2 + (Q5)jmax−j+1,2)


(B.128)

This is independent of the grid node locations.
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Forming ∂Ke/∂Ge

C.1 Element Stiffness Evaluation

C.1.1 Continuous Equations

Consider the strain energy stored in a 2D body:

Ep =
1

2

∫
V
εTσdV (C.1)

where the strain, ε, and stress, σ, are

ε =


∂u
∂x

∂v
∂y

∂u
∂y

+ ∂v
∂x

 =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x


 u

v

 = D

 u

v

 (C.2)

σ =


σx

σy

τxy

 (C.3)

and u and v are the displacement of the material in the x- and y-directions. The stress

and strain are related by the elasticity matrix, C.

σ = Cε (C.4)

C =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1
2
− ν

 (C.5)

where E is Young’s modulus, and ν is Poisson’s ratio.

80
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This allows the strain energy to be written as a function of u.

Ep =
1

2

∫
V
(Du)TCDudV (C.6)

C.1.2 Spatial Discretization

The strain energy is discretized in space by considering the body to be composed of

several finite quadrilateral elements, so the integral over the body becomes the sum of

the integrals over each of the elements. For each element, discrete approximations for

strain and for the element volume integral are introduced.

The analytic expression for strain (C.2) is discretized using the displacements of the

corner nodes of the element as follows:

ε = BeUe (C.7)

or,

ε =


J∗11 J∗12 0 0

0 0 J∗21 J∗22

J∗21 J∗22 J∗11 J∗12





∂N1

∂ξ
0 ∂N2

∂ξ
0 ∂N3

∂ξ
0 ∂N4

∂ξ
0

∂N1

∂η
0 ∂N2

∂η
0 ∂N3

∂η
0 ∂N4

∂η
0

0 ∂N1

∂ξ
0 ∂N2

∂ξ
0 ∂N3

∂ξ
0 ∂N4

∂ξ

0 ∂N1

∂η
0 ∂N2

∂η
0 ∂N3

∂η
0 ∂N4

∂η





U1

v1

U2

v2

U3

v3

U4

v4


(C.8)

This uses an interpolation function, Ni(ξ, η), given by

Ni(ξ, η) =
1

4
(1 + ξξi)(1 + ηηi) (C.9)

where i denotes the corner number (they numbered in a clockwise manner). The inter-

polation function is defined in a local coordinate system, (ξ, η), in which the corners of

the element are (±1,±1).

The Jacobian of the transformation, J , is given by

J =

 J11 J12

J21 J22

 =

 ∂N1

∂ξ
∂N2

∂ξ
∂N3

∂ξ
∂N4

∂ξ

∂N1

∂η
∂N2

∂η
∂N3

∂η
∂N4

∂η



x1 y1

x2 y2

x3 y3

x4 y4

 (C.10)
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and J∗ is the inverse of J .

Using (C.7), the strain energy (C.6) is partly discretized and written as

Ep =
1

2

∑
e

∫
Ve

UT
e B

T
e CeBeUedVe (C.11)

Because Ue is not a function of the position within the element, it can be brought outside

of the integral, giving

Ep =
1

2

∑
e

UT
e KeUe (C.12)

where the element stiffness matrix is

Ke =
∫

Ve

BT
e CeBedVe (C.13)

The numerical integration over the element volume is performed using Gaussian

quadrature. In the local coordinates, we have

Ke =
∫ 1

−1

∫ 1

−1
BT

e CeBe|Je|dηdξ =
pξ∑

i=1

pη∑
j=1

wiwjB
T
ijCeBij|Jij|dηdξ (C.14)

where pξ = pη = 2 are the number of Gauss points, and wi = wj = 1 are the weights at

each point. The Gauss points are situated at (± 1√
3
,± 1√

3
). The subscripts on B and J

indicate the Gauss point at which they are evaluated. |J | denotes the determinant of J .

C.1.3 Young’s Modulus

The spatial variation of Young’s modulus is based on element size and quality. It is given

by

E(i)
e =

1

ae

(
Φ̂(i)

e

Φ̂
(0)
e

)γ

(C.15)

where ae is the area of the element, Φ̂ is the distortion measure, the superscript (i)

indicates the increment of a multi-increment perturbation (i = 0 for the parent grid),

and γ is a user-selected stiffening exponent.

The element area is given by half the magnitude of the cross product of the diagonal

vectors of the element:

ae =
1

2
[(Ge,5 −Ge,1)(Ge,8 −Ge,4)− (Ge,7 −Ge,3)(Ge,6 −Ge,2)] (C.16)
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where the grid nodes for the element, Ge, are interpreted as

Ge =



Ge,1

Ge,2

Ge,3

Ge,4

Ge,5

Ge,6

Ge,7

Ge,8



=



x1

y1

x2

y2

x3

y3

x4

y4



(C.17)

and (xi, yi) are the coordinates of the ith corner of the element.

The ratio of the element distortion measure, Φ̂e, to its original value acts to prevent

the element quality from deteriorating. This reflects the philosophy of not improving the

element quality, but rather retaining the high quality of the parent grid.1 The distortion

measure is computed as

Φ̂e =

 4∑
j=1

(
Φ̂∆j

)P

 1
P

, P = 2 (C.18)

Here, the subscript ∆j refers to the jth triangular sub-element within the quadrilateral,

generally having vertices at the element corner nodes j − 1, j, and j + 1. Then, Φ̂∆j
is

the ratio of the radii of the smallest circumscribed circle and the largest inscribed circle

of that triangular sub-element:

Φ̂∆j
=
(
R∆

r∆

)
j

=

(
s∆l1l2l3
4A2

∆

)
j

(C.19)

where l are the lengths of the sides of the triangle, A∆ is the area of the triangle, and s∆

is the semi-perimeter.

(A∆)j =
(√

s∆(s∆ − l1)(s∆ − l2)(s∆ − l3)
)

j
, (s∆)j =

(
l1 + l2 + l3

2

)
j

(C.20)

With some simplification, one obtains

Φ̂∆j
=

(
2l1l2l3

(−l1 + l2 + l3)(l1 − l2 + l3)(l1 + l2 − l3)

)
j

(C.21)

1A high quality parent grid is therefore imperative.



Appendix C. Forming ∂Ke/∂Ge 84

C.2 Differentiation

∂Ke

∂Ge

=
pξ∑

i=1

pη∑
j=1

wiwj

∂
(
BT

ijCijBij|Jij|
)

∂Ge

 (C.22)

The main portion of this third-order tensor is ∂(BT
ijCijBij|Jij|; consider its derivatives,

neglecting the subscripts ij for simplicity. Before differentiating, however, notice that

in (C.8), B is written in terms of J∗,

J∗ =
1

|J |

 J22 −J12

−J21 J11

 (C.23)

It would therefore be simpler to differentiate the product B|J | than B itself. One can

therefore re-arrange, differentiate, and simplify as follows:

∂

∂Ge

[
(BT|J |)C(B|J |)

|J |

]
=
∂(BT|J |)
∂Ge

CB +BT ∂C

∂Ge

B|J |

+BTC
∂(B|J |)
∂Ge

−BTCB
∂|J |
∂Ge

(C.24)

Using tensor notation, this is of the form

∂Kab

∂Gc

(C.25)

and it can be shown that the first and third terms in (C.24) are the transpose of each

other (C is symmetric). That is,

∂(Bda|J |)
∂Gc

CdeBeb =

(
BdaCde

∂(Beb|J |)
∂Gc

)
δab (C.26)

where δab is the Kronecker delta,

δab =

 1, a = b

0, a 6= b
(C.27)

The following sections describe the calculation of each of the Jacobian matrices

in (C.24).
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C.2.1 ∂(B|J |)/∂Ge

Referring to (C.8) and (C.23), the product of B with the determinant of the metric

Jacobian can be written as

B|J | =


J22 −J12 0 0

0 0 −J21 J11

−J21 J11 J22 −J12





∂N1

∂ξ
0 ∂N2

∂ξ
0 ∂N3

∂ξ
0 ∂N4

∂ξ
0

∂N1

∂η
0 ∂N2

∂η
0 ∂N3

∂η
0 ∂N4

∂η
0

0 ∂N1

∂ξ
0 ∂N2

∂ξ
0 ∂N3

∂ξ
0 ∂N4

∂ξ

0 ∂N1

∂η
0 ∂N2

∂η
0 ∂N3

∂η
0 ∂N4

∂η


(C.28)

The product of these two matrices is of the form

B|J | =


bB 0 bD 0 bF 0 bH 0

0 bA 0 bC 0 bE 0 bG

bA bB bC bD bE bF bG bH

 (C.29)

where, for example

bA = −J21
∂N1

∂ξ
+ J11

∂N1

∂η
, bB = J22

∂N1

∂ξ
− J12

∂N1

∂η
(C.30)

The other terms are similar. This form for B|J | allows for some minor reductions in mem-

ory usage and CPU time (both when forming it and multiplying it with other matrices);

these benefits are also encountered for the derivative of B|J |.
The derivatives of these terms of the matrix are.

∂bA
∂Ge

=



−∂N1

∂η
∂N1

∂ξ
+ ∂N1

∂ξ
∂N1

∂η

0

−∂N2

∂η
∂N1

∂ξ
+ ∂N2

∂ξ
∂N1

∂η

0

−∂N3

∂η
∂N1

∂ξ
+ ∂N3

∂ξ
∂N1

∂η

0

−∂N4

∂η
∂N1

∂ξ
+ ∂N4

∂ξ
∂N1

∂η

0



T

,
∂bB
∂Ge

=



0
∂N1

∂η
∂N1

∂ξ
− ∂N1

∂ξ
∂N1

∂η

0
∂N2

∂η
∂N1

∂ξ
− ∂N2

∂ξ
∂N1

∂η

0
∂N3

∂η
∂N1

∂ξ
− ∂N3

∂ξ
∂N1

∂η

0
∂N4

∂η
∂N1

∂ξ
− ∂N4

∂ξ
∂N1

∂η



T

(C.31)

Again, the other terms are similar. Notice that the first element in ∂bA/∂Ge and the

second element in ∂bB/∂Ge evaluate to zero.

These derivatives can be compiled to form the third-order tensor ∂(B|J |)/∂Ge.
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C.2.2 ∂C/∂Ge

The only portion of the elasticity matrix, C, that depends on the element corner node

locations, Ge, is Young’s modulus, E. The derivative of C with respect to Ge is therefore

∂C

∂Ge

=

(
∂E

∂Ge

)
1

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1
2
− ν

 (C.32)

and only the derivative of the scalar E with respect to the element corner node locations

need be computed. Referring to (C.15), this derivative is

∂Ee

∂G
= − 1

a2
e

[
∂ae

∂Ge

](
Φ̂e

Φ̂
(0)
e

)γ

+
γ

aeΦ̂
(0)
e

(
Φ̂e

Φ̂
(0)
e

)γ−1 [
∂Φ̂e

∂Ge

]
(C.33)

The derivative of the element area with respect to the corner node locations is

∂ae

∂Ge

=
1

2



−(G8 −G4)

(G7 −G3)

(G6 −G2)

−(G5 −G1)

(G8 −G4)

−(G7 −G3)

−(G6 −G2)

(G5 −G1)



T

(C.34)

The element distortion derivative is

∂Φ̂e

∂Ge

=
1

Φ̂e

 4∑
j=1

Φ̂∆j

∂Φ̂∆j

∂Ge

 (C.35)

where

∂Φ̂∆j

∂Ge

=
2l2l3
t

(
1 +

l1
−l1 + l2 + l3

+
l1

l1 − l2 + l3
+

l1
l1 + l2 − l3

)
∂l1
∂Ge

+
2l1l3
t

(
1 +

l2
−l1 + l2 + l3

+
l2

l1 − l2 + l3
+

l2
l1 + l2 − l3

)
∂l2
∂Ge

+
2l1l3
t

(
1 +

l3
−l1 + l2 + l3

+
l3

l1 − l2 + l3
+

l3
l1 + l2 − l3

)
∂l3
∂Ge

(C.36)

t = (−l1 + l2 + l3)(l1 − l2 + l3)(l1 + l2 − l3) (C.37)
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The differentiations of the lengths of the sides of the triangular sub-elements is

straightforward. For example, for a side whose length is given by

l =
√

(Gb −Ga)
2 + (Gb+1 −Ga+1)

2 (C.38)

The nonzero components of ∂l/∂Ge are

∂l

∂Ga

=
Ga −Gb

l
(C.39)

∂l

∂Gb

=
Gb −Ga

l
(C.40)

∂l

∂Ga+1

=
Ga+1 −Gb+1

l
(C.41)

∂l

∂Gb+1

=
Gb+1 −Ga+1

l
(C.42)

C.2.3 ∂|J |/∂Ge

The Jacobian of the coordinate transformation is differentiated with respect to the ele-

ment corner nodes as follows:

∂|J |
∂Ge

=
∂J11

∂Ge

J22 + J11
∂J22

∂Ge

− ∂J12

∂Ge

J21 − J12
∂J21

∂Ge

(C.43)

where
∂J11

∂(Ge)i

=

[
∂Ni

∂ξ
0

]
(C.44)

∂J12

∂(Ge)i

=

[
0

∂Ni

∂ξ

]
(C.45)

∂J21

∂(Ge)i

=

[
∂Ni

∂η
0

]
(C.46)

∂J22

∂(Ge)i

=

[
0

∂Ni

∂η

]
(C.47)

The subscript i denotes the corner node index.
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