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This work presents a parallel Newton-Krylov flow solver employing high-order finite-difference

schemes to solve the steady three-dimensional Euler equations on a structured multi-block

mesh. The fluxes are discretized using summation-by-parts operators, and interface and

boundary conditions are implemented using simultaneous approximation terms. Function-

als, drag and lift, are calculated using Simpson’s rule. The code is verified using the method

of manufactured solutions, Ringleb flow and a subsonic/supersonic vortex. The code is vali-

dated using the ONERA M6 wing. This work demonstrates code verification using order of

accuracy studies that involve functionals as well. It also highlights the importance of mesh

smoothness in achieving the prescribed order of accuracy. Finally, it demonstrates that

high-order methods in conjunction with a parallel Newton-Krylov solver can be efficient and

robust.
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Chapter 1

Introduction

1.1 Motivation

Fuel consumption and emissions are two major issues that are kept in mind when design-

ing aircraft today. The two issues are not mutually exclusive. Rising fuel costs have

caused major airlines to cut operations and in extreme cases shut down. Therefore there is a

great need to find alternate fuel sources and design aircraft that have a lower fuel consump-

tion per passenger-km. Since alternate fuel sources are not feasible in the near future, there

is a greater emphasis on the latter.

Aircraft emissions include CO2, H2O, NOx, hydrocarbons, CO, soot and SO2. Not all

of these contribute to climate change. However, the impact of aircraft emissions on climate

change is significant and continues to increase. Therefore there is also the need to reduce

emissions per passenger-km [5, 55].

In order to meet these design requirements, several research groups around the world

are developing numerical methods to optimize aircraft that will aid aircraft manufacturers

[18, 44, 24, 48, 83, 82, 46, 45, 84, 81, 63]. The process for aerodynamic shape optimization

is shown in Figure 1.1, and the aim of this work is to develop an efficient and robust flow

solver which will then be used as a platform for aerodynamic shape optimization.

1.2 Background

There are basically three design tools available to aerospace engineers for the design of

aircraft:

1



Chapter 1. Introduction 2

Figure 1.1: Optimization process

• flight tests,

• wind tunnel tests, and

• computational fluid dynamics (CFD).

Flight tests are expensive to set up and thus one needs to focus on wind tunnel tests and

CFD. Wind tunnel tests, as the name suggests, use an actual fluid. CFD on the other hand

is as good as the fluid model you use. However, CFD, if used knowledgeably, is inexpensive

and numerical optimization methods can be applied to aid in the design process. Although

one cannot rely on CFD alone, in recent years it has come to play a major role in the design

of cost-effective and high-performance aircraft [26].

The following steps as outlined by Lomax et al. are employed in the use of CFD [32]:

1. Problem specification and geometry preparation

2. Selection of governing equations

3. Gridding strategy

4. Numerical method

5. Interpretation of results

The problem is first specified. For example, one may wish to find the induced drag on

a wing. Secondly, one needs to choose the appropriate governing equations. The Navier-

Stokes equations simulate all continuum fluid flow effects. However, if one wishes to simulate

turbulence effects directly then one would need an excessively high mesh resolution, and so

turbulence models are used instead. Once the flow models have been selected, appropriate

grids are generated. Grids generally come in two varieties, structured and unstructured.

Structured grids are beneficial in that they normally use computer resources efficiently and

produce the smallest error for a given mesh density. On the other hand, complex body shapes
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can be easily dealt with using unstructured grids. Additionally, mesh adaptation techniques

are easily applied to unstructured grids. Complex body shapes for structured grids may be

dealt with using a multi-block gridding strategy. A structured grid for a blended wing body

configuration is shown in Figure 1.2.

X

Y

Z

Figure 1.2: Structured mesh around a blended wing body configuration

The numerical method which is the subject of this work can be divided into

1. Spatial discretization

2. Time marching

3. Postprocessing, such as force and moment calculations

The spatial discretization schemes available are finite-difference, finite-volume and finite-

element methods. Finite-difference schemes may only be used with structured grids. Time-

marching methods may be classified into implicit and explicit schemes. Explicit schemes are

cheaper per iteration but require more iterations as they have small stability bounds. Com-

pared to a purely explicit scheme, implicit methods are better for extremely stiff problems

since a larger time step may be used. Postprocessing would normally involve drag and lift

calculations.

In the last step of the CFD process the data may be assessed against other databases and

an assessment made of the errors in the flow solution; such as by calculating the flow adjoint
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[76]. If the solution is not satisfactory, one would go through the entire process again, i.e.

use a different flow model, a different grid, etc.

1.3 High-order methods

The focus of this work is to develop an efficient and robust numerical method, in particular

the focus shall be on high-order finite-difference schemes. The order of accuracy of the

spatial discretization is normally second-order, i.e. the leading error term in the solution is

of order O(∆x2), where ∆x is the mesh spacing. Spatial discretization that is higher than

second-order is referred to as high-order spatial discretization.

Flow solvers have been developed with high-order finite-element, finite-volume and finite-

difference schemes. For example, Gooch et al. [40, 41, 38, 39, 42] and Vaassen et al. [75] have

developed high-order finite-volume schemes, Darmofal et al. [16, 17, 14, 15] have developed

high-order finite-element schemes, and Zingg et al. [12, 86] and Svard et al. [72, 35] have

developed high-order finite-difference schemes.

The reason high-order methods are being pursued is because compared to a second-

order scheme they generally produce a smaller error per node/cell with a small increase in

computational cost per node/cell [12, 41, 17] and are thus efficient. Hence, using a high-order

method, one can obtain a solution of a required accuracy using fewer nodes/cells than what

would be required for a second-order method. Additional benefits of using coarser grids

enabled by the use of high-order methods are also seen in aerodynamic shape optimization,

such as mesh movement, etc.

1.4 Objective

The objective of this work is to develop a parallel Newton-Krylov flow solver employing

high-order finite-difference schemes to solve the steady three-dimensional Euler equations

on a structured multi-block mesh. The fluxes will be discretized using summation-by-parts

operators, and boundary and interface conditions will be implemented using simultaneous

approximation terms. High-order integration shall also be developed as a part of this work.

The solver thus developed shall be verified using several test cases such as the method of

manufactured solutions and Ringleb flow and will be validated using the ONERA M6 wing.
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Governing Equations

This chapter lays out the equations that are used to model the physical fluid flow in sub-

sequent chapters. It starts by discussing the quasi-one-dimensional Euler equations and

then moves on to discuss the three-dimensional Euler equations. Finally it talks about how

the three-dimensional Euler equations can be extended to a curvilinear coordinate system.

2.1 Euler equations

The Euler equations describe continuum, inviscid, compressible fluid flow with no heat con-

duction. The validity of continuum fluid flow depends on the Knudsen number, Kn. The

Knudsen number is the ratio of the mean free path of the molecules of the fluid to some char-

acteristic length scale. If Kn << 1 we can assume continuum flow. The validity of inviscid

flow depends on the Reynolds number, Re. The Reynolds number is the ratio of the inertial

stresses to the viscous stresses. Inviscid flow may be assumed if the Reynolds number is

high. However, this assumption fails in the vicinity of solid boundaries where viscous effects

dominate. For instance if one wishes to study drag on a wing, inviscid flow equations allow

prediction of only induced drag and wave drag. The choice to model compressibility effects

depends on the Mach number, M . The Mach number is the ratio of the local flow speed to

the local sound speed. If M∞ > 0.3, compressibility effects become important [78].

2.1.1 Quasi-one-dimensional Euler equations

Quasi-one-dimensional flow is generally used to solve nozzle problems. The assumption is

that the flow is uniform along the cross-section of the nozzle. For this to be true, the cross

5
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sectional area (S) must vary slowly along the axis. Hence all physical flow quantities are

functions of the position (x) along the axis of the nozzle. The quasi-one-dimensional Euler

equations in conservative form for flow with density ρ, velocity u, pressure p, internal energy

e and cross-sectional area (S) are given by

∂tQ + ∂xF = ψ (2.1)

where

Q =


ρS

ρuS

eS

 F =


ρuS

(ρu2 + p)S

u(e+ p)S

 ψ =


0

pdS
dx

0


The three equations are the conservation of mass, the conservation of momentum and the

conservation of energy, respectively [29].

2.1.2 Three-dimensional Euler equations

The three-dimensional Euler equations for a Cartesian coordinate system are given by

∂tQ + ∂xE + ∂yF + ∂zG = 0 (2.2)

where

Q =



ρ

ρu

ρv

ρw

e


E =



ρu

ρu2 + p

ρvu

ρwu

u (e+ p)− p


F =



ρv

ρuv

ρv2 + p

ρwv

v (e+ p)− p


G =



ρw

ρuw

ρvw

ρw2 + p

w (e+ p)− p


The equations comprise the conservation of mass, a vector equation for the conservation of

momentum in each of the three coordinate directions, and the conservation of energy.

Generalized coordinate system

For most applications, the grids on which the solution is to be carried out do not conform to a

standard Cartesian coordinate system as shown in Figure 2.1, so it is necessary to transform
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Figure 2.1: Curvilinear mesh around an airfoil

the equations in (2.2) to a generalized curvilinear coordinate system. For this the following

transformations are used:

τ = t (2.3)

ξ = ξ(x, y, z, t) (2.4)

η = η(x, y, z, t) (2.5)

ζ = ζ(x, y, z, t) (2.6)

where ξ, η, ζ and τ correspond to the new coordinate system. Now if a one-to-one transfor-

mation is assumed, the inverse transformations exist as well. Using these transformations

we can obtain relations for the grid metrics:

ξx = J(yηzζ − yζzη) ξy = J(zηxζ − zζxη) ξz = J(xηyζ − yηxζ)

ηx = J(zξyζ − yξzζ) ηy = J(xξzζ − zξxζ) ηz = J(yξxζ − xξyζ)

ζx = J(yξzη − zξyη) ζy = J(zξxη − xξzη) ζz = J(xξyη − yξxη)

ξt = −xτξx − yτξy − zτξz ηt = −xτηx − yτηy − zτηz ζt = −xτζx − yτζy − zτζz (2.7)

where J is the metric Jacobian given by

J−1 = xξyηzζ + xζyξzη + xηyζzξ − xξyζzη − xηyξzζ − xζyηzξ
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Equation (2.2) with respect to the transformed coordinate system is given by

∂τQ + ξt∂ξQ + ηt∂ηQ + ζt∂ζQ

+ ξx∂ξE + ηx∂ηE + ζx∂ζE

+ ξy∂ξF + ηy∂ηF + ζy∂ζF

+ ξz∂ξG + ηz∂ηG + ζz∂ζG = 0 (2.8)

By adopting a generalized coordinate system, the conservative form of the Euler equations

has given way to a weak conservative form because the grid metrics appear as coefficients

in (2.8). To obtain the conservative form, a set of identities known as the metric invariants

must be satisfied. The metric invariants are as follows:

(ξx)ξ + (ηx)η + (ζx)ζ = 0

(ξy)ξ + (ηy)η + (ζy)ζ = 0

(ξz)ξ + (ηz)η + (ζz)ζ = 0

(1/J)τ + (ξt)ξ + (ηt)η + (ζt)ζ = 0 (2.9)

The conservative form can be obtained by making the following substitution for each of the

partial derivatives in (2.8),

J−1ξx∂ξ = ∂ξ

(
ξx
J

E

)
− E∂ξ

(
J−1ξx

)
(2.10)

Using the metric invariants (2.9) and collecting like partial derivatives, the conservative form

of the Euler equations for a generalized curvilinear coordinate system is obtained [59, 77]:

∂τ Q̂ + ∂ξÊ + ∂ηF̂ + ∂ζĜ = 0 (2.11)

where

Q̂ = J−1Q
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Ê = J−1



ρU

ρuU + ξxp

ρvU + ξyp

ρwU + ξzp

U (e+ p)− ξtp


F̂ = J−1



ρV

ρuV + ηxp

ρvV + ηyp

ρwV + ηzp

V (e+ p)− ηtp


Ĝ = J−1



ρW

ρuW + ζxp

ρvW + ζyp

ρwW + ζzp

W (e+ p)− ζtp


and the contravariant velocities are given by,

U = ξt + ξxu+ ξyv + ξzw

V = ηt + ηxu+ ηyv + ηzw

W = ζt + ζxu+ ζyv + ζzw

2.2 Equation of state

Looking at (2.1), (2.2) and (2.11), we see that number of unknowns is one more than the

number of equations. Hence another equation is required to form a closed set. This last

equation is the equation of state. We use the ideal gas approximation

p = ρRT (2.12)

For a calorically perfect gas, i.e. the specific heats Cv and Cp are constant. With ε = CvT ,

γ = Cp
Cv

, Cp = Cv +R and e = ρε+ 1
2

(u2 + v2 + w2), we obtain our last equation

p = (γ − 1)

(
e− 1

2
ρ(u2 + v2 + w2)

)
(2.13)

Since this thesis deals with aerodynamic applications, it suffices to use γ=1.4 for air.
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Algorithm

In this chapter the algorithm used to solve the governing equations shall be described. The

chapter begins by introducing the spatial discretization scheme and then moves on to talk

about the time-marching technique employed.

3.1 Dimensionless variables

In this work dimensionless variables are used for aerodynamic applications. Most of the

variables are scaled by the free stream conditions (∞). They are given by [85]:

x̃ =
x

l
ỹ =

y

l
z̃ =

x

l

ũ =
u

a∞
ṽ =

v

a∞
w̃ =

w

a∞

t̃ =
ta∞
l

ẽ =
e

ρ∞a2
∞

where a is the speed of sound, and the length scale l for a wing is normally chosen to be the

chord length. Henceforth x refers to x̃ and so on.

3.2 Spatial discretization

The three-dimensional domain is discretized using structured grids. Additionally, the domain

is broken down into a number of blocks to enable the solver to deal with complex geometries.

Also a multi-block domain facilitates parallelization [19].

For the purposes of this work assume that the domain is decomposed into N blocks. Each

10
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block consists of nξ, nη and nζ nodes in the ξ, η and ζ directions, respectively.

3.2.1 Finite-difference schemes

Operators that satisfy the summation-by-parts (SBP) property are used. For a spatial

discretization operator D = H−1P , applied to vectors u and v such that ξ ∈ [a, b], the SBP

property is defined as [30, 13, 70, 34]:

< u,Dv > + < Dv, u >= uv|ba (3.1)

where the inner product is defined by:

< u, v >= uTHv (3.2)

and H is a positive definite matrix. SBP operators are used in this work because they provide

an energy estimate. This shall become apparent in the section on stability.

SBP operators come in two varieties, using diagonal and non-diagonal norms. In this work

diagonal norm operators are used because they guarantee stability when using a curvilinear

coordinate system in three dimensions [51, 52, 13, 71]. As an example of SBP operators,

H and P for a second-order spatial discretization of the first derivative are shown below

[70, 34]:

H =



1
2

1
. . .

1
1
2


P =

1

2∆ξ



−1 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 1


H and P for high-order schemes are given in Appendix B. We notice that they are centered

differences (anti-symmetric) and would therefore require dissipation (symmetric), which shall

be discussed later.

Now the Euler equations (2.11) become,

∂τ Q̂+ δaξ Ê + δaη F̂ + δaζ Ĝ = 0 (3.3)
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The antisymmetric operators are defined by,

δaξ = Dξ ⊗ Iη ⊗ Iζ ⊗ I5
δaη = Iξ ⊗Dη ⊗ Iζ ⊗ I5
δaζ = Iξ ⊗ Iη ⊗Dζ ⊗ I5

where the operator ⊗ is the Kronecker product for matrices such that if A ∈ Mm×n and

B ∈Mp×q then C = A⊗B ∈Mmp×nq is defined by Cp(i−1)+k,q(j−1)+l = Ai,jBk,l. Iξ, Iη, Iζ and

I5 are identity matrices of dimensions nξ×nξ, nη×nη, nζ×nζ and 5×5 respectively.Dξ, Dη

and Dζ are finite-difference operators of dimensions nξ×nξ, nη×nη and nζ×nζ respectively

[72].

3.2.2 Grid metrics

The grid metrics (2.7) are calculated using the spatial discretization outlined in the previous

section with ∆ξ = ∆η = ∆ζ = 1. However, if the grid metrics are calculated as shown

in (2.7) then the metric invariants (2.9) are not necessarily satisfied. This means that a

uniform free stream could fail to satisfy the Euler equations (2.11). This phenomenon could

eventually result in an error creeping into our solution. There are two ways this problem can

be overcome. One way is to subtract the free stream from the overall equations to ensure

that a free stream is a solution to the Euler equations [60],

∂τ Q̂+ ∂ξ(Ê − Ê∞) + ∂η(F̂ − F̂∞) + ∂η(Ĝ− Ĝ∞) = 0 (3.4)

In the second approach the grid metrics are modified analytically to ensure the metric in-

variants are satisfied. The approach implemented in this work exploits the fact that when

finite-differences are used, the product rule is not satisfied numerically. Thus the metrics are

calculated using a conservative form. For instance [21, 74]:

ξx = J [(yηz)ζ − (yζz)η] (3.5)

Similar formulas can be obtained for the other metric terms. For this method to work,

the finite-difference scheme used to calculate the metrics must be the same as that used to

calculate the flux terms. One can now easily verify that the metric invariants are satisfied
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by substituting the modified metrics into equation (2.9).

3.2.3 Artificial dissipation

Nonlinear convection problems such as the Euler equations that use central finite-differences

require the use of artificial disspation to damp out high frequency modes. In this work the

dissipation operator was implemented so as that it meets the following criteria, as stated by

Mattson et al. [36] :

1. Efficiently reduce spurious oscillations.

2. Order of accuracy should be the same or higher than the finite-difference scheme.

3. Computational work should be comparable to the finite-difference scheme, i.e. the

stencil size of the dissipation operator should be similar to the finite-difference scheme,

if not the same.

4. The dissipation operator should provide an energy estimate.

Two forms of dissipation were implemented, scalar and matrix dissipation. Errors in the

solution with scalar dissipation tend to be higher because it uses dissipation that is higher

than what is actually needed. The scalar dissipation model along the ξ direction is given by

[59, 25, 58, 53]:

δsξQ̂ = H−1D̃−J−1σ
(
ε(2)D̃+ − εD̃−1

− D̃Tp BD̃p
)
JQ̂ (3.6)

where the operators are given by,

H = H ⊗ Iη ⊗ Iζ ⊗ I5
D̃− = D̃− ⊗ Iη ⊗ Iζ ⊗ I5
D̃+ = D̃+ ⊗ Iη ⊗ Iζ ⊗ I5
D̃p = D̃p ⊗ Iη ⊗ Iζ ⊗ I5
B = B ⊗ Iη ⊗ Iζ ⊗ I5
σ = diag(σ1+ 1

2
,1,1, ..., σj+ 1

2
,k,m, ..., σnξ,nη ,nζ)⊗ I5

ε(2) = diag(ε
(2)

1+ 1
2
,1,1
, ..., ε

(2)

j+ 1
2
,k,m

, ..., ε(2)
nξ,nη ,nζ

)⊗ I5

ε = diag(ε1+ 1
2
,1,1, ..., εj+ 1

2
,k,m, ..., εnξ,nη ,nζ)⊗ I5
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D̃− and D̃+ are backward and forward difference operators given by [53]:

D̃− =



1

−1 1

−1 1
. . . . . .

−1 1

−1 1

−1 1



D̃+ =



−1 1

−1 1
. . . . . .

−1 1

−1 1

−1 1

−1


D̃p is a consistent difference approximation of ∂p

∂ξp
and is chosen to be D̃2 for the second and

third-order methods and D̃3 for the fourth-order method. D̃2 and D̃3 are given by [36]:

D̃2 =


1 −2 1

1 −2 1

1 −2 1
. . . . . . . . .



D̃3 =



−1 3 −3 1

−1 3 −3 1

−1 3 −3 1

−1 3 −3 1
. . . . . . . . . . . .


B is a diagonal matrix with a spatial dependence that is chosen to satisfy the accuracy

requirements. For the second-order method B = diag(0, 1, 1, ..., 1, 1, 0). For the third and

fourth-order methods, B is chosen such that it increases from 1
nξ−1

at the boundaries to 1 in

the interior, and derivatives up to p− 2 are 0 at the boundaries and transition points. The
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Figure 3.1: Distribution of the diagonal of B showing the interior and transition regions

transition region is the region where the diagonal of B increases from its boundary value to

unity in the interior. The transition region is given by the percentage of total nodes that

are to be included in this transition region. A typical distribution for the diagonal of B,

including the transition region, is shown in Figure 3.1. The remaining variables are defined

as

Υj,k,m =
|pj+1,k,m − 2pj,k,m + pj−1,k,m|
|pj+1,k,m + 2pj,k,m + pj−1,k,m|

ε = max(0, κ− ε2)

ε
(2)
j,k,m = κ2max [Υj+1,k,m,Υj,k,m,Υj−1,k,m]

σ = |U |+ a
√
ξ2
x + ξ2

y + ξ2
z + |V |+ a

√
η2
x + η2

y + η2
z + |W |+ a

√
ζ2
x + ζ2

y + ζ2
z

Matrix dissipation is given by,

δsξQ̂ = H−1D̃−J−1 |A|
(
ε(2)D̃+ − εD̃−1

− D̃Tp BD̃p
)
JQ̂ (3.7)

where |A| is block diagonal matrix given by,

|A| = diag
(
|A|1+ 1

2
,1,1 , ..., |A|j+ 1

2
,k,m , ..., |A|nξ,nη ,nζ

)
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In this context, Aj+ 1
2
,k,m is taken to mean A calculated for a Roe averaged state, and |A| is

given by [73]:

|A| = X |Λ|X−1 (3.8)

where X is the eigenvector matrix of the flux Jacobian, and

|Λ| =



|λ1| 0 0 0 0

0 |λ2| 0 0 0

0 0 |λ3| 0 0

0 0 0 |λ3| 0

0 0 0 0 |λ3|


where

λ1 = U + a
√
ξ2
x + ξ2

y + ξ2
z

λ2 = U − a
√
ξ2
x + ξ2

y + ξ2
z

λ3 = U

|λ1| = max(|λ1|, Vnρ)

|λ2| = max(|λ2|, Vnρ)

|λ3| = max(|λ3|, Vlρ)

ρ = |U |+ a
√
ξ2
x + ξ2

y + ξ2
z

Typical values for κ2, κ, Vn and Vl are 1, 0.04, 0.25 and 0.25, respectively.

On adding the dissipation terms to the semi-discrete Euler equations (3.3), we get,

∂τ Q̂+ δaξ Ê + δsξQ̂+ δaη F̂ + δsηQ̂+ δaζ Ĝ+ δsζQ̂ = 0 (3.9)

3.2.4 Interfaces

The block interfaces are dealt with using simultaneous approximation terms (SAT’s) [8, 7,

49, 19]. SAT’s are a penalty method which, when implemented with SBP operators, provide

an energy estimate. For convenience we shall consider an interface in the ξ direction. It is

quite easy to obtain similar results for the other two directions.
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Figure 3.2: Figure showing two blocks with boundaries and an interface

Consider that in the ξ direction the domain has been split into two blocks with boundaries

at j = 0 and j = N and an interface at j = s and j = s + 1, as shown in Figure 3.2. The

semi-discrete Euler equations with interface SAT’s for the left and right blocks are given by

∂τ Q̂+ δaξ Ê + δsξQ̂+ δaη F̂ + δsηQ̂+ δaζ Ĝ+ δsζQ̂ = bcs (3.10)

∂τ Q̂+ δaξ Ê + δsξQ̂+ δaη F̂ + δsηQ̂+ δaζ Ĝ+ δsζQ̂ = bcs+1 (3.11)

where the SAT penalty terms are:

bcs = −τbcH−1J−1 (|A| − A)

2
(es ⊗ (Qs −Qs+1))

bcs+1 = −τbcH−1J−1 (|A|+ A)

2
(es+1 ⊗ (Qs+1 −Qs))

with

|A| = diag
(
|A|1,1,1 , ..., |A|j,k,m , ..., |A|nξ,nη ,nζ

)
A = diag

(
A1,1,1, ..., Aj,k,m, ..., Anξ,nη ,nζ

)
A is the flux Jacobian and |A| is given by equation (3.8). The variables es = [0, 0, ...., 1]T

and es+1 = [1, 0, ...., 0]T are column vectors of dimensions nξ × 1, where nξ is the number

of points in the ξ direction, which maybe different for each block. Qs and Qs+1 are column

vectors of dimensions 5nηnζ × 1. τbc is a scalar that scales the interface terms.

3.2.5 Boundary conditions

Like the interfaces, the boundary conditions have been implemented using SAT’s [8, 7, 49,

19, 33]. For convenience, the boundary conditions are shown for the ξ direction and can
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be easily extended to the other two directions. For the domain shown in Figure 3.2, the

semi-discrete Euler equations with boundary conditions are given by

∂τ Q̂+ δaξ Ê + δsξQ̂+ δaη F̂ + δsηQ̂+ δaζ Ĝ+ δsζQ̂ = bc0 (3.12)

∂τ Q̂+ δaξ Ê + δsξQ̂+ δaη F̂ + δsηQ̂+ δaζ Ĝ+ δsζQ̂ = bcN (3.13)

where

bc0 = −τbcH−1J−1 (|A|+ A)

2
(e0 ⊗ (Q0 −Qbc))

bcN = −τbcH−1J−1 (|A| − A)

2
(eN ⊗ (QN −Qbc))

e0 = [1, 0, ...., 0]T and eN = [0, 0, ...., 1]T are column vectors of dimensions nξ× 1, where nξ is

the number of points in the ξ direction, which maybe different for each block. Q0, QN and

Qbc are column vectors of dimensions 5nηnζ × 1. Qbc contains the flow variables that need

to be imposed at the boundaries. Also one can easily see that equations (3.12) and (3.13)

are a mathematical representation of Riemann boundary conditions.

Far-field boundary conditions

For the far-field boundary conditions, Qbc is set to the free stream conditions. This suffices

for wings because far-field boundaries are generally placed far away from the wing such that

the lift and drag are constant to within a certain tolerance [72].

Wall boundary conditions

The wall boundary condition is implemented by setting the velocity of the flow normal to the

wall to zero. The velocity components u, v and w need to be transformed from the Cartesian

coordinate system into a coordinate system with two vectors parallel to the surface and one

vector normal to the surface. The vectors parallel to ξ, η and ζ are given by [27, 47]:

t̂(ξ) =
xξx̂+ yξŷ + zξẑ√
x2
ξ + y2

ξ + z2
ξ

t̂(η) =
xηx̂+ yηŷ + zηẑ√
x2
η + y2

η + z2
η

t̂(ζ) =
xζ x̂+ yζ ŷ + zζ ẑ√
x2
ζ + y2

ζ + z2
ζ

(3.14)
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The vectors normal to ξ and η, η and ζ and ξ and ζ are given by [27, 47],

n̂(ξη) =
ζxx̂+ ζyŷ + ζz ẑ√
ζ2
x + ζ2

y + ζ2
z

n̂(ηζ) =
ξxx̂+ ξyŷ + ξz ẑ√
ξ2
x + ξ2

y + ξ2
z

n̂(ξζ) =
ηxx̂+ ηyŷ + ηz ẑ√
η2
x + η2

y + η2
z

(3.15)

If the wall surface is normal to η and ξ, the tangential velocities VT1 and VT2 and the normal

velocity VN are given by [27, 47]: 
VT1

VT2

VN

 = T−1


u

v

w


where T = [~t(ξ)|~t(η)|~n(ξη)] and is explicitly given by:

T =


xξ√

x2
ξ+y

2
ξ+z

2
ξ

xη√
x2
η+y

2
η+z

2
η

ζx√
ζ2x+ζ

2
y+ζ

2
z

yξ√
x2
ξ+y

2
ξ+z

2
ξ

yη√
x2
η+y

2
η+z

2
η

ζy√
ζ2x+ζ

2
y+ζ

2
z

zξ√
x2
ξ+y

2
ξ+z

2
ξ

zη√
x2
η+y

2
η+z

2
η

ζz√
ζ2x+ζ
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VN can now be set to zero and the velocities transformed back to the Cartesian coordinate

system. The density remains unchanged and the new energy is given by

e =
p

γ − 1
+

1

2
ρ
(
V 2
T1 + V 2

T2

)
(3.16)

This may be done because ||T ||2 = 1, and thus Qbc for a wall boundary condition is obtained.

3.2.6 Stability

The equations derived thus far do not guarantee stability for the three-dimensional Euler

equations. However, when the same formulation is applied to the linear convection equation,

it provides an energy estimate and thus guarantees stability. Stability of the linear convection

equation is necessary but not sufficient to guarantee stability for the three-dimensional Euler

equations [30, 13, 36, 71, 34].
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3.3 Time marching

Using the spatial discretization scheme from the previous section we obtain

∂τ Q̂ = −R(Q̂) (3.17)

where R(Q̂) is known as the residual and is given by

R(Q̂) = δaξ Ê + δsξQ̂+ δaη F̂ + δsηQ̂+ δaζ Ĝ+ δsζQ̂− bc

Until now no assumptions have been made about the time accuracy of the system and

thus one could easily use the RK4 method with fourth-order spatial discretization to obtain

a fourth-order accurate method in time and space [35]. This work is concerned with steady

flows and thus the equation we aim to solve is

R(Q̂) = 0 (3.18)

An iterative method is used to solve equation (3.18), which can be solved using the

implicit Euler method through local linearization of R(Q̂) [32]:[
I

∆t
+

(
∂R

∂Q̂

)n]
∆Q̂n = −Rn (3.19)

where the superscript n is the outer iteration number. If we let ∆t→∞, Newton’s method,

which converges quadratically, is obtained. However, if the initial guess is not close to the

solution, then Newton’s method can fail. Hence, the solution process in this work uses two

stages, a start-up phase to find a suitable iterate and an inexact-Newton phase. Before we

describe the two phases, we shall lay down some of the background.

3.3.1 Relaxation

For each solution update, we have the following equation

Q̂n+1 = Q̂n + θ∆Q̂n (3.20)
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where θ is the relaxation factor. If θ < 1 then it is known as under relaxation, and if θ > 1

is known as over relaxation. Under relaxation helps in preventing solution updates during

the start-up phase that would cause the solution to become non-physical.

3.3.2 Preconditioner

In this work we utilize GMRES [64, 66]. The performance of GMRES can be improved if

the system is preconditioned. The system in equation (3.19) when right preconditioned with

M becomes [
I

∆t
+

(
∂R

∂Q̂

)n]
M−1M∆Q̂n = −Rn (3.21)

From equation (3.21), we see that M−1 needs to be calculated. This is accomplished by

performing an incomplete lower-upper factorization (ILU) of fill number k such that

M = LU + error (3.22)

where L is a lower triangular matrix, and U is an upper triangular matrix [65]. As the fill

level k is increased, the factorization becomes more accurate. The optimal fill level shall be

investigated as a part of this work.

We choose M to be the ILU factorization of the first-order approximate Jacobian. This

is preferred because the resultant ILU factors are better conditioned, and the first-order

Jacobian requires less memory and is faster to calculate and factorize [57, 40, 41, 38, 39].

The high-order dissipation coefficient coefficient ε is lumped with the first-order dissipa-

tion coefficient ε(2) in the preconditioner using σ [19, 57, 47]:

ε(2) = ε(2) + σε (3.23)

Optimal values for σ shall be investigated as a part of this work.

Also the additive Schwarz and approximate Schur parallel preconditioners have been used

[19, 65].
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3.3.3 Local time stepping

To speed up convergence a spatially varying time step is used [19],

∆tj,k,m =
∆tnref

Jj,k,m
(
1 + 3

√
Jj,k,m

) (3.24)

This approximately represents a constant CFL number. The reference time step ∆tref is

chosen differently for the start-up and inexact-Newton phases.

3.3.4 Reordering of unknowns

The nodes are reordered using the reverse Cuthill-McKee (RCM) method. This reduces the

bandwidth of the system and also improves the conditioning of the ILU factors [57, 47, 11].

The root is chosen to be the node with indices (nξ, nη, nζ) on each block, which lies on the

downstream boundary of the block.

3.3.5 Matrix-free GMRES

GMRES requires matrix vector products. Because of the size and the difficulty in calculat-

ing the higher-order Jacobian, we utilize matrix-free GMRES. In matrix-free GMRES, the

matrix-vector products are approximated with a finite-difference [4, 57, 40, 41, 38, 39, 19, 47]:

∂R(Q̂)

∂Q̂
v ≈

R(Q̂+ εv)−R(Q̂)

ε
(3.25)

where

ε =

√
Nδ

vTv

where N is the number of unknowns, and δ = 10−13 [19].

3.3.6 Start-up phase

The idea behind using the start-up phase is to go through the transient as quickly as possible,

in other words, to provide a suitable iterate so that we can switch to the inexact-Newton

phase. Since we are performing defect correction we modify equation (3.19) and solve the
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following equation [19, 57, 40, 41, 38, 39]:[
I

∆t
+

(
∂R

∂Q̂

)
1

]
∆Q̂ = −R (3.26)

where
(
∂R

∂Q̂

)
1

is the first-order Jacobian. Equation (3.26) is not solved exactly but to a

relative tolerance of ω such that [19]:∣∣∣∣∣∣∣∣R +

[
I

∆t
+

(
∂R

∂Q̂

)
1

]
∆Q̂

∣∣∣∣∣∣∣∣
2

≤ ω ||R||2 (3.27)

The parameter ω is normally chosen to be 0.5. Also since factorizing is expensive, we use

a lagged Jacobian update [19] i.e. we update the Jacobian every couple of iterations. The

reference time step is chosen such that [19]:

∆tnref = a(b)n (3.28)

Typical values for a and b are 0.01 and 1.3, respectively.

3.3.7 Inexact-Newton phase

The switch to the inexact-Newton phase is made once the residual has fallen below a certain

value specified by τ such that [19]:

||Rn||2 ≤ τ
∣∣∣∣R0

∣∣∣∣
2

(3.29)

The parameter τ is chosen to be 1
15

. Equation (3.19) is now solved with a tolerance ω such

that [19]: ∣∣∣∣∣∣∣∣R− [ I∆t +

(
∂R

∂Q̂

)]
∆Q̂

∣∣∣∣∣∣∣∣
2

≤ ω ||R||2 (3.30)

where

ωn = max

(
0.01, ω

1+
√

5
2

n−1

)
(3.31)

The reference time step is chosen such that [19]:

∆tnref = max

(
α

(
||Rn||2
||R0||2

)−β
,∆tn−1

ref

)
(3.32)
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Figure 3.3: Figure showing the surface of a wing for which the lift and drag are to be
calculated

where

α = a(b)n

(∣∣∣∣Rk
∣∣∣∣

2

||R0||2

)β

(3.33)

and k is the index of the last start-up phase iteration, and β =2.

3.4 Force Integration

Consider the wing shown in Figure 3.3. The chord of the wing is aligned with the x axis

and the span of the wing is aligned with the y axis. Now if the angle of attack is α, and

we assume that the coordinates ξ and η are parallel to the surface, then the lift and drag

coefficients are given by

CD =
1

S

˛
Cp~r · d~S (3.34)

CL =
1

S

˛
Cp~s · d~S (3.35)

where

Cp =
p− p∞
1
2
ρ∞V 2

∞

~r = sinαx̂+ cosαẑ

~s = cosαx̂− sinαẑ

d~S = n̂(ξη)
∣∣~p(ξ) × ~p(η)

∣∣ dξdη
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where S is the surface area, and n̂(ξη) is the surface normal vector and is defined in (3.15).

The vectors ~t(ξ) = xξx̂+ yξŷ + zξẑ and ~t(η) = xηx̂+ yηŷ + zηẑ are parallel to the surface and

are similar to (3.14) except they are not unit vectors. Using ~t(ξ) ×~t(η) = ζxx̂+ ζyŷ + ζz ẑ, we

can simplify d~S to,

d~S = (ζxx̂+ ζyŷ + ζz ẑ) dξdη

The integrals in equation (3.35) are calculated using Simpson’s rule which is a fourth-

order accurate method given by [6]:

ˆ ˆ
f(x, y)dxdy =

1

9
4x4y

M∑
i=0

N∑
j=0

αiαjf(i∆x, j∆y) (3.36)

where

α1 = 1, α2 = 4, α3 = 2, α4 = 4, · · · αN−3 = 4, αN−2 = 2, αN−1 = 4, αN = 1



Chapter 4

Results and Discussion

This chapter demonstrates the algorithm described in the previous chapter for vari-

ous test cases. It begins by describing tests such as a quasi one-dimensional nozzle,

the method of manufactured solutions (MMS), Ringleb flow and supersonic and subsonic

vortices. Using these tests we can rigorously test the algorithm. Matrix and scalar dissipa-

tion are compared early on and then order of accuracy studies that include functionals are

performed. Finally, the algorithm is validated for the ONERA M6 wing, at subsonic and

transonic Mach numbers.

4.1 Test cases

4.1.1 Quasi-one-dimensional nozzle

For the quasi-one-dimensional nozzle, the problem is specified by specifying the cross-sectional

area variation and the boundary conditions. The cross-sectional area variation for the sub-

sonic nozzle case is given by:

S(x) = 2− exp
(
−(x− 5)2

2(25)2

)
0 ≤x ≤ 10 (4.1)

and is shown in Figure 4.1(a). This is an inverted Gaussian function. This function is used

because it has an infinite number of defined derivatives. At the inlet and outlet, P = 82, 168

Pa, ρ = 1.0094Kg/m3 and u = 181.35m/s, which corresponds to a subsonic case. For the

26
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Figure 4.1: Cross-sectional area variation for the subsonic and transonic cases

transonic case, the cross-sectional area variation is given by [20]:

S(x) = 1 +
3

2

(
1− x

5

)2

0 ≤x ≤ 5 (4.2)

S(x) = 1 +
1

2

(
1− x

5

)2

5 ≤x ≤ 10 (4.3)

and is shown in Figure 4.1(b). At the inlet P = 96, 084.91 Pa, ρ = 1.1288Kg/m3 and

u = 82.69m/s and at the outlet P = 84, 973.84 Pa, ρ = 1.0261Kg/m3 and u = 151.61m/s.

The boundary conditions are set by setting Qbc of Section 3.2.5 to the exact solution.

4.1.2 Method of manufactured solutions

The method of manufactured solutions can be used to verify the prescribed order of accuracy

for computational codes [61]. It works by manufacturing a solution by adding appropriate

source terms to the governing equations. The six steps outlined by C. J. Roy et al. [62] for

implementing the method of manufactured solutions for error convergence studies are:

1. Choose the form of the governing equations.

2. Choose the form of the manufactured solution.

3. Apply the governing equations to the manufactured solution to generate analytical

source terms.

4. Discretize the equations and solve on multiple mesh levels using analytical boundary

conditions and source terms from the manufactured solution.
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Quantity φ fx fy fz φo φx φy φz aφx aφy aφz L
ρ sin cos cos 1 0.1 0.15 0.15 0.75 1.0 1.0 1.0
u sin cos cos 70

100
√

14
4

100
√

14
−12

100
√

14
−8

100
√

14
5
3

1.5 1.0 1.0

v cos sin cos 90
100
√

14
−20

100
√

14
4

100
√

14
3

100
√

14
1.5 1.0 0.75 1.0

w cos sin cos 40
100
√

14
−2

100
√

14
2

100
√

14
3

100
√

14
1.0 1.5 1.0 1.0

p cos sin sin 1
1.4

−0.3
1.4

0.2
1.4

0.05
1.4

1.0 1.25 1.0 1.0

Table 4.1: Constants and form of the solution for three-dimensional flow using the method
of manufactured solutions

5. Evaluate the global discretization error in the numerical solutions.

6. Determine whether or not the observed order of accuracy matches the formal order of

accuracy.

In this work we shall be using the Euler equations (2.2). We shall let the form of the

solution for three-dimensional flow be

φ(x, y, z) = φo + φxfx

(aφxπx
L

)
+ φyfy

(aφyπy
L

)
+ φzfz

(aφzπz
L

)
(4.4)

where φ is ρ, u, v, w, or p. The form of the solution fx, fy, fz and the constants φo, φx,

φy, aφx, aφy, aφz and L are given in Table 4.1. These constants have been chosen in order

to keep the flow physical, i.e. p > 0 and ρ > 0. Now that the form of the solution has been

specified, the governing equations are applied to the manufactured solution to generate the

analytical source terms. Thus equation (2.11) now becomes

∂τ Q̂+ ∂ξÊ + ∂ηF̂ + ∂ζĜ = ψ̂ (4.5)

where ψ̂ is the source term. As an example, for two-dimensional flow the source term in the

equation of continuity is given by,

Jψ̂continuity =
uρxaρxπ

L
cos
(aρxπx

L

)
+
ρuxauxπ

L
cos
(auxπx

L

)
(4.6)

− vρyaρyπ

L
sin
(aρyπy

L

)
+
ρvyavyπ

L
cos
(avyπy

L

)
The other source terms can be derived similarly.

The domain for the problem is shown in Figure 4.2. The domain consists of eight blocks

such that 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1. Each block has a mesh density ranging from

13×13×13 nodes to 65×65×65 nodes. The boundary conditions are implemented by setting
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Qbc of Section 3.2.5 to the exact solution.
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Figure 4.2: Domain and solution for the three-dimensional method of manufactured solutions

4.1.3 Ringleb flow

Ringleb flow is an exact solution to the two-dimensional Euler equations [67, 23, 10, 9]. The

flow lies between two streamlines. Hence, in addition to testing the order of accuracy of the

flow solver, Ringleb flow can also be used to test the wall boundary conditions. The solution



Chapter 4. Results and Discussion 30

is obtained using a hodograph transformation and is given by [67, 23, 10, 9]:

x(q, µ) =
1

2ρ

(
2

µ2
− 1

q2

)
− C

2
(4.7)

y(q, µ) = ± 1

µρq

√
1−

(
q

µ

)2

(4.8)

a =

√
1− γ − 1

2
q2 (4.9)

ρ = a
2

γ−1 (4.10)

C =
1

a
+

1

3a3
+

1

5a5
− 1

2
log

1 + a

1− a
(4.11)

where ρ is the density, x and y are the Cartesian coordinates, q is the nondimensional

velocity magnitude, a is the sound speed, and µ is the streamline constant. The velocity is

nondimensionalized with respect to the stagnation sound speed. The flow angle θ is by,

θ = 2π − sin−1

(
q

µ

)
(4.12)

Lastly, the energy can be obtained by using isentropic relationships.

The entire flow can be parameterized using µ and q. In this work µ and q were chosen

such that 1 ≤ µ ≤ 1.5 and 0.5 ≤ q ≤ 0.75. The flow domain and solution are shown in

Figure 4.3. The domain consists of four blocks with a mesh density ranging from 13×13

nodes to 67×67 nodes per block. Inlet, outflow and wall boundary conditions are imposed

as shown in Figure 4.3. The inlet and outlet boundary conditions are imposed by setting Qbc

of Section 3.2.5 to the exact solution. Since the flow solver in this work is three-dimensional,

symmetry boundary conditions are imposed on the x− y planes.

4.1.4 Vortex

The vortex is an isentropic annular flow. An exact solution is known for this flow, and it

can be used to test the order of accuracy and boundary conditions. The solution is given by

[1, 2, 42]:

ρ(r) = ρi

(
1 +

γ − 1

2
M2

i

(
1− r2

i

r

)) 1
γ−1

(4.13)
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Figure 4.3: Domain and exact solution for Ringleb flow

where r is the radius, ρ is the density, M is the Mach number, and the subscript i stands

for values at the inner radius shown in Figure 4.4. For this work ri is chosen to be 1, Mi

is chosen to be 2.0, ρi is chosen to be 1.0 and pi is chosen to be 1/γ. The other quantities

may be obtained by using isentropic relationships. We set up two problems, one which has

transonic flow, and another which has subsonic flow, as shown in Figure 4.5. Both domains

consist of four blocks with mesh densities ranging from 13×13 nodes to 65×65 nodes per

block. Inlet, outflow and wall boundary conditions are imposed as shown in Figure 4.5. The

inlet and outlet boundary conditions are imposed by setting Qbc of Section 3.2.5 to the exact

solution. Since this is two-dimensional flow, as before, symmetry boundary conditions are

imposed on the x− y planes.

Figure 4.4: Vortex
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Figure 4.5: Domain and exact solution for the vortex problem
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Figure 4.6: Grid used to verify the grid metrics

4.2 Preservation of free stream flow

In Section 3.2.2, a method for calculating the metrics was outlined such that the metric

invariants (2.9) are satisfied. To check if the metric invariants are satisfied, we impose a free

stream flow on an arbitrary geometry and calculate
∣∣∣∣∣∣R(Q̂)

∣∣∣∣∣∣
2

to see if the free stream is a

solution. The geometry used is defined by the following functions:

xj,k,m =
j

5N
+

1

100
sin

10πk

N
sin

10πm

N

yj,k,m =
k

5N
+

1

100
sin

10πj

N
sin

10πm

N

zj,k,m =
m

5N
+

1

100
sin

10πj

N
sin

10πk

N
(4.14)

where N is the total number of points in each direction. The geometry for N=33 is shown in

Figure 4.6. The data for N=33 and N=129 are shown in Tables 4.2 and 4.3 respectively. The

data are shown for both scalar and matrix dissipation. We see that the residuals are machine

zero and thus the free stream is preserved, hence establishing that the metric invariants are

satisfied.



Chapter 4. Results and Discussion 34

Scalar dissipation Matrix dissipation
2nd order 0.11343E-17 0.11344E-17
3rd order 0.29738E-16 0.29738E-16
4th order 0.37564E-16 0.37562E-16

Table 4.2: Residual norms for N=33

Scalar dissipation Matrix dissipation
2nd order 0.52514E-18 0.52513E-18
3rd order 0.34625E-16 0.34625E-16
4th order 0.48092E-16 0.48092E-16

Table 4.3: Residual norms for N=129

4.3 Matrix and scalar dissipation

To compare matrix and scalar dissipation we look at the quasi-one-dimensional nozzle, the

supersonic vortex, the subsonic vortex, the method of manufactured solutions, and a tran-

sonic flow case using the ONERA M6 wing. The results for the quasi-one-dimensional nozzle,

the vortices and the method of manufactured solutions are shown in Figure 4.7. The errors

for the the quasi-one-dimensional nozzle are based on the L2 norm of the error in velocity

and for the other test cases they are based on the L2 norm of the error in density. The

variable plotted on the x-axis is O(∆x) = 1
N−1

, where N is the number of nodes in the x

coordinate direction.

As can be seen there is not a major advantage in using matrix dissipation for the second-

order method. However, for the higher-order methods, matrix dissipation reduces the error

noticeably.

Moving to non-smooth solutions, the transonic solution for the quasi-one-dimensional

nozzle is shown in Figure 4.8. From the data it can be seen that for all three methods matrix

dissipation performs better near the shock as one would expect.

We next look at a transonic test case using the ONERA M6 wing at a Mach number of

0.84 and an angle of attack of 3.06◦. For this test case we use a grid with 96 blocks and 4913

nodes per block. The Cp plots at different sections along the span of the wing are shown in

Figures 4.9, 4.10 and 4.11 for the second, third and fourth-order methods. Comparing the

different Cp plots against the results on a finer mesh, one can see that matrix dissipation

performs somewhat better in the vicinity of shocks.

Lastly we compare the convergence histories for the transonic flow case. This is shown

in Figure 4.12. Matrix dissipation performs better for all the three methods. Based on the
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Figure 4.7: Matrix and scalar dissipation
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results in this section, only matrix dissipation shall be studied in the sections to follow.

4.4 Order of accuracy

The order of accuracy of each scheme is tested using the quasi-one-dimensional nozzle, the

method of manufactured solutions, the subsonic and supersonic vortices, and Ringleb flow.

The order of accuracy for the different test cases is shown in Figure 4.13, and the slopes

for the lines of best fit to the data are shown in Table 4.4. The errors shown in Table 4.4

are errors in the slopes of the lines of best fit. The errors for the the quasi-one-dimensional

nozzle are based on the L2 norm of the error in velocity, and for the other test cases they

are based on the L2 norm of the error in density. It can be seen that the observed order of

accuracy agrees well with the formal order of accuracy. In addition to establishing the order

of accuracy, these results verify that there are no bugs in the spatial discretization.

4.5 Functionals

To obtain high-order accuracy for functionals such as drag and lift, both the flow solver and

the integration method should employ high-order methods. This concept shall be examined

in this section. High-order accuracy of the flow solver has been established in the previous

sections. We now begin by studying the order of accuracy for the integration method alone

and then look at the combination of the flow solver and the integration method.

4.5.1 Integration method

We analyze the order of accuracy of the integration method on a manufactured solution on

a fictitious surface. The fictitious surface is defined by the vector ~r:

~r =

(
1− 1

2
z

)
cos θx̂+

(
1− 1

2
z

)
sin θŷ + zẑ 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 1 (4.15)

The functional is defined by f :

f =

˛
Cpx̂ · d~S (4.16)
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Figure 4.9: Matrix and scalar dissipation - ONERA M6 wing M=0.84, α=3.06◦, 2nd order
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Figure 4.10: Matrix and scalar dissipation - ONERA M6 wing M=0.84, α=3.06◦, 3rd order
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Figure 4.12: Convergence histories - Matrix and scalar dissipation - ONERA M6 wing
M=0.84, α=3.06◦ with preconditioner lumping factor σ = 7
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Method Slope
Quasi-one-dimensional nozzle

2nd order 2.054± 0.001
3rd order 3.5± 0.3
4th order 4.2± 0.2

MMS
2nd order 2.053± 0.004
3rd order 3.0± 0.1
4th order 4.1± 0.1

Ringleb flow
2nd order 1.874± 0.002
3rd order 2.9± 0.1
4th order 3.81± 0.03

Supersonic vortex
2nd order 1.907± 0.004
3rd order 2.60± 0.05
4th order 4.0± 0.1

Subsonic vortex
2nd order 1.937± 0.005
3rd order 2.8± 0.1
4th order 3.72± 0.01

Table 4.4: Order of accuracy for different test cases, slopes of lines of best fit
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Figure 4.13: Order of accuracy for different test cases
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where:

Cp =
2

M2
∞

(
p− 1

γ

)
d~S =

((
1− 1

2
z

)
cos θx̂+

(
1− 1

2
z

)
sin θŷ +

1

2

(
1− 1

2
zẑ

))
dθdz

p =
1

γ
z cos θ sin θ

The free stream Mach numberM∞ is arbitrarily set to 1. Equation 4.16 can now be integrated

exactly to give,

f =

˛
Cpx̂ · d~S = − 23

18γ
(4.17)

Now that we have an exact solution we can perform an order of accuracy study. The grid and

the manufactured solution imposed on the surface is shown in Figure 4.14. Our integration

method can be divided into the metrics and and the trapezoidal and Simpson’s rules. The

results for the trapezoidal rule, Simpson’s rule and the different metrics is shown in Figure

4.15 and computed slopes are shown in Table 4.5. The data establishes that we require high

order metrics and Simpson’s rule to attain a high-order integration method.

X Y

Z

(a) Grid used to map the surface

X Y

Z

P

0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

(b) p contour

Figure 4.14: Surface used to test the order of accuracy of the integration method
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Figure 4.15: Order of accuracy for functional, f

Metrics Slope
Trapezoidal rule Simpson’s rule

2nd order 2± 1e− 06 1.993± 0.003
3rd order 1.82± 0.05 3.012± 0.001
4th order 1.985± 0.004 3.87± 0.03

Table 4.5: Slopes of the lines of best fit for the functional, f
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4.5.2 Integration method and flow solver

In this section we use the subsonic vortex shown in Figure 4.5. We define two functionals

CLS and CDS:

CDS =

˛
Cpx̂ · d~S (4.18)

CLS =

˛
Cpŷ · d~S (4.19)

where

Cp =
2

M2
∞

(
p− 1

γ

)
d~S = r (sin θx̂+ cos θŷ) dθdz

The free stream Mach number M∞ is arbitrarily set to 1. We integrate along the inner wall

of the subsonic vortex and therefore r = 2. The pressure p can be calculated using equation

(4.13) and the isentropic relationships. The variable z runs from 0 to 6
5
, and θ runs from 0

to π
4
. One can now simplify and integrate to find an exact solution:

CLS =

ˆ 6
5

0

ˆ π
4

0

(γp− 1)

γ
2r cos(θ)dθdz =

r6
√

2

5

(γp− 1)

γ
(4.20)

CDS =

ˆ 6
5

0

ˆ π
4

0

(γp− 1)

γ
2r sin(θ)dθdz =

r6(2−
√

2)

5

(γp− 1)

γ
(4.21)

With an exact solution, we can calculate an error and perform an order of accuracy study.

A similar study was performed by Nemec et al. [43]. The studies in this work were performed

using both the trapezoidal and Simpson’s rules. The data for CLS and CDS are shown in

Figures 4.16 and 4.17 respectively. The slopes for the lines of best fit for the data are shown

in Tables 4.6 and 4.7. The errors shown are errors in the slopes of the lines of best fit. The

data reinforce the fact that one requires high-order methods in both the integration and the

flow solution to attain high-order accuracy in a functional.

4.6 Efficiency

Efficiency may be studied quantitatively by analyzing the Ringleb flow, supersonic and

subsonic vortex solutions shown in the previous sections. Normally two factors are taken
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Figure 4.16: Order of accuracy for CLS
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Flow solve Slope
Trapezoidal rule Simpson’s rule

2nd order 1.784± 0.008 1.811± 0.006
3rd order 1.84± 0.03 4.1± 0.8
4th order 1.999± 0.001 4.1± 0.2

Table 4.6: Slopes of the lines of best fit for lift integration (CLS) using both the integration
method and the flow solver

Flow solve Slope
Trapezoidal rule Simpson’s rule

2nd order 1.83± 0.01 1.858± 0.008
3rd order 1.81± 0.04 3.4± 0.3
4th order 1.998± 0.001 4.0± 0.1

Table 4.7: Slopes of the lines of best fit for drag integration (CDS) using both the integration
method and the flow solver

into consideration when one performs a flow solve, the time to achieve convergence and the

accuracy of the solution. Ideally one would want the most accurate solution in the shortest

possible time. One may then specify the desired accuracy, or the time, if the time is a limiting

factor. If the accuracy is specified, the most efficient method would provide a solution of

this accuracy in the shortest possible time. If the time is a limiting factor, the most efficient

method would provide the most accurate solution in this given time.

In Figure 4.18, the variation of the convergence time with accuracy of the solution is

shown. The errors are based on the L2 norm of the error in density. It is quite easy to

see that with the above definition of efficiency the high-order methods are indeed efficient

compared to the second-order method. For example, for the Ringleb flow, to achieve an error

below 10−5 the third-order method is more than three times faster than the second-order

method, and the fourth-order method is roughly eight times faster than the second-order

method.

4.7 Mesh smoothness

This sections attempts to demonstrate the need for smooth meshes to attain high-order

accuracy. We used the method of manufactured solutions described previously to establish

high-order accuracy. In this section, we perform a similar study; however, we now do it on

a single block with three grids ranging from 17×17×17 to 65×65×65 nodes and we use two

sets of meshes, one with a constant mesh spacing and another with a jump in mesh spacing
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Figure 4.18: Efficiency study
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in the x direction at x = 0.75. The grids are shown in Figure 4.19. Using the method of

manufactured solutions with the second- and fourth-order methods we perform an order of

convergence study, and the results for the constant and non-constant mesh spacing grids are

shown in Figure 4.20. We see for that the order of accuracy for the non-constant spacing

meshes is less than what we have for the constant spacing meshes. The slopes of the lines

of best fit are 1.54 ± 0.04 and 2.06 ± 0.01 for the second-order method, and 1.9 ± 0.2 and

4.61 ± 0.04 for the fourth-order method respectively. Although, this brief study on mesh

smoothness is not exhaustive it highlights the importance of smooth meshes.

X Y

Z

(a) Three-dimensional view of constant spacing
mesh

X

Y

Z

(b) x− y plane of constant spacing mesh

X Y

Z

(c) Three-dimensional view of non-constant spac-
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(d) x− y plane of non-constant spacing mesh

Figure 4.19: Grids used to test mesh smoothness
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4.8 Parameter study

In this section, the effect of different parameters is studied. The aim is to determine optimal

parameter values. The ONERA M6 wing at M=0.699 & α=3.06◦ and M=0.84 & α=3.06◦

on a 96 blocks×17×17×17 grid is used in this study.

The dissipation coefficients are set to κ2 = 1 and κ = 0.04. Vn and Vl are set to 0.25

for all flows. The transition region in the dissipation model is set to 8%. Far field and wall

boundary conditions are used. The first-order preconditioner is used, and coefficients during

the start-up phase are a = 0.01, b = 1.2 and ω = 0.05. During the inexact-Newton phase β

is chosen to be 2, and the parameter that decides when we switch to the inexact phase, τ ,

is set to 1/15. The number of GMRES iterations is limited to 80 without restarts, and the

solution is said to be converged when the residual norm has dropped below 1E − 11.

We shall investigate optimal parameters for ILU(k) factorization during the start-up

and inexact-Newton phases, the dissipation lumping factor σ, relaxation, a lagged Jacobian

update and the boundary condition weighting constant.

4.8.1 ILU fill parameter

As discussed earlier, ILU factorization of the preconditioner is required during the start-up

and inexact-Newton phases. Here we investigate the optimal fill level k for both stages. For

this we utilize the ONERA M6 wing at M=0.699 & α=3.06◦ and M=0.84 & α=3.06◦ on

a 96 blocks×17×17×17 grid. The dissipation lumping factor is set to σ = 10, relaxation is

set to 0.5, the Jacobian is updated every iteration and the boundary condition weighting
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constant is set to τbc = 1. The data for the start-up and inexact-Newton phases1 is shown

in Figures 4.21 and 4.22, and Figures 4.23 and 4.24, respectively. From the data we see that

ILU(0) for the start-up phase and ILU(1) for the inexact-Newton phase provide the best

performance for all three methods.
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Figure 4.21: Effect of the fill level, k, for the ILU(k) factorization during the start-up phase
for M=0.699 & α = 3.06◦

4.8.2 Dissipation lumping factor

In this section, the effect of the constant σ that is used to lump the first and high-order dis-

sipation coefficients in the approximate Jacobian used to form the preconditioner is studied.

1ILU(0) is used during the start-up phase for the study of ILU factorization during the inexact-Newton
phase
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Figure 4.22: Effect of the fill level, k, for the ILU(k) factorization during the start-up phase
for M=0.84 & α = 3.06◦
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Figure 4.23: Effect of the fill level, k, for the ILU(k) factorization during the inexact-Newton
phase for M=0.699 & α = 3.06◦



Chapter 4. Results and Discussion 56

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  50  100  150  200  250  300  350  400  450

||R
(Q

)|
| 2

Time(s)

ILU(0)
ILU(1)
ILU(2)
ILU(3)

(a) 2nd order

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  50  100  150  200  250  300  350  400  450  500

||R
(Q

)|
| 2

Time(s)

ILU(0)
ILU(1)
ILU(2)
ILU(3)

(b) 3rd order

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  100  200  300  400  500  600  700

||R
(Q

)|
| 2

Time(s)

ILU(0)
ILU(1)
ILU(2)
ILU(3)

(c) 4th order

Figure 4.24: Effect of the fill level, k, for the ILU(k) factorization during the inexact-Newton
phase for M=0.84 & α = 3.06◦
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The data for the the ONERA M6 wing at M=0.699 & α=3.06◦ and M=0.84 & α=3.06◦

on a 96 blocks×17×17×17 grid is shown in Figures 4.25 and 4.26. ILU(0) and ILU(1) is

used during the start-up and inexact-Newton phases respectively, relaxation is set to 0.5,

the Jacobian is updated every iteration and the boundary condition weighting constant is

set to τbc = 1. We see that 10 is optimal for all three methods. Values less than 2 may make

the method unstable.
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(c) 4th order

Figure 4.25: Effect of the constant σ used to lump the first and high-order dissipation
coefficients for M=0.699 & α = 3.06◦

4.8.3 Relaxation

As discussed earlier, relaxation may be used during the start-up phase. Here we investigate

the effects of over- and under-relaxation. The data for the ONERA M6 wing at M=0.699 &
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Figure 4.26: Effect of the constant σ used to lump the first and high-order dissipation
coefficients for M=0.84 & α = 3.06◦
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α=3.06◦ and M=0.84 & α=3.06◦ on a 96 blocks×17×17×17 grid is shown in Figures 4.27 and

4.28. ILU(0) and ILU(1) is used during the start-up and inexact-Newton phases respectively,

the dissipation lumping factor is set to σ = 10, the Jacobian is updated every iteration and

the boundary condition weighting constant is set to τbc = 1. We see that for certain cases

under-relaxation may be required to maintain stability. On the other hand, over-relaxation

up to a point helps in improving convergence rates. From the data, under-relaxation of 0.6

provides a good balance between stability and speed.
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Figure 4.27: Effect of over- and under-relaxation during the start-up phase for M=0.699 &
α = 3.06◦
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Figure 4.28: Effect of over- and under-relaxation during the start-up phase for M=0.84 &
α = 3.06◦
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4.8.4 Lagged Jacobian update

In this section, we study how the frequency with which we update the Jacobian during

the start-up phase affects the convergence rate. The data for the the ONERA M6 wing at

M=0.699 & α=3.06◦ and M=0.84 & α=3.06◦ on a 96 blocks×17×17×17 grid is shown in

Figures 4.29 and 4.30. ILU(0) and ILU(1) is used during the start-up and inexact-Newton

phases respectively, the dissipation lumping factor is set to σ = 10, relaxation is set to 0.6

and the boundary condition weighting constant is set to τbc = 1. From the data we see

significant reductions in convergence time if we update the Jacobian every 3 outer iterations.

There is only marginal further improvement if we update the Jacobian less frequently.
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Figure 4.29: Effect of the update frequency of the Jacobian during the start-up phase for
M=0.699 & α = 3.06◦
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Figure 4.30: Effect of the update frequency of the Jacobian during the start-up phase for
M=0.84 & α = 3.06◦
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τ 2nd order 3rd order 4th order
0.75 0.0764% 9.77% 6.95%
1.0 -7.87% 10.48% 4.27%
1.25 -13.27% 11.01% 2.26%
1.5 -17.34% 11.42% 0.59%
1.75 - - -0.87%

Table 4.8: Effect of the boundary and interface weighting constant τbc on the drag coefficient

τ 2nd order 3rd order 4th order
0.75 -0.0719% 0.171% 0.122%
1.0 0.0794% 0.148% 0.145%
1.25 0.176% 0.122% 0.179%
1.5 0.238% 0.096% 0.216%
1.75 - - 0.254%

Table 4.9: Effect of the boundary and interface weighting constant τbc on the lift coefficient

4.8.5 Boundary condition and interface weighting constant

In this section, the effect of the boundary and interface weight constant, τbc, is studied. We

use the ONERA M6 wing at M=0.3 & α=4.0◦ on a 96 blocks×17×17×17. The data for drag

and lift are shown in Tables 4.8 and 4.9 respectively. The data are shown as the percentage

difference from those values obtained on a 96 blocks×33×33×33 grid using the fourth-order

method with τbc = 1. From the data we see that the lift and drag values tend to move in

the opposite direction with variation in τbc. Also values of τbc less than 0.75 tend to render

the method unstable.

4.9 ONERA M6 Wing

In this section, we use the ONERA M6 wing in three test cases, M=0.699 & α=3.06◦,

M=0.3 & α=4.0◦ and M=0.84 & α=3.06◦. The data for the last two cases may be found in

Appendix A. The second test case is purely subsonic flow whereas the other two are transonic

flows. The first test case has a weak leading edge shock, and the last test case has a strong

shock on the upper surface of the wing.

We use five grids ranging from 96 blocks×17×17×17 nodes (471,648 nodes) to

96 blocks×33×33×33 nodes (3,449,952 nodes). The far field is placed 25 chord lengths away

from the wing. The 96 blocks×33×33×33 nodes mesh used is shown in Figure 4.31.

The dissipation coefficients for the subsonic flow are κ2 = 0 and κ = 0.04. This is because
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Figure 4.31: Mesh for the ONERA M6 wing

we have no shocks, and thus no first-order smoothing is required. For the transonic flows,

κ2 = 1 and κ = 0.04. Vn and Vl are set to 0.25 for all flows. The transition region in the

dissipation model is set to 4% and 8% for the subsonic and transonic flows respectively. Far

field and wall boundary conditions are used, and the boundary and interface conditions are

scaled by unity, i.e. τbc = 1.

ILU(0) is used during the start-up phase and ILU(1) is used during the inexact-Newton

phase. The first-order preconditioner is used, and the dissipation coefficients are lumped

with σ = 10. The coefficients during the start up phase are a = 0.01, b = 1.2 and ω = 0.05.

Also the preconditioner is updated every 3 iterations during the start-up phase. Relaxation

is used only during the start-up phase and is set at θ = 0.6. During the inexact-Newton

phase β is chosen to be 2, and the parameter that decides when we switch to the inexact-

Newton phase, τ , is set to 1/15. The number of GMRES iterations is limited to 80 without

restarts, and the solution is said to be converged when the residual norm has dropped below

1E − 11.

The convergence summary for the ONERA M6 wing at M=0.699 and α=3.06◦ is shown

in Table 4.10, and the convergence history is shown in Figure 4.32. From the data we see

that the times to convergence for the second and third-order methods are comparable. Also

the number of inner iterations required to achieve convergence is similar for the second and

third-order methods. The time for each residual evaluation is slightly higher for the high-

order methods as expected since the high-order methods have a larger stencil. Lastly, we see

that the CPU time to convergence scales nearly linearly with the number of nodes, i.e. for
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[47, 56]

t = κNβ (4.22)

we find β to be close to unity. The values of β for this solver as well as others are shown in

Table 4.11. The values for the other flow solvers were obtained for a different test case, and

the error shown is the error in the slope for the lines of best fit. From the data shown in

Figure 4.33 and Table 4.11, we see that our flow solver scales close to linearly for all three

methods and scales better than the other flow solvers shown.

The drag and lift coefficients are shown in Table 4.12. The drag and lift coefficients agree

within 0.2% and 3% of each other, respectively. The Cp plots at different cross sections are

shown in Figure 4.34. The coarse grid is 96 blocks×25×25×25 nodes and the fine grid is 96

blocks×33×33×33 nodes. The experimental Cp data is included as well, and even though

we are not using the Navier-Stokes equations and a turbulence model the agreement is quite

good.

A zoomed in Cp plot for the 20% cross section is shown in Figure 4.35. We see that near

the leading edge the high-order methods perform better. Also at the interface on the wing,

the discontinuity in Cp is reduced noticeably. However, near the trailing edge, the coarse

second-order method is closer to the finer mesh. Similar results are obtained for the other

two test cases. Additionally, for the subsonic case shown in Appendix A, the high-order

methods on the coarse meshes are more accurate than the second-order method on the finest

mesh.
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Test case Total time(s) Residual Inner iterations Equivalent
evaluation time(s) residual evaluations

96 blocks×17×17×17 nodes
2nd order 220.3 0.06009 876 3666
3rd order 244.3 0.10480 871 2331
4th order 342.0 0.10879 1136 3143

96 blocks×21×21×21 nodes
2nd order 441.2 0.11335 1006 3892
3rd order 506.6 0.19353 1021 2617
4th order 643.9 0.20467 1242 3146

96 blocks×25×25×25 nodes
2nd order 738.6 0.19383 1064 3810
3rd order 930.1 0.33273 1179 2795
4th order 1081 0.34858 1325 3101

96 blocks×29×29×29 nodes
2nd order 1301 0.30694 1212 4238
3rd order 1497 0.56579 1234 2645
4th order 1962 0.55285 1520 3548

96 blocks×33×33×33 nodes
2nd order 2279 0.46370 1285 4914
3rd order 2777 0.79640 1379 3486
4th order 3604 0.83765 1704 4302

Table 4.10: Convergence summary for the ONERA M6 wing - M=0.699, α=3.06◦

β
M = 0.699 & α = 3.06◦ M = 0.84 & α = 3.06◦

2nd order - 1.15±0.04 1.23±0.08
3rd order - 1.19 ±0.04 1.23±0.07
4th order - 1.16±0.07 1.26±0.05
ARC2D 1.73 - -
PROBE 1.325 - -

TYPHOON 1.288 - -

Table 4.11: Scalability of the flow solver
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Figure 4.32: Convergence histories for the ONERA M6 wing - M=0.699, α=3.06◦
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Figure 4.33: Scalability of the flow solver
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Test case Lift coefficient Drag coefficient % lift difference % drag difference
(finest mesh) (finest mesh)

96 blocks×17×17×17 nodes
2nd order 0.27763455 0.0065825086 0.83 7.2
3rd order 0.27567148 0.0075857959 1.33 18.2
4th order 0.27322270 0.0074356907 2.15 16.4

96 blocks×21×21×21 nodes
2nd order 0.27848939 0.0063827045 0.52 4.0
3rd order 0.27709814 0.0070536488 0.82 9.9
4th order 0.27642214 0.0068295743 1.00 6.9

96 blocks×25×25×25 nodes
2nd order 0.27921397 0.0062418883 0.27 1.7
3rd order 0.27821599 0.0067114483 0.42 4.5
4th order 0.27779249 0.0066318836 0.51 3.8

96 blocks×29×29×29 nodes
2nd order 0.27967114 0.0061734778 0.10 0.6
3rd order 0.27892535 0.0065268452 0.17 1.7
4th order 0.27872654 0.0064820850 0.18 1.4

96 blocks×33×33×33 nodes
2nd order 0.27997232 0.0061391219 - -
3rd order 0.27940949 0.0064173196 - -
4th order 0.27924200 0.0063872851 - -

Table 4.12: Lift and drag coefficients for the ONERA M6 wing - M=0.699, α=3.06◦
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Figure 4.34: Pressure coefficient at different cross sections for the ONERA M6 wing -
M=0.699, α=3.06◦. The coarse grid has 96 blocks×25×25×25 nodes and the fine grid
has 96 blocks×33×33×33 nodes.



Chapter 4. Results and Discussion 70

-1.3

-1.28

-1.26

-1.24

-1.22

-1.2

-1.18

-1.16

-1.14

-1.12

-1.1
 0  0.01  0.02  0.03  0.04  0.05  0.06

C
p

x/c

Coarse 2nd order
Coarse 3rd order
Coarse 4th order

Fine 2nd order
Fine 3rd order
Fine 4th order

-0.1

-0.05

 0

 0.05

 0.1
 0  0.02  0.04  0.06  0.08  0.1

C
p

x/c

Coarse 2nd order
Coarse 3rd order
Coarse 4th order

Fine 2nd order
Fine 3rd order
Fine 4th order

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3
 0.4  0.42  0.44  0.46  0.48  0.5  0.52  0.54  0.56  0.58  0.6

C
p

x/c

Coarse 2nd order
Coarse 3rd order
Coarse 4th order

Fine 2nd order
Fine 3rd order
Fine 4th order

-0.3

-0.28

-0.26

-0.24

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1
 0.4  0.42  0.44  0.46  0.48  0.5  0.52  0.54  0.56  0.58  0.6

C
p

x/c

Coarse 2nd order
Coarse 3rd order
Coarse 4th order

Fine 2nd order
Fine 3rd order
Fine 4th order

-0.085

-0.084

-0.083

-0.082

-0.081

-0.08
 0.82  0.822  0.824  0.826  0.828  0.83

C
p

x/c

Coarse 2nd order
Coarse 3rd order
Coarse 4th order

Fine 2nd order
Fine 3rd order
Fine 4th order

Figure 4.35: Zoomed in pressure coefficient plots at the 20% cross section for the ONERA
M6 wing - M=0.699, α=3.06◦. The coarse grid has 96 blocks×25×25×25 nodes and the fine
grid has 96 blocks×33×33×33 nodes.



Chapter 5

Conclusions and Recommendations

5.1 Conclusions

A high-order finite-difference flow solver for the Euler equations was developed. Spa-

tial discretization is carried out using summation-by-parts (SBP) operators, and the

boundary and interface conditions are implemented using simultaneous approximation terms

(SAT’S). Dissipation is provided using matrix and scalar dissipation. Shock capturing is en-

abled via first-order dissipation in the vicinity of the shock. The solution is marched to

steady state using a two-stage Newton-Krylov approach. The first stage uses the first-order

flow Jacobian and performs defect correction. Once a suitable iterate is found, we use the

high-order Jacobian (matrix-free vector products) in the inexact-Newton phase. Force inte-

gration is performed using the trapezoidal and Simpson’s rules.

The code is verified using different exact solutions, such as Ringleb flow, and supersonic

and subsonic vortices. The method of manufactured solutions is also used to verify the code.

It is found that the observed order of accuracy agrees with the prescribed order of accuracy.

Functionals, lift and drag, were also verified using a manufactured solution and the subsonic

vortex and again the observed order of accuracy matched the prescribed order of accuracy.

Efficiency studies for the Ringleb flow and the supersonic and subsonic vortices demon-

strate that the high-order methods are indeed efficient in that they produce a low error per

computational cost.

The code was also validated for the ONERA M6 wing. For subsonic flows, the solution

using high-order methods on a coarser grid are closer to the mesh independent solution

and thus high-order methods perform well. For transonic flows, the high-order methods are

neither significantly better nor significantly worse.
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5.2 Recommendations

This work has opened up an array of potential future work. CFD is a relatively new science

and there is a lot of interest in optimization and fluid-structure interaction. A list of some

of the several different paths one may embark upon are listed below,

• The next obvious extension is the implementation of the Navier-Stokes equations [72,

50].

• Implementation of a turbulence model will enable us to look at turbulence effects.

Typical turbulence models that are based on the Reynolds averaged Navier-Stokes

equations (RANS) are, the Baldwin-Lomax model [3], the Spalart-Allamars model

[69], k − ω model [79, 80, 37] and the k − ε model.

• The method of manufactured solutions has been used to verify our inviscid code. An

analogue can easily be developed for any set of governing equations.

• Grid adaptation is a common way of improving the quality of the solution. Several

approaches are used; however, the adjoint approach appears to be promising [54, 87].

• This work demonstrated the need for smooth meshes to see high-order benefits. The

grid adaptation technique mentioned above may help with mesh smoothness problems,

however, an exhaustive mesh study is definitely needed.

• Mesh generation can take up a lot of user time. An automatic grid generator [31]

coupled with mesh adaptation would give the flow solver a high level of automation

and would allow a novice user to use CFD intelligently.

• For transonic flows the present shock capturing method is not optimal for high-order

methods since there are oscillations, and it would therefore be beneficial to investigate

other shock capturing methods such as WENO schemes [68].

• All the infrastructure exists to study unsteady flows. To investigate this further, a

suitable time marching method will have to be used [35, 22].

• High-order methods will result in efficiency gains for optimization and mesh movement

algorithms because high-order methods enable the use of coarser grids. This will help

tackle even more complex problems.
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• Fluid-structure interaction is an area of active research. To study fluid-structure in-

teraction, in addition to the fluid stresses we would need to model the stress-strain

behaviour on the object of interest. Fluid-structure interaction would help us look

at phenomena such as wing flutter and may also give us more insight into optimizing

aerodynamic structures [28].
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ONERA M6 wing data
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Figure A.1: Convergence histories for the ONERA M6 wing - M=0.3, α=4◦
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Test case Lift coefficient Drag coefficient % lift difference % drag difference
(finest mesh) (finest mesh)

96 blocks×17×17×17 nodes
2nd order 0.31392843 0.0070063028 0.065 1.35
3rd order 0.31451765 0.0084693023 0.084 19.2
4th order 0.31447273 0.0078915101 0.077 11.1

96 blocks×21×21×21 nodes
2nd order 0.31403080 0.0069865033 0.033 1.62
3rd order 0.31435295 0.0079310876 0.032 11.6
4th order 0.31430692 0.0075018287 0.024 5.62

96 blocks×25×25×25 nodes
2nd order 0.31409301 0.0070269572 0.013 1.05
3rd order 0.31429966 0.0076911958 0.015 8.29
4th order 0.31425535 0.0074264652 0.008 4.56

96 blocks×29×29×29 nodes
2nd order 0.31412204 0.0070651952 0.003 0.52
3rd order 0.31426633 0.0075564362 0.004 6.39
4th order 0.31423398 0.0073745482 0.001 3.83

96 blocks×33×33×33 nodes
2nd order 0.31413459 0.0071021972 - -
3rd order 0.31425078 0.0074821970 - -
4th order 0.31422879 0.0073482131 - -

Table A.1: Lift and drag coefficients for the ONERA M6 wing - M=0.3, α=4.0◦
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Test case Total time(s) Residual Inner iterations Equivalent
evaluation time(s) residual evaluations

96 blocks×17×17×17 nodes
2nd order 302.3 0.05859 1192 5159
3rd order 341.6 0.09968 1182 3426
4th order 456.0 0.10575 1519 4312

96 blocks×21×21×21 nodes
2nd order 589.2 0.11058 1318 5328
3rd order 674.0 0.19063 1321 3535
4th order 877.0 0.19820 1666 4424

96 blocks×25×25×25 nodes
2nd order 984.2 0.18831 1389 5226
3rd order 1292 0.32974 1473 3918
4th order 1650 0.33916 1965 4864

96 blocks×29×29×29 nodes
2nd order 1781 0.29841 1585 5968
3rd order 2348 0.51895 1669 4524
4th order 2669 0.53413 1886 4996

96 blocks×33×33×33 nodes
2nd order 3313 0.44689 1553 7413
3rd order 4502 0.78108 1816 5763
4th order 5249 0.80924 2113 6486

Table A.2: Convergence summary for the ONERA M6 wing - M=0.3, α=4.0◦
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Figure A.2: Pressure coefficient at different for the ONERA M6 wing - M=0.3, α=4.0◦.
The coarse grid has 96 blocks×25×25×25 nodes and the fine grid has 96 blocks×33×33×33
nodes.
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Figure A.3: Zoomed in pressure coefficient plots at the 20% cross section for the ONERA
M6 wing - M=0.3, α=4.0◦. The coarse grid has 96 blocks×25×25×25 nodes and the fine
grid has 96 blocks×33×33×33 nodes.
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Test case Lift coefficient Drag coefficient % lift difference % drag difference
(finest mesh) (finest mesh)

96 blocks×17×17×17 nodes
2nd order 0.33299097 0.013007464 1.55 0.95
3rd order 0.33200610 0.014094903 1.94 6.75
4th order 0.32721793 0.013980653 3.37 6.07

96 blocks×21×21×21 nodes
2nd order 0.33513676 0.012907962 0.92 0.18
3rd order 0.33482316 0.013651433 1.11 3.39
4th order 0.33410331 0.013451543 1.33 2.05

96 blocks×25×25×25 nodes
2nd order 0.33666015 0.012870826 0.47 0.11
3rd order 0.33674413 0.013394675 0.54 1.45
4th order 0.33656043 0.013319976 0.61 1.06

96 blocks×29×29×29 nodes
2nd order 0.33763273 0.012872037 0.18 0.10
3rd order 0.33785865 0.013271598 0.21 0.51
4th order 0.33792925 0.013238582 0.20 0.44

96 blocks×33×33×33 nodes
2nd order 0.33823852 0.012885009 - -
3rd order 0.33857850 0.013203850 - -
4th order 0.33861949 0.013180798 - -

Table A.3: Lift and drag coefficients for the ONERA M6 wing - M=0.84, α=3.06◦
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Test case Total time(s) Residual Inner iterations Equivalent
evaluation time(s) residual evaluations

96 blocks×17×17×17 nodes
2nd order 258.1 0.05981 1152 4315
3rd order 313.7 0.10166 1225 3085
4th order 373.1 0.10888 1400 3426

96 blocks×21×21×21 nodes
2nd order 512.0 0.11314 1295 4525
3rd order 565.8 0.19342 1295 2925
4th order 782.3 0.20497 1569 3816

96 blocks×25×25×25 nodes
2nd order 870.9 0.19397 1381 4489
3rd order 1093 0.33318 1552 3280
4th order 1369 0.34906 1850 3921

96 blocks×29×29×29 nodes
2nd order 1605 0.30629 1694 5240
3rd order 1920 0.52717 1751 3642
4th order 2588 0.55197 2213 4688

96 blocks×33×33×33 nodes
2nd order 3224 0.46277 1968 6966
3rd order 3766 0.79590 2043 4731
4th order 4682 0.83874 2392 5582

Table A.4: Convergence summary for the ONERA M6 wing - M=0.84, α=3.06◦
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Figure A.4: Convergence histories for the ONERA M6 wing - M=0.84, α=3.06◦
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Figure A.5: Pressure coefficient at different cross sections for the ONERA M6 wing -
M=0.84, α=3.06◦. The coarse grid has 96 blocks×25×25×25 nodes and the fine grid has 96
blocks×33×33×33 nodes.
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Figure A.6: Zoomed in pressure coefficient plots at the 20% cross section for the ONERA
M6 wing - M=0.84, α=3.06◦. The coarse grid has 96 blocks×25×25×25 nodes and the fine
grid has 96 blocks×33×33×33 nodes.
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High-order finite-difference operators

B.1 Third-order method
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B.2 Fourth-order method
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