
On the Development of an Improved
Lift-Constrained Aerodynamic

Optimization Algorithm

by

Laura K. Billing

A thesis submitted in conformity with the requirements
for the degree of Masters of Applied Science

Graduate Department of Aerospace Engineering
University of Toronto

Copyright c© 2006 by Laura K. Billing

Abstract

On the Development of an Improved Lift-Constrained
Aerodynamic Optimization Algorithm

Laura K. Billing

Masters of Applied Science

Graduate Department of Aerospace Engineering

University of Toronto

2006

An improved algorithm is presented for performing lift-constrained aerodynamic op-

timization. The angle of attack is set in the flow solution stage, ensuring the desired

lift coefficient is achieved. Changes to the flow solver are carried through to the adjoint

calculation of the gradient. For this project, the drag coefficient is the objective func-

tion, but the algorithm could easily be extended to other lift-constrained optimization

problems. Work on normalizing objective functions for multi-point optimization ensures

that the weight given to each design point is independent of the initial objective function

value, and that the thickness constraints have the same meaning for all design points.

Several design cases are examined. One case is of particular interest, a multipoint

optimization with eighteen design points, which is compared to optimized airfoils for each

individual design point, to examine the benefits of morphing airfoils for a realistic design

case.

iii

Acknowledgements

I could not possibly have produced this thesis without the invaluable assistance of my

supervisor, Dr. D. W. Zingg. His teaching and guidance have been indispensable to me,

and I have appreciated all his insightful suggestions.

I owe a debt of thanks to all the students and staff at UTIAS, especially the students

in the CFD lab. I am particularly grateful to Jon Driver for his help becoming familiar

with Optima, and James McDonald, Scott Northrup, and Chad Oldfield who all kindly

provided valuable help with the programming aspects of my thesis.

I am immensely grateful to my family. They have been extremely supportive of my

scholastic endeavours, and I am indebted to them for all the support they have given to

me over the years.

Finally, I would like to gratefully acknowledge financial support from the Natural Sciences

and Engineering Research Council of Canada, and the University of Toronto.

Thank-you, all.

Laura Billing

University of Toronto Institute for Aerospace Studies

August 8, 2006

v

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Existing Methods . 2

2 Governing Equations 9

2.1 Optimization Equations . 9

2.1.1 Problem Formulation . 9

2.1.2 Design Variables . 10

2.1.3 Objective Function . 11

2.1.4 Constraints . 11

2.2 Flow Equations . 12

2.2.1 Navier-Stokes Equations . 12

2.2.2 Turbulence Model . 14

2.2.3 Thin-Layer Approximation and Coordinate Transformation 15

3 Algorithm 19

3.1 Flow Solver - Approximate Factorization 19

3.2 Flow Solver - Newton-Krylov Algorithm 23

3.3 Optimizer Equations . 25

3.4 Other Modifications . 28

vii

4 Results 31

4.1 Flow Solver . 31

4.2 Gradient Calculations . 33

4.3 Optimization Cases . 33

4.3.1 Single-Point Subsonic Airfoil Design 34

4.3.2 Single-Point Transonic Airfoil Design 37

4.3.3 Four-Point Optimization Case . 39

4.3.4 Two-Point Pareto Front . 42

4.3.5 Eighteen-Point Optimization Case 46

5 Conclusions and Recommendations 53

References 57

A New Analytical Derivatives 61

A.1 Derivative of Coefficients with Respect to Angle of Attack 61

A.2 Derivatives of Coefficients with Respect to Flow Variables 62

A.2.1 Force Due to Pressure . 62

A.2.2 Force Due to Friction . 63

A.3 Derivatives of Existing Residual Equations 66

A.3.1 Far-Field Boundary Residual . 66

A.3.2 Outflow Boundary Residual . 68

B Input Files for Optimizations 71

B.1 Subsonic Single-Point Optimization Input File 71

B.2 Transonic Single-Point Optimization Input File 73

B.3 Four-Point Optimization Input Files . 74

B.4 Two-Point Pareto Front Input Files . 77

C Input Files for Eighteen-Point Optimization 79

List of Figures

2.1 NACA0012 airfoil with B-spline curve control points 10

3.1 Effect of number of iterations to beginning of angle of attack relaxation

on convergence rate of approximate factorization flow-solver 21

3.2 Effect of relaxation parameter on convergence rate of approximate factor-

ization flow-solver . 22

3.3 Effect of frequency of angle of attack relaxation on convergence rate of

approximate factorization flow-solver . 22

4.1 Performance of the new flow solver . 32

4.2 Subsonic single-point optimization, with second-difference dissipation . . 35

4.3 Subsonic single-point optimization, without second-difference dissipation 36

4.4 Transonic single-point optimization . 38

4.5 Control points and design variables (shaded) for the RAE 2822 airfoil . . 39

4.6 Objective function and gradient convergence histories for single-point design 40

4.7 Single-point optimization . 40

4.8 Objective function and gradient convergence histories for two-point design 41

4.9 Two-point optimization . 43

4.10 Four-point optimization . 43

4.11 Pareto front for two-point optimization 45

4.12 Control points and design variables (shaded) for the NACA 0015 airfoil . 46

4.13 Airfoil sections found using floating maximum thickness constraint 49

4.14 Expanded view of airfoil sections found using floating maximum thickness

constraint . 49

4.15 Airfoil sections found using fixed maximum thickness constraint 50

ix

4.16 Expanded view of airfoil sections found using fixed maximum thickness

constraint . 50

A.1 Boundary locations . 67

List of Tables

4.1 Comparison of single design variable optimization to new flow solver . . . 33

4.2 Comparison of gradients calculated with different methods 34

4.3 Comparison of lift and drag coefficients found with the new algorithm and

the old algorithm . 36

4.4 Comparison of time to convergence with the new algorithm and the old

algorithm . 37

4.5 Thickness constraints for transonic single-point optimization 37

4.6 Comparison of results for transonic single-point optimization 38

4.7 Thickness constraints for Pareto front case 44

4.8 Drag coefficients for different weights . 44

4.9 Optimization points . 47

4.10 Design performance of the multipoint airfoil 51

4.11 Design performance of the multipoint airfoil 52

4.12 Comparison of drag coefficients of the single-point designs with those of

the baseline multipoint design . 52

xi

Chapter 1

Introduction

1.1 Motivation

Historically, aircraft were developed using the trial-and-error method of design. A new

design would be developed, then tested either in a wind tunnel or in flight [18]. This was

an expensive design process, as a model had to be built for each design possibility, and

this did not encourage the development of radically different designs. Instead, existing

designs were carefully tuned.

Computational fluid dynamics began being used for aerodynamic analysis and design

starting in the mid-1960s [13]. However, limitations in computational power and the need

for algorithm development meant that computational aerodynamics was not a practical

design tool until significantly later. As computational power increased and optimization

algorithms were improved, the possibility of performing numerical optimization became

more realistic [14]. Numerical optimization represents a powerful tool that can be used

in aircraft design. There are four broad categories of optimization algorithms that can

be used: direct search methods, stochastic methods, gradient-based methods, and fully-

coupled methods. This project presents changes to an existing gradient-based algorithm.

Gradient-based algorithms use the gradient of the objective function with respect to

the design variables to move towards the optimal design. They can be efficient, since

relatively few iterations are required to achieve significant improvements in the objective

function. Gradient-based optimizers are generally less successful in noisy design spaces,

and converge to a local optimum. Also, they have the disadvantage that, unless expensive

finite-difference gradient calculations are made, modifications to the flow solver must be

extended into the gradient calculation [29].

1

2 Chapter 1. Introduction

Most early cases of numerical optimization investigated inverse design problems [9,

11]. Inverse design requires the user to specify a target pressure distribution for the

surface of the airfoil, and then the optimizer will change the shape of the airfoil to achieve

this goal. Unfortunately, the selection of an appropriate target pressure distribution

requires significant experience and knowledge on the part of the user. Other possible

goals to be considered when conducting airfoil optimization include endurance factor

maximization, lift-to-drag ratio maximization, drag-constrained lift maximization, and

lift-constrained drag minimization. These all require less experience on the part of the

user, and are practical optimization problems. Lift-constrained drag minimization is

quite common in airfoil design, as the lift required for an aircraft is often known (from

the estimated weight of the aircraft) and the designers wish to minimize drag to reduce

the operating cost of the aircraft. There are several methods that currently exist for

performing lift-constrained drag minimization. The objective of this project is to modify

an existing code to allow it to perform lift-constrained drag minimization with fewer

user-generated parameters.

1.2 Existing Methods for Lift-Constrained Aerody-

namic Optimization

The code being modified for this project is an airfoil optimization program called Op-

tima2D. This program uses a Newton-Krylov method for two-dimensional shape opti-

mization. The design variables in Optima2D for lift-constrained drag minimization are

the shape of the airfoil, which is described using a B-spline, and its angle of attack.

Using the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, an objec-

tive function is minimized. When lift-constrained drag minimization is performed in

Optima2D, the following objective function is used.

J =





ωL

(
1− Cl

C∗
l

)2

+ ωD

(
1− Cd

C∗
d

)2

if Cd > C∗d

ωL

(
1− Cl

C∗
l

)2

otherwise
(1.1)

where C∗l is the target lift coefficient, C∗d is the target drag coefficient, ωL is the weight for

the lift coefficient optimization, and ωD is the weight for the drag coefficient optimization

[20]. C∗d is often selected low enough to be considered unattainable.

This objective function consists of two competing objectives, namely attaining the

1.2. Existing Methods 3

target lift and minimizing drag. Achieving both simultaneously is difficult, since a de-

crease in drag typically corresponds to a decrease in lift [22]. As the lift is a constraint

on the design, it is important to ensure that the desired coefficient of lift is reached. To

do this, either the weight on the lift coefficient objective must be very high (which will

reduce the amount by which drag is decreased), or the target lift entered into the opti-

mization program must be a carefully selected amount greater than the actual target lift.

To determine how much greater the target lift coefficient given to the program should be

than the actual desired lift coefficient requires a great deal of experience. Some level of

experience is also required to successfully select a value for C∗d , and selecting appropriate

parameters can take several trials. Achieving lift-constrained drag minimization with

this method can therefore be difficult and time consuming.

Variations on the use of a penalty for the lift constraint have been implemented by

several other researchers. Nielsen and Anderson [24] employ a method similar to the one

described above. They use an objective function defined as

J = ω1(Cl − C∗l)2 + ω2(Cd − C∗d)2 (1.2)

where C∗l and C∗d are the target lift and drag once again. The weights ω1 and ω2 are

initially chosen based on the lift and drag coefficients.

ω2

ω1

=
Cl

Cd

(1.3)

However, as in Optima2D, as the optimization process continues it becomes necessary to

adjust the weights to ensure that lift is in fact constrained, so this method has flaws very

similar to those of the algorithm being modified, as it also uses objectives for lift and

drag that are competing [25]. This objective function is combined with a gradient-based

optimizer using the Davidon-Fletcher-Powell quasi-Newton method [24].

Previous to Nielsen’s work, the weights had been chosen based on the relative impor-

tance (as determined by the user) of maintaining lift as compared to minimizing drag

[2].

J =
1

2
(Cl − C∗l)2 + 10× 1

2
(Cd − C∗d)2 (1.4)

This results in a lift coefficient that is close to, rather than equal to, the target lift

coefficient. Anderson and Bonhaus [1] used a similar approach. Their objective function

was

J = ω1(Cl − C∗l)2 + ω2C
2
d (1.5)

4 Chapter 1. Introduction

This eliminates the need for a target drag coefficient to be selected, but still requires

some basis for the assignment of weights. For the case studied, ω1 = 1 and ω2 = 25,

with the weight on the drag set higher so that each term would have an approximately

equal contribution to the objective function. Tse and Chan [33] use a similar objective

function, but without squaring the Cd term.

Mohammadi [17] also uses a penalty method for lift-constrained drag minimization.

In this method however, the penalty to the objective function is:

Jpenalty = |Cl − C0
l | (1.6)

where Cl is the actual lift coefficient and C0
l is the initial lift coefficient. It is worth

noting that this assumes that the initial lift coefficient is the target lift coefficient, but it

would likely be a trivial matter to use the same penalty method with a fixed target lift

coefficient replacing the initial lift coefficient in the given equation.

Dadone and Grossman [3] use a similar method to perform drag-constrained lift max-

imization, using a penalty for drag in the objective function to ensure the drag constraint

is met.

J = −Cl +R1δ1

(
Cd

Cd,max

)2

(1.7)

where Cl and Cd are the current lift and drag coefficients, respectively, R1 is the penalty

constant, Cd,max is the maximum allowable drag coefficient, and δ1 is 0 when Cd ≤ Cd,max

and 1 otherwise. If desired, the approach developed in this project could be extended to

drag-constrained lift maximization.

Kim et al. [16] proposed a different approach to including lift as a penalty. This can

be developed by describing the target drag, C∗d , by the equation

C∗d = Cd +
∂Cd

∂α
∆α (1.8)

where Cd is the current drag, and ∆α is the change in angle of attack required to reach

the desired lift coefficient, C∗l . The target lift coefficient can be similarly described as

C∗l = Cl +
∂Cl

∂α
∆α (1.9)

where Cl is the current lift coefficient. Equations 1.8 and 1.9 can be combined to give

the equation for the new objective function.

J = Cd −
(

∂Cd

∂α

)
(

∂Cl

∂α

) (Cl − C∗l) (1.10)

1.2. Existing Methods 5

The first part of this equation is the true objective, namely minimizing drag, and the

second part is a penalty given to attain the desired lift coefficient. Kim et al. [15] combine

this objective function with a flow solver that gradually changes angle of attack to ensure

the lift coefficient satisfies the following equation:

C∗l ≤ Cl ≤ 1.003C∗l (1.11)

The lift constraint may also be included in a Lagrangian function, and then the goal

of the optimization is to minimize the Lagrangian function. This approach has been

taken by Drela [4] and Zhang and Lum [34].

Soemarwoto and Labrujère [32] include the lift constraint in the gradient calculation.

They take the fact that the lift coefficient should not change as you move through the

design space to give
(
dCl

dα

)
δα +

(
dCl

dX

)
· δX = 0 (1.12)

Then, setting the angle of attack, α, as a dependent variable, the change in angle of

attack can be calculated as

δα = −
(
dCl

dα

)−1 (
dCl

dX

)
· δX (1.13)

This can then be included in the calculation of the gradient of the objective function

with respect to the geometric design variables with fixed lift to give

(
dJ
dX

)

Cl

=
dJ
dX

−
(
dJ
dα

) (
dCl

dα

)−1 (
dCl

dX

)
(1.14)

This ensures that the desired lift coefficient is reached.

Elliott and Peraire [8] discuss a variety of different possible approaches to imple-

menting the lift constraint. They propose that the constraints could be included in the

Lagrangian describing the optimization problem. The drawback of this approach is the

complexity of implementation. They also discuss the possibility of finding the angle of

attack for the desired coefficient of lift in the flow solver (the method being explored in

this project). This option is attractive, but was rejected due to the difficulty of adding

the lift constraint to the flow solver. The constraints may also be implemented using the

quadratic penalty method. They mention that this has the advantage of simplicity of

implementation, as it is simply a factor added to the objective function, but has the dis-

advantage that ill-conditioning is inevitable when the scalar penalty parameter is large.

6 Chapter 1. Introduction

Penalty terms may also be added to the Lagrangian, which eliminates ill-conditioning

for large scalar penalty parameters. For more details on methods for implementing con-

straints, see [10].

The final option discussed is implementing the constraints in the optimization stage,

rather than in the gradient calculation [8]. This is done by partially solving a sequence

of linearly constrained subproblems [7]. The constraints are modelled as being linear for

these subproblems as follows

c̃k = ck + AkX (1.15)

where ck is the constraint, Ak is a matrix which has the gradients of the constraint as its

rows, and X is the vector of the design variables. The matrix Ak is used in the calculation

of the search direction in the constrained line search, for the steepest descent method.

Additionally, a compensation for the nonlinearity of the constraint must be included when

calculating the next set of design variables. When using the quasi-Newton BFGS method,

the calculation of the Hessian approximation is also affected by the change. Adding the

target lift as a constraint in this manner increases the complexity of implementation,

although it does eliminate the need for the various user-selected parameters discussed

above.

Jameson [14] sets the coefficient of lift as an input to the flow solver to ensure that

the lift constraint is consistently satisfied. Jameson’s flow solution algorithm uses an

explicit multi-stage time-marching method with multigrid [12]. Because it is explicit, a

small time step is required, so it is possible to use angle of attack relaxation in all parts of

the flow solver. Angle of attack relaxation involves adjusting the angle of attack during

the flow solution based on the difference between the current coefficient of lift and the

desired coefficient of lift.

Keeping the coefficient of lift constant using angle of attack relaxation also affects

the gradient calculation, as described by Reuther et al. [30]. For Jameson’s approach,

the objective function is set to the coefficient of drag and the gradient is calculated

with the continuous adjoint equation. To include the fixed lift coefficient in the gradient

calculation, we consider the fact that a change in the shape of the airfoil will cause a

change in the objective function.

δJ = δ̃Cd +
∂Cd

∂α
δα (1.16)

The first term, δ̃Cd, is the change in the coefficient of drag that occurs due to the change

in shape with the angle of attack held constant. The change in angle of attack in the

1.2. Existing Methods 7

second term, δα, occurs because the flow solver modifies the angle of attack to ensure

that lift is consistently achieved. The change in angle of attack can be found based on

the fact that we wish for the coefficient of lift to be held constant, namely

δCl = 0 (1.17)

δ̃Cl +
∂Cl

∂α
δα = 0 (1.18)

where δ̃Cl is the change in the coefficient of lift that occurs due to the change in shape

with the angle of attack held constant and δα is the same change in angle of attack as

used in Equation 1.16. Equations 1.16 and 1.18 can then be combined to give

δJ = δ̃Cd −
(

∂Cd

∂α

)
(

∂Cl

∂α

) δ̃Cl (1.19)

This gradient accounts for changes in drag due to shape change and due to the change

in angle of attack required to reach the desired coefficient of lift with the new shape, and

is calculated using the continuous adjoint method.

The goal of this project is to implement the lift constraint in the flow solution algo-

rithm of Optima2D, and to modify the objective function gradient calculation accord-

ingly. The flow solver in Optima2D uses implicit Euler time-marching with approximate

factorization in the first stage of convergence [26], where angle of attack relaxation can

be used, and Newton’s method to drive the residual to zero in the second stage [19].

Because the second stage is fully implicit, an equation involving the desired coefficient

of lift must be included in the residual calculations. Gradient calculation is performed

using the discrete adjoint method, and a method of including the effect of the fixed lift

coefficient on the gradient is developed.

8 Chapter 1. Introduction

Chapter 2

Governing Equations

Optima2D is the optimization program that will be modified for this project. In Op-

tima2D, objective function minimization is achieved using the quasi-Newton BFGS op-

timization method with a backtracking line search, where gradients are calculated using

the adjoint method [20]. The calculation of the gradient has been modified, as the mod-

ifications to the flow solver change the residual calculations. There are two parts to the

flow solver that was modified for this project. The first part is the CYCLONE program,

which uses an approximate factorization method to solve the Navier-Stokes equations.

The second part is the PROBE program, which uses a Newton-Krylov method to solve

the equations. Both use the Spalart-Allmaras turbulence model [19].

2.1 Optimization Equations

2.1.1 Problem Formulation

The optimization problem can be described as the minimization of the objective function

J with respect to the vector of design variables X subject to constraints Cj. Mathemat-

ically, this can be written as

min
X
J (Q,X) (2.1)

where the following constraints are satisfied:

Cj(Q,X) ≤ 0, j = 1, 2...Nc (2.2)

9

10 Chapter 2. Governing Equations

x

y

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Original Airfoil
Control Points

Figure 2.1: NACA0012 airfoil with B-spline curve control points

In these equations, Q is the vector of flow variables, and Nc is the number of constraints.

The flow variables can be found based on the relation

R(Q,X) = 0 (2.3)

where R is the residual of the flow equations, and as such the flow variables are a function

of the design variables.

2.1.2 Design Variables

The airfoil shape is described by a B-spline with a user determined number of control

points (see Figure 2.1). The design variables are then chosen from these control points.

The angle of attack can also be a design variable. For the new method, however, the

angle of attack acts as a flow variable in the flow solution, so it is no longer used as a

design variable.

2.1. Optimization Equations 11

2.1.3 Objective Function

For this project, the objective function being minimized is the drag coefficient normalized

by its initial value:

J =
Cd

Cd,0

(2.4)

where J is the objective function, Cd is the drag coefficient, and Cd,0 is the drag coefficient

at the first flow solution in the optimization process. Both drag coefficients are taken at

the end of flow solution steps, so they are the drag reached at the target lift coefficient.

2.1.4 Constraints

To ensure that the airfoil is realistic and that it meets any construction or structural

requirements in terms of thickness, thickness constraints are imposed on the design prob-

lem. They are imposed using the penalty method, so that

J = JO + JC (2.5)

where JO is the original objective function as outlined above, and JC is the penalty due

to the thickness constraints.

Thickness constraints can be specified in three different ways: specific locations along

the airfoil that must be a specified thickness, a global or floating thickness constraint

that specifies the minimum thickness of the thickest point of the airfoil, and an area

constraint that limits the total area of the airfoil.

For the specific thickness constraints, there are NC thickness constraints. Then the

penalty is calculated as

JC =
NC∑

i=0




ωC(1− hi

h∗i
)2 if hi < h∗i

0 otherwise
(2.6)

where ωC is the weight given to the penalty due to the fixed thickness constraints, hi

is the thickness at location i, and h∗i is the minimum thickness at location i. Specific

thickness constraints are often used to prevent the cross-over of the upper and lower

surfaces of the airfoil by ensuring positive thickness.

For a floating thickness constraint, the user selects a number of locations along the

airfoil at which to check the thickness. At each calculation of the penalty due to the

floating thickness constraint, the program finds the location among those selected by

12 Chapter 2. Governing Equations

the user that is the thickest, records this thickness, hn, and compares it to the floating

thickness hmin. The penalty is then

JC =




ωtc

(
1− hn

hmin

)2
if hn < hmin

0 otherwise
(2.7)

where ωtc is the weight given to the penalty due to the floating thickness constraint.

For an area based constraint, the program calculates the initial area of the airfoil A0,

and then the penalty is based on the current area of the airfoil An. The penalty applied

is

JC =




ωAC

(
1− An

AfracA0

)2
if An < AfracA0

0 otherwise
(2.8)

where ωAC is the weight given to the penalty due to the area constraint, and Afrac is the

fraction of the area of the initial airfoil that is desired to be the minimum airfoil area.

2.2 Flow Equations

2.2.1 Navier-Stokes Equations

The governing flow equations are the compressible Navier-Stokes equations, used in con-

junction with the Spalart-Allmaras turbulence model. For the two-dimensional flows

being studied here, the Navier-Stokes equations are given by

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= Re−1

(
∂Ev

∂x
+
∂Fv

∂y

)
(2.9)

2.2. Flow Equations 13

where

Q =




ρ

ρu

ρv

e




E =




ρu

ρu2 + p

ρuv

u(e+ p)




F =




ρv

ρvu

ρv2

v(e+ p)




Ev =




0

τxx

τxy

ϕ1




Fv =




0

τxy

τyy

ϕ2




(2.10)

Q is the vector of flow variables, E and F are the convective flux vectors, and Ev and Fv

are the viscous flux vectors. The variables in the viscous flux vectors are defined as

τxx = (µ+ µt)(4ux − 2vy)/3 (2.11)

τxy = (µ+ µt)(uy + vx) (2.12)

τyy = (µ+ µt)(−2ux + 4vy)/3 (2.13)

ϕ1 = uτxx + vτxy + (µPr−1 + µtPr
−1
t)(γ − 1)−1∂x(a

2) (2.14)

ϕ2 = uτxy + vτyy + (µPr−1 + µtPr
−1
t)(γ − 1)−1∂y(a

2) (2.15)

The pressure, p, and speed of sound, a, can be determined from the flow variables in the

vector Q as follows

p = (γ − 1)
[
e− 1

2
ρ(u2 + v2)

]
(2.16)

a =

√
γp

ρ
(2.17)

All variables are used in non-dimensional form. These are found by scaling the di-

mensional variables as shown here.

ρ = ρ
ρ∞

u = u
a∞

v = v
a∞

e = e
ρ∞a2∞

x = x
c

y = y
c

t = ta∞
c

(2.18)

The values with a bar represent the dimensional variables, and those with the subscript

∞ are freestream values. c is the chord length of the airfoil.

14 Chapter 2. Governing Equations

2.2.2 Turbulence Model

These equations are combined with the Spalart-Allmaras turbulence model. This tur-

bulence model can be used to calculate the dynamic eddy viscosity, µt, by solving the

following one-equation transport model for ν̃, which is the non-dimensional working vari-

able:

∂ν̃

∂t
+ u

∂ν̃

∂x
+ v

∂ν̃

∂y
=
cb1
Re

(1− ft2) S̃ν̃ +
1

σRe

{
(1 + cb2)5 · [(ν + ν̃)5 ν̃]− cb2 (ν + ν̃)52 ν̃

}

− 1

Re

(
cw1fw − cb1

κ2
ft2

) (
ν̃

dw

)2

+ Reft1∆U
2 (2.19)

ν̃ is non-dimensionalized using the freestream kinematic laminar viscosity.

ν̃ =
ν̃

ν∞
= ν̃

ρ∞
µ∞

(2.20)

From the working variable, the kinematic eddy viscosity, νt = µt/ρ can be calculated as

νt = ν̃fv1 (2.21)

where

fv1 =
χ3

χ3 + c3v1

(2.22)

with χ defined as

χ =
ν̃

ν
(2.23)

Other terms in the transport model are defined as follows. The production term, S̃ is

defined as

S̃ = SRe +
ν̃

κ2d2
w

fv2 (2.24)

where dw is the distance to the closest wall, the magnitude of the vorticity, S is defined

as

S =

∣∣∣∣∣
∂v

∂x
− ∂u

∂y

∣∣∣∣∣ (2.25)

and

fv2 = 1− χ

1 + χfv1

(2.26)

2.2. Flow Equations 15

The destruction function, fw is defined as

fw = g

[
1 + c3w3

g6 + c6w3

] 1
6

(2.27)

with

g = r + cw2(r
6 − r) (2.28)

and

r =
ν̃

S̃κ2d2
w

(2.29)

The functions ft1 and ft2 control the location of the transition from laminar to tur-

bulent flow. Although some work has been done studying the effect of determining the

laminar to turbulent transition on the optimization [5, 6], for this project the flow is

assumed to be fully turbulent. Because of this, the functions ft1 and ft2 have been set

to zero. All other parameters are constants, as shown below.

cb1 = 0.1355 cb2 = 0.622

κ = 0.41 σ = 2
3

cw1 = cb1/κ
2 + (1 + cb2)/σ cw2 = 0.3

cw3 = 2.0 cv1 = 7.1

(2.30)

2.2.3 Thin-Layer Approximation and Coordinate Transforma-

tion

In the existing algorithm, the Navier-Stokes equations are transformed from the physical

domain of Cartesian coordinates to the computational domain of general curvilinear

coordinates where

τ = t (2.31)

ξ = ξ(x, y, t) (2.32)

η = η(x, y, t) (2.33)

The curvilinear coordinates are selected such that grid lines are straight, parallel, and

evenly spaced by one unit. This forms a rectangular domain in ξ and η which facilitates

the use of finite differences in the discretization of the flow equations [28].

16 Chapter 2. Governing Equations

The thin-layer Navier-Stokes equations in curvilinear coordinates are given as

∂Q̂

∂τ
+
∂Ê

∂ξ
+
∂F̂

∂η
= Re−1∂Ŝ

∂η
(2.34)

where Q̂ is defined as

Q̂ = J−1Q = J−1




ρ

ρu

ρv

e




(2.35)

with J the metric Jacobian of the coordinate transformation

J−1 = (xξyη − xηyξ) (2.36)

The convective flux vectors are defined as

Ê = J−1




ρU

ρUu+ ξxp

ρUv + ξyp

(e+ p)U − ξtp




F̂ = J−1




ρV

ρV u+ ηxp

ρV v + ηyp

(e+ p)V − ηtp




(2.37)

where the contravariant velocities are

U = ξt + ξxu+ ξyv V = ηt + ηxu+ ηyv (2.38)

The viscous flux vector is given by

Ŝ = J−1




0

ηxm1 + ηym2

ηxm2 + ηym3

ηx(um1 + vm3 +m4) + ηy(um2 + vm3 +m5)




(2.39)

with

m1 = (µ+ µt)(4ηxuη − 2ηyvη)/3 (2.40)

m2 = (µ+ µt)(ηyuη + ηxvη) (2.41)

m3 = (µ+ µt)(−2ηxuη + 4ηyvη)/3 (2.42)

m4 = (µPr−1 + µtPr
−1
t)(γ − 1)−1ηx∂η(a

2) (2.43)

m5 = (µPr−1 + µtPr
−1
t)(γ − 1)−1ηy∂η(a

2) (2.44)

2.2. Flow Equations 17

The equation for the Spalart-Allmaras turbulence model must also be transformed

into the curvilinear coordinate system. It is then

∂ν̃

∂τ
+ U

∂ν̃

∂ξ
+ V

∂ν̃

∂η
=

1

Re

{
cb1S̃ν̃ − cw1fw

(
ν̃

dw

)2

+
1

σ
[(1 + cb2)T1 − cb2T2

}
(2.45)

with

T1 = ξx
∂

∂ξ

[
(ν + ν̃)ξx

∂ν̃

∂ξ

]
+ ηx

∂

∂η

[
(ν + ν̃)ηx

∂ν̃

∂η

]

+ξy
∂

∂ξ

[
(ν + ν̃)ξy

∂ν̃

∂ξ

]
+ ηy

∂

∂η

[
(ν + ν̃)ηy

∂ν̃

∂η

]
(2.46)

and

T2 = (ν + ν̃)

[
ξx
∂

∂ξ

(
ξx
∂ν̃

∂ξ

)
+ ηx

∂

∂η

(
ηx
∂ν̃

∂η

)
+ ξy

∂

∂ξ

(
ξt
∂ν̃

∂ξ

)
+ ηy

∂

∂η

(
ηt
∂ν̃

∂η

)]
(2.47)

These equations are discretized in time to move towards a steady-state solution.

18 Chapter 2. Governing Equations

Chapter 3

Algorithm

This project investigates the effect of setting the target lift coefficient as an input pa-

rameter to the flow solver, and having the appropriate angle of attack for the given lift

coefficient determined in the flow solver at each iteration in the optimization process.

The objective function for lift-constrained drag minimization then depends only on drag,

using the following equation

J =
Cd

Cd,0

(3.1)

where Cd is the drag coefficient and Cd,0 is the initial drag coefficient. Minimizing this

objective function will minimize the drag coefficient.

3.1 Flow Solver - Approximate Factorization

The first step in the implementation of this method is to enable the flow solver to have

the coefficient of lift as an input and to then output the angle of attack required to

achieve this lift. In the previously existing code, the input parameters to the flow solver

are Mach number, Reynolds number, angle of attack, and airfoil shape, and the output

includes the coefficients of lift, drag, and moment. This is changed so that the input

parameters to the flow solver become Mach number, Reynolds number, coefficient of lift,

and airfoil shape, and the output becomes angle of attack and the coefficients of drag

and moment.

To move towards a steady-state solution, we apply first-order implicit time marching

to Equation 2.34. This gives

Q̂n+1 − Q̂n + ∆t
(
Ên+1

ξ + F̂ n+1
η − Re−1Ŝn+1

η

)
= 0 (3.2)

19

20 Chapter 3. Algorithm

Linearizing the flux vectors allows us to solve the above equation for the step in the

solution

∆Q̂n = Q̂n+1 − Q̂n (3.3)

For more details on the approximate factorization flow solver, see [28].

In the approximate factorization flow solver, the change in the flow variables in one

iteration is quite small, and the residual is only slightly reduced at each iteration. Because

of this, the relation between the coefficient of lift and the angle of attack does not need

to be solved for explicitly. Instead, the method of angle of attack relaxation, which was

recommended by the originators of the ARC2D code and is already a part of the flow

solver, was tested [28]. In this method, the change in angle in attack that is applied is

a correction based on the difference between the current coefficient of lift and the target

coefficient of lift:

∆α = −βα(Cl − C∗l) (3.4)

where ∆α is the correction to be made to the angle of attack, βα is a relaxation parameter,

Cl is the current coefficient of lift, and C∗l is the target lift coefficient. The relaxation

parameter can be approximated initially from the derivative of the coefficient of lift

with respect to angle of attack, which is theoretically 2π per radian for thin airfoils in

incompressible, inviscid, irrotational flow. As the angle of attack in our code is given in

degrees, we can approximate the relaxation parameter as shown below.

∆Cl ≈ 2π per radian ∆α (3.5)

∆Cl ≈ 0.1097 per degree ∆α (3.6)

∆α ≈ 9.12◦ ∆Cl (3.7)

This suggests that a value of less than 9 should be used for the relaxation coefficient.

The developers of the original approximate factorization code recommend that a value of

2 be used for this parameter [28]. To determine the best value to use for the relaxation

parameter, a parametric study was done. Two other parameters were also studied. Both

of these parameters are related to the fact that angle of attack relaxation does not need to

be performed at each iteration in the flow solution, nor does it need to be performed right

from the beginning of the solution. It has been found to work well if there are a certain

number of iterations before the first use of angle of attack relaxation (iclstart) and if there

3.1. Flow Solver - Approximate Factorization 21

Iterations before first use of angle of attack relaxation

Ite
ra

tio
ns

to
co

nv
er

ge
nc

e

0 100 200 300 400 500 600
4500

4600

4700

4800

4900

5000

5100

Figure 3.1: Effect of number of iterations to beginning of angle of attack relaxation on

convergence rate of approximate factorization flow-solver

are a certain number of iterations between each use of angle of attack relaxation (iclfreq).

A parametric study was performed to determine which values of these parameters would

allow the algorithm to converge rapidly while remaining stable for a number of cases.

The figures shown here were obtained from a subsonic case with flow conditions

Ma∞ = 0.25, C∗l = 0.9, and Re = 2.88 × 106, on a grid 264 by 65. Similar results

for the parameters were obtained for a transonic test case with Ma∞ = 0.7, C∗l = 0.2,

and Re = 9 × 106. Test case residual converged to 10−7 in all cases shown here. As

can be seen from Figure 3.1, the number of iterations prior to using angle of attack

relaxation is linearly related to the number of iterations before the algorithm converges.

This parameter is not important to the convergence of the algorithm, and was set to zero

for all cases. For the other two parameters, namely the frequency of the angle of attack

relaxation and the relaxation parameter, there is a trade-off between speed and stability

(see Figures 3.2 and 3.3). For the relaxation parameter (Figure 3.2), the algorithm

runs more quickly as the value increases up to a certain point, after which the time to

22 Chapter 3. Algorithm

clrelax

Ite
ra

tio
ns

to
co

nv
er

ge
nc

e

1 2 3 4 5

4000

6000

8000

10000

Figure 3.2: Effect of relaxation parameter on convergence rate of approximate factoriza-

tion flow-solver

Frequency of angle of attack relaxation

Ite
ra

tio
ns

to
co

nv
er

ge
nc

e

20 30 40 50 60 70

4500

5000

5500

6000

Figure 3.3: Effect of frequency of angle of attack relaxation on convergence rate of

approximate factorization flow-solver

3.2. Flow Solver - Newton-Krylov Algorithm 23

converge increases rapidly until the algorithm no longer converges. As a good balance

between speed and stability, a value of 3 was chosen for the relaxation parameter. For

the frequency of performing angle of attack relaxation, it can be seen in Figure 3.3 that

the more frequently it is performed, the more rapidly the algorithm converges, until it is

performed approximately every 15 iterations, after which the algorithm begins to have

convergence problems. The algorithm was therefore run every 50 iterations to ensure

stability.

3.2 Flow Solver - Newton-Krylov Algorithm

Unlike the approximate factorization solver, the steps taken by the Newton-Krylov algo-

rithm are quite large. Because of this, the relationship between the coefficient of lift and

the angle of attack must be more accurately computed and included in the calculations.

In the Newton-Krylov method, for flow solution with no variation in angle of attack,

the governing equations, once spatially discretized, lead to a nonlinear system of equations

R(Q̂,X) = 0 (3.8)

where R is the residual vector, Q̂ is the vector of flow variables scaled by the Jacobian

found in spatial discretization, and X is the vector of design variables. This equation is

then solved using Newton’s method. To do this, the following linear system of equations

must be solved.

A(n)∆Q̂(n) = R(n) (3.9)

where A is the flow Jacobian at iteration n, defined as

A =
∂R

∂Q̂
(3.10)

To solve Equation 3.9, the generalized minimal residual (GMRES) Krylov subspace

method [31] is used.

To ensure that the desired lift coefficient is achieved when the algorithm converges,

a new variable is added to the flow variable vector, Q̂. The new variable is the angle of

attack, and the new flow vector is

Q̂ = Q̂, α̂ (3.11)

24 Chapter 3. Algorithm

The variable α̂ is the angle of attack, in degrees, scaled by 100. This ensures that new

terms are of a similar order of magnitude to previously existing terms. This scaling is

used throughout the Newton-Krylov flow solver and the adjoint gradient calculation, but

will not be carried through here for clarity. To allow the angle of attack to be found, a

new equation is added to the residual vector. This equation is

RCl
= Cl,calculated − Cl,target = 0 (3.12)

It was found in the process of implementing the code that this new equation was a differ-

ent order of magnitude than other residual equations, so to allow the code to converge,

this equation was scaled to ensure the new diagonal element of the flow Jacobian is 1.

This scaling is propagated throughout the code, but will not be included in the expansion

of equations for simplicity.

Adding this equation to the initial residual vector gives the expanded residual vector

R = R(Q̂, X), RCl
(3.13)

The modified flow solver now solves the nonlinear system of equations

R(Q̂, X) = 0 (3.14)

Using Newton’s method, then, the system of linear equations to be solved then becomes

A(n)∆Q̂(n) = R(n) (3.15)

where A is the modified flow Jacobian, defined as ∂R
∂Q̂ . This is the same as the existing

flow Jacobian ∂R

∂Q̂
, but with an additional row and column that are related to the new

residual equation and the inclusion of the angle of attack as a flow variable. This means

that the new row contains the terms of
∂RCl

∂Q̂
. The new column contains the terms of ∂R

∂α
.

The new diagonal term belongs to both of these and is the partial derivative of the new

residual equation with respect to angle of attack.

The linear system of equations is solved using GMRES with right preconditioning, as

for the flow solver without a variable angle of attack. For the flow solver, the full second-

order Jacobian does not need to be determined explicitly. This is because in applying

Jacobian-free GMRES the matrix A is not required, but the matrix vector product Av
is. In finding this, the derivative properties of the matrix A are used. We know that

A =
∂R
∂Q̂ (3.16)

3.3. Optimizer Equations 25

and so a forward difference approximation is used when the vector Av is required in

GMRES, as shown below [27]:

Av =
R(Q̂+ εv)−R(Q̂)

ε
(3.17)

As mentioned earlier, GMRES is used with a preconditioner. This is done to accelerate

convergence. For this preconditioner, the approximate Jacobian, which contains only

nearest neighbour terms, is used. Therefore, only the new diagonal term, namely the

partial derivative of the new residual equation with respect to the angle of attack, is

added to the existing preconditioner. In effect, this is the partial derivative of coefficient

of lift with respect to angle of attack. This term is calculated analytically, as the angle

of attack is used in calculating the effect of the normal and chord directed forces on lift

and drag (see Appendix A).

3.3 Optimizer Equations

The effect of having a variable angle of attack in the flow solver must also be taken into

account in the optimization stage. The method currently used in Optima2D is the BFGS

quasi-Newton method to calculate an approximation to the inverse Hessian, combined

with a backtracking line search. Once the approximate inverse Hessian is calculated, it

is used to find a search direction. The search direction is found by solving the equation

sp = −HpGp (3.18)

where sp is the new search direction to be used in the backtracking line search, Hp is the

approximate inverse Hessian, and Gp is the gradient of the objective function with respect

to the design variables. The value of the approximate inverse Hessian is calculated using

BFGS as follows.

Hp+1 =

[
I − spy

T
p

sT
p yp

]
Hp

[
I − yps

T
p

sT
p yp

]
+
sps

T
p

sT
p yp

(3.19)

where p is the current iteration, yp is the change in the gradient since the previous

iteration, that is yp = Gp − Gp−1.

The gradient is the derivative of the objective function with respect to the design

variables, dJ
dX

, where J is the objective function value and X is the vector of design

variables, of size ND, the number of design variables. The objective function being

26 Chapter 3. Algorithm

studied depends on the design variables directly, as they affect the integration of the

pressure along the surface of the airfoil, and also on the flow variables Q, a vector of size

NQ, which in turn also depend on the design variables. Both of these effects must be

accounted for in calculating the derivative of the objective function with respect to the

design variables. There are four methods for finding the derivative that will be examined

in this project: finite differences, flow sensitivities, matrix-free flow sensitivities, and the

adjoint method.

When finding the gradient by finite differences, centred differences are used for higher

accuracy than would be obtained with forward or backward differences. To obtain the

derivative of the objective function with respect to the design variable Xi, the following

calculation is performed.

dJ
dXi

=
J (Q(Xi + ε), Xi + ε)− J (Q(Xi − ε), Xi − ε)

2ε
(3.20)

This is done for i = 1toND. As the values for the objective function in this equation are

obtained by performing a full flow solution, the cost of this method is very dependent

on the number of design variables; each gradient calculation requires 2ND flow solutions.

For high numbers of design variables, this method becomes prohibitively expensive, so

investigation of other methods is necessary.

These other methods are obtained beginning from the chain rule expansion of the

derivative of the objective function with respect to the design variables, namely,

G =
dJ
dXi

=
∂J
∂Xi

+
∂J
∂Q

dQ
dXi

(3.21)

for i = 1toND. However, we know that the residual is a function of the flow variables

and the turbulence variables. We also know that for any design variables the residual

must be zero, so

dR
dXi

=
∂R
∂Xi

+
∂R
∂Q

dQ
dXi

= 0 (3.22)

dQ
dXi

= −
(
∂R
∂Q

)−1
∂R
∂Xi

(3.23)

Solving Equation 3.23 for dQ
dXi

gives the direct, or flow-sensitivity method. This is done

using the same generalized minimal residual solver as is used for the Newton-Krylov flow

solver. The results for dQ
dXi

can then be used in Equation 3.21 to solve for the gradient.

The disadvantage of using this method is that Equation 3.23 must be solved for each

design variable, which can increase the cost of this method. Equation 3.23 can either be

3.3. Optimizer Equations 27

solved using the full second-order flow Jacobian, leading to the flow-sensitivity method

of gradient calculation, or it can be solved using finite differences, as for the flow solver.

This method is called the matrix-free sensitivity method. For the matrix-free sensitivity

method, the finite differences used in GMRES are slightly different from those used in

the flow solver, as centred differences are used to achieve higher accuracy. So the matrix-

vector product Av is calculated as

Av =
R(Q+ εv)−R(Q− εv)

2ε
(3.24)

The adjoint method can be obtained by combining Equation 3.23 with Equation 3.21

to give

dJ
dXi

=
∂J
∂Xi

− ∂J
∂Q

(
∂R
∂Q

)−1
∂R

∂Xi

(3.25)

dJ
dXi

=
∂J
∂Xi

− ψT ∂R
∂Xi

(3.26)

where

∂R
∂Q

T

ψ =
∂J
∂Q

T

(3.27)

ψ is known as the adjoint variable, and in Optima2D the GMRES method is used to solve

Equation 3.27 [19]. This method is lower in cost than the other methods outlined above,

as the adjoint equation (Equation 3.27) is independent of the number of design variables,

and so only needs to be solved once for each gradient calculation, rather than ND times

as in the sensitivity methods. Due to the transpose on the left hand side of the equation,

the finite difference method used in the matrix-free sensitivity method can not be used

here, so ∂R
∂Q must be the full second-order Jacobian [19]. In this case, differing from the

Newton-Krylov flow solver, all new components in the flow Jacobian, as discussed in the

section on modifications of the Newton-Krylov flow solver, must be included in the flow

Jacobian.

The partial derivative of the new residual equation

RCl
= Cl − C∗l = 0 (3.28)

with respect to the flow variables is just the partial derivative of the coefficient of lift with

respect to the flow variables. The coefficient of lift consists of two parts. The inviscid

component of the coefficient of lift depends only on the flow variables for the nodes on the

28 Chapter 3. Algorithm

airfoil surface. The viscous component also depends on the flow variables for these nodes,

but also on the two layers of nodes out from the airfoil. This means that the derivative is

non-zero for only these nodes. These derivatives have been determined analytically (see

Appendix A).

The partial derivative of the previously existing residual equations with respect to

angle of attack is non-zero only for the nodes on far-field and outflow boundaries of

the grid. This is because the boundary condition set for the outer boundary of the

grid depends on the x- and y-components of freestream flow velocity, which in turn

depend on angle of attack. These derivatives have also been determined analytically (see

Appendix A).

The partial derivative of the coefficient of lift with respect to the angle of attack

was determined analytically, as the angle of attack simply affects how the normal and

chord-directed forces are resolved to give lift and drag (see Appendix A).

Generally, for the optimizer, the adjoint method is used because finding the adjoint

variable is independent of the number of design variables. Changing the flow solver to

have Cl as an input and α as an output decreases the number of design variables ND (since

α is currently a design variable), but increases NQ, the number of unknown variables,

by one, the angle of attack. The finite difference and flow-sensitivity methods have been

implemented only for testing purposes.

3.4 Other Modifications

One of the main goals of this project was to reduce the need to tune algorithm parameters

to make the code more user friendly. However, it was found that for more realistic design

cases with a number of different operating points with different objectives, the weights

on different operating points are very challenging to set as different objective functions

can have different orders of magnitude. Additionally, when using different objective

functions the weight given to thickness constraints has a different meaning for different

points, depending on the actual value of the objective function and gradient. Because of

this, the calculation of the objective function has been modified to be normalized by the

initial value of the objective function.

Jnew =
Jold

Jold,initial

(3.29)

3.4. Other Modifications 29

where Jold, Jold,initial and Jnew are all objective functions as calculated before any thick-

ness constraint penalties are added. If the initial objective function value Jold,initial is

zero, normalization is not used.

For example, looking at the objective function that has previously been used for lift-

constrained drag-minimization, we have an objective that attempts to reach a target lift,

C∗l , and a target drag, C∗d with the objective function

J =





ωL

(
1− Cl

C∗
l

)2

+ ωD

(
1− Cd

C∗
d

)2

+ t.c. if Cd > C∗d

ωL

(
1− Cl

C∗
l

)2

+ t.c. otherwise
(3.30)

where ωL is the weight for the lift coefficient optimization, ωD is the weight for the drag

coefficient optimization, and t.c. is the penalty added due to thickness constraints [19].

The new objective function, if Cd,0 were greater than C∗d , would be

J =





ωL

(
1− Cl

C∗
l

)2

+ωD

(
1−Cd

C∗
d

)2

ωL

(
1−Cl,0

C∗
l

)2

+ωD

(
1−Cd,0

C∗
d

)2 + t.c. if Cd > C∗d

ωL

(
1− Cl

C∗
l

)2

ωL

(
1−Cl,0

C∗
l

)2

+ωD

(
1−Cd,0

C∗
d

)2 + t.c. otherwise

(3.31)

where Cl,0 is the initial lift coefficient and Cd,0 is the initial drag coefficient. If Cd,0 were

less than C∗d , the drag term would not be included in the denominator.

It is important to note that while the objective functions that we wish to minimize

are normalized by their initial value, the thickness constraints are not included in the

normalization. This means that the thickness constraint weight will have the same mean-

ing regardless of the objective function to which it is being applied. If it were scaled by

the initial objective function value, its meaning would depend on that initial value, and

that is not desirable.

30 Chapter 3. Algorithm

Chapter 4

Results

4.1 Flow Solver

Two cases were studied to demonstrate the performance of the new flow solver, both

with just approximate factorization and with Newton-Krylov after using approximate

factorization for start-up. The flow cases were first run with the existing code, and

then run with a desired lift coefficient set to the final lift coefficient achieved by running

the previously existing code. The same grids were used for comparisons between the

two different versions of the code. Both cases have previously been run by Nemec [19] to

demonstrate flow solver performance. For all cases studied in this project, the circulation

correction was not used.

Case 1 was run for the NACA 0012 airfoil at Ma∞ = 0.3 and Re = 2.88 × 106. For

the previously existing code, the angle of attack is 6◦. This gave a coefficient of lift of

Cl = 0.669221, which was then set as the target coefficient of lift for the runs with the

flow solver with the variable angle of attack, starting from the initial angle of attack of

6◦. The grid has 265× 53 nodes.

Case 2 was run for the RAE 2822 airfoil on a grid with 257 × 57 nodes. The flow

conditions are: Ma∞ = 0.729 and Re = 6.5 × 106. The initial angle attack for all cases

is 2.31◦, which gives a coefficient of lift of Cl = 0.67953, which is used as the target lift

coefficient in the cases run with a variable angle of attack.

Results shown in Figure 4.1 show that the Newton-Krylov flow solver (denoted as

NK) combined with the approximate factorization flow solver (denoted as AF) for start-

up is approximately 1.5 to 2.5 times faster than using only the approximate factorization

flow solver. The new flow solver is approximately 20 to 50% slower than the previous

31

32 Chapter 4. Results

CPU Time (s)

lo
g(


R


)

50 100 150 200 250 300

10-13

10-11

10-9

10-7

10-5

10-3

Old Code
New Code AF
New Code NK

(a) Case 1

CPU Time (s)

lo
g(


R


)

50 100 150 200

10-13

10-11

10-9

10-7

10-5

10-3

10-1

Old Code
New Code AF
New Code NK

(b) Case 2

Figure 4.1: Performance of the new flow solver

algorithm, but the increased time required for flow solution does not prevent the new

algorithm from being a success, as the new algorithm eliminates the need for repeated

tests varying parameters in the optimization stage.

The flow solution with a variable angle of attack can also be compared to an opti-

mization with the angle of attack as the only design variable. This has been done for

both Cases 1 and 2. The initial angle of attack for Case 1 was set to 5◦, for both the flow

solution and the optimization, to prevent the initial point of the single design variable

case being the optimum. For Case 2, the initial angle of attack was 3◦. The convergence

tolerance for the optimization was for the gradient to be below 10−6 for Case 1 and 10−5

for Case 2. Comparing the new flow solver to the single design variable optimization

shows a decrease of approximately 70% in the time required for the desired lift coefficient

to be reached (see Table 4.1). Also, it can be seen that the lift coefficient is closer to the

desired coefficient of lift for the new flow solver than for the optimization. While this

could be improved by lowering the tolerance on the optimization convergence, this will

also increase the total time required for the optimization to occur. This application of

the flow solver is useful for finding flow characteristics at fixed lift over a range of Mach

numbers. This has previously been done by single design variable optimization, but can

now be done with the new flow solver.

4.2. Gradient Calculations 33

Case Method C∗l Cl,final Cd,final Final α CPU Time (s)

1 Optimization 0.669221 0.669220895 0.014933215 6.00 466.1

1 Flow Solve 0.669221 0.669221000 0.014933221 6.00 125.9

2 Optimization 0.679530 0.679530007 0.015043231 2.31 563.7

2 Flow Solve 0.679530 0.679530000 0.015043279 2.31 125.3

Table 4.1: Comparison of single design variable optimization to new flow solver

4.2 Gradient Calculations

The case studied to examine the accuracy found with the new objective function is

a single-point optimization case, with 10 design variables. The initial airfoil is the

NACA0012 airfoil, and there are 15 points used to define the airfoil. The point at the

leading edge and the four points near the trailing edge are not used as design variables.

The flow conditions are Ma∞ = 0.7, C∗l = 0.4728, and Re = 9 × 106, on a grid 264 by

65. This case has been previously studied by Nemec [19, 20]. No thickness constraints

were imposed. The gradient for the ten design variables was calculated using the three

different methods described above: finite-difference, flow-sensitivity, and adjoint (see Ta-

ble 4.2). The finite-difference method is used as the basis for comparison of the other

three methods. In all cases the flow was fully converged to a tolerance of 5× 10−15 prior

to the calculation of the gradient.

These results show that the gradients found by the different methods are extremely

close in value, and therefore that the gradient calculated using the adjoint method is

valid.

4.3 Optimization Cases

All optimization cases were run, as mentioned in Section 4.1, without the circulation

correction. In the optimization algorithm, all design variables were scaled by their initial

values, and the initial inverse Hessian estimate is formed using the scaled variables,

Hessian A as described by Zingg et. al [36]. Unless otherwise stated, all cases were run

without second-difference dissipation.

34 Chapter 4. Results

Control Finite Flow- Flow- Adjoint Adjoint

Point Diff Sensit Sensit Grad (% Diff)

Grad (% Diff)

3 -14.8567 -14.8564 0.001822 -14.8564 0.001832

4 -9.30289 -9.30280 0.000953 -9.30280 0.000944

5 -6.02968 -6.02967 0.000297 -6.02966 0.000312

6 -3.35382 -3.35378 0.001214 -3.35378 0.001220

7 -0.889360 -0.889174 0.02081 -0.889173 0.02098

9 -12.5174 -12.5172 0.001395 -12.5172 0.001382

10 25.0431 25.0430 0.000151 25.0430 0.000145

11 17.0894 17.0892 0.001523 17.0892 0.001525

12 -24.4999 -24.4997 0.000593 -24.4997 0.000593

13 -7.34901 -7.34894 0.001018 -7.34893 0.001041

Table 4.2: Comparison of gradients calculated with different methods

4.3.1 Single-Point Subsonic Airfoil Design

This case is the case examined in Section 4.2. In the optimization case, however, only

four design variables, control points 9 to 12, were used to allow comparison to work done

by Nemec [19] and Nemec and Zingg [20, 21]. Nemec performed this optimization using

the previously existing lift-constrained drag minimization code. No thickness constraints

were imposed. The case was run both with second-difference dissipation (κ2 = 1.0) and

without second-difference dissipation (κ2 = 0.0). See Appendix B for the input file. All

subsequent cases were run without second-difference dissipation.

The resulting airfoils and pressure distributions are shown in Figures 4.2(a) and 4.3(a),

for the case with and without second-difference dissipation respectively. The convergence

of the objective function and gradient are shown in Figures 4.2(b) and 4.3(b). This

shows that the gradient converges less consistently with second-difference dissipation

than without, due to the pressure switch [19]. The three spikes in the gradient and

objective function when second-difference dissipation is used occur when the optimization

is restarted from the steepest descent method after the objective function stalls during a

line search.

The reference case was also run using the normalized code but with the previously

4.3. Optimization Cases 35

x

C
P

0 0.25 0.5 0.75 1

-1.5

-1

-0.5

0

0.5

1

Initial Design
Final Design

(a) Pressure distributions and airfoil shapes

Flow Solves and Gradient Evaluations

O
bj

ec
tiv

e
Fu

nc
tio

n

lo
g(


G

ra
di

en
t

)

20 40 60 80 100 120 140

1

1.5

2

100

101

102

Objective Function
Gradient

(b) Optimization convergence history

Figure 4.2: Subsonic single-point optimization, with second-difference dissipation

existing objective function without second-difference dissipation. The target lift was

0.4728, the target drag was 0.0112, and the weights are ωL = 2.0 and ωD = 1.0, as in

the reference case. This case converged to a significantly higher drag coefficient than

was reached with the new optimization algorithm. The reason for this is that the drag

achieved with the previously existing algorithm is already lower than the specified target

drag, the reference case here is not truly representative of lift-constrained drag minimiza-

tion. Because of this, another test case was run with the previously existing algorithm,

but with the target drag set to 0.01. This case has a lower drag coefficient, but the desired

lift is not reached. This shows some of the difficulties encountered in using the previous

algorithm for lift-constrained drag minimization. The final lift and drag coefficients for

all cases studied are shown in Table 4.3.

This demonstrates that the desired lift coefficient is achieved, with no significant

change in the final drag coefficient, when compared to the reference case run with

second-difference dissipation. When compared to the reference cases run without second-

difference dissipation, the airfoil achieved with the new algorithm shows clear benefits

over both airfoils achieved with the previously existing algorithm, namely lower drag at

the target lift. This case shows the difficulties that may be encountered in using the

previous algorithm for lift-constrained drag minimization, as the values given to target

lift and drag have a substantial effect on the final coefficients reached. The total time

36 Chapter 4. Results

x

C
P

0 0.25 0.5 0.75 1

-1.5

-1

-0.5

0

0.5

1

Initial Design
Final Design

(a) Pressure distributions and airfoil shapes

Flow Solves and Gradient Evaluations

O
bj

ec
tiv

e
Fu

nc
tio

n

lo
g(


G

ra
di

en
t

)

10 20 30 40

1

1.5

2

10-5

10-4

10-3

10-2

10-1

100

101

102

Objective Function
Gradient

(b) Optimization convergence history

Figure 4.3: Subsonic single-point optimization, without second-difference dissipation

Version C∗l C∗d Cl Cd

Old, with dissipation 0.4728 0.0112 0.4726 0.01123

New, with dissipation - - 0.4728 0.0112309

Old, no dissipation 0.4728 0.0112 0.4728 0.0110896

Old, no dissipation 0.4728 0.01 0.4623 0.0109583

New, no dissipation - - 0.4728 0.0108270

Table 4.3: Comparison of lift and drag coefficients found with the new algorithm and the

old algorithm

required for the cases without second-difference dissipation are shown in Table 4.4. We

can see that the case run with the new algorithm takes significantly longer than either

case run with the previous algorithm. This is due to the increased time required for

the flow solver to converge, as the gradient calculation requires approximately the same

amount of time in all three trials. However, to achieve true lift-constrained drag mini-

mization with the previous algorithm, several more tests varying the target lift and drag

coefficients would likely need to be run, so the total time required for lift-constrained

drag-minimization is less with the new algorithm.

4.3. Optimization Cases 37

Version C∗l C∗d Time (s) Flow Solves and Gradient Evaluations

Old, no dissipation 0.4728 0.0112 1160.27 13

Old, no dissipation 0.4728 0.01 3458.24 58

New, no dissipation - - 6597.52 42

Table 4.4: Comparison of time to convergence with the new algorithm and the old algo-

rithm

4.3.2 Single-Point Transonic Airfoil Design

The second case examined is a transonic lift-constrained drag minimization case. The

same case was also examined by Nemec [19] and by Nemec, Zingg and Pulliam [22, 23].

They have varied the weights in the two competing parts of the previously existing lift-

constrained drag minimization objective function to obtain a Pareto front showing the

trade-off between satisfying the lift constraint and minimizing drag. We will compare

results found in the Pareto front to results for lift-constrained drag minimization found

with the new algorithm.

The initial airfoil is the NACA 0012 airfoil. The grid consists of 201× 45 nodes. The

flow conditions are Ma∞ = 0.7, C∗l = 0.55, and Re = 9× 106. The airfoil is described by

15 B-spline control points, 10 of which are used as design variables. There are three fixed

thickness constraints, as shown in Table 4.5, together with final thicknesses achieved. See

Appendix B for input file.

Constraint Number 1 2 3

Location (% c) 25 92 99

Desired Thickness (% c) 11.8 0.9 0.2

Final Thickness (% c) 11.780879 0.89995105 0.19999537

Table 4.5: Thickness constraints for transonic single-point optimization

Figure 4.4(a) shows the initial and final pressure distributions and airfoil shapes. The

convergence history of the objective function and gradient are shown in Figure 4.4(b).

The optimization was restarted three times from the steepest descent method when the

objective function stalled during a line search. It is important to note that although

over 300 design iterations were required for the gradient to decrease by over two orders of

38 Chapter 4. Results

x

C
P

0 0.25 0.5 0.75 1

-1.5

-1

-0.5

0

0.5

1

Initial Design
Final Design

(a) Pressure distributions and airfoil shapes

Flow Solves and Gradient Evaluations

O
bj

ec
tiv

e
Fu

nc
tio

n

lo
g(


G

ra
di

en
t

)

50 100 150 200 250 300

0.6

0.8

1

1.2

1.4

10-1

100

101

102

103

104

Objective Function
Gradient

(b) Optimization convergence history

Figure 4.4: Transonic single-point optimization

magnitude, the objective function is within 2% of its final value after 35 design iterations.

The final drag coefficient is 48.4% less than the initial drag coefficient. A compari-

son to results found by Nemec, Zingg and Pulliam [22, 23] with the previous objective

function for lift-constrained drag minimization is shown in Table 4.6. This demonstrates

that the drag coefficient achieved with the new algorithm is the same as the drag coef-

ficient achieved with the previous algorithm when the weight on the lift component of

the objective function is high. The desired lift coefficient is also reached with the new

algorithm, whereas the results found using the previous algorithm simply approach the

desired lift coefficient.

Case ωL ωD Cl Cd

New Case - - 0.5500 0.01211

Nemec & Zingg Case 1 0.99 0.01 0.5494 0.01211

Nemec & Zingg Case 2 0.90 0.1 0.5439 0.01203

Table 4.6: Comparison of results for transonic single-point optimization

4.3. Optimization Cases 39

Figure 4.5: Control points and design variables (shaded) for the RAE 2822 airfoil

4.3.3 Four-Point Optimization Case

This case examines the effect of optimization at varying Mach numbers on the drag profile

of the airfoil. This case has been previously examined by Nemec [19], and by Nemec,

Zingg and Pulliam [22, 23]. It is based on one of the cases studied by Drela [4]. The

initial airfoil is the RAE2822 airfoil. The airfoil shape is described by 25 B-spline control

points, 19 of which are used as design variables, as shown in Figure 4.5. The grid has

257 × 57 nodes. The target lift at all operating points is 0.733. The Reynolds number

is 2.7× 106. Three fixed thickness constraints are imposed: t/c ≥ 0.1204 at x/c = 0.35,

t/c ≥ 0.005 at x/c = 0.96, and t/c ≥ 0.0012 at x/c = 0.99. The first optimization is a

single-point optimization, performed at Ma∞ = 0.74. See Appendix B for input files.

Figure 4.6 shows the convergence of the objective function and gradient. Figure 4.7(a)

shows the initial and final pressure distributions at the design Mach number, and airfoil

shapes. The change in the performance of the airfoil over a range of Mach numbers can be

seen in Figure 4.7(b). The optimization results in a 36.4% decrease in drag, from 0.02247

to 0.01423, at the design point. The same reduction in drag was achieved by Nemec [19]

when performing the same optimization with the previously existing algorithm. The

resulting airfoil is not a practical design, however, as for Mach numbers lower than the

design point, there is an increase in drag. Because of this, multipoint optimizations

are attempted. The multipoint optimizations are performed using a weighted objective

function

Jm =
Nm∑

i=0

wiJi (4.1)

where Jm is the objective function for the multipoint optimization, Nm is the number of

design points, wi is the user assigned weight for design point i, and Ji is the objective

function for design point i. A two-point optimization is performed with design Mach

numbers 0.68 and 0.74, with weights 1.0 and 2.0, respectively. Figure 4.8 shows the

convergence of the objective function and gradient for the two-point optimization. Note

40 Chapter 4. Results

Flow Solves and Gradient Evaluations

O
bj

ec
tiv

e
Fu

nc
tio

n

lo
g(


G

ra
di

en
t

)

100 200 300 400 500 600

0.8

1

1.2

1.4

10-4

10-2

100

102

104
Objective Function
Gradient

Figure 4.6: Objective function and gradient convergence histories for single-point design

x

C
P

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

RAE 2822
Final Design

(a) Pressure distributions and airfoil shapes

(Ma∞ = 0.74)

Mach Number

C
d

0.65 0.7 0.75

0.014

0.016

0.018

0.02

0.022

0.024

RAE 2822
Final Design

(b) Drag coefficient at Cl = 0.733

Figure 4.7: Single-point optimization

4.3. Optimization Cases 41

Design Iterations

O
bj

ec
tiv

e
Fu

nc
tio

n

lo
g(


G

ra
di

en
t

)

50 100 150 200 250

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

Objective Function
Gradient

Figure 4.8: Objective function and gradient convergence histories for two-point design

42 Chapter 4. Results

that for each design iteration, two flow solves and gradient evaluations are performed.

Figure 4.9(a) shows the initial and final pressure distributions at Mach number 0.74, and

the initial and final airfoil shapes. Figure 4.9(b) shows the performance of the airfoil over

a range of Mach numbers. This shows significant improvement at drag below the design

Mach number, without much increase in drag at the design Mach number; the design

drag coefficient is reduced by 35.9%, which is not significantly less than the decrease

achieved in the single-point optimization.

A four-point optimization is also performed, with design Mach numbers 0.68, 0.71,

0.74, and 0.76, with weights 1.0, 1.0, 2.0, and 3.0 respectively. The resulting airfoil and

pressure distributions at Ma∞ = 0.74 are shown in Figure 4.10(a). The performance of

the airfoil over a range of Mach numbers is shown in Figure 4.10(b). The drag coefficient

in this case has been decreased by 33.7% from the drag coefficient for the RAE 2822

airfoil at Ma∞ = 0.74. This is a slightly smaller reduction in drag than was seen by

Nemec [19], but the difference is due to the fact that objective functions here have been

normalized, and so the initial function value does not affect the effective weight given to

each design point. When the normalization is not used, the higher initial drag coefficients

at Ma∞ = 0.74 and Ma∞ = 0.76 artificially increase the weight given to these points,

resulting in a greater decrease in drag. The drag coefficient found here for Ma∞ = 0.74 is

higher than the drag coefficients found for both the single- and two-point optimizations,

but the drag coefficient diverges at Ma∞ = 0.76 rather than Ma∞ = 0.74. This is

desirable if the airfoil will be operating at Ma∞ = 0.74, as slightly off-design conditions

will not lead to a dramatic increase in drag.

4.3.4 Two-Point Pareto Front

This case examines the trade-off in trying to minimize drag at two different design points,

with a fixed lift. The initial airfoil is the RAE 2822 airfoil. There are 15 B-spline control

points, 10 of which are used as design variables. The grid has 257 × 57 nodes. Three

thickness constraints are imposed, as shown in Table 4.7. The Reynolds number at both

operating points is 9× 106, and the two Mach numbers being studied are 0.68 and 0.75.

The target lift coefficient at both operating points is 0.715. See Appendix B for the input

file. The objective function being evaluated is a weighted sum of the objective functions

at each of the design points:

J = ωJMa∞=0.75 + (1− ω)JMa∞=0.68 (4.2)

4.3. Optimization Cases 43

x

C
P

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

RAE 2822
Final Design

(a) Pressure distributions and airfoil shapes

(Ma∞ = 0.74)

Mach Number

C
D

0.65 0.7 0.75

0.014

0.016

0.018

0.02

0.022

0.024

RAE 2822
Final Design

(b) Drag coefficient at Cl = 0.733

Figure 4.9: Two-point optimization

x

C
P

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

RAE 2822
Final Design

(a) Pressure distributions and airfoil shapes

(Ma∞ = 0.74)

Mach Number

C
d

0.65 0.7 0.75

0.014

0.016

0.018

0.02

0.022

0.024

RAE 2822
Final Design

(b) Drag coefficient at Cl = 0.733

Figure 4.10: Four-point optimization

44 Chapter 4. Results

This case has been previously studied by Zingg and Elias [35], and results are compared.

Constraint Number 1 2 3

Location (% c) 1 25 99

Desired Thickness (% c) 2.53 12.1 0.2

Table 4.7: Thickness constraints for Pareto front case

Figure 4.11 shows the trade-off between minimizing drag at the two design points,

given different weights, and the value of the drag coefficients at each point is shown in

Table 4.8. Comparing to results found by Zingg and Elias, the new code allows a greater

decrease in the drag coefficient when the Mach number is 0.68, and a smaller decrease in

the drag coefficient for Ma∞ = 0.75. This is because of the normalization of the objective

function. For the previous code, the initial drag coefficient for the higher Mach number

creates a greater effective weight for the minimization of this drag. Similar results could

be found by increasing the weight on the design point with Mach number 0.75 if this is

a more frequently used operating point, or if lower drag is required for some reason.

ω Cd at Ma∞ = 0.75 Cd at Ma∞ = 0.68

0.10 0.0157727 0.0135602

0.30 0.0143473 0.0137382

0.40 0.0142410 0.0137385

0.50 0.0142096 0.0137725

0.60 0.0141918 0.0138080

0.70 0.0141581 0.0138224

0.75 0.0141443 0.0138442

0.80 0.0141295 0.0138755

0.85 0.0141250 0.0139199

0.90 0.0140909 0.0140275

Table 4.8: Drag coefficients for different weights

4.3. Optimization Cases 45

Cd (Ma∞ = 0.68)

C
d

(M
a ∞

=
0.

75
)

0.0138 0.0139 0.014

0.0141

0.01415

0.0142

0.01425

0.0143

ω=0.4

ω=0.6

ω=0.3

ω=0.7

ω=0.75

ω=0.8
ω=0.85

ω=0.9

ω=0.5

Figure 4.11: Pareto front for two-point optimization

46 Chapter 4. Results

Figure 4.12: Control points and design variables (shaded) for the NACA 0015 airfoil

4.3.5 Eighteen-Point Optimization Case

The objective of this optimization case is to develop a single airfoil that satisfies the

list of optimization criteria in Table 4.9, as well as having a maximum thickness of at

least 14% chord. The first four operating points (A-D) in Table 4.9 represent cruise

conditions at different altitudes with different aircraft weights. The objective for these

design conditions is to minimize drag while maintaining the specified lift coefficient. The

next four operating points (E-H) represent long-range cruise, at various altitudes and

aircraft weights. The goal at these operating conditions is to minimized the product of

the Mach number and the lift-to-drag ratio, but since the Mach number and lift coefficient

are fixed, this corresponds to minimizing drag. The next eight operating points (I-P)

represent dive conditions. These are constraints on the airfoil, and require shock strengths

to be modest, namely with the upstream Mach number at all shocks less than 1.35. The

final two operating points (Q and R) correspond to low-speed operations. The objective

for these operating conditions is to ensure that the maximum lift coefficient is at least

1.6. To ensure the maximum thickness is at least 14%, a floating thickness constraint of

14.2% thickness is applied. In addition to the floating thickness constraint, two thickness

constraints are imposed on the trailing edge of the airfoil to prevent crossover. The airfoil

must be at least 1% thick at x = 95% of the chord length, and at least 0.2% thick at x =

99% of the chord length. The initial airfoil selected for this optimization is the NACA

0015 airfoil, since it does not violate the floating thickness constraint. The grid contains

289× 65 nodes. The airfoil is described by 15 B-spline control points, with 10 as design

variables, as shown in Figure 4.12.

Work has been performed on this optimization using the previously existing algorithm

to achieve lift-constrained drag minimization. For this case, the new algorithm will be

used for design points A to P, but the previous objective function will be used for points

4.3. Optimization Cases 47

Point Re Ma∞ Objective Cl Constraint

A 27.32M 0.72 Minimize Drag 0.17

B 27.32M 0.72 Minimize Drag 0.28

C 18.57M 0.72 Minimize Drag 0.27

D 18.57M 0.72 Minimize Drag 0.45

E 24.22M 0.64 Minimize Drag 0.21

F 24.22M 0.64 Minimize Drag 0.36

G 16.46M 0.64 Minimize Drag 0.34

H 16.46M 0.64 Minimize Drag 0.57

I 28.88M 0.76 Minimize Shock (Ma < 1.35) 0.28

J 28.88M 0.76 Minimize Shock (Ma < 1.35) 0.15

K 28.88M 0.76 Minimize Shock (Ma < 1.35) 0.46

L 28.88M 0.76 Minimize Shock (Ma < 1.35) 0.25

M 19.62M 0.76 Minimize Shock (Ma < 1.35) 0.45

N 19.62M 0.76 Minimize Shock (Ma < 1.35) 0.24

O 19.62M 0.76 Minimize Shock (Ma < 1.35) 0.74

P 19.62M 0.76 Minimize Shock (Ma < 1.35) 0.40

Q 11.8M 0.16 Maximize Lift -

R 15.0M 0.20 Maximize Lift -

Table 4.9: Optimization points

Q and R as no target lift has been given. Using the previous algorithm, several steps were

required to reach a final optimized airfoil. The operation began by optimizing for points

A to H, and on subsequent iterations the various parameters in the objective function

were varied, and additional design points were added. In total, seventeen optimization

operations were required to go from the initial airfoil to the final optimized airfoil.

In testing the new algorithm, the goal is to reach the final optimized airfoil in as

few optimization steps as possible. Ideally, we would like the user to simply enter the

design points they have selected and run the optimization algorithm, but in actuality

it is more complicated. For the initial attempt at optimization, each point was given

the same weight. This optimization was not successful, but from the results of this run,

some design points were found to have easily reduced objective functions, while others

48 Chapter 4. Results

had objective functions that increased. To ensure that all points reached their objectives,

the weights given to the more difficult to optimize points were increased, while the other

points continued to be given a weight of one.

Changes were also made in the course of the optimization process to design points Q

and R. The objective for these two points is to maximize the lift, and no constraint is

given for the drag. Because of this, the following objective function is used:

J =

(
1− Cl

C∗l

)2

+ t.c. (4.3)

where t.c. is the penalty due to the thickness constraints. The initial airfoil gives lift

coefficients of 0.83 and 0.84 at design points Q and R respectively. In the first attempt

at optimization, the target lift for these points was set to 1.2, and this was increased in

subsequent attempts.

In three optimization stages, by varying weights and parameters for design points

Q and R (see Appendix C), an optimized airfoil was achieved. The constraints given

in points I to R are satisfied, and the drag at the eight design points is significantly

reduced (see Table 4.10). The final thickness constraint values are shown in Table 4.11,

with the location and thickness of the floating thickness constraint given. At some of

the off-design points, treated as constraints, the performance exceeds the requirements.

This may indicate that the weight on the operating point is higher than it need be, or it

may indicate that the point is not critical, namely that the constraint would be satisfied

even if it was not included in the optimization.

To consider the possible benefits of adaptive airfoils, single-point optimizations were

also performed at the cruise operating conditions in Table 4.9. The grids, design points

and thickness constraints were all as given for the eighteen-point optimization problem.

This resulted in significantly different airfoil shapes, shown in Figures 4.13 and 4.14. To

constrain the shape of the airfoil further, single-point optimizations were run for the cruise

operating conditions starting with the multipoint airfoil as the initial airfoil, and with the

maximum thickness constraint set as a fixed thickness constraint to ensure the maximum

thickness was at the same location as the maximum thickness of the multipoint airfoil.

The new thickness constraint requires y/c = 0.142 at x/c = 0.36666667. The airfoil

shapes achieved in these optimizations are shown in Figures 4.15 and 4.16. Table 4.12

gives the resulting airfoil performance for both cases.

The airfoils found with a fixed maximum thickness constraint have higher drag coeffi-

cients than those found with the floating maximum thickness constraint, but significantly

4.3. Optimization Cases 49

x/c

y/
c

0 0.2 0.4 0.6 0.8 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Multipoint Optimization
Single-Point Optimization (Point A)
Single-Point Optimization (Point B)
Single-Point Optimization (Point C)
Single-Point Optimization (Point D)
Single-Point Optimization (Point E)
Single-Point Optimization (Point F)
Single-Point Optimization (Point G)
Single-Point Optimization (Point H)

Figure 4.13: Airfoil sections found using floating maximum thickness constraint

x/c

y/
c

0 0.2 0.4 0.6 0.8 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Multipoint Optimization
Single-Point Optimization (Point A)
Single-Point Optimization (Point B)
Single-Point Optimization (Point C)
Single-Point Optimization (Point D)
Single-Point Optimization (Point E)
Single-Point Optimization (Point F)
Single-Point Optimization (Point G)
Single-Point Optimization (Point H)

Figure 4.14: Expanded view of airfoil sections found using floating maximum thickness

constraint

50 Chapter 4. Results

x/c

y/
c

0 0.2 0.4 0.6 0.8 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Multi Point Optimization
Single Point Optimization (Point A)
Single Point Optimization (Point B)
Single Point Optimization (Point C)
Single Point Optimization (Point D)
Single Point Optimization (Point E)
Single Point Optimization (Point F)
Single Point Optimization (Point G)
Single Point Optimization (Point H)

Figure 4.15: Airfoil sections found using fixed maximum thickness constraint

x/c

y/
c

0 0.2 0.4 0.6 0.8 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Multi Point Optimization
Single Point Optimization (Point A)
Single Point Optimization (Point B)
Single Point Optimization (Point C)
Single Point Optimization (Point D)
Single Point Optimization (Point E)
Single Point Optimization (Point F)
Single Point Optimization (Point G)
Single Point Optimization (Point H)

Figure 4.16: Expanded view of airfoil sections found using fixed maximum thickness

constraint

4.3. Optimization Cases 51

Point Cl Cd Maximum Mach Number Cl,max

A 0.17 0.0125 - -

B 0.28 0.0126 - -

C 0.27 0.0128 - -

D 0.45 0.0134 - -

E 0.21 0.0122 - -

F 0.36 0.0125 - -

G 0.34 0.0126 - -

H 0.57 0.0136 - -

I 0.28 0.0139 1.19 -

J 0.15 0.0143 1.26 -

K 0.46 0.0171 1.28 -

L 0.25 0.0138 1.17 -

M 0.45 0.0170 1.27 -

N 0.24 0.0139 1.17 -

O 0.74 0.0562 1.34 -

P 0.40 0.0158 1.25 -

Q - - - 1.77

R - - - 1.78

Table 4.10: Design performance of the multipoint airfoil

smaller shape changes are required. The fixed maximum thickness is more practical from

a design point of view, as a spar could be placed at the point of maximum thickness.

The airfoils with the floating thickness constraints show that larger drag reductions are

attainable, if it is possible to generate these airfoil shapes. The second set of airfoils

with a fixed thickness constraint particularly demonstrate that a morphing airfoil with

relatively small shape changes will allow a significant decrease in drag at cruise speeds.

52 Chapter 4. Results

Constraint number 1 2 3

Location (% c) 0.36666667 0.95 0.99

Desired thickness (%c) 0.142 0.01 0.002

Final thickness (%c) 0.14126 0.012165 0.0027402

Table 4.11: Design performance of the multipoint airfoil

Point Cd Cd (single-point) % Reduction Cd (single-point) % Reduction

(multipoint) floating t.c. fixed t.c.

A 0.0125 0.01061 14.8 0.01103 11.4

B 0.0126 0.01089 13.6 0.01123 11.0

C 0.0128 0.01094 14.3 0.01135 11.2

D 0.0134 0.01169 13.0 0.01199 10.8

E 0.0122 0.01067 12.4 0.01107 9.1

F 0.0125 0.01108 11.1 0.01140 8.6

G 0.0126 0.01107 11.9 0.01145 8.9

H 0.0136 0.01217 10.9 0.01245 8.4

Table 4.12: Comparison of drag coefficients of the single-point designs with those of the

baseline multipoint design

Chapter 5

Conclusions and Recommendations

An improved algorithm has been developed for lift-constrained drag minimization in

Optima2D. Both stages of the flow solver have been modified to allow the angle of attack

to change during flow solution to ensure that the desired lift coefficient is achieved. In the

approximate factorization stage of the flow solver, angle of attack relaxation has been

used. This takes the difference between the current coefficient of lift and the desired

coefficient of lift and changes the angle of attack by some multiple of this amount. The

Newton-Krylov flow solver has been modified to include a new residual equation that is

the difference between the current coefficient of lift and the target coefficient of lift. This

residual equation has been driven to zero by adding the angle of attack to the vector of

flow variables. The new residual equation has also been included in the calculation of

the gradient using the adjoint method.

The capability to combine different optimization goals in one multipoint optimization

has also been added to Optima2D. To allow weights to be assigned to different design

points more easily, and to allow the weight given to thickness constraints to have the

same meaning for different design points, objective functions have been normalized by

their initial value before thickness constraint penalties have been added.

The new algorithm was compared to the previously existing algorithm used for lift-

constrained drag minimization and the following conclusions were reached:

1. The flow solution algorithm ensures that the desired lift coefficient is reached. This

requires 20 to 50% more time than for the flow solver to converge without variable

angle of attack.

2. The new flow solver is useful when performing lift-constrained Mach number sweeps.

53

54 Chapter 5. Conclusions and Recommendations

These were previously achieved by performing an optimization with the angle of

attack as the only design variable, but using the variable angle of attack flow solver

requires approximately 70% less time.

3. The new algorithm consistently performs lift-constrained drag minimization, as

compared to the previous algorithm, which minimized a compound objective func-

tion that could approximate lift-constrained drag minimization. As such, lengthy

and expensive tests to tune the parameters in the previous objective function are

not required.

4. The new optimization algorithm successfully converges to similar results as the

previous optimization algorithm reaches when a high weight is given to the lift

portion of the objective function.

5. The total time required for the optimization to converge with the new algorithm

is greater than required for the previously existing algorithm, due to the increased

time required for each flow solution.

Future work includes the following:

• The angle of attack is consistently in degrees in Optima2D. Converting this to

radians would be beneficial, and may eliminate the need to scale the angle of attack

when it is used as a variable in the modified flow solver.

• This method currently does not include the circulation correction. Allowing the

circulation correction to be used may improve the performance of the algorithm.

• Extend this algorithm into three dimensions. One challenge in doing this may be

the storage of the new equation in the flow Jacobian, as the adjoint equation is

solved in parallel.

• If multipoint cases with a large number of design points will be studied in the

future, parallelizing the code to allow the flow solutions and gradient calculations

for different operating points to be performed on different processors will allow the

cases to be run in significantly less time.

• Extending work by Zingg and Elias [35] to automate weight selection in multi-

point cases could also decrease the time required for these cases. It will remain

55

difficult, however, to automate weight selection for constraints on local maximum

Mach number, as this value is not determined until after the optimization is fin-

ished. Including the calculation of local Mach number in Optima2D and using the

maximum local Mach number as the objective function to minimize may be useful

if this will be a common goal.

56 Chapter 5. Conclusions and Recommendations

References

[1] W. K. Anderson and D. L. Bonhaus. Airfoil design on unstructured grids for turbu-

lent flows. AIAA Journal, 37(2):185–191, February 1999.

[2] W. K. Anderson and V. Venkatakrishnan. Aerodynamic design optimization on

unstructured grids with a continuous adjoint formulation. AIAA Report 97-0643,

AIAA, 1997.

[3] A. Dadone and B. Grossman. Fast convergence of viscous airfoil design problems.

AIAAJ, 40(10):1997–2005, 1997.

[4] M. Drela. Pros & cons of airfoil optimization. In D. A. Caughey and M. M. Hafez,

editors, Frontiers of Computational Fluid Dynamics 1998, pages 363–381, Singapore,

1998. World Scientific.

[5] J. Driver. Optimal aerodynamic shape design with transition prediction. Master’s

thesis, University of Toronto, 2005.

[6] J. Driver and D. W. Zingg. Optimized natural-laminar-flow airfoils. AIAA Report

2006-247, AIAA, 2006.

[7] J. Elliott. Aerodynamic Optimization Based on the Euler and Navier-Stokes Equa-

tions Using Unstructured Grids. PhD thesis, Massachusetts Institute of Technology,

1998.

[8] J. Elliott and J. Peraire. Constrained, multipoint shape optimisation for complex

3D configurations. The Aeronautical Journal, 102(1017):365–376, 1998.

[9] M. B. Giles and M. Drela. Two-dimensional transonic aerodynamic design method.

AIAA Journal, 25(9):1199–1206, 1987.

57

58 REFERENCES

[10] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press,

London, 1981.

[11] A. Iollo and M. D. Salas. Optimum transonic airfoils based on the Euler equations.

Computers & Fluids, 28:653–674, 1999.

[12] A. Jameson. Solution of the Euler equations by a multigrid method. Applied Math-

ematics and Computation, 13:327–356, 1983.

[13] A. Jameson. A perspective on computational algorithms for aerodynamic analysis

and design. Progress in Aerospace Sciences, 37(2):197–243, 2001.

[14] A. Jameson. Efficient aerodynamic shape optimization. AIAA Report 2004-4369,

AIAA, 2004.

[15] H.-J. Kim, S. Obayashi, and K. Nakahashi. Flap-deflection optimization for tran-

sonic cruise performance improvement of supersonic transport wing. Journal of

Aircraft, 38(4):709–717, 2001.

[16] H.-J. Kim, D. Sasaki, S. Obayashi, and K. Nakahashi. Aerodynamic optimization

of supersonic transport wing using unstructured adjoint method. AIAA Journal,

39(6):1011–1020, June 2001.

[17] B. Mohammadi. A new optimal shape design procedure for inviscid and viscous

turbulent flows. International Journal for Numerical Methods in Fluids, 25:183–

203, 1997.

[18] T. E. Nelson and D. W. Zingg. Fifty years of aerodynamics: Successes, challenges,

and opportunities. CAS Journal, 50(1):61–84, March 2004.

[19] M. Nemec. Optimal Shape Design of Aerodynamic Configurations: A Newton-Krylov

Approach. PhD thesis, University of Toronto, 2003.

[20] M. Nemec and D. W. Zingg. Towards efficient aerodynamic shape optimization

based on the Navier-Stokes equations. AIAA Report 2001-2532, AIAA, 2001.

[21] M. Nemec and D. W. Zingg. Newton-Krylov algorithm for aerodynamic design using

the Navier-Stokes equations. AIAA Journal, 40(6):1146–1154, June 2002.

REFERENCES 59

[22] M. Nemec, D. W. Zingg, and T. Pulliam. Multi-point and multi-objective aerody-

namic shape optimization. AIAA Report 2003-5548, AIAA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, June 2003.

[23] M. Nemec, D. W. Zingg, and T. H. Pulliam. Multipoint and multi-objective aero-

dynamic shape optimization. AIAA Journal, 42(6):1057–1065, June 2004.

[24] E. Nielsen. Aerodynamic Design Sensitivities on and Unstructured Mesh Using the

Navier-Stokes Equations and a Discrete Adjoint Formulation. PhD thesis, Virginia

Polytechnic Institute and State University, 1998.

[25] E. J. Nielsen and W. K. Anderson. Aerodynamic design optimization on unstruc-

tured meshes using the Navier-Stokes equations. Paper 98-4809, AIAA, September

1998.

[26] A. Pueyo. An Efficient Newton-Krylov Method for the Euler and Navier-Stokes

Equations. PhD thesis, University of Toronto, 1998.

[27] A. Pueyo and D. W. Zingg. Efficient Newton-Krylov solver for aerodynamic com-

putations. AIAA Journal, 36(11):1991–1997, November 1998.

[28] T. H. Pulliam. Efficient solution methods for the Navier-Stokes equations. In Lecture

Notes for the Von Karman Institute for Fluid Dynamics Lecture Series: Numerical

Techniques for Viscous Flow Computation in Turbomachinery Bladings, January

20–24, 1986. Von Karman Institute for Fluid Dynamics, Brussels, Belgium, 1986.

[29] T. H. Pulliam, M. Nemec, T. Holst, and D. W. Zingg. Comparison of evolutionary

(genetic) algorithm and adjoint methods for multi-objective viscous airfoil optimiza-

tions. AIAA Report 2003-0298, AIAA, 2003.

[30] J. J. Reuther, A. Jameson, J. J. Alonso, M. J. Rimlinger, and D. Saunders. Con-

strained multipoint aerodynamic shape optimization using an adjoint formulation

and parallel computers, part 1. Journal of Aircraft, 26(1):51–60, 1999.

[31] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical

Computing, 7(3):856–869, 1986.

60 REFERENCES

[32] B. I. Soemarwoto and Th. E. Labrujère. Airfoil design and optimization methods:

Recent progress at NLR. International Journal for Numerical Methods in Fluids,

25:183–203, 1997.

[33] D. Tse and L. Chan. Transonic airfoil design optimization using soft computing

methods. CAS Journal, 46(2):65–73, June 2000.

[34] Z. Zhang and K.-Y. Lum. Airfoil optimization design of drag minimization with lift

constraint using adjoint equation method. AIAA Report 2006-55, AIAA, January

2006.

[35] D. W. Zingg and S. Elias. On aerodynamic optimization under a range of operating

conditions. AIAA Report 2006-1053, AIAA, 2006.

[36] D. W. Zingg, T. M. Leung, L. Diosady, A. H. Truong, and S. Elias. Improvements

to a Newton-Krylov adjoint algorithm for aerodynamic optimization. AIAA Report

2005-4857, AIAA, 2005.

Appendix A

New Analytical Derivatives

Three new derivatives were required in the formation of the new flow Jacobian ∂R
∂Q .

These are the derivative of the coefficient of lift with respect to the angle of attack, the

derivative of the coefficient of lift with respect to the flow variables, and the derivative

of the previously existing residual equations with respect to angle of attack.

The derivatives of the drag coefficient are included also, as these are used in the

calculation of the derivative of the objective function with respect to the flow variables.

A.1 Partial Derivative of Lift and Drag Coefficients

with Respect to Angle of Attack

The coefficient of lift consists of two parts; the first is the vertical component of the

pressure force on the airfoil and the second comes from the viscous terms. For both

parts, a chord directed force coefficient, CC , and a normal force coefficient, CN , are

calculated. These are then resolved into lift and drag coefficients:

Cl = CN cos(α)− CC sin(α) (A.1)

Cd = CN sin(α) + CC cos(α) (A.2)

The derivative of the coefficient of lift with respect to angle of attack is then

∂Cl

∂α
= −CN sin(α)− CC cos(α) (A.3)

and

∂Cd

∂α
= CN cos(α)− CC sin(α) (A.4)

61

62 Appendix A. New Analytical Derivatives

A.2 Partial Derivatives of Lift and Drag Coefficients

with Respect to Flow Variables

A.2.1 Force Due to Pressure

To find the derivative of the lift due to pressure with respect to the flow variables, first

the derivative of the pressure with respect to the flow variables must be found. Pressure

is calculated based on the flow variables as

p = (γ − 1)

(
e− 1

2

(ρu)2 + (ρv)2

ρ

)
(A.5)

The partial derivatives of pressure with respect to each of the flow variables are then:

∂p

∂ρ
= 0.5(γ − 1)

(ρu)2 + (ρv)2

ρ2
(A.6)

∂p

∂(ρu)
= −(γ − 1)

ρu

ρ
(A.7)

∂p

∂(ρv)
= −(γ − 1)

ρv

ρ
(A.8)

∂p

∂e
= (γ − 1) (A.9)

The lift coefficient is calculated from the normal and chord directed force components.

When we substitute the derivatives for the pressure, we can develop the derivatives of

these force components as:

∂CN

∂qi
= −

∂p
∂qi

[(x(j, 1)− x(j − 1, 1)) + (x(j + 1, 1)− x(j, 1))]

Ma2
∞

(A.10)

∂CC

∂qi
=

∂p
∂qi

[(y(j, 1)− y(j − 1, 1)) + (y(j + 1, 1)− y(j, 1))]

Ma2
∞

(A.11)

with i = 1, 4, and

q1 = ρ (A.12)

q2 = ρu (A.13)

q3 = ρv (A.14)

q4 = e (A.15)

and where x(j, k) and y(j, k) are the x and y positions of the node j, k.

A.2. Derivatives of Coefficients with Respect to Flow Variables 63

Then,

∂Cl

∂qi
=
∂CN

∂qi
cos(α)− ∂CC

∂qi
sin(α) (A.16)

and

∂Cd

∂qi
=
∂CN

∂qi
sin(α) +

∂CC

∂qi
cos(α) (A.17)

with i = 1, 4 and qi as defined above.

A.2.2 Force Due to Friction

A proportion of the lift is generated due to friction in viscous flow. This is caused by the

shear forces:

Cf =
τw

0.5ρ∞u2∞
(A.18)

where

τw = µ

(
∂u

∂y
− ∂v

∂x

)
(A.19)

The coefficient of viscosity is calculated based on the Reynolds number, since

Re =
ρ∞u∞C
µ∞

(A.20)

where C is the chord length of the airfoil, ρ∞ is the freestream density, u∞ is the

freestream velocity, and µ∞ is the freestream viscosity.

Since the flow variables are stored in curvilinear coordinates, the calculation of τw is

expanded using the chain rule to give:

τw = µ∞

[(
∂u

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y

)
−

(
∂v

∂ξ

∂ξ

∂x
+
∂v

∂η

∂η

∂x

)]
(A.21)

The partial derivatives of flow velocities with respect to ξ and η are calculated using

finite differences:

∂u

∂ξ
=

1

2

(
(ρu)j+1,k

ρj+1,k

− (ρu)j−1,k

ρj−1,k

)
(A.22)

∂v

∂ξ
=

1

2

(
(ρv)j+1,k

ρj+1,k

− (ρv)j−1,k

ρj−1,k

)
(A.23)

∂u

∂η
= −3

2

(ρu)j,k

rhoj,k

+ 2
(ρu)j,k+1

ρj,k+1

− 1

2

(ρu)j,k+2

ρj,k+2

(A.24)

∂v

∂η
= −3

2

(ρv)j,k

rhoj,k

+ 2
(ρv)j,k+1

ρj,k+1

− 1

2

(ρv)j,k+2

ρj,k+2

(A.25)

64 Appendix A. New Analytical Derivatives

When these derivatives have been calculated, the coefficient of friction at each point is

calculated, and then the average over two adjacent points in the ξ direction is taken.

Cf,j =
τw,j

0.5ρ∞u2∞
(A.26)

Cf,j,av =
Cf,j + Cf,j−1

2
(A.27)

The average coefficients of friction are integrated in the x- and y-directions to give the

chord directed and normal forces:

CN = −
jtail2∑

j=jtail1

Cf,j,av(xj − xj−1) (A.28)

CC =
jtail2∑

j=jtail1

Cf,j,av(yj − yj−1) (A.29)

The normal and chord directed forces are then resolved into the vertical and horizontal

directions to give lift and drag:

Cl = CN cos(α)− CC sin(α) (A.30)

Cd = CN sin(α) + CC cos(α) (A.31)

The angle of attack is not directly affected by the flow variables, so we know that

∂Cl

∂qi
=
∂CN

∂qi
cos(α)− ∂CC

∂qi
sin(α) (A.32)

and

∂Cd

∂qi
=
∂CN

∂qi
sin(α) +

∂CC

∂qi
cos(α) (A.33)

with qi as defined in section A.2.1.

Due to the summation form of the calculations for CC and CN , the use of finite

differences means that all the different derivatives must be taken into account. The

derivative of the normal force with respect to qi is:

∂CN

∂qi
= − 1

ρ∞u2∞

[
∂τw|j−1,k

∂qi
(xj−1,k − xj−2,k) +

(
∂τw|j,k
∂q

+
∂τw|j−1,k

∂q

)
(xj,k − xj−1,k)

+

(
∂τw|j+1,k

∂q
+
∂τw|j,k
∂q

)
(xj+1 − xj) +

∂τw|j+1,k

∂q
(xj+2,k − xj+1,k)

]
(A.34)

and similarly, the derivative of the chord directed force is:

∂CC

∂qi
=

1

ρ∞u2∞

[
∂τw|j−1,k

∂qi
(yj−1,k − yj−2,k) +

(
∂τw|j,k
∂q

+
∂τw|j−1,k

∂q

)
(yj,k − yj−1,k)

+

(
∂τw|j+1,k

∂q
+
∂τw|j,k
∂q

)
(yj+1 − yj) +

∂τw|j+1,k

∂q
(yj+2,k − yj+1,k)

]
(A.35)

A.2. Derivatives of Coefficients with Respect to Flow Variables 65

where

∂τw|j−1,k

∂qi
= µ∞

[(
∂uξ|j−1,k

∂qi
ξy|j−1,k +

∂uη|j−1,k

∂qi
ηy|j−1,k

)

−
(
∂vξ|j−1,k

∂qi
ξx|j−1,k +

∂vη|j−1,k

∂qi
ηx|j−1,k

)]
(A.36)

∂τw|j,k
∂qi

= µ∞

[(
∂uξ|j,k
∂qi

ξy|j,k +
∂uη|j,k
∂qi

ηy|j,k
)

−
(
∂vξ|j,k
∂qi

ξx|j,k +
∂vη|j,k
∂qi

ηx|j,k
)]

(A.37)

∂τw|j+1,k

∂qi
= µ∞

[(
∂uξ|j+1,k

∂qi
ξy|j+1,k +

∂uη|j+1,k

∂qi
ηy|j+1,k

)

−
(
∂vξ|j+1,k

∂qi
ξx|j+1,k +

∂vη|j+1,k

∂qi
ηx|j+1,k

)]
(A.38)

(A.39)

These terms are non-zero only for the nodes on the airfoil surface, where k = 1 and

for two layers of nodes adjacent to these, with k = 2 and k = 3. At these points, the

partial derivatives of the partial derivatives of the velocities with respect to the coordinate

system with respect to the flow variables are as follows, with k = 1 except where specified:

∂uξ|j−1,k

∂ρj,k

= −(ρu)j,k

2ρ2
j,k

(A.40)

∂uξ|j−1,k

∂(ρu)j,k

=
1

2ρj,k

(A.41)

∂uξ|j+1,k

∂ρj,k

=
(ρu)j,k

2ρ2
j,k

(A.42)

∂uξ|j+1,k

∂(ρu)j,k

= − 1

2ρj,k

(A.43)

∂vξ|j−1,k

∂ρj,k

= −(ρv)j,k

2ρ2
j,k

(A.44)

∂vξ|j−1,k

∂(ρv)j,k

=
1

2ρj,k

(A.45)

∂vξ|j+1,k

∂ρj,k

=
(ρv)j,k

2ρ2
j,k

(A.46)

∂vξ|j+1,k

∂(ρv)j,k

= − 1

2ρj,k

(A.47)

∂uη|j,k
∂ρj,k

= −3(ρu)j,k

2ρ2
j,k

(A.48)

∂uη|j,k
∂(ρu)j,k

= − 3

2ρj,k

(A.49)

66 Appendix A. New Analytical Derivatives

∂uη|j,k−1

∂ρj,k

=
2(ρu)j,k

ρ2
j,k

k = 2 (A.50)

∂uη|j,k−1

∂ρj,k

=
2

ρj,k

k = 2 (A.51)

∂uη|j,k−2

∂ρj,k

= −(ρu)j,k

2ρ2
j,k

k = 3 (A.52)

∂uη|j,k−2

∂(ρu)j,k

= − 1

2ρj,k

k = 3 (A.53)

∂vη|j,k
∂ρj,k

= −3(ρv)j,k

2ρ2
j,k

(A.54)

∂vη|j,k
∂(ρv)j,k

= − 3

2ρj,k

(A.55)

∂vη|j,k−1

∂ρj,k

=
2(ρv)j,k

ρ2
j,k

k = 2 (A.56)

∂vη|j,k−1

∂ρj,k

=
2

ρj,k

k = 2 (A.57)

∂vη|j,k−2

∂ρj,k

= −(ρv)j,k

2ρ2
j,k

k = 3 (A.58)

∂vη|j,k−2

∂(ρv)j,k

= − 1

2ρj,k

k = 3 (A.59)

A.3 Partial Derivatives of Existing Residual Equa-

tions with Respect to Angle of Attack

The residual equations that are affected by the angle of attack occur at the boundaries

of the computational domain. For viscous flow, only the far-field boundary nodes are

affected, but for inviscid flow, the outflow boundary nodes are also affected. Boundaries

are as shown in Figure A.1.

A.3.1 Far-Field Boundary Residual

R(j, kmax, 1) =

(
(ηxu(j, kmax) + ηyv(j, kmax))− 2

a(j, kmax)

γ − 1

)

−
(

(ηxu∞ + ηyv∞)− 2
a∞
γ − 1

)
(A.60)

R(j, kmax, 2) =

(
(ηxu(j, kmax) + ηyv(j, kmax)) + 2

a(j, kmax)

γ − 1

)

A.3. Derivatives of Existing Residual Equations 67

Far-Field Boundary

Outflow
Boundaries

Figure A.1: Boundary locations

− ((ηxu(j, kmax − 1) + ηyv(j, kmax − 1)

+2
a(j, kmax − 1)

γ − 1

)
(A.61)

The residual equations for n = 3 and n = 4 are dependent on whether there is inflow or

outflow of fluid at the node. For inflow,

R(j, kmax, 3) =
ρ(j, kmax)

γ

p(j, kmax)
− ργ

∞
p∞

(A.62)

R(j, kmax, 4) = (ηyu(j, kmax)− ηxv(j, kmax))− (ηyu∞ − ηxv∞)) (A.63)

For outflow,

R(j, kmax, 3) =
ρ(j, kmax − 1)γ

p(j, kmax − 1)
− ρ(j, kmax)

γ

p(j, kmax)
(A.64)

R(j, kmax, 4) = (ηyu(j, kmax − 1)− ηxv(j, kmax − 1))

−(ηyu(j, kmax)− ηxv(j, kmax)) (A.65)

These residual calculations are affected by the angle of attack since

u∞ = Ma∞ cosα (A.66)

v∞ = Ma∞ sinα (A.67)

68 Appendix A. New Analytical Derivatives

So, taking the derivative of the residual equations with respect to angle of attack

gives

∂R(j, kmax, 1)

∂α
= ηxMa∞ sinα− ηyMa∞ cosα (A.68)

∂R(j, kmax, 2)

∂α
= 0 (A.69)

∂R(j, kmax, 3)

∂α
= 0 (A.70)

∂R(j, kmax, 4)

∂α
=




ηyMa∞ sinα+ ηxMa∞ cosα if inflow

0 if outflow
(A.71)

A.3.2 Outflow Boundary Residual

R(1, k, 1) =

(
ξxu(1, k) + ξyv(1, k) + 2

a(1, k)

γ − 1

)

−
(
ξxu∞ + ξyv∞ + 2

a∞
γ − 1

)
(A.72)

R(1, k, 2) =

(
ξxu(1, k) + ξyv(1, k)− 2

a(1, k)

γ − 1

)

−
(
ξxu(2, k) + ξyv(2, k)− 2

a(2, k)

γ − 1

)
(A.73)

If there is inflow at the node,

R(1, k, 3) =
ρ(1, k)γ

p(1, k)
− ργ

∞
p∞

(A.74)

R(1, k, 4) = (−ξyu(1, k) + ξxv(1, k))− (−ξyu∞ + ξxv∞) (A.75)

If there is outflow at the node,

R(1, k, 3) =
ρ(1, k)γ

p(1, k)
− ρ(2, k)γ

p(2, k)
(A.76)

R(1, k, 4) = (−ξyu(1, k) + ξxv(1, k))− (−ξyu(2, k) + ξxv(2, k)) (A.77)

Then, knowing that the farfield velocities depend on the angle of attack,

∂R(1, k, 1)

∂α
= ξxMa∞ sinα− ξyMa∞ cosα (A.78)

∂R(1, k, 2)

∂α
= 0 (A.79)

∂R(1, k, 3)

∂α
= 0 (A.80)

∂R(1, k, 4)

∂α
=




−ξyMa∞ sinα− ξxMa∞ cosα if inflow

0 if outflow
(A.81)

A.3. Derivatives of Existing Residual Equations 69

R(jmax, k, 1) =

(
ξxu(jmax, k) + ξyv(jmax, k)− 2

a(jmax, k)

γ − 1

)

−
(
ξxu∞ + ξyv∞ − 2

a∞
γ − 1

)
(A.82)

R(jmax, k, 2) =

(
ξxu(jmax, k) + ξyv(jmax, k) + 2

a(jmax, k)

γ − 1

)

−
(
ξxu(jmax − 1, k) + ξyv(jmax − 1, k) + 2

a(jmax − 1, k)

γ − 1

)
(A.83)

The residual equations for n = 3 and n = 4 are dependent on whether there is inflow or

outflow of fluid at the node. For inflow,

R(j, kmax, 3) =
ρ(jmax, k)

γ

p(jmax, k)
− ργ

∞
p∞

(A.84)

R(j, kmax, 4) = (−ξyu(jmax, k) + ξxv(jmax, k))− (−ξyu∞ + ξxv∞) (A.85)

For outflow,

R(j, kmax, 3) =
ρ(jmax, k)

γ

p(jmax, k)
− ρ(jmax − 1, k)γ

p(jmax − 1, k)
(A.86)

R(j, kmax, 4) = (−ξyu(jmax, k) + ξxv(jmax, k))

− (−ξyu(jmax − 1, k) + ξxv(jmax − 1, k)) (A.87)

The derivatives are then

∂R(1, k, 1)

∂α
= ξxMa∞ sinα− ξyMa∞ cosα (A.88)

∂R(1, k, 2)

∂α
= 0 (A.89)

∂R(1, k, 3)

∂α
= 0 (A.90)

∂R(1, k, 4)

∂α
=




−ξyMa∞ sinα− ξxMa∞ cosα if inflow

0 if outflow
(A.91)

70 Appendix A. New Analytical Derivatives

Appendix B

Input Files for Optimizations

B.1 Subsonic Single-Point Optimization Input File

Input file used for case without second-difference dissipation. Input file for case including

second-difference dissipation is identical but with DIS2X= 1.0 and DIS2Y= 1.0.

MP-OPT

1

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.0 0.7 0.4728 1.0 0.1 9E6 FALSE 3.0 8 TRUE TRUE TRUE

&OPTIMA

OPT_METH = 3, OPT_ITER = 500, OPT_TOL = 1.d-5,

OPT_RESTART = FALSE, GRADIENT = 1, CDF = TRUE, FD_ETA = 1.d-6,

COEF_FRZ = FALSE, IFRZ_WHAT = 3,

WFACTOR = 0.1d0, BSTEP = 1.0,

AUTO_RESTART = TRUE, NUM_RESTARTS = 5,

INORD = 2, IREORD = 2,

ILU_METH = 2, LFIL = 6, PDC = 3.d0,

IM_GMRES = 85, EPS_GMRES = 1.d-8, ITER_GMRES = 500,

NTCON=0, WFD=0.1, WTC=50.0,

CTX =0.35,0.96, 0.99,

CTY_TAR =0.1206, 0.005, 0.0012,

WAC=0.0, AREAFAC=1.0

NRTCON = 0, crtxl = 0.10d0, crtxt = 0.90d0, crtxn = 15,

crthtar = 0.142d0

71

72 Appendix B. Input Files for Optimizations

&END

&CYCLONE

JMAX=257, KMAX=57, JTAIL1=29, JTAIL2=229,

TRANSLO=0.01D0, TRANSUP=0.01D0,

CLTOL=1.0d-11,

RELAXCL=3.0, ICLFREQ=50, ICLSTRT=0,

RESTART=FALSE, JACDT=1, IREAD=2, BCAIRF=TRUE, CIRCUL=FALSE,

IORD=2, INTEG=2, CMESH=FALSE,

IDMODEL=1,

DIS2X = 0.0, DIS4X = 0.01, DIS2Y = 0.0, DIS4Y = 0.01,

VLXI = 0.25, VNXI = 0.25, VLETA = 0.25, VNETA = 0.25,

LIMITER = 1, EPZ = 1.d-3, EPV = 5.d0,

PREC = 0, PRXI = 0.0, PRPHI = 1.0,

TURBULNT = TRUE, ITMODEL = 2, ISPBC = 1, VISCEIG = 1.d0,

VISCOUS = TRUE, VISETA = TRUE, VISXI = FALSE, VISCROSS = FALSE,

NCP = 3000, NQ = 3000,

SNGVALTE = FALSE, GRDSEQ_REST = FALSE, SV_GRDSEQ = FALSE,

WRITERESID = FALSE, TIMING = FALSE, WRITETURB = FALSE,

FLBUD = FALSE, PCHORD = 0.32, SKNFRC = FALSE

&END

&PROBE

NK_ITS = 40, NK_ILU = 2, NK_LFIL = 2, NK_PFRZ = 1,

NK_PDC = 6.d0, NK_IMGMR = 40, NK_ITGMR = 40

&END

&EXTRA

grid_file_prefix = ’257x57’,

output_file_prefix = ’test’,

restart_file_prefix = ’initial’

&END

1.E-8 | AF Convergence criteria: AF_MINR

5.E-15 | Convergence criteria: MIN_RES

1.E-8 | Min. res. in turb. mod. : SPMIN_RES

ISEQUAL

1

B.2. Transonic Single-Point Optimization Input File 73

JMXI KMXI IENDS DTISEQ DTMIS DTOW

257 57 20000 5.d0 0.0 1.d1

B.2 Transonic Single-Point Optimization Input File

MP-OPT

1

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.0 0.7 0.55 1.0 0.01 9e6 FALSE 0.05 8 TRUE TRUE TRUE

&OPTIMA

OPT_METH = 3, OPT_ITER = 300, OPT_TOL = 1.d-6,

OPT_RESTART = FALSE, GRADIENT = 1, CDF = TRUE, FD_ETA = 1.d-6,

COEF_FRZ = FALSE, IFRZ_WHAT = 3, WFACTOR = 0.1, BSTEP = 0.1,

AUTO_RESTART = TRUE, NUM_RESTARTS = 5,

INORD = 2, IREORD = 2,

ILU_METH = 2, LFIL = 6, PDC = 3.0,

IM_GMRES = 85, EPS_GMRES = 1.d-8, ITER_GMRES = 500,

NTCON=3, WFD=0.5, WTC=50.0,

CTX =0.25,0.92,0.99,0.00,0.00,

CTY_TAR =0.118,0.009,0.002,0.00,0.00,

WAC=0.0, AREAFAC=1.0

NRTCON = 0, crtxl = 0.10d0, crtxt = 0.90d0, crtxn = 15,

crthtar = 0.142d0

&END

&CYCLONE

JMAX=201, KMAX=45, JTAIL1=25, JTAIL2=177,

TRANSLO=0.01, TRANSUP=0.01,

CLINPUT= 0.55, CLTOL=1.0d-11,

RELAXCL=3.0, ICLFREQ=50, ICLSTRT=0,

RESTART=FALSE, JACDT=1, IREAD=2, BCAIRF=TRUE, CIRCUL=FALSE,

IORD=2, INTEG=2, CMESH=FALSE,

IDMODEL=1,

74 Appendix B. Input Files for Optimizations

DIS2X = 0.0, DIS4X = 0.01, DIS2Y = 0.0, DIS4Y = 0.01,

VLXI = 0.25, VNXI = 0.25, VLETA = 0.25, VNETA = 0.25,

LIMITER = 1, EPZ = 1.d-3, EPV = 5.d0,

PREC = 0, PRXI = 0.0, PRPHI = 1.0,

TURBULNT = TRUE, ITMODEL = 2, ISPBC = 1, VISCEIG = 1.d0,

VISCOUS = TRUE, VISETA = TRUE, VISXI = FALSE, VISCROSS = FALSE,

NCP = 1000, NQ = 1000,

SNGVALTE = FALSE, GRDSEQ_REST = FALSE, SV_GRDSEQ = FALSE,

WRITERESID = FALSE, TIMING = FALSE, WRITETURB = FALSE,

FLBUD = FALSE, PCHORD = 0.32, SKNFRC = TRUE

&END

&PROBE

NK_ITS = 40, NK_ILU = 2, NK_LFIL = 2, NK_PFRZ = 1,

NK_PDC = 6.d0, NK_IMGMR = 40, NK_ITGMR = 40

&END

&EXTRA

grid_file_prefix = ’n201x45’,

output_file_prefix = ’test’,

restart_file_prefix = ’xxx’

&END

1.E-6 | AF Convergence criteria: AF_MINR

5.E-15 | Convergence criteria: MIN_RES

1.E-8 | Min. res. in turb. mod. : SPMIN_RES

ISEQUAL

1

JMXI KMXI IENDS DTISEQ DTMIS DTOW

201 45 20000 5.0 0.0 1.d1

B.3 Four-Point Optimization Input Files

Input file for single-point optimization:

MP-OPT

1

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA

B.3. Four-Point Optimization Input Files 75

1.0 0.74 0.733 1.0 0.1 2.7E6 FALSE 1.8281631 8 TRUE TRUE TRUE

&OPTIMA

OPT_METH = 3, OPT_ITER = 500, OPT_TOL = 1.d-5,

OPT_RESTART = FALSE, GRADIENT = 1, CDF = TRUE, FD_ETA = 1.d-6,

COEF_FRZ = FALSE, IFRZ_WHAT = 3,

WFACTOR = 0.1d0, BSTEP = 1.0,

AUTO_RESTART = TRUE, NUM_RESTARTS = 5,

INORD = 2, IREORD = 2,

ILU_METH = 2, LFIL = 6, PDC = 3.d0,

IM_GMRES = 85, EPS_GMRES = 1.d-8, ITER_GMRES = 500,

NTCON=3, WFD=0.1, WTC=50.0,

CTX =0.35,0.96, 0.99,

CTY_TAR =0.1204, 0.005, 0.0012,

WAC=0.0, AREAFAC=1.0

NRTCON = 0, crtxl = 0.10d0, crtxt = 0.90d0, crtxn = 15,

crthtar = 0.142d0

&END

&CYCLONE

JMAX=257, KMAX=57, JTAIL1=29, JTAIL2=229,

TRANSLO=0.01D0, TRANSUP=0.01D0,

CLINPUT= 0.4728, CLTOL=1.0d-11,

RELAXCL=3.0, ICLFREQ=50, ICLSTRT=0,

RESTART=FALSE, JACDT=1, IREAD=2, BCAIRF=TRUE, CIRCUL=FALSE,

IORD=2, INTEG=2, CMESH=FALSE,

IDMODEL=1,

DIS2X = 0.0, DIS4X = 0.02, DIS2Y = 0.0, DIS4Y = 0.02,

VLXI = 0.25, VNXI = 0.25, VLETA = 0.25, VNETA = 0.25,

LIMITER = 1, EPZ = 1.d-3, EPV = 5.d0,

PREC = 0, PRXI = 0.0, PRPHI = 1.0,

TURBULNT = TRUE, ITMODEL = 2, ISPBC = 1, VISCEIG = 1.d0,

VISCOUS = TRUE, VISETA = TRUE, VISXI = FALSE, VISCROSS = FALSE,

76 Appendix B. Input Files for Optimizations

NCP = 3000, NQ = 3000,

SNGVALTE = FALSE, GRDSEQ_REST = FALSE, SV_GRDSEQ = FALSE,

WRITERESID = FALSE, TIMING = FALSE, WRITETURB = FALSE,

FLBUD = FALSE, PCHORD = 0.32, SKNFRC = FALSE

&END

&PROBE

NK_ITS = 40, NK_ILU = 2, NK_LFIL = 2, NK_PFRZ = 1,

NK_PDC = 6.d0, NK_IMGMR = 40, NK_ITGMR = 40

&END

&EXTRA

grid_file_prefix = ’rae257x57’,

output_file_prefix = ’singlept’,

restart_file_prefix = ’initial’

&END

5.E-6 | AF Convergence criteria: AF_MINR

5.E-15 | Convergence criteria: MIN_RES

1.E-8 | Min. res. in turb. mod. : SPMIN_RES

ISEQUAL

1

JMXI KMXI IENDS DTISEQ DTMIS DTOW

257 57 20000 5.d0 0.0 1.d1

Input file for two-point optimization is the same as single-point input file, except for

the first lines, and the output file name. First lines of input file (up to &OPTIMA):

MP-OPT

2

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.0 0.68 0.733 1.0 0.1 2.7E6 FALSE 1.8281631 8 TRUE TRUE TRUE

2.0 0.74 0.733 1.0 0.1 2.7E6 FALSE 1.8281631 8 TRUE TRUE TRUE

Similarly, first lines for input file of four-point optimization are:

MP-OPT

4

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.0 0.68 0.733 1.0 0.1 2.7E6 FALSE 1.8281631 8 TRUE TRUE TRUE

1.0 0.71 0.733 1.0 0.1 2.7E6 FALSE 1.8281631 8 TRUE TRUE TRUE

2.0 0.74 0.733 1.0 0.1 2.7E6 FALSE 1.8281631 8 TRUE TRUE TRUE

3.0 0.76 0.733 1.0 0.1 2.7E6 FALSE 1.8281631 8 TRUE TRUE TRUE

B.4. Two-Point Pareto Front Input Files 77

B.4 Two-Point Pareto Front Input Files

This input file is for the case with the weight given to the Ma∞ = 0.75 operating point

set to 0.1. For other optimizations, the weights in the fourth and fifth lines of the input

file are varied.

MP-OPT

2

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA

0.9 0.68 0.715 1.0 0.01 9.0e6 FALSE 2.0 8 TRUE TRUE TRUE

0.1 0.75 0.715 1.0 0.01 9.0e6 FALSE 2.0 8 TRUE TRUE TRUE

&OPTIMA

OPT_METH = 3, OPT_ITER = 2000, OPT_TOL = 1.d-6,

OPT_RESTART = FALSE, GRADIENT = 1, CDF = TRUE, FD_ETA = 1.d-6,

COEF_FRZ = FALSE, IFRZ_WHAT = 3, WFACTOR = 0.1d0, BSTEP = 0.1,

INORD = 2, IREORD = 2,

ILU_METH = 2, LFIL = 6, PDC = 3.d0,

IM_GMRES = 85, EPS_GMRES = 1.d-8, ITER_GMRES = 500,

AUTO_RESTART=TRUE, NUM_RESTARTS=5,

NTCON=3, WFD=0.01, WTC=50.0,

CTX = 0.01, 0.25, 0.99,

CTY_TAR = 0.0253, 0.121, 0.002

&END

&CYCLONE

JMAX=257, KMAX=57, JTAIL1=29, JTAIL2=229,

TRANSLO=0.01, TRANSUP=0.01,

CLINPUT= 0.4728, CLTOL=1.0d-11,

RELAXCL=3.0, ICLFREQ=50, ICLSTRT=100,

RESTART=FALSE, JACDT=1, IREAD=2, BCAIRF=TRUE, CIRCUL=FALSE,

IORD=2, INTEG=2, CMESH=FALSE,

IDMODEL=1,

DIS2X = 0.0, DIS4X = 0.02, DIS2Y = 0.0, DIS4Y = 0.02,

VLXI = 0.25, VNXI = 0.25, VLETA = 0.25, VNETA = 0.25,

LIMITER = 1, EPZ = 1.d-3, EPV = 5.d0,

78 Appendix B. Input Files for Optimizations

PREC = 0, PRXI = 0.0, PRPHI = 1.0,

TURBULNT = TRUE, ITMODEL = 2, ISPBC = 1, VISCEIG = 1.d0,

VISCOUS = TRUE, VISETA = TRUE, VISXI = FALSE, VISCROSS = FALSE,

NCP = 3000, NQ = 3000,

SNGVALTE = FALSE, GRDSEQ_REST = FALSE, SV_GRDSEQ = FALSE,

WRITERESID = FALSE, TIMING = FALSE, WRITETURB = FALSE,

FLBUD = FALSE, PCHORD = 0.32, SKNFRC = FALSE

&END

&PROBE

NK_ITS = 20, NK_ILU = 2, NK_LFIL = 2, NK_PFRZ = 1,

NK_PDC = 6.d0, NK_IMGMR = 40, NK_ITGMR = 40

&END

&EXTRA

grid_file_prefix = ’257x57-15raef-10dv’,

output_file_prefix = ’pm-10re’,

restart_file_prefix = ’initial’

&END

5.E-6 | AF Convergence criteria: AF_MINR

5.E-15 | Convergence criteria: MIN_RES

1.E-8 | Min. res. in turb. mod. : SPMIN_RES

ISEQUAL

1

JMXI KMXI IENDS DTISEQ DTMIS DTOW

257 57 20000 5.d0 0.0 1.d1

Appendix C

Input Files for Eighteen-Point

Optimization

Input file for first eighteen-point optimization:

MP-OPT

18

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.5 0.72 0.17 1.0 0.01 27.32e6 FALSE 0.04 8 TRUE TRUE TRUE

1.5 0.72 0.28 1.0 0.01 27.32e6 FALSE 0.63 8 TRUE TRUE TRUE

1.5 0.72 0.27 1.0 0.01 18.57e6 FALSE 0.59 8 TRUE TRUE TRUE

2.0 0.72 0.45 1.0 0.01 18.57e6 FALSE 1.65 8 TRUE TRUE TRUE

2.0 0.64 0.21 1.0 0.01 24.22e6 FALSE 1.5 8 TRUE TRUE TRUE

1.5 0.64 0.36 1.0 0.01 24.22e6 FALSE 2.6 8 TRUE TRUE TRUE

1.5 0.64 0.34 1.0 0.01 16.46e6 FALSE 2.5 8 TRUE TRUE TRUE

1.0 0.64 0.57 1.0 0.01 16.46e6 FALSE 4.5 8 TRUE TRUE TRUE

1.0 0.76 0.28 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

1.0 0.76 0.15 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

1.0 0.76 0.46 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

1.0 0.76 0.25 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

1.0 0.76 0.45 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

1.0 0.76 0.24 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

1.0 0.76 0.74 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

1.0 0.76 0.40 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

1.0 0.16 1.20 1.0 0.010 11.8e6 TRUE 8.0 6 FALSE FALSE FALSE

1.0 0.20 1.20 1.0 0.010 15.0e6 TRUE 8.0 6 FALSE FALSE FALSE

&OPTIMA

OPT_METH = 3, OPT_ITER = 300, OPT_TOL = 1.d-5,

79

80 Appendix C. Input Files for Eighteen-Point Optimization

OPT_RESTART = FALSE, GRADIENT = 1, CDF = TRUE, FD_ETA = 1.d-6,

COEF_FRZ = FALSE, IFRZ_WHAT = 3, WFACTOR = 0.1, BSTEP = 0.1,

AUTO_RESTART = FALSE, NUM_RESTARTS = 5,

INORD = 2, IREORD = 2,

ILU_METH = 2, LFIL = 6, PDC = 3.0,

IM_GMRES = 85, EPS_GMRES = 1.d-8, ITER_GMRES = 500,

NTCON=2, WFD=0.0, WTC=50.0,

CTX =0.95,0.99,

CTY_TAR =0.01,0.002,

WAC=0.0, AREAFAC=1.0

NRTCON = 1, crtxl = 0.10d0, crtxt = 0.90d0, crtxn = 15,

crthtar = 0.142d0

&END

&CYCLONE

JMAX=289, KMAX=65, JTAIL1=33, JTAIL2=257,

TRANSLO=0.01, TRANSUP=0.01,

CLINPUT= 0.17, CLTOL=1.0d-11,

RELAXCL=3.0, ICLFREQ=50, ICLSTRT=100,

RESTART=FALSE, JACDT=1, IREAD=2, BCAIRF=TRUE, CIRCUL=FALSE,

IORD=2, INTEG=2, CMESH=FALSE,

IDMODEL=1,

DIS2X = 0.0, DIS4X = 0.01, DIS2Y = 0.0, DIS4Y = 0.01,

VLXI = 0.25, VNXI = 0.25, VLETA = 0.25, VNETA = 0.25,

LIMITER = 1, EPZ = 1.d-3, EPV = 5.d0,

PREC = 0, PRXI = 0.0, PRPHI = 1.0,

TURBULNT = TRUE, ITMODEL = 2, ISPBC = 1, VISCEIG = 1.d0,

VISCOUS = TRUE, VISETA = TRUE, VISXI = FALSE, VISCROSS = FALSE,

NCP = 1000, NQ = 1000,

SNGVALTE = FALSE, GRDSEQ_REST = FALSE, SV_GRDSEQ = FALSE,

WRITERESID = FALSE, TIMING = FALSE, WRITETURB = FASLE,

81

FLBUD = FALSE, PCHORD = 0.32, SKNFRC = TRUE

&END

&PROBE

NK_ITS = 40, NK_ILU = 2, NK_LFIL = 2, NK_PFRZ = 1,

NK_PDC = 6.d0, NK_IMGMR = 40, NK_ITGMR = 40

&END

&EXTRA

grid_file_prefix = ’grid-new’,

output_file_prefix = ’test’,

restart_file_prefix = ’xxx’

&END

1.E-7 | AF Convergence criteria: AF_MINR

5.E-15 | Convergence criteria: MIN_RES

1.E-8 | Min. res. in turb. mod. : SPMIN_RES

ISEQUAL

1

JMXI KMXI IENDS DTISEQ DTMIS DTOW

289 65 20000 5.0 0.0 1.d1

Input file for the second eighteen-point optimization remains the same as for the

first run, except a new grid is used that is made around the final airfoil from the first

optimization, the initial objective function values used in the normalization are set to

the original values from the first optimization, and the weights and other parameters

for some design points are changed. Weights and input details for second eighteen-point

optimization, continuing from first optimized airfoil:

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.5 0.72 0.17 1.0 0.01 27.32e6 FALSE 0.11 8 TRUE TRUE TRUE

1.5 0.72 0.28 1.0 0.01 27.32e6 FALSE 0.74 8 TRUE TRUE TRUE

1.5 0.72 0.27 1.0 0.01 18.57e6 FALSE 0.73 8 TRUE TRUE TRUE

3.0 0.72 0.45 1.0 0.01 18.57e6 FALSE 1.76 8 TRUE TRUE TRUE

3.0 0.64 0.21 1.0 0.01 24.22e6 FALSE 0.41 8 TRUE TRUE TRUE

2.5 0.64 0.36 1.0 0.01 24.22e6 FALSE 1.44 8 TRUE TRUE TRUE

2.5 0.64 0.34 1.0 0.01 16.46e6 FALSE 1.34 8 TRUE TRUE TRUE

1.2 0.64 0.57 1.0 0.01 16.46e6 FALSE 2.93 8 TRUE TRUE TRUE

1.0 0.76 0.28 1.0 0.01 28.88e6 FALSE 0.70 8 TRUE TRUE TRUE

1.0 0.76 0.15 1.0 0.01 28.88e6 FALSE 0.06 8 TRUE TRUE TRUE

1.0 0.76 0.46 1.0 0.01 28.88e6 FALSE 2.07 8 TRUE TRUE TRUE

1.0 0.76 0.25 1.0 0.01 28.88e6 FALSE 0.53 8 TRUE TRUE TRUE

1.0 0.76 0.45 1.0 0.01 19.62e6 FALSE 2.05 8 TRUE TRUE TRUE

1.0 0.76 0.24 1.0 0.01 19.62e6 FALSE 0.52 8 TRUE TRUE TRUE

1.0 0.76 0.74 1.0 0.01 19.62e6 FALSE 5.00 8 TRUE TRUE TRUE

82 Appendix C. Input Files for Eighteen-Point Optimization

1.0 0.76 0.40 1.0 0.01 19.62e6 FALSE 1.59 8 TRUE TRUE TRUE

1.0 0.16 1.80 1.0 0.010 11.8e6 TRUE 8.50 6 FALSE FALSE FALSE

1.0 0.20 1.80 1.0 0.010 15.0e6 TRUE 7.96 6 FALSE FALSE FALSE

Similarly, weights and input details for third eighteen-point optimization, continuing

from second optimized airfoil:

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.5 0.72 0.17 1.0 0.01 27.32e6 FALSE -0.4 8 TRUE TRUE TRUE

1.5 0.72 0.28 1.0 0.01 27.32e6 FALSE 0.20 8 TRUE TRUE TRUE

1.5 0.72 0.27 1.0 0.01 18.57e6 FALSE 0.20 8 TRUE TRUE TRUE

3.0 0.72 0.45 1.0 0.01 18.57e6 FALSE 1.20 8 TRUE TRUE TRUE

4.0 0.64 0.21 1.0 0.01 24.22e6 FALSE -0.3 8 TRUE TRUE TRUE

2.5 0.64 0.36 1.0 0.01 24.22e6 FALSE 0.80 8 TRUE TRUE TRUE

2.5 0.64 0.34 1.0 0.01 16.46e6 FALSE 0.70 8 TRUE TRUE TRUE

1.2 0.64 0.57 1.0 0.01 16.46e6 FALSE 2.20 8 TRUE TRUE TRUE

1.0 0.76 0.28 1.0 0.01 28.88e6 FALSE 0.20 8 TRUE TRUE TRUE

1.0 0.76 0.15 1.0 0.01 28.88e6 FALSE -0.5 8 TRUE TRUE TRUE

1.0 0.76 0.46 1.0 0.01 28.88e6 FALSE 1.50 8 TRUE TRUE TRUE

1.0 0.76 0.25 1.0 0.01 28.88e6 FALSE 0.00 8 TRUE TRUE TRUE

1.0 0.76 0.45 1.0 0.01 19.62e6 FALSE 1.50 8 TRUE TRUE TRUE

1.0 0.76 0.24 1.0 0.01 19.62e6 FALSE 0.60 8 TRUE TRUE TRUE

8.0 0.76 0.74 1.0 0.01 19.62e6 FALSE 0.00 8 TRUE TRUE TRUE

1.0 0.76 0.40 1.0 0.01 19.62e6 FALSE 1.59 8 TRUE TRUE TRUE

5.0 0.16 1.90 1.0 0.010 11.8e6 TRUE 16.1 6 FALSE FALSE FALSE

5.0 0.20 1.90 1.0 0.010 15.0e6 TRUE 15.8 6 FALSE FALSE FALSE

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Motivation
	Existing Methods

	Governing Equations
	Optimization Equations
	Problem Formulation
	Design Variables
	Objective Function
	Constraints

	Flow Equations
	Navier-Stokes Equations
	Turbulence Model
	Thin-Layer Approximation and Coordinate Transformation

	Algorithm
	Flow Solver - Approximate Factorization
	Flow Solver - Newton-Krylov Algorithm
	Optimizer Equations
	Other Modifications

	Results
	Flow Solver
	Gradient Calculations
	Optimization Cases
	Single-Point Subsonic Airfoil Design
	Single-Point Transonic Airfoil Design
	Four-Point Optimization Case
	Two-Point Pareto Front
	Eighteen-Point Optimization Case

	Conclusions and Recommendations
	References
	New Analytical Derivatives
	Derivative of Coefficients with Respect to Angle of Attack
	Derivatives of Coefficients with Respect to Flow Variables
	Force Due to Pressure
	Force Due to Friction

	Derivatives of Existing Residual Equations
	Far-Field Boundary Residual
	Outflow Boundary Residual

	Input Files for Optimizations
	Subsonic Single-Point Optimization Input File
	Transonic Single-Point Optimization Input File
	Four-Point Optimization Input Files
	Two-Point Pareto Front Input Files

	Input Files for Eighteen-Point Optimization

