
ADjoint: An Approach for the Rapid Development of

Discrete Adjoint Solvers

by

Charles Alexander Mader

A thesis submitted in conformity with the requirements

for the degree of Masters of Applied Science

Institute for Aerospace Studies

University of Toronto

Copyright c© 2007 by Charles Alexander Mader

Abstract

ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers

Charles Alexander Mader

Masters of Applied Science

Institute for Aerospace Studies

University of Toronto

2007

The ADjoint is a hybrid sensitivity analysis method that takes advantage of the best

aspects of both Automatic Di�erentiation (AD) and the semi-analytic adjoint method.

The key feature of the ADjoint method is that it selectively uses AD to calculate the

required partial derivative terms in the discrete adjoint sensitivity equations. This se-

lective use of AD signi�cantly reduces the computational cost and memory overhead of

using AD. Further, because of the use of AD, the method can provide exactly consistent

derivatives for arbitrarily complex governing equations and boundary conditions. In the

following work, the ADjoint method is applied to two three-dimensional Computational

Fluid Dynamics (CFD) solvers. The implementation in the �rst solver is simply a proof

of concept, while the implementation for the second solver is complete and provides

all the derivatives required for aerodynamic shape optimization. The resulting ADjoint

sensitivities are compared with complex-step derivatives to establish their accuracy.

ii

Acknowledgements

First and foremost, I would like to thank my adviser, Professor Joaquim Martins, for all

his support and encouragement throughout this project. He was always willing to make

time to discuss the project and provide insights, particularly when major road blocks

presented themselves. Without his support, the project would not have been nearly the

success that it has turned out to be.

Secondly, I would like to thank Dr. Andre C. Marta for his contributions to the

project. Without the groundwork he provided, the development shown in this thesis

would not have been possible.

Finally, I would like to thank my colleagues, particularly Ian Chittick and Graeme

Kennedy, who provided valuable advice and who's constant intervention helped me keep

my sanity during this work.

Financial support for this work was provided by the Natural Sciences and Engineering

Research Council of Canada and the University of Toronto.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Overview . 2

1.3 Contributions . 3

2 The ADjoint Approach 4

2.1 Adjoint Equations . 5

2.2 Automatic Di�erentiation . 7

2.3 The ADjoint . 13

2.4 ADjoint Implementation . 14

2.4.1 CFD Adjoint Equations . 15

2.4.2 Computation of ∂R/∂w . 16

2.4.3 Computation of ∂CD/∂w . 17

2.4.4 Adjoint Solver . 18

2.4.5 Total Sensitivity Equation . 18

2.5 ADjoint Validation Results . 18

2.5.1 Test Cases . 19

2.5.2 Lift and Drag Coe�cient Sensitivity Results 21

2.6 Conclusion . 23

3 Aerodynamic Shape Optimization Framework 24

3.1 pyAerosurf . 24

3.2 pyCFD-CSM . 27

3.3 pyWarp . 28

3.4 pyNSSUS . 28

3.4.1 Discretization Overview . 29

iv

3.4.2 Implementation Overview . 30

3.5 pySNOPT . 31

3.6 Framework Summary . 31

4 Sensitivity Analysis 34

4.1 Geometry and Mesh Component Sensitivities 35

4.1.1 Overview . 35

4.1.2 Implementation . 36

4.2 pyNSSUS Sensitivities . 38

4.2.1 Computation of ∂R/∂w . 38

4.2.2 Computation of ∂Ci/∂w . 41

4.2.3 Adjoint Solver . 41

4.2.4 Computation of ∂R/∂X(i, j, k) 41

4.2.5 Computation of ∂Ci/∂X(i, j, k) 42

4.2.6 Total Sensitivity Equation . 43

4.3 Total Design Variable Sensitivities . 43

5 Results 47

5.1 Test Cases . 47

5.1.1 In�nite Wing . 47

5.1.2 Oblique Wing: Coarse Mesh . 49

5.2 Accuracy Results . 49

5.3 Timing Results . 53

5.4 Conclusions . 54

6 Conclusions and Future Work 56

References 58

Appendix 61

A Generating an aerodynamic shape optimization test case 62

B List of input �les for aerodynamic optimization using πADO 64

C Creating a CFD grid using ICEM CFD 65

v

D AD tools for Fortran 68

E Modi�ed Complex Code Sections 69

E.1 pyAerosurf . 69

E.1.1 Original code segments . 69

E.1.2 Complexi�ed code segments . 69

E.2 pyWarp . 69

E.2.1 Original code segments . 69

E.2.2 Modi�ed code segments . 70

vi

List of Tables

2.1 Sensitivities of drag and lift coe�cients with respect to M∞ 22

2.2 ADjoint computational cost breakdown (times in seconds) 22

5.1 CFD mesh coordinate sensitivity veri�cation: dJ/dX(i, j, k),in the Z co-

ordinate direction. 51

5.2 Multiblock CFD mesh coordinate sensitivity veri�cation: dI/dX(i, j, k). . 52

5.3 Multiblock shape variable sensitivity veri�cation 53

5.4 ADjoint computational cost breakdown (times in seconds) 54

vii

List of Figures

2.1 Stencil for ∂R/∂w in SUmb . 17

2.2 Fine bump computational domain . 19

2.3 Contour plot of density . 20

2.4 LANN wing computational domain . 20

2.5 Contour plot of density . 21

3.1 Parametric surface generation . 25

3.2 Design variable application . 26

3.3 UML diagram of the designVariable class in pyAerosurf 27

3.4 Warped mesh visualization . 28

3.5 Stencil for the vertex-centred residual computation. 29

3.6 Block-to-block boundary stencil. 30

3.7 πADO analysis information �ow . 32

3.8 πADO aerodynamic optimization information �ow 32

4.1 Geometry and mesh component complex-step function 37

4.2 Stencil for the ∂R/∂w computation . 39

4.3 Stencil for the ∂R/∂X computation . 42

5.1 In�nite wing computational domain . 48

5.2 Density solution for a cross section of the in�nite wing 48

5.3 Oblique wing: coarse mesh computational domain 50

5.4 Pressure solution for the surface of the oblique wing 50

viii

Chapter 1

Introduction

As we push forward into the future of aircraft design, the requirements on aircraft de-

signers are becoming increasingly stringent. In addition to the traditional requirements

of designing a safe aircraft with good handling characteristics, the designer is also faced

with the constant demand of passengers who wish to �y farther, faster, for less money.

Further, the areas of environmental impact and noise pollution are also starting to have a

signi�cant impact in aircraft design. These more restrictive sets of competing design goals

are causing the aircraft designer to explore new design methods in order to provide the

best overall aircraft performance for a given situation. One of these new tools is design

optimization. More speci�cally, in the particular case of aircraft design, Aerodynamic

Shape Optimization. Aerodynamic shape optimization is a process whereby numerical

analysis tools such as Computational Fluid Dynamics (CFD) are used in conjunction

with numerical search tools � also known as optimizers � to search a given design space

for the best solution for a given set of requirements. One class of tools that can be used

for this type of optimization is gradient-based search algorithms. However, in order for

these methods to work well, an e�cient method for calculating the gradients for the

numerical analysis is required. Finding a method to e�ciently compute the gradients of

large, complex numerical codes is the major focus of this work.

1.1 Motivation

This work discusses the ADjoint, an approach for the rapid development of discrete ad-

joint solvers. Adjoint solvers are a key component in the development of high-�delity,

gradient based optimization algorithms. These are, in turn, a key tool in the imple-

1

Chapter 1. Introduction 2

mentation of aerodynamic shape optimization methods. In order to take advantage of

the information provided by a high-�delity analysis, it is generally desirable to include

a large amount of design �exibility when conducting a high-�delity shape optimization.

This typically requires a large number of design variables to allow su�cient variability

in all components of the shape of the aircraft being optimized. However, because of this

large number of design variables, the optimization algorithm used needs to be able to

handle large numbers of design variables e�ciently. While numerous examples exist of

gradient-free algorithms being used for shape optimization, it is generally accepted that

gradient-free algorithms become infeasible for more than 20 or 30 design variables. This

leaves gradient based algorithms as the only option for large scale design optimization. In

order to conduct large-scale gradient based optimization, an e�cient sensitivity analysis

method is required. Otherwise, the computational time spent evaluating derivatives will

far outweigh all the other computational costs in the optimization.

This is where adjoint methods become useful. While the computational cost of meth-

ods like �nite di�erences and the complex-step scale with the number of design vari-

ables [20, 30], the cost of the adjoint method has been shown to be essentially independent

of the number of design variables, thus allowing for a large number of shape derivatives to

be calculated e�ciently [16, 20, 30]. However, as will be discussed in section 2.3, the im-

plementation of adjoint methods in three-dimensional, high-�delity, Computational Fluid

Dynamics (CFD) codes has proved to be quite di�cult. As a result, the use of adjoint

methods in this �eld is still not particularly widespread. This is the motivation behind

the ADjoint approach. The ADjoint approach takes advantage of the best features of

both Automatic Di�erentiation(AD) and adjoint methods to provide a straightforward,

yet accurate and e�cient, method for implementing adjoint methods.

1.2 Research Overview

In the following sections, the ADjoint approach will be introduced and discussed. The

early sections introduce the ADjoint as well as the basic concepts of automatic di�eren-

tiation and adjoint methods upon which the ADjoint is based. Section 2.4 discusses a

preliminary implementation of the ADjoint conducted on the �rst �ow solver and shows

conclusively the advantageous properties of the ADjoint, namely the accuracy and com-

putational e�ciency of the method. The later sections discuss the full implementation of

ADjoint sensitivities in the aerodynamic framework being constructed to conduct aerody-

Chapter 1. Introduction 3

namic shape optimization. Section 4.2 discusses the full implementation of the ADjoint

method on the second code, including the parallelization and multiblock aspects of the

implementation. Finally, section 4.3 shows how the �ow solver ADjoint sensitivities can

be combined with geometry and grid manipulation tools to compute the total aerody-

namic shape sensitivities required for shape optimization.

1.3 Contributions

The main contribution of this work is the idea of a hybrid approach between automatic

di�erentiation and adjoint methods. By combining the two together, the bene�ts of both

techniques are realized. The independence of computational cost from the number of

design variables typically associated with adjoint methods is attained, while the accuracy

and extensibility associated with AD are also achieved. Further, each technique tends to

eliminate the de�ciencies of the other. In one case, the use of AD eliminates the tedious

process involved in generating the partial derivatives required for the adjoint equations.

In the other, using the adjoint method to reduce the scope of the AD signi�cantly reduces

the implementation di�culties and memory costs frequently associated with AD. The

following research outlines the steps required to implement sensitivities using the ADjoint

approach and shows that it is both accurate and e�cient.

Chapter 2

The ADjoint Approach

For gradient based optimization of complicated functions, determining the derivatives

of the objective function can be a signi�cant bottleneck in the optimization process.

Traditional methods such as �nite di�erencing can be relatively simple to implement, but

tend to sacri�ce speed and accuracy as a result [22, 30]. Consider the general forward

�nite di�erence formula,
dI(x)

dx
=
I(x+ h)− I(x)

h
. (2.1)

In this case, it is quite clear that the derivative with respect to each successive x requires a

further evaluation of the function f(x+ h). Thus, for large numbers of design variables,

the cost of evaluating the derivatives is extremely high. Further, the accuracy of the

method is limited by opposite trends in truncation and round o� error [22]. While

the truncation error decreases with step size, round o� error, caused by subtractive

cancellation, increases as the step size decreases. Thus, there is a limit, greater than

machine zero, below which the error cannot be reduced [22]. Further, the minimum

error does not occur at a �xed step size, thus it is very di�cult to achieve the minimum

theoretical error with this method.

Both of these issues are addressed by adjoint methods. Adjoint methods provide high

accuracy and have a computational cost that is essentially independent of the number

of design variables present [16, 30]. While this sounds like the ultimate solution to the

sensitivity problem, in reality, things are not so simple. In many cases, for example the

turbulence models in modern CFD codes, the partial derivatives required to compute

an adjoint solution are prohibitively complex to derive. As a result, assumptions are

often made to simplify the derivatives, which results in a reduction in the accuracy of the

derivatives provided by the method. An excellent discussion on this topic is presented

4

Chapter 2. The ADjoint Approach 5

by Dwight and Brezillion [9]. The key then, is �nding a method with which one can

compute the partial sensitivities required by the adjoint method. The ADjoint approach

provides a robust method for dealing with this issue. By using automatic di�erentiation

to calculate the partial sensitivities in the adjoint equations, the e�ciency of an adjoint

method is maintained, while allowing the method to be extended to codes of arbitrary

complexity without di�culty. The use of automatic di�erentiation also provides exactly

consistent partial derivatives, which leads to numerically exact total sensitivities.

In the following section, the ADjoint method is developed. The adjoint equations are

introduced, followed by a brief explanation of automatic di�erentiation. Then, the con-

cept of the ADjoint, which combines the two, is explained. To conclude the development,

exactly consistent derivatives, developed using the ADjoint on the �rst �ow solver, are

shown.

2.1 Adjoint Equations

To derive the adjoint system of equations, consider a generic, single discipline case.

Further, consider a single objective function, that is a function of both the design variables

x as well as the system state variables w. In the generic case, let this be

I = I(x,w). (2.2)

Also, de�ne a set of governing equations,

R (x,w (x)) = 0, (2.3)

which represent the physics of the system and de�ne the states of the system, w, when

they are satis�ed. Next, consider the total derivatives of both the objective function I

and the governing equations R. These are written as follows:

dI

dx
=
∂I

∂x
+
∂I

∂w

dw

dx
(2.4)

dR
dx

=
∂R
∂x

+
∂R
∂w

dw

dx
= 0. (2.5)

Unfortunately, both of these equations contain the total derivative dw/ dx, which re-

quires the governing equations to be satis�ed for every x. However, as is expressed in

equation (2.5), the total derivative of the residuals with respect to the design variables,

Chapter 2. The ADjoint Approach 6

i.e. the derivative including a solution of the system for each new design variable, will be

zero. The states will be modi�ed as the system is solved to ensure that this is the case.

Because of this fact, the system in equation (2.5) can be rearranged to isolate dw/ dx as

follows,

dw

dx
= −

[
∂R
∂w

]−1
∂R
∂x

. (2.6)

Having done this, the result from equation (2.6) can be substituted back into equa-

tion (2.4) to create an alternate form of the total sensitivity equation as shown in equa-

tion (2.7)

dI

dx
=
∂I

∂x
− ∂I

∂w

[
∂R
∂w

]−1
∂R
∂x

. (2.7)

From this equation, one can generate either of the two typical semi-analytic methods

used. To get the direct method, one solves the system generated by the last two terms,

which is analogous to solving the system of equations represented in equation (2.6). This

method requires solving one linear system for each x of interest, which causes the cost

of the method to scale with the number of design variables, Nx. The alternative is to

solve the system generated by the second and third terms in equation (2.7), which has

the form,

ψ = − ∂I
∂w

[
∂R
∂w

]−1

. (2.8)

This approach is commonly referred to as the adjoint method, which is more traditionally

written as, [
∂R
∂w

]T

ψ = − ∂I
∂w

. (2.9)

In this case, one has to solve a linear system for each I, so the cost of computing deriva-

tives scales with the number of objective functions, NI , rather than the number of design

variables Nx. The selection of which semi-analytic method to use, adjoint or direct,

comes down to the relative number of design variables, Nx, and objective functions, NI .

For cases with large numbers of objective functions, the direct method is obviously more

e�cient, while for cases with many design variables, the adjoint method is better. In

the case of aerodynamic shape optimization there are typically relatively few objective

values, usually CD and CL. However there can be on the order of hundreds or thou-

sands of design variables describing the shape of the design. Thus, for aerodynamic

shape optimization, the adjoint method will generally provide signi�cant computational

advantages. Thus, for the following work, equation (2.7) will be solved using the adjoint

Chapter 2. The ADjoint Approach 7

method with the equations taking the following form:[
∂R
∂w

]T

ψ = − ∂I
∂w

, (2.10)

dI

dx
=
∂I

∂x
+ ψT ∂R

∂x
, (2.11)

where ψ is the adjoint vector and dI/ dx is the vector of total sensitivities required for

optimization.

2.2 Automatic Di�erentiation

The process of automatic di�erentiation, which is also known as computational di�eren-

tiation or algorithmic di�erentiation, has been around for many years. Its earliest im-

plementation dates back to the early 1960's, for example the work published by Wengert

in 1964 [35]. Essentially, it is the process of systematically applying the chain rule of

di�erentiation to a computer code to accumulate the value of the derivative as the value

of the function is being computed or, as Rall and Corliss put it,

� AD is the systematic application of the familiar rules of calculus to computer

programs, yielding programs for the propagation of numerical values of �rst,

second, or higher derivatives.� [29]

By treating the code in this manner, even very complex derivatives can be broken down

into components that are simple enough to treat with very basic derivative methods, the

total e�ect of which can be determined by the combination of the simple derivatives. A

more detailed description of the method is given below.

Consider a general problem with Nx independent variables, x, and Ny dependent

variables, y. Let the independent variables take the values t1, t2, . . . tNx . In the case

of aerodynamic shape optimization these would be the design variables describing the

shape of the aerodynamic body. Then, let the dependent variables take the values

tNx+1, tNx+2, . . . , tm, tm+1, . . . , tm+Ny . Where tNx+1 to tm are the intermediate variables of

the algorithm and tm+1 to tm+Ny are the output variables of the algorithm. Given these

de�nitions, one can write write the value of the calculation at any stage of the algorithm

as follows,

ti = fi (t1, t2, . . . ti−1) , i = Nx + 1, Nx + 2, . . . ,m+Ny. (2.12)

Chapter 2. The ADjoint Approach 8

Given this de�nition of the function at any stage in the algorithm, its derivative can be

formulated using the multivariable form of the chain rule as expressed in equation (2.13).

∂ti
∂tj

=
i−1∑
k=j

∂fi

∂tk

∂tk
∂tj

, j = 1, 2, . . . , n (2.13)

To demonstrate this, consider the simple problem de�ned by equations (2.14) and (2.15).

y1 = x2
1x2 + sinx3 (2.14)

y2 = x1x2x3 + ex2 (2.15)

This example has two dependent output variables, yj, and three independent vari-

ables, xi. Next, using the notation of Rall and Corliss [29], one can write the evaluation

of y1 and y2 in algorithmic form as a sequence of simple operations.

t1 = x1

t2 = x2

t3 = x3

t4 = t1 × t1

t5 = t4 × t2

t6 = sin t3

t7 = t5 + t6

y1 = t7

t8 = t1 × t2

t9 = t8 × t3 (2.16)

t10 = et2

t11 = t9 + t10

y2 = t11
Now, knowing that the intermediate variable t7 represents the output y1 and that the

intermediate variable t1 represents the input x1, one can compute the derivative ∂t7/∂t1,

which represents the derivative of y1 with respect to x1. The analytic derivative for this

case is simply,
∂y1

∂x1

= 2x1x2 (2.17)

Now, one can write the same derivative in terms of equation (2.13). In this case, i takes

on a value of 7 and j takes on a value of 1. Given these values, equation (2.13) can be

expanded as follows:

∂t7
∂t1

=
∂t7
∂t1

∂t1
∂t1

+
∂t7
∂t2

∂t2
∂t1

+
∂t7
∂t3

∂t3
∂t1

+
∂t7
∂t4

∂t4
∂t1

+
∂t7
∂t5

∂t5
∂t1

+
∂t7
∂t6

∂t6
∂t1

. (2.18)

Now, consider each of the derivatives in this section. First of all, consider the �rst

component in each term of the summation. These terms represent the change in the

Chapter 2. The ADjoint Approach 9

output variable, t7, caused by a change in each one of the intermediate variables. Based

on the expressions in equation set (2.16),one can write the following,

∂t7
∂t1

= 0

∂t7
∂t2

= 0

∂t7
∂t3

= 0

∂t7
∂t4

= 0

∂t7
∂t5

= 1 (2.19)

∂t7
∂t6

= 1

Thus, it becomes obvious that t7 depends explicitly only on t5 and t6.

Next, consider the second component in each term of the summation. These terms

represent the total change in the intermediate variables ti for a change in the input

variable of interest, in this case t1. Again, based on the expressions in equation set (2.16),

the following expressions can be written as,

∂t1
∂t1

= 1

∂t2
∂t1

= 0

∂t3
∂t1

= 0 (2.20)

∂t4
∂t1

= 2t1

∂t5
∂t1

=
∂t5
∂t4

∂t4
∂t1

+
∂t5
∂t2

∂t2
∂t1

= t2 × 2t1 + t4 × 0 = 2t1t2

∂t6
∂t1

= 0

Note that the chain rule from equation (2.13) is again used to represent the derivative

∂t5/∂t1 because of its implicit dependence on t1, through t4. In this case, however, several

zero derivatives have been neglected to save space. Now, one can combine the expressions

from equation sets (2.19) and (2.20) to evaluate equation (2.18) as follows,

∂t7
∂t1

= 0× 1 + 0× 0 + 0× 0 + 0× 2t1 + 1× 2t1t2 + 1× 0 = 2t1t2. (2.21)

Substituting in the original variables, one gets the result,

∂y1

∂x1

= 2x1x2, (2.22)

which is the same as the analytic result.

However, in practice, automatic di�erentiation tools do not apply the chain rule in

this brute force way. The application is done step by step in the algorithm, which leads

Chapter 2. The ADjoint Approach 10

to two distinct approaches: the forward mode and the reverse mode. The forward mode

approach, which is the easier of the two to grasp, starts with one input variable, tj, and

steps through the algorithm in the normal (forward) direction, building up derivative

information as it progresses. At the end of the algorithm, this approach produces deriva-

tive information for all of the algorithm output variables with respect to that single input

variable.

The reverse mode is somewhat less intuitive. With this approach, the algorithm

performs a single forward pass to calculate the values of all of the intermediate variables,

t. Having done this, the algorithm then performs a reverse sweep, accumulating the

derivative in�uence from output to input. The advantage of this approach is that because

it starts with a single output variable and steps backward through the algorithm, it can

compute the in�uence of all the input variables on that output in a single pass. In cases

where there are more input variables than output variables, this can lead to signi�cant

computational savings.

To help illustrate this point, each approach will be examined in more detail using

the previous example. To demonstrate the forward mode, consider the input variable

x1, which corresponds to t1. In the forward mode approach, the algorithm computes

both the values and the derivative of the code at each step in the evaluation. The values

are evaluated as in equation set (2.16), while the derivative are evaluated as shown in

equation sets (2.23) and (2.24).

∂t1
∂t1

= 1

∂t2
∂t1

= 0

∂t3
∂t1

= 0

∂t4
∂t1

= 2t1 (2.23)

∂t5
∂t1

= t2
∂t4
∂t1

+ t4
∂t2
∂t1

= 2t1t2

∂t6
∂t1

= 0

∂t7
∂t1

= 1× ∂t5
∂t1

+ 1× ∂t6
∂t1

= 2t1t2

∂y1

∂t1
= 2t1t2

Chapter 2. The ADjoint Approach 11

∂t8
∂t1

= t2 × 1 + t1 ×
∂t2
∂t1

= t2

∂t9
∂t1

= t3 ×
∂t8
∂t1

+ t8 ×
∂t3
∂t1

= t2t3

∂t10
∂t1

= 0 (2.24)

∂t11
∂t1

= 1× ∂t9
∂t1

+ 1× ∂t10
∂t1

= t2t3

∂y2

∂t1
= t2t3

Note that at each step, the derivative is only a function of the values and derivatives

computed previously. Thus, all of the derivatives with respect to t1 can be computed in

a single forward pass. However, though the derivatives for all of the output variables are

generated in one pass, a separate pass has to be conducted for each input variable. In

the case of design or shape optimization, where there are typically many design variables,

this can incur a signi�cant cost.

Now consider the reverse mode. In this case, one starts with a single output variable

and steps backward through the algorithm, developing the derivatives in reverse order.

For this process to work, the values of the intermediate variables must all be known before

hand, thus a single forward pass through the algorithm is a prerequisite to this process.

Consider the output value y2, which is related to t11. For the sample problem above, the

analytic results for the derivative of y2 with respect to the three input variables are,

∂y2

∂x1

= x2x3

∂y2

∂x2

= x2e
x2 + x1x3 (2.25)

∂y2

∂t3
= x1x2.

Now using the reverse mode method, the di�erentiation is constructed as follows,

∂t11
∂t11

= 1

∂t11
∂t10

= 1 (2.26)

∂t11
∂t9

= 1

∂t11
∂t8

=
∂t11
∂t9

∂t9
∂t8

= 1× t3

Chapter 2. The ADjoint Approach 12

∂t11
∂t7

= 0

∂t11
∂t6

= 0

∂t11
∂t5

= 0

∂t11
∂t4

= 0 (2.27)

∂t11
∂t3

=
∂t11
∂t9

∂t9
∂t3

= 1× t8 = t1t2

∂t11
∂t2

=
∂t11
∂t10

∂t10
∂t2

+
∂t11
∂t8

∂t8
∂t2

= 1× t2e
t2 + t3 × t1 = t2e

t2 + t1t3

∂t11
∂t1

=
∂t11
∂t8

∂t8
∂t1

= t3 × t2 = t2t3,

giving the following �nal results,

∂y2

∂x1

= x2x3

∂y2

∂x2

= x2e
x2 + x1x3 (2.28)

∂y2

∂t3
= x1x2.

Again, the derivatives are the same as the analytic results. However, this time, the

derivatives of a single output variable with respect to all of the input variables are com-

puted with only one forward pass and one backward pass through the algorithm. It is

apparent then, that if there are more input variables than output variables, the reverse

mode can allow signi�cant computational savings.

However, while for this simple example it is fairly straight forward to break down

the problem and apply simple calculus rules, in practice the application for which AD is

intended are large and potentially very complex computer codes with thousands or even

millions of variables. In these cases, it is nearly impossible and most certainly impractical

to attempt a similar �manual� approach. As a result, computer tools have been developed

to aid in the implementation of AD.

There are two main approaches used by the tools developed to implement automatic

di�erentiation: source code transformation and operator overloading. Tools that use

source code transformation add new statements to the original source code that compute

the derivatives of the original statements. These statements would be analogous to the

derivative formulae developed in equation sets (2.23) and (2.24) for forward mode and

equation sets (2.26) and (2.27) for reverse mode when considering the simple example

Chapter 2. The ADjoint Approach 13

described previously. The operator overloading approach is implemented by de�ning a

new, user de�ned, data type that is used instead of real numbers. This new data type

includes not only the value of the original variable, but the derivative as well. In addition,

all of the intrinsic operations and functions have to be rede�ned (overloaded) so that the

derivative component is computed along with the desired function value.

There are automatic di�erentiation tools available for a variety of programming lan-

guages including Fortran, C/C++ and Matlab. A list of some of the available tools for

Fortran has been included in Appendix D for reference, however for this work the tool

Tapenade [14, 27, 13] was used. Tapenade is a non-commercial, source transformation

tool that includes support for Fortran 90, a requirement for this work. The tool, which

was developed at INRIA, is the successor to Odyssée [10] and is capable of performing

di�erentiation in either forward or reverse mode.

Having outlined the basic concepts of AD and discussed the tools used to implement

it, it is now possible to discuss the ADjoint in more detail.

2.3 The ADjoint

While adjoint methods have been know for quite some time, for example one of the earliest

application to a �uids application is due to Pironeau [28] in 1974, the use of adjoint

methods in �uid dynamics is still not commonplace. Research applications of the adjoint

have progressed steadily. For example, the method was extended by Jameson to perform

airfoil shape optimization [16] in the 1980's and was then used, in conjunction with a

Newton-Krylov solver, for airfoil shape optimization by Nemec and Zingg [25]. Since

then, the adjoint method has also been developed for more complex problems, leading to

its application to the design optimization of complete aircraft con�gurations considering

aerodynamics alone [30, 31], as well as aerodynamic and structural interactions [19]. The

adjoint method has also been generalized for multidisciplinary systems [20].

Thus, given all of this activity in the research �eld, why has the adjoint method

not gained more commonplace use in everyday applications? One of the main reasons

for this is the complexity and e�ort involved in generating adjoint code in complex

three�dimensional �ow solvers. In many cases, for example in the turbulence models

used to close the Reynolds-averaged Navier-Stokes (RANS) equations, the expressions

used in the �ow solver are prohibitively di�cult to di�erentiate by hand. Thus, in

many cases, implementing an adjoint computation is dismissed as too onerous. Often,

Chapter 2. The ADjoint Approach 14

to eliminate this problem, numerical di�erentiation techniques are used to alleviate the

di�culty. In many cases, �nite�di�erence methods are used to generate the partial

derivatives outlined in section 2.1. However, this again leads to accuracy issues in the

derivatives. More recently, Nielsen and Kleb demonstrated a method to generate the

required derivatives using complex variables [26]. This approach has many similarities to

the ADjoint approach and was also able to provide accurate, e�cient sensitivities. Thus,

given all of the previously discussed di�culties encountered when trying to compute

accurate and e�cient sensitivities, the goal of the ADjoint approach is to reduce the

complexity of implementing an adjoint to the point where it is considered a competitive

alternative for sensitivity analysis in three-dimensional CFD solvers.

The idea behind the ADjoint approach is quite simple. It is a hybrid approach between

pure automatic di�erentiation and the adjoint method. The central idea of the ADjoint

method is simply to compute the four partial derivative terms in the expanded form of

the total sensitivity equation (2.7), ∂R/∂w, ∂I/∂w, ∂I/∂x and ∂R/∂x, using automatic
di�erentiation. Once these terms are computed, the adjoint method, as described by

equations (2.35) and (2.36), is used to compute the desired vector of total sensitivities. By

approaching the problem in this manner, the advantages of both techniques are exploited.

The use of the adjoint method allows for e�cient computation of the derivatives of few

outputs with respect to many input values, while the use of automatic di�erentiation to

compute the partial derivatives allows for very high accuracy and a relatively fast and

simple implementation. To demonstrate these points, the ADjoint approach was used to

implement an adjoint code on the three�dimensional CFD solver SUmb.

2.4 ADjoint Implementation

To demonstrate the feasibility of the ADjoint concept, the ADjoint approach was used

to develop sensitivities for the SUmb �ow solver [34]. SUmb, which has been devel-

oped at Stanford University under the sponsorship of the Department of Energy, is a

�nite-volume, cell-centered multi-block solver for the Reynolds-averaged Navier�Stokes

equations (steady, unsteady, and time-spectral) and it provides options for a variety of

turbulence models with one, two and four equations. For the purposes of demonstration,

the sensitivities of both lift and drag coe�cient, CL and CD, with respect to the free

stream Mach number, M∞ were developed. In the following discussion the explanations

are limited to the derivatives of CD, however the development of the sensitivities for CL

Chapter 2. The ADjoint Approach 15

parallel this development exactly.

2.4.1 CFD Adjoint Equations

The �rst step in the ADjoint approach is to develop the discrete total sensitivity equa-

tion (2.7) for the speci�c case of this �ow solver. For the purposes of this discussion,

the sensitivities are developed in terms of the three�dimensional Euler equations. The

governing equations for the three�dimensional Euler �ows are,

∂w

∂t
+
∂fi

∂xi

= 0, (2.29)

where xi are the coordinates in the ith direction, and the state and the �uxes for each

cell are

w =

ρ

ρu1

ρu2

ρu3

ρE

, fi =

ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiu3 + pδi3

ρuiH

(2.30)

.

A coordinate transformation to computational coordinates (ξ1, ξ2, ξ3) is used. This

transformation is de�ned by the following metrics,

Kij =

[
∂Xi

∂ξj

]
, J = det(K), (2.31)

K−1
ij =

[
∂ξi
∂Xj

]
, S = JK−1, (2.32)

where S represents the areas of the face of each cell projected on to each of the physical

coordinate directions.

The Euler equations in computational coordinates can then be written as,

∂Jw

∂t
+
∂Fi

∂ξi
= 0, (2.33)

where the �uxes in the computational cell faces are given by Fi = Sijfj.

In semi-discrete form the Euler equations are,

dwijk

dt
+Rijk(w) = 0, (2.34)

where R is the residual with all of its components (�uxes, boundary conditions, arti�cial

dissipation, etc.).

Chapter 2. The ADjoint Approach 16

Thus, for this �ow solver, the adjoint equation can be written as,[
∂R
∂w

]T

ψ = − ∂I
∂w

, (2.35)

and the total sensitivity equation can be written as,

dI

dx
=
∂I

∂x
+ ψT ∂R

∂x
. (2.36)

where ψ is the adjoint vector, I = CD, and x = M∞ for the speci�c case show below.

2.4.2 Computation of ∂R/∂w

The computation of ∂R/∂w is one of the most expensive portions of an adjoint compu-

tation. As a result, an e�cient method of computing this term is needed. The original

residual computation in SUmb contains a set of nested loops, whereby the �uxes for the

entire grid are computed for each direction in turn. The �nal value of the residual in each

cell being computed only at the end of all of these computations. Attempting to gener-

ate the require derivatives by performing automatic di�erentiation over the entire nested

residual routine in SUmb would have been prohibitively expensive, both computationally

and in terms of memory cost. However, by nature, the ∂R/∂w matrix is very sparse.

The residual in each cell only depends on a relatively small number of nearest-neigbour

and next nearest-neighbour cells. To take advantage of this fact, a set of routines that

calculates the residual at a given a cell location was created. This set of routines mimics

the original computation of the residuals exactly and includes all of the dissipation terms

and boundary conditions, but does not loop over all of the cells in the domain. The code

to compute this single cell residual was constructed from the original residual evaluation

routines in the �ow solver by removing the loops over all the cells in the domain and

making necessary adjustments so that the appropriate boundary conditions were called

for every cell in the stencil. Based on this formulation, the stencil that a�ects a given

cell when considering the Euler and dissipation �uxes is shown in Figure 2.1. Once

formulated, the single cell residual routine was then di�erentiated using Tapenade. in

this case, because there are as many 13 input cells for every output residual, the reverse

mode of AD was used to generate the code required to calculate ∂R/∂w. This code now

computes all of the required derivatives for a single cell in the mesh and a set of loops

over the domain can be used to fully populate the ∂R/∂w matrix. Once computed, the

elements of the ∂R/∂w matrix are stored in PETSc's sparse data structures for later use

in the computation of the ADjoint.

Chapter 2. The ADjoint Approach 17

−3 −2 −1 0 1 2 3 −2
−1

0
1

2−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

j
i

k

Figure 2.1: Stencil for ∂R/∂w in SUmb

Note that in this work, because the intention was only to prove the concept of the

ADjoint, only the Euler and dissipation �uxes are considered. The viscous �uxes and

turbulence models have been neglected. However, because the ADjoint method uses

automatic di�erentiation, its feasibility depends only on the existence of residual code,

not on the particular computations in the residual code. To extend the ADjoint to include

viscous e�ects would simply involve including the viscous residual terms in the single cell

residual routines.

2.4.3 Computation of ∂CD/∂w

The right-hand side (RHS) vector of the adjoint equations (2.35) � or matrix, in the

case of multiple functions of interest � represents the direct e�ect of the �ow variables

on the function of interest. In the cases shown here, the functions of interest are CD

and CL, so the derivatives needed are ∂CD/∂w and ∂CL/∂w, respectively. As with the

residual equations, modi�ed versions of the original functions were used to compute the

derivatives. However, in this case, because CD and CL are integrated quantities, the

stencil for the computation must include the entire surface of the model. As a result, in

general, it would be most e�cient to compute these derivatives with reverse mode AD.

However, in this case, given the relatively low cost of this computation, forward mode

di�erentiation was used for simplicity.

Chapter 2. The ADjoint Approach 18

2.4.4 Adjoint Solver

The adjoint equations (2.35) can be re-written for this speci�c case as,[
∂R
∂w

]T

ψ = −∂CD

∂w
. (2.37)

As was mentioned previously, both the ∂R
∂w

and the right hand side in this system

of equations are very sparse. To solve this system e�ciently, and having in mind that

a parallel adjoint solver was desired, it was decided to use PETSc (portable, extensible

toolkit for scienti�c computation) [4, 3, 5] as the solver for this work. PETSc is a suite

of data structures and routines for the scalable, parallel solution of scienti�c applications

modeled by PDEs. Using PETSc's data structures, ∂R/∂w and −∂CD/∂w were stored

as sparse entities. Once the sparse matrices were �lled, one of PETSc's built in solvers

was used to compute the adjoint solution. In this case, the PETSc implementation of

GMRES was used.

2.4.5 Total Sensitivity Equation

Having computed the adjoint vector, ψ, the total sensitivity equation (2.36) can be

written for this case as,
dCD

dM∞
=

∂CD

∂M∞
+ ψT ∂R

∂M∞
, (2.38)

where we have chosen the free stream Mach number,M∞, to be the independent variable.

As can be seen from equation (2.38), there are only two remaining terms required to form

the total sensitivity equation: ∂CD/∂M∞ and ∂R/∂M∞.

The �nal term, ∂R/∂M∞ , shares many components with the �ux Jacobian, ∂R/∂w,

which has already been discussed. Thus, much of the same logic regarding the use of a

single cell residual calculation still applies. However, in this case, the result is a vector,

not a matrix. Thus, for this computation, the residual routines were di�erentiated in

forward mode. The same argument applies for the �rst term in equation (2.38). This

term has a single input, so a forward mode di�erentiation was used.

2.5 ADjoint Validation Results

In this section the validity of the ADjoint approach is demonstrated for a pair of single

block test cases run on the SUmb �ow solver. Results for both the accuracy and e�ciency

of the approach are shown.

Chapter 2. The ADjoint Approach 19

Figure 2.2: Fine bump computational domain

2.5.1 Test Cases

Two test cases have been used to demonstrate the ADjoint method: channel �ow over

a bump and a subsonic wing. For the bump case, the front and back walls of the

channel have symmetry boundary conditions imposed on them, while the top wall is �at

and the bottom wall has been deformed with a sinusoidal bump to create a reasonable

variation in the �ow. The in�ow and out�ow faces of the domain have non-re�ecting

boundary conditions imposed on them and the upper and lower walls use a linear pressure

extrapolation boundary condition. The free stream Mach number is 2.

The wing geometry used for the second test case is the Lockheed-Air Force-NASA-

NLR (LANN) wing [32], which is a supercritical transonic transport wing. A symmetry

boundary condition is used at the root and a linear pressure extrapolation boundary

condition is used on the wing surface. The freestream Mach number is 0.621.

The meshes for these test cases are shown in Figures 2.2 and 2.4. Both cases have

relatively small meshes (48 × 24 × 24) and (64 × 16 × 12), respectively, and are being

used as a proof of concept. Figures 2.3 and 2.5 show the density contours for the �ow

solution of each case.

Chapter 2. The ADjoint Approach 20

Figure 2.3: Contour plot of density

1

Figure 2.4: LANN wing computational domain

Chapter 2. The ADjoint Approach 21

1

Figure 2.5: Contour plot of density

2.5.2 Lift and Drag Coe�cient Sensitivity Results

The benchmark sensitivity results were obtained using the complex-step derivative ap-

proximation, which is numerically exact [22]. That is to say that the precision of the

sensitivity is of the same order as the precision of the solution. The derivative in this

case is given by,
dCD

dM∞
=

Im [CD(M∞ + ih)]

h
, (2.39)

where h represents the magnitude of the complex step, for which a value of h = 10−20

was used.

In Table 2.1 results are shown for the sensitivities of both drag and lift coe�cients

with respect to freestream Mach number for each of the two di�erent test cases. As

the table shows, the adjoint sensitivities for these cases are extremely accurate, yielding

between 11 and 13 digits agreement when compared to the complex-step results. This

is consistent with the convergence tolerance that was speci�ed both in PETSc for the

adjoint solution and in SUmb for the �ow solution.

To analyze the performance of the ADjoint solver, several timings were performed.

They are shown in Table 5.3 for the two cases mentioned above. The �ne grid has 203, 840

Chapter 2. The ADjoint Approach 22

Table 2.1: Sensitivities of drag and lift coe�cients with respect to M∞

Mesh Coe�cient In�ow direction ADjoint Complex step

Fine CD (1,0,0) -0.0279501183024705 -0.0279501183024709

CL 0.58128604734707 0.58128604734708

Fine CD (1,0.05,0) -0.0615598631060438 -0.0615598631060444

CL -0.364796754652787 -0.364796754652797

Wing CD (1, 0.0102,0) 0.00942875710535217 0.00942875710535312

CL 0.26788212595474 0.26788212595468

�ow variables and the wing grid has 108, 800 �ow variables.

Table 2.2: ADjoint computational cost breakdown (times in seconds)

Fine Wing

Flow solution 219.215 182.653

ADjoint 51.959 20.843

Breakdown:

Setup PETSc variables 0.011 0.004

Compute �ux Jacobian 11.695 5.870

Compute RHS 8.487 2.232

Solve the adjoint equations 28.756 11.213

Compute the total sensitivity 3.010 1.523

The total cost of the ADjoint solver, including the computation of all the partial

derivatives and the solution of the adjoint system, is less than one fourth the cost of

the �ow solution for the �ne bump case and less that one eighth the cost of the �ow

solution for the wing case. This is even better than what is usually observed in the case

of adjoint solvers developed by conventional means, showing that the ADjoint approach

is indeed very e�cient. Comparing the performance of the various components in the

adjoint solver indicates that the largest amount of time was spent in the solution of

the adjoint equations. This is another indication that the single cell residual approach,

Chapter 2. The ADjoint Approach 23

combined with reverse mode automatic di�erentiation is, in fact, an e�cient approach.

The costliest of the automatic di�erentiation routines was the computation of ∂R/∂w.

When one takes into consideration the number of terms in this matrix, spending only 5%

of the �ow solution time in this computation is very impressive.

Also, while no rigorous measurement of the memory requirements of this code was

performed, preliminary observations indicate that the memory required for the ADjoint

code is approximately ten times that required for the original �ow solver. Most of this

memory increase is due to the storage of ∂R/∂w for the matrix based linear adjoint

solution. Given the pattern of use on most parallel computers, this is considered well

within the acceptable limits for an adjoint code.

2.6 Conclusion

In this section, the ADjoint and it underlying concepts, notably automatic di�erenti-

ation and adjoint methods, have been introduced and discussed. The results from the

application of the ADjoint method to the SUmb �ow solver are shown, and clearly demon-

strate the validity of the ADjoint approach. The comparison against the complex-step

method shows exact consistency to the convergence level of the �ow solver, while the

timing results show excellent e�ciency relative to the �ow solver. The price that is paid

in memory as a result of storing the entire ∂R/∂w matrix, while not insigni�cant, is

worthwhile considering the accuracy and computational e�ciency that are achieved.

Chapter 3

Aerodynamic Shape Optimization

Framework

To enable aerodynamic shape optimization, several tools besides the �ow solver are re-

quired to handle geometry de�nition, design variable de�nition and mesh warping. These

tools � which are a subset of the tools contained in the πADO multidisciplinary design

optimization framework � are coded in Fortran and, as such, need an external wrapping to

interface with each other. In the case of the πADO framework, the Python programming

language is used to create this wrapping. In each case, the Fortran tool is wrapped with

a Python interface which allows the Fortran code to be used in Python scripts through

the use of language independent shared object (.so) libraries. This approach allows direct

variable passing between the di�erent tools, which increases the speed and versatility of

the framework immensely. A detailed discussion of this methodology can be found in the

work by Alonso et al. [1]. In the following sections, descriptions are provided for each of

the various tools in the framework. This provides a basis on which to proceed with the

discussion on sensitivity analysis in Chapter 4.

3.1 pyAerosurf

pyAerosurf is the geometry engine in the πADO framework. Its role is to generate a

parametric surface mesh of the aircraft from a series of text based input �les (.geo,

.inp) which describe the geometry of the aircraft. This description is provided in terms

of number, type, shape and location of each component. The tool has the capability

to model fuselages, wings, tails � both vertical and horizontal �, nacelles and pylons.

24

Chapter 3. Aerodynamic Shape Optimization Framework 25

−2

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

−6

−4

−2

0

2

4

6

1

1

Figure 3.1: Parametric surface generation: The left hand �gure shows the de�ning two-

dimensional sections, while the right hand �gure shows the lofted parametric surface.

Each of the main components of the aircraft is described using a set of cross sectional

pro�les, which specify the shape of the component at various stations along its length.

Based on these section pro�les, pyAerosurf generates a parametric description of each

component of the aircraft using bi-cubic splines. These surfaces are then intersected to

generate an overall parametric description of the aircraft. A sample set of sections and the

corresponding lofted surface are shown in Figure 3.1. Note that because this is a single

component, no intersection operations were required. Once the parametric description

of the aircraft is generated, pyAerosurf can apply a variety of design variables to the

aircraft. These variables include parameters such as: the leading edge coordinate of the

wing sections (which will control sweep, span and dihedral), section twist angle, chord

length, thickness, as well as the surface shape of the wing, which is modi�ed using a

distribution of Hicks-Henne bumps [30, 15] on the surface of the aircraft. Hicks-Henne

bumps are simply a set of shape functions which can be used to specify local perturbations

at speci�c location on the surface of the wing. Each perturbation is also given an area of

in�uence over which the shape function is reduced to zero for integration back into the

original wing surface. In this work, a sine bump shape function is used.

Once the design variables are speci�ed, pyAerosurf generates a new surface mesh

which can be used to warp the CFD volume mesh. An example of this design vari-

able modi�cation is shown in Figure 3.2. It is important that the dimensions of the

intersected pyAerosurf patches do not change between design iterations. Otherwise, the

parameterization generated to interface the geometry mesh with the CFD volume mesh

by pyCFD-CSM � discussed in section 3.2 � will become invalid and the volume mesh

warping procedure will not function correctly. To ensure that this is the case, pyAerosurf

Chapter 3. Aerodynamic Shape Optimization Framework 26

Figure 3.2: Design variable application: The left hand �gure shows the unperturbed

surface geometry, while the right hand �gure shows the geometry perturbed by a twist

variable and a surface bump. Both perturbations are exaggerated to improve the visual-

ization.

allows the user to provide a baseline model � also generated by pyAerosurf � which can be

used as a template for the patch con�guration of all subsequent intersection operations.

Though the primary purpose of the pyAersurf module is to manage the paramater-

ized geometry of the aircraft, as discussed above, the Fortran code also has the capability

of handling the geometry based design variables of the aircraft. However, the standard

method for adjusting design variables in Aerosurf is to pass in a text �le with all of the de-

sired design changes speci�ed. While it would have been possible to use this approach, it

is much more e�cient to pass the design variable information directly from the optimizer

to the geometry tool. Thus, in order to allow modi�cation of the design variables by the

optimizer at run-time, a Python interface was generated for this functionality as well.

This interface generates a text string that emulates the text �le that would normally be

passed into the program. By doing this, the optimizer can specify the design variables for

each design iteration and regenerate the design variable input during run-time. To aid in

this process, the Python �designVariable� class shown in Figure 3.3 was created to store

all of the data required for each design variable. At the beginning of each optimization

run, the user can specify what types of design variables they wish to use, e.g., surface

shape, twist, leading edge location, and a dictionary containing all the required instances

of the design variable class is generated and populated. Based on the number of sections

Chapter 3. Aerodynamic Shape Optimization Framework 27

geometry.designVariable

+type
+xcen
+xmin
+xmax
+upper
+lower
+kcen
+kmin
+kmax
+V
+wingIDNumber
-__init__()

Figure 3.3: UML diagram of the designVariable class in pyAerosurf

de�ning the shape and the number of design variables requested, the values in the class

are automatically populated to distribute the design variables over the surface of the

model. Using this approach, the only variable the optimizer has to modify during the

run is the value or �V� attribute of each instance of the design variable class, where there

is one instance of the class for each design variable.

3.2 pyCFD-CSM

pyCFD-CSM is the module that generates the relationship between the surface mesh gen-

erated by pyAerosurf and the CFD surface mesh present in pyWarp and pyNSSUS. This

association is developed using an alternating digital tree (ADT) search, which determines

the associativity of the points on the two surface meshes. From this associativity, a set

of weighting factors is generated relating the two sets of point. Using these weighting

factors, any shape changes in the geometry model, caused by a change in design variable,

can be interpolated to the CFD Surface. More details on this methodology can be found

in Martins [18] and Alonso et al. [1].

Chapter 3. Aerodynamic Shape Optimization Framework 28

Figure 3.4: Warped mesh visualization: The left hand �gure shows the unwarped mesh,

while the right hand �gure shows the e�ect that a large surface bump has on the nodes

of the volume mesh. The vertical strips are arti�cial surfaces showing the �rst �ve layers

of nodes in the volume mesh to allow for the visualization of the perturbations in the

volume mesh.

3.3 pyWarp

pyWarp is the mesh warping algorithm used in πADO. It is an algebraic, multiblock,

mesh warping algorithm for structured meshes. The algorithm moves, in order, the

explicitly perturbed corners, edges and faces, the implicitly perturbed corners and edges,

the implicitly perturbed faces and then, from that information, perturbs all of the interior

points. Each of the grid lines of the mesh is scaled linearly, based on a set of weights

generated from the unperturbed mesh. The multiblock capability is enabled through a set

of master corners and edges. An example of that mesh warping is depicted in Figure 3.4.

More details on this method can be found in Martins [18] and Alonso et al. [1].

3.4 pyNSSUS

The NSSUS solver is a three�dimensional, higher�order, �nite�di�erence solver that has

been developed at Stanford University under the Advanced Simulation and Computing

(ASC) program sponsored by the United States Department of Energy [2]. It is a node-

based, multi-block, multi-processor solver, tested for the Euler equations and ideal magne-

tohydrodynamic equations [17], and currently being extended to the Reynolds�Averaged

Chapter 3. Aerodynamic Shape Optimization Framework 29

Figure 3.5: Stencil for the vertex-centred residual computation.

Navier�Stokes equations for a variety of turbulence models. The �nite�di�erence op-

erators and arti�cial dissipation terms follow the work by Mattsson [23, 24] and the

boundary conditions are implemented by means of penalty terms, according to the work

by Carpenter [7, 8]. The solver is capable of solving the �ow using equations up to eighth

order accuracy, however the work shown here only deals with portions of the code used

to solve equations using �rst and second order accurate discretizations.

3.4.1 Discretization Overview

The �ow equations are discretized over the CFD mesh primarily on an internal, block-by-

block basis. The internal discretization for each block is carried out using central �nite

di�erences. This means that, for second order accuracy, each node only requires the

�rst level of next nearest neigbour nodes for the inviscid �uxes. The dissipation �uxes

require �rst and second nearest neighbours. Thus, each node is a�ected by the stencil of

nodes shown in Figure 3.5. An exception to this occurs at the boundaries of each block.

In order to keep the discretization internal to the block, one sided di�erence formulae

are used at all block boundaries, both internal and external. However, because of this

one sided treatment at the boundaries, the boundary node information is required for

Chapter 3. Aerodynamic Shape Optimization Framework 30

Figure 3.6: Block-to-block boundary stencil.

every block. As a result, the internal boundary nodes occur multiple times, once in each

block that touches a given internal boundary. An example of the node locations for a

two-block, face to face boundary is shown in Figure 3.6 . However, left unaltered, this

scheme would not provide any connectivity between the blocks in the mesh. In order

to enable the solution of the system on the whole mesh, the multiple instances of the

internal boundary nodes need to be driven towards the same value. This is accomplished

through the use of penalty terms. More speci�cally, an additional penalizing term is

added to the residual R of each boundary node. This penalty term is proportional to

the di�erence between the respective values of the boundary node instances and take the

following form:

Ri
blockA = Ri

blockA + τ(wi
blockB − wi

blockA), (3.1)

where the value τ controls the strength of the penalty and is a combination of a user

de�ned parameter and the local �ow conditions. A similar expression can be written

for Ri
blockB. More details on this parameter can be found in Mattsson [23]. Based on

this discretizaton, the residual values of the internal boundary nodes are a function of

the neighbouring nodes in their local block as well as the corresponding instance of the

node in any neighbouring blocks. The physical boundary condition (BC) treatment is

very similar to the approach described above. The di�erence is that the penalty state

used in equation (3.1) is determined by the boundary condition as opposed to another

instance of the node in a neighbouring block. More details on this discretization and the

associated penalty parameter can be found in Mattsson [23, 24] and Carpenter [7, 8].

3.4.2 Implementation Overview

As with all of the other components of the framework, a Python wrapper was created

for NSSUS. The original NSSUS code is written in Fortran 90 and is capable of running

in parallel, using the MPI protocol. I/O functionality is handled with �les. The mesh

and boundary conditions are speci�ed with either PLOT3D or CGNS formatted �les.

Chapter 3. Aerodynamic Shape Optimization Framework 31

The �ow conditions, boundary condition options, iterations parameters and discretiza-

tion options are all set through a text based input �le. The same holds true for the

Python implementation. The name of the input �le is simply provided as an input to

the initialization routine in the NSSUS Python class, and then the Python script calls

the same Fortran based I/O routines that the original code would have called. The �ow

solution is handled in a similar manner. A Python level driving script calls the original

Fortran routines in the desired order. This has the added bene�t that it allows the user

to recon�gure the code from NSSUS somewhat in order to better accommodate the op-

timization process. The output of the �nal solution is also handled by Python functions

that call the original Fortran routines.

3.5 pySNOPT

pySNOPT is a numerical optimization package for the solution of large scale non-linear

optimization problems. The underlying Fortran code, SNOPT, is a quasi-Newton, SQP

optimizer. The optimizer can handle large numbers of design variables and is capable of

handling �xed design variable bounds as well as linear and non-linear constraints. Once

again the Fortran code is wrapped in Python, with the Python wrapper allowing for

direct interaction between the optimizer and the other portions of the code.

3.6 Framework Summary

Thus, having wrapped each of the individual components of the framework in Python, it

is now possible to combine them together into a single functioning aerodynamic analysis

and optimization package. Diagrams of the information �ow between the modules are

shown for both the aerodynamic analysis and the aerodynamic optimization in �gures 3.7

and 3.8 respectively. As shown in Figure 3.7, all of the information feeds forward in

the aerodynamic analysis. pyAerosurf generates the geometry and passes it to pyCFD-

CSM. pyCFD-CSM creates the association with the CFD surface mesh and passes a new

surface to pyWarp. pyWarp generates a new volume mesh and passes it to pyNSSUS,

which in turn calculates a �ow solution. However, as shown in Figure 3.8 there is both

feed forward and feed back of information in the optimization. The same forward �ow

of information that occurs in the analysis occurs again, but at the end of each analysis

pass, �ow solution values and derivative information are passed back to the optimizer so

Chapter 3. Aerodynamic Shape Optimization Framework 32

Geometry Tool
(pyAerosurf)

Surface-to-Surface
 Mapping

(pyCFD-CSM)

Mesh Warping
(pyWarp)

Flow Solver
(pyNSSUS)

Design Variables

Initial Geometry
 Definition

Run-time Parametric
Surface

Initial CFD
Volume Mesh

CFD Solution

Initial Parametric
 Surface

Run-time
 CFD surface

Mesh Generator
(IcemCFD)

Initial CFD
 Surface

Run-time CFD
Volume Mesh

Figure 3.7: πADO analysis information �ow

Geometry Tool
(pyAerosurf)

Surface-to-Surface
 Mapping

(pyCFD-CSM)

Mesh Warping
(pyWarp)

Flow Solver
(pyNSSUS)

Design Variables

Initial Geometry
 Definition

Run-time Parametric
Surface

Initial CFD
Volume Mesh

Initial Parametric
 Surface

Run-time
 CFD surface

Mesh Generator
(IcemCFD)

Initial CFD
 Surface

Run-time CFD
Volume Mesh

Optimizer
(pySNOPT)

Mesh Sensitivities

CFD Solution, Total Design Variable Sensitivities

Figure 3.8: πADO aerodynamic optimization information �ow

Chapter 3. Aerodynamic Shape Optimization Framework 33

that it can select a new design point. This new design point is returned to the analysis

and the process is repeated. In order for this optimization process to be e�cient, the

computation of the derivatives must be e�cient. Otherwise, the optimization process

will bog down and be very slow in producing a result. The details of this computation

� in this case, the aerodynamic derivative implementation for πADO � are discussed in

Chapter 4.

Chapter 4

Sensitivity Analysis

The previous two chapters have laid the groundwork for a discussion of the computation of

the design variable sensitivities. In Chapter 2, the concept of the ADjoint was introduced

as an e�cient way of combining adjoint methods and automatic di�erentiation to get

accurate sensitivities. In Chapter 3, the layout of the aerodynamic portion of the πADO

framework was described. In this chapter, the last major component of the optimization

framework, the computation of the design variable sensitivities, will be discussed. As was

discussed in Chapter 3, the aerodynamic framework is made up of a number of di�erent

components. Unfortunately, there is no �one size �ts all� technique that works well for

all of the components. As will be discussed in this chapter, a variety of techniques have

been used to take advantage of the structure of each of the di�erent components of the

framework.

From the discussion in Chapter 3 it is apparent that there are two di�erent types of

code in the framework. The �ow solver is an iterative code based on residual equations,

while the remainder of the components in the framework are not. This di�erence in the

codes has implications in terms of the derivatives. First of all, the �ow solver is far more

expensive computationally than all of the other components combined. Secondly, the

semi-analytic methods used to generate the ADjoint are applicable to the �ow solver,

but not to the other components of the framework. As a result, the design variable

sensitivities for this work were computed in two parts using two di�erent methods. The

derivatives of the geometry manipulation and mesh warping tools � i.e. pyAerosurf,

pyCFD-CSM and pyWarp � were computed using the complex-step method, while the

derivatives inside pyNSSUS were computed using the ADjoint method outlined in Chap-

ter 2. The complex-step method used for the geometry and mesh components generates

34

Chapter 4. Sensitivity Analysis 35

the derivatives of the volume mesh coordinates with respect to the design variables, while

the ADjoint method used in pyNSSUS generates the derivatives of the force coe�cients

(CL, CD, CMx, CMy, CMz) with respect to those same volume mesh coordinates. Once

each of these two terms is computed, they are multiplied together to form the total sensi-

tivities required for the optimization. More details on each of theses methods is provided

in the following sections.

4.1 Geometry and Mesh Component Sensitivities

The sensitivities of the grid coordinates with respect to the geometry design variables

were calculated using the complex-step method [22, 33]. Several methods were considered

for computing these derivatives, including �nite�di�erence methods, the complex-step

method, automatic di�erentiation and semi-analytic methods. Some initial work was

conducted using �nite�di�erencing, but as will become clear in the results section, �nite�

di�erence methods simply could not achieve the accuracy desired. This left a choice

between complex-step methods, automatic di�erentiation (AD), and semi-analytic meth-

ods. In this particular part of the problem, semi-analytic methods � including adjoint

methods � are not applicable, because these segments of code do not involve calcula-

tions based on residual equations. Without residual equations, the formulation of the

partial derivative in the adjoint equations is not possible. This leaves the choice between

the complex-step method and automatic di�erentiation, where we know from Martins et

al. [21] that the complex-step is essentially equivalent to forward mode AD using operator

overloading.

4.1.1 Overview

With the preceding discussion in mind, consider the problem at hand. For the geometry

and mesh de�nition portion of the framework, the sensitivities of interest are the sensi-

tivities of the CFD volume mesh coordinates with respect to a set of geometric design

variables describing the planform and cross�sectional shape of the wing. In the context

of a typical problem, there will be far more mesh coordinates than design variables. To

describe a wing, for example, one may have 15 or 20 cross sections each with 20 to 25

associate design variable for location, shape, twist, etc. This means that the number of

design variables is on the order of hundreds to thousands (O(102)−O(103)) of variables.

Chapter 4. Sensitivity Analysis 36

However, in a typical high-�delity CFD mesh, one may have hundreds of thousands or

even millions of nodes(O(105)−O(106)), each with three degrees of freedom. From this

simple comparison, it is quite clear that it is far more bene�cial to use a forward sen-

sitivity method, like the complex-step method or forward mode AD, than it is to use a

reverse sensitivity method such as reverse mode AD. The decision to use complex-step

as opposed to forward mode AD was made based on the relative ease of implementation

for these particular code segments.

4.1.2 Implementation

Having decided to use the complex-step method to implement the derivatives in the

geometry and mesh handling components of the framework, the implementation of the

derivatives was relatively straightforward. The complexi�cation of the fortran code was

carried out using the methods and tools proposed by Martins et al. [22]. The application

of this methodology went smoothly with two exceptions. The original methodology pro-

posed by Martins does not consider the extension of the method to codes wrapped with

python. However, this problem was overcome with two modi�cations to the complexi-

�cation procedure. First, one needs to complexify the signature �le (*.pyf) associated

with the wrapping, this includes the complex variable declarations in the wrapping, al-

lowing it to match up with the modi�ed source code. Then, one needs to set all of the

python variables � particularly any declared arrays � to be of complex data types. With

these modi�cations made to the complexi�cation procedure, each of the codes was able

to receive complex number perturbations from its python level driver code.

The second major issue encountered while complexifying these codes is one that is a

more fundamental issue with the complex-step method. At the conceptual level, both the

complex-step method and automatic di�erentiation rely on the augmented code following

the same logical path through the code as the original version for a given operation. In two

sections of the geometry code, there are branching statements that check for real valued

perturbations from the initial state. These commands are setup to bypass large sections

of code if no change in the mesh or design variables are present and to prevent division

by zero. While these checks work well in the original code, they causes the complex-step

method to fail. In a case where a complex perturbation exists, the perturbation code

needs to be run as if there was a real perturbation so that the complex component is

modi�ed correctly. However, the base branching statements for the complex-step method

Chapter 4. Sensitivity Analysis 37

def getCoordinateSensitivity(self,x,xindex,xyzref):

#initialize derivative array for a single design variable

dx = zeros([len(xyzref)*3],'d')

#set stepsize

deltax = 1e-20j

#store reference design variables

xref = x[xindex]# x.copy()

#perturb design variables

x[xindex] = x[xindex]+deltax

#calculate new volume mesh coordinates

xyznew = self.recalculateMesh(x)

#restore original design variables

x[xindex] = xref

#compute derivative

tmp = (xyznew.imag)/deltax.imag #complex step

dx = tmp

return dx

Figure 4.1: Geometry and mesh component complex-step function

check only the real part of the solution. Thus, in two sections of the code, branching

statements had to be modi�ed to identify the complex perturbations. The exact changes

required have been included in Appendix E.

With the exception of these minor modi�cations, the complexi�cation of the geometry

and mesh manipulation code went smoothly. With the complexi�ed versions of the code

in place, a simple python level driver script is all that is needed to generate the required

derivatives. The script, shown in Figure 4.1, loops over the design variables and adds

a complex perturbation to each in turn. The resulting complex values computed in the

node coordinates produced from pyWarp represent the sensitivities of each of the node

coordinates of the CFD volume mesh with respect to the design variables. This completes

the �rst half of the required derivatives. The computation of the second half of these

derivatives, which are computed in pyNSSUS, is discussed below.

Chapter 4. Sensitivity Analysis 38

4.2 pyNSSUS Sensitivities

The second half of the sensitivity computation required for aerodynamic shape optimiza-

tion is the computation of the sensitivities of the aerodynamic force coe�cients with

respect to the CFD volume mesh coordinates. Because the �ow solver is based on a set

of residual equations, semi-analytic methods are applicable. Further, there are relatively

few force coe�cient output values, in this case only CL ,CD, CMx ,CMy and CMz while

there are many input values, O(105)−O(106) CFD volume mesh nodes. Thus, an adjoint

type method is best suited to this application. As a result, for the reasons discussed in

Chapter 2, the ADjoint approach, also introduced in Chapter 2, will be used to compute

the sensitivities in pyNSSUS. The basic structure of the ADjoint formulation is the same

for pyNSSUS as it was for SUmb, as described in section 2.4. The following sections

describe the speci�c implementation details of the sensitivities in pyNSSUS.

4.2.1 Computation of ∂R/∂w

To frame this discussion, consider the following size de�nitions:

Nn: The number of nodes in the domain. For three-dimensional domains where the

Navier�Stokes equations are solved, this can be O(106).

Ns: The number of nodes in the stencil whose state variables a�ect the residual of a given

node. When considering inviscid and dissipation �uxes, the stencil is as shown in

Figure 3.5 and Ns = 13.

Nw: The number of �ow variables for each node. For the Euler equations Nw = 5.

The values in the Jacobian matrix, ∂R/∂w, are independent of both the choice of

objective function and the selected design variable. The values of the matrix depend

only on the governing equations, their discretization and boundary conditions, and the

states of the �ow solver at the converged solution. As a result, this matrix can be

formed once and reused for all of the necessary adjoint solutions. However, the Jacobian

matrix is both very large and very sparse, NnNw×NnNw with no more than Nw(Ns +1)

entries in any row or column. Thus, to store it e�ciently, a sparse matrix data structure

is necessary. In this work, the Portable Extensible Toolkit for Scienti�c computation

(PETSc) [4, 3, 5] has been used for both the storage of the partial derivatives and the

computation of the adjoint solution. PETSc is a suite of data structures and routines for

Chapter 4. Sensitivity Analysis 39

−2

−1

0

1

2 −2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1

Figure 4.2: Stencil for the ∂R/∂w computation, based on Euler equations with 2nd order

�nite di�erence discretization

the scalable, parallel solution of scienti�c applications modeled by PDEs. It employs the

message passing interface (MPI) standard for all inter-processor communication. This

broad, general applicability makes it ideally suited for use in conjunction with the ADjoint

approach.

Consider the residual computation in pyNSSUS. For this case, the Euler equations

are being used with a second order, �nite di�erence discretization. Thus, the procedure

for computing the residual in pyNSSUS can be described as follows:

1. Compute inviscid �uxes: For the inviscid �ux discretization the only �ow variables,

w, that in�uence the residual at a node are the �ow variables at that node and at

the six nodes directly adjacent to the node.

2. Compute dissipation �uxes: For this portion of the residual, the states,w, at the

current node and the 12 adjacent nodes, ±2 in each of the three directions need to

be considered, as shown in Figure 4.2.

3. Apply boundary conditions: Additional penalty terms are added to enforce the

boundary conditions (see section 3.4.1 for details). In this context, the internal

block boundaries are also considered as boundary conditions and are enforced using

penalty terms.

Chapter 4. Sensitivity Analysis 40

In the actual �ow solver routines, the computation of the residuals is performed using

three nested loops � one for each of the three coordinate directions. The loops are setup

such that the �ux is calculated in each direction and then summed to get the residual.

While this method is e�cient, it also means that the correct value of the residual for any

given node is only obtained at the end of all three loops, when all contributions have

been accounted for. Using automatic di�erentiation (AD) on this original routine would

require many unnecessary calculations, since the residual at each node is only a�ected by

a limited number of nodes immediately surrounding the target node. Thus, to make the

implementation of the discrete adjoint solver more e�cient, it was necessary to re-write

the �ow residual routine in such a way that it was capable of computing the residual for

a single speci�ed node. This new set of routines takes in the states of the local stencil

as an input and returns the residual values at the node speci�ed. In order to get the

information for the whole mesh, a series of loops is needed to specify each node of the

mesh, one at a time, as an input to the routine.

Given this new residual routine, one can now determine what mode of automatic

di�erentiation will provide the best performance for computing the terms in ∂R/∂w.

The new residual routine computes Nw residuals at a given node. These residuals get

contributions from all (Nw×Ns) �ow variables in the stencil. Thus there are Nw× (Nw×
Ns) sensitivities to be computed for each node, corresponding to Nw rows in the ∂R/∂w

matrix. Given that there are far more input variables than output variables, reverse

mode AD is going to be far more e�cient. In this case, the reverse mode would require

Nw calls to the di�erentiated routine, while the forward mode would require (Nw ×Ns)

calls. There is a computational cost penalty associated with each call to a reverse mode

di�erentiated routine, due to its inherently more complicated implementation. However,

for su�ciently large stencils and su�ciently costly computations, this penalty is more

than o�set by the reduced number of calls required.

Thus, for the ∂R/∂w derivatives in pyNSSUS, the reverse mode of AD is used to

di�erentiate the single cell residual calculation. Once di�erentiated, the code provides

the Nw× (Nw×Ns) sensitivities for each node with Nw calls to the di�erentiated routine.

A set of three nested loops is then used to loop over all of the nodes in the mesh, thus

generating the values for all of the rows in the ∂R/∂w matrix. As they are generated,

these values are stored in PETSc sparse matrix format, where they can be used later in

the solution of the adjoint equation (4.1).

Chapter 4. Sensitivity Analysis 41

4.2.2 Computation of ∂Ci/∂w

The right-hand side (RHS) of the adjoint equations (2.35) for the functions of interest

CD,CL, CMx ,CMy and CMz are easily computed for this �ow solver. Because this speci�c

�ow solver works with primitive variables w = (ρ, u, v, w, p) and since, for inviscid �ow,

CD, CL, CMx , CMy and CMz are simple surface integrations of the pressure, the derivatives

∂CD/∂w and ∂CL/∂w are always zero except for w5(= p). Therefore, it became trivial

to derive the expression for these partial derivatives analytically from the �ow solver

routine that calculated the functions of interest. However, in the general case of a �ow

solver where this approach is not applicable, one would use an approach similar to the

one described in section 4.2.5 in which a routine is created that takes the whole grid of

state variables as inputs values and computes the force coe�cients. This routine can

then be di�erentiated, most likely in reverse mode, to compute the desired derivatives.

4.2.3 Adjoint Solver

Consider a single example output value, for example CD. The adjoint equations (2.35)

can then be re-written as, [
∂R
∂w

]T

ψ = −∂CD

∂w
. (4.1)

With the two partial derivatives in this equation computed as outlined above, the adjoint

vector, ψ can be computed. As discussed previously, both the Jacobian and the right

hand side in this system of equations are very sparse, so PETSc has been used to store

and compute the adjoint solution. Once the sparse matrices were setup, PETSc's parallel

Krylov solver was used to compute the adjoint solution. While the PETSc library has

a number of di�erent solvers, in this work, only the Generalized Minimum Residual

(GMRES) solver was tested.

4.2.4 Computation of ∂R/∂X(i, j, k)

While the computation of the adjoint solution is independent of the design variables,

eventually their impact needs to be taken into account. In the total sensitivity equation,

this is done by the �rst and last terms, ∂R/∂X(i, j, k) and ∂Ci/∂X(i, j, k). The com-

putation of the partial sensitivity of the residuals with respect to the mesh coordinates,

∂R/∂X(i, j, k), was accomplished using an extension of the method used to compute the

�ux Jacobian, ∂R/∂w. The stencil based approach still applies, however in this situation,

Chapter 4. Sensitivity Analysis 42

−2

−1

0

1

2 −2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1

Figure 4.3: Stencil for the ∂R/∂X computation

the metric transformations need to be taken into account in the residual computation.

Once again the �rst two layers of adjacent nodes in each of the three coordinate direc-

tions are required for each nodal residual. However, because of the addition of the metric

terms, an additional set of �rst neighbour nodes is required. This extended stencil is

shown in Figure 4.3. However, because this stencil still �ts inside the same Nw × Nw

node box as the ∂R/∂w stencil, the same set of single cell residual routines can be used.

Therefore, to streamline the code, the stencil based residual routine discussed above was

modi�ed to include the metric transformations, making it a function of both the states w

and the grid coordinates X(i, j, k). The modi�ed routine was then re-di�erentiated, si-

multaneously, with respect to both w and X(i, j, k) allowing for the computation of both

sets of derivatives. Once again, the matrix is very sparse, so the PETSc data structures

are used to store the matrix.

4.2.5 Computation of ∂Ci/∂X(i, j, k)

The �nal partial derivative term required for the total sensitivity equation is the explicit

e�ect of the mesh coordinates on the force and moment coe�cients, ∂Ci/∂X(i, j, k). This

e�ect shows up as a change in direction of the normal vectors and associated areas for the

surface nodes in the mesh. However, because the force and moment coe�cients are a sum

over the entire surface of the model, the small stencil used to compute the Jacobian is

Chapter 4. Sensitivity Analysis 43

no longer valid. In this case, the stencil must be extended to include the entire surface of

the mesh. While this does raise some issues, it also leads to some signi�cant advantages.

For example, a single call to a reverse mode di�erentiated routine will return all of the

sensitivities required for one force or moment coe�cient. While this does lead to slightly

higher memory costs for this computation, it also leads to very fast derivatives. Note

that for simplicity in this case, the stencil was actually extended to include the entire

volume mesh. While this will again increase memory usage and reduce the e�ciency of

the derivative computation, at this stage, the impact is not considered to be signi�cant.

Once again, due to the sparsity of the matrix, the derivative values are stored in PETSc.

4.2.6 Total Sensitivity Equation

For the speci�c case of the mesh coordinate derivatives, the total sensitivity equa-

tion (2.36) can be written as,

dCi

dX(i, j, k)
=

∂Ci

∂X(i, j, k)
+ ψT ∂R

∂X(i, j, k)
, (4.2)

where the objective function Ci represents the i
th coe�cient of interest and the indepen-

dent variable X(i, j, k) represents the mesh coordinates at location i, j, k. With all four

of the partial derivatives matrices computed, and the adjoint equation solved, all that

remains is to multiply the terms together as shown in equation 4.2. This will provide a

single vector of total sensitivities with length 3Nn for each force or moment coe�cient of

interest. This vector is passed back to the python driver routine where it can be com-

bined with the geometry sensitivities to compute the total design variable sensitivities

required for optimization.

4.3 Total Design Variable Sensitivities

The previous two sections discuss the implementation of the two halves of the design

variable sensitivities. Once these two halves are computed, they are brought back to the

python driver program as matrices and multiplied together to compute the �nal design

variable sensitivities. The main reason for computing the derivatives in this fashion is

the one laid out at the beginning of this chapter: the fact that one portion of the code

was amenable to semi-analytic methods, while the other portion was not. However, even

Chapter 4. Sensitivity Analysis 44

given this distiction, there are many ways in which the various components could have

been grouped for computation.

Consider equation (4.3), the total sensitivity equation for the entire aerodynamic

framework:
dCi

dXDV

=
dCi

dXCFDvol

dXCFDvol

dXCFDsurf

dXCFDsurf

dXGEOsurf

dXGEOsurf

dXDV

. (4.3)

Each one of the derivatives can be directly related to a speci�c portion of the framework:

dCi/ dXCFDvol
is related to the �ow solver (pyNSSUS), dXCFDvol

/ dXCFDsurf
comes from

the warping algorithm (pyWarp), dXCFDsurf
/ dXGEOsurf

comes from the surface to sur-

face relations of pyCFD-CSM and dXGEOsurf
/ dXDV comes from the geometry code

(pyAerosurf).

The most straight froward way to handle these derivatives would be to compute each

of the terms in equation (4.3) separately, each in their own separate codes, and then

combine them to get the total derivative. This would allow the ADjoint method to be

used in the �ow solver, while allowing other, better suited methods to be used for the

remaining components of the framework. However, this would result in a number of

ine�ciencies. Each of the components listed in equation (4.3) is, in and of itself, a large

matrix. In most of the cases, these intermediate matrices are larger than the �nal matrix

of derivatives of interest. Thus, a large amount of memory would be wasted in storing

each of these individually. Further, using a method such as �nite-di�erences or complex-

step over each one of these routines would require numerous calls to each of the code

segments, increasing the computational time signi�cantly. Thus, a method is needed to

combine the computation of some of these terms to reduce the amount of memory and

computational time required to compute the desired derivatives.

Leaving aside the �ow solver for the time being, there are three code segments to

consider: pyAerosurf, pyCFD-CSM, and pyWarp. Each of these codes has been com-

plexi�ed to enable the use of the complex-step method. Further, with the modi�cations

described in section 4.1.2 this complexi�cation has been extended to the python level

wrapper of each of these codes. Thus, a single complex-step derivative computation can

be conducted to compute the derivatives of all three codes at the same time. By adding

a complex perturbation to a design variable and carrying the resulting complex pertur-

bations through the python interface to each successive fortran module, one can compute

the derivatives for all three code segments in a single pass.

This approach is very e�ective when applied to the �rst three modules, but breaks

Chapter 4. Sensitivity Analysis 45

down when the �ow solver is considered. Because of its iterative nature, the complex-

step method is far to expensive to use over the entire �ow solver. Using it for the partial

derivatives in an adjoint method would be possible, but as discussed in section 4.2, reverse

mode AD is more e�cient for the computation of the partial derivatives in the �ow solver.

Further, making the �ow solver complex a�ects the speed of the �ow solver itself, which

is not desirable. This creates a logical split in code segments between the �ow solver

and the rest of the geometry and mesh codes. The derivatives of the geometry and mesh

components of the framework, those related to the last three terms in equation (4.3), are

computed using a complex-step method over the entire calculation, while the derivatives

of the �ow solver are computed using the ADjoint method as discussed in section (4.2).

When the ADjoint method is applied to the �ow solver sensitivities, equation (4.3) takes

the following form,

dCi

dXDV

=

[
∂Ci

∂XCFDvol

+ ψT ∂R
∂XCFDvol

]
dXCFDvol

dXCFDsurf

dXCFDsurf

dXGEOsurf

dXGEOsurf

dXDV

. (4.4)

On the �ow solver side, the last major issue is how best to deal with the remaining

partial derivatives in the �ow solver portion of equation (4.4). While it would be possible

to combine these derivatives with the �nal result from the geometry sections using forward

mode AD, this would result in a signi�cant amount of additional code in the �ow solver

sensitivity routines and would also require a signi�cant amount of extra data transfer

across the python-fortran interface. As a result, both of these values are calculated in

the �ow solver using reverse mode AD, which allows most of the routines from the actual

adjoint computation to be reused. These partial derivatives are then combined with the

adjoint vector ψ such that a single total sensitivity vector dCi/ dXCFDvol
can be passed

through the python-fortran interface for use in the �nal sensitivity calculation.

The last remaining component of the total sensitivity calculation is the relative in-

dexing when multiplying the two halves of the total sensitivities together. This issue

originates from the fact that while the �ow solver is a parallel code, the geometry and

mesh components are not, thus there is not necessarily one-to-one correspondence be-

tween the two sets of derivatives. However, because of its parallel nature, there is a

global node numbering scheme built into pyNSSUS. This numbering system assigns a

global index to each of the nodes in the mesh based on its block and row number in the

overall structured multiblock mesh. However, these number are not, by default, avail-

able to the geometry portion of the code. To allow the geometry derivatives to access

these indices, a function was added to the python wrapper which can extract the global

Chapter 4. Sensitivity Analysis 46

indexing system from the �ow solver. This indexing is then available to the geometry

portion of the sensitivities, allowing for accurate interfacing of the two sets of derivative

components.

Chapter 5

Results

To demonstrate the implementation of the framework and the resulting design variable

sensitivities, a series of test cases is evaluated. In the following sections, the test cases are

introduced and a series of results are presented, with each section representing a particular

class of result pertaining to the ADjoint. A summary of the results and conclusions is

presented at the end of the chapter.

5.1 Test Cases

In order to verify the accuracy of the sensitivity implementation and characterize the

performance of the aerodynamic portion of the πADO framework, a series of test cases is

generated and run. To help characterize the framework's performance, each test case is

generated in order to test a speci�c portion of the framework's capability. In this section,

each test case is introduced, including some of their key characteristics. A brief mention

is also made regarding the purpose of each test case.

5.1.1 In�nite Wing

The in�nite wing test case, shown in Figure 5.1, is a simple, pseudo three dimensional

test case. The airfoil is a straight, untapered wing, modeled with inviscid wall boundary

conditions on the surface of the wing and symmetry boundary conditions at either end.

The mesh used is a single block C-mesh with 9,471 nodes, where the wake cut is located

at the trailing edge of the airfoil. The test case was modeled at a Mach number of 0.9

and an angle of attack of 5 degrees. To lend context to the solution, a sample density

47

Chapter 5. Results 48

solution for the mesh is shown in Figure 5.2.

Figure 5.1: In�nite wing computational domain

1

Figure 5.2: Density solution for a cross section of the in�nite wing

Chapter 5. Results 49

The primary purpose of this test case is simply to act as a baseline reference case for

the �ow solver and its associated sensitivities. This test case is not setup to run with the

geometry and mesh tools, so it is not capable of testing those portions of the framework.

It is also a single block case, so it is not meant to test the multiblock or multiprocessor

capabilities of the framework.

5.1.2 Oblique Wing: Coarse Mesh

The second test case used is an oblique wing test case, shown in Figure 5.3. This test

case consists of a ten block multiblock mesh with 21,820 nodes. The model itself is an

asymmetrically swept, �ying wing. The planform is symmetrically tapered, starting with

a chord of 1.0m at the tip of the forward swept portion of the wing, growing to a chord of

1.7m at mid span, and returning to a chord of 1.0m at full span. The overall span of the

wing is 12.0m when the wing is in its baseline con�guration with a mid-chord sweep of

45 degrees. Once again, the surface of the wing is modeled with inviscid wall boundary

conditions. However, in this case, because the planform is asymmetric, the entire wing

is modeled, so there are no symmetry planes in the mesh. The �ow is modeled at Mach

1.2 and Mach 1.5 with angles of attack of 0 degrees and 0.572 degrees. Figure 5.4 shows

a pressure solution for this test case with a Mach number of 1.2 and an angle of attack

of 0 degrees.

This is a much more complex test case than the in�nite wing test case. First of all, it

is a multiblock test case, so it can be used to test all of the functionality of the framework

for multiblock and multiprocessor cases. Further, it is setup to run with the geometry

and mesh tools, so it can test the full aerodynamic framework.

5.2 Accuracy Results

One of the main focuses of this work was to develop a very accurate derivative imple-

mentation. Since the analysis tools are capable of achieving very accurate results, it is

worthwhile having sensitivity information that is just as accurate, so that the gradient

based optimizer used can take advantage of everything the analysis has to o�er. The

following tables show a series of comparisons between the sensitivities calculated using

the framework and sensitivities calculated using the complex-step method with a step

size of 10−20, which can be considered to be numerically exact.

Chapter 5. Results 50

Figure 5.3: Oblique wing: coarse mesh computational domain

Figure 5.4: Pressure solution for the surface of the oblique wing

Chapter 5. Results 51

The �rst set of sensitivities, presented in Table 5.1, are from the single-block in�nite

wing test case. These values represent the ADjoint sensitivities inside the �ow solver on its

own, without any of the other framework components included. Since these derivatives

have been developed for shape optimization, they represent the derivatives of the �ve

force coe�cients with respect to the coordinates of the CFD volume mesh. The results

Node index Coe�cient ADjoint Complex Step

CL 1.03737827 205E-002 1.03737827 112E-2

CD -4.2921761 724E-003 -4.2921761 667E-3

10,1,3 CMx -3.44421800 547E-002 -3.44421800 306E-2

CMy -3.9976406 323E-002 -3.9976406 273E-2

CMz -1.59291147 470E-002 -1.59291147 259E-2

CL 1.03737827 228E-002 1.03737827 112E-2

CD -4.2921761 722E-003 -4.2921761 667E-3

10,1,5 CMx -4.5239521 327E-002 -4.5239521 281E-2

CMy -3.9976406 328E-002 -3.9976406 273E-2

CMz -2.551081 401E-002 -2.551081 398E-2

CL 1.70505774 790E-003 1.70505774 414E-3

CD 6.21953590 692E-003 6.21953590 701E-3

30,1,3 CMx -7.1419627 827E-003 -7.1419627 7110E-3

CMy -1.8257562646 240E-002 -1.8257562646 434E-2

CMz 1.8512382304 326E-002 1.8512382304 184E-2

CL 1.70505774 756E-003 1.70505774 414E-3

CD 6.219535907 229E-003 6.219535907 011E-3

30,1,5 CMx -1.07832034 589E-002 -1.07832034 431E-2

CMy -1.825756264 730E-002 -1.825756264 643E-2

CMz 2.9865698889 194E-002 2.9865698889 621E-2

Table 5.1: CFD mesh coordinate sensitivity veri�cation: dJ/dX(i, j, k),in the Z coordi-

nate direction.

presented represent four points on the surface of the wing, two on the top surface, two on

the bottom surface. As is evident in the table, the agreement between the ADjoint values

and the complex-step values is very good, varying between 7 and 11 digits of accuracy

for the di�erent cases, with most of the cases giving an 8-9 digit agreement. Considering

the requested accuracy of the �ow solver was 10−10, this is exceptional agreement.

The next set of results, presented in Table 5.2, again represent the sensitivities of

the �ow solver alone. However, this table shows values from the multiblock, oblique

Chapter 5. Results 52

Node index Coe�cient ADjoint Complex Step

CL -6.559636127 405E-3 -6.559636127 395E-3

Block 7 CD 3.5547210577 330E-4 3.5547210577 168E-4

4,10,10 CMx 5.98301242852 85E-2 5.98301242852 43E-2

CMy 6.8540470166 758E-3 6.8540470166 409E-3

CMz -6.59618443996 71E-2 -6.59618443996 08E-2

CL 3.5464900865 027E-3 3.5464900865 147E-3

Block 8 CD 5.923619700 3941E-4 5.923619700 5154E-4

4,1,10 CMx -2.855713856 6782E-2 -2.855713856 7358E-2

CMy 9.58473674 59268E-3 9.58473674 60812E-3

CMz 3.415759755 6659E-2 3.415759755 7290E-2

Table 5.2: Multiblock CFD mesh coordinate sensitivity veri�cation: dI/dX(i, j, k).

wing test case. The results are again shown for the �ve force coe�cients with respect

to the vertical mesh coordinate. Once again points on both the top and bottom of the

wing are shown. However, in this case the two surfaces happen to be in di�erent blocks.

The results again show very good agreement, this time the agreement between the two

methods is between 9 and 12 digits, even better than the single block case. However, in

this case both the �ow solver and adjoint solver tolerances were set to 10−12, so again,

the results are consistent with the requested tolerances.

The �nal set of accuracy results, shown in Table 5.3 represent the total sensitivity

over the entire framework. These sensitivities are again calculated for the oblique wing

test case, so these values are an extension of the values shown in Table 5.2. In this case

the surface bump for which the sensitivities are shown is on the upper surface towards

the leading edge on the forward swept tip of the wing.

The results shown in this table are slightly di�erent than the results in the previous

two tables. As in the previous tables, the right hand column lists results for the pure

complex-step method, in this case over the entire framework. However, in this table, the

left hand column represent results for the two di�erent approaches that were implemented

and tested for computing the geometry and mesh sensitivities. The �rst set of results in

the table, labeled FD, represent the result when a �nite-di�erence approach � a forward

di�erence approximation with a step size of 10−8 � is used for the geometry and mesh

sensitivities. The second set of results, labeled CS, represent the same sensitivities while

using the complex-step method to calculate the geometry and mesh sensitivities. As the

Chapter 5. Results 53

Node index Coe�cient ADjoint Complex Step

CL 0.0891981 19 0.0891981 35

Surface CD 0.00026879 6 0.00026879 4

Bump CMx 0.25447 1920 0.25447 2050

FD CMy -0.015799 501 -0.015799 497

CMz -0.263111 799 -0.263111 927

CL 0.0891981358 57 0.0891981358 93

Surface CD 0.0002687945 45 0.0002687945 50

Bump CMx 0.254472050 640 0.254472050 935

CS CMy -0.015799497 898 -0.015799497 751

CMz -0.263111927 282 -0.263111927 596

Table 5.3: Multiblock shape variable sensitivity veri�cation

table shows, the accuracy of the derivatives computed with the �nite-di�erence approach

is much worse than those computed with the complex-step method. In the case of the

�nite-di�erences, a variety of step sizes were tested, with no appreciable increase in

accuracy. Thus, in the interest of attaining high accuracy, the complex-step approach

was selected for the geometry and mesh sensitivities.

5.3 Timing Results

The second factor of importance when calculating sensitivities for use in gradient-based

optimization is the e�ciency of the computation. In a typical optimization run the sen-

sitivity computation will be called many times. Thus, an e�cient sensitivity calculation

is necessary in order allow good performance.

Table 5.4 shows a timing breakdown for the two test cases outlined previously. In

both cases, the sensitivity analysis takes less time than the �ow solve itself. For the

oblique wing test case, it is only slightly faster, with the adjoint solution taking 77% of

the �ow solution time. However, for the in�nite wing test case, it is much faster, with the

adjoint solution taking only 9% of the �ow solution time. Given the alternatives available

for sensitivity analysis, this is a remarkable achievement. With this approach, a large

number of sensitivities can be calculated for essentially the cost of a single �ow solve. The

main reason that the cost of the method is not completely independent of the number

of design variables is because the complex-step method is used to compute the geometry

Chapter 5. Results 54

Oblique Wing In�nite Wing

No. Nodes 21820 9471

Flow solution 198.78 241.57

ADjoint 152.45 22.08

Breakdown:

Setup PETSc Variables 0.11 0.03

Compute Jacobian 12.49 5.36

Compute grid partial 13.55 5.73

Compute RHS 0.00 0.00

Solve the adjoint equations 126.22 10.93

Compute the total sensitivity 0.08 0.04

Table 5.4: ADjoint computational cost breakdown (times in seconds)

and mesh handling sensitivities. However, to compute the same set of total derivatives

using just the complex-step method or �nite di�erences would require O(N) �ow solves,

which would take considerable time to compute. This shows the overall e�ciency of the

ADjoint approach.

However, particularly in the case of the oblique wing test case, the cost of the linear

adjoint solution is a signi�cant portion of the overall sensitivity analysis time. Thus,

it would be worthwhile improving the solution techniques used on the linear system

to reduce this time. One particular method that has shown promise in this regard is

preconditioning. Thus, some e�ort should be spent on exploring this option.

The other point to note is that the partial sensitivities for both the Jacobian and

the mesh are computed in only a small fraction of the �ow solution time. This clearly

indicates that the AD approach used to generate these values is e�cient.

5.4 Conclusions

The results in the previous two sections clearly show the accuracy and e�ciency of

the ADjoint sensitivities. The accuracy results progress from a simple single block test

case for just the �ow solver through to a complete multiblock test case for the entire

framework. In each case the agreement with the pure complex-step results is excellent,

essentially matching the requested precision of the �ow solver. The one exception to

this is the example where �nite di�erences were used to compute the derivatives of the

Chapter 5. Results 55

geometry and mesh sensitivities. As a result, it was decided that using the complex-step

method for these portions of the framework was necessary. The timing results are also

positive. In each case the ADjoint solutions in the �ow solver portion of the framework

take less time than the �ow solver itself. In particular, the in�nite wing test case shows

excellent relative performance. In the case of the oblique wing test case, the performance

can likely be improved with better preconditioning and matrix ordering. Thus, from the

results shown, it is fair to conclude that the ADjoint approach to sensitivity analysis is

both e�cient and accurate.

Chapter 6

Conclusions and Future Work

In the discussion presented in the previous chapters, two implementations of the AD-

joint were presented and discussed. In the �rst instance, a single block implementation

was performed on the cell-centered, �nite-volume code, SUmb. This implementation was

performed for a few, very simple, derivatives for a limited number of cases, but served

to prove the feasibility and accuracy of the ADjoint approach. The second implemen-

tation, conducted on pyNSSUS, is a more complete implementation, intended for use in

aerodynamic shape optimization. This implementation includes infrastructure to handle

multiblock and multiprocessor cases as well as a wide variety of shape variables for design

optimization. The ADjoint sensitivities in this implementation compute the derivative

of the force coe�cients in the �ow solver with respect to the CFD volume mesh node

coordinate values. These sensitivities are combined with sensitivities from the geometry

and mesh portions of the aerodynamic framework to form the total sensitivity matrix

required for optimization. The geometry and mesh sensitivities are computed with the

complex-step method for accuracy, as semi-analytic methods are not applicable to the rel-

evant portions of the code. Once again, this implementation of the ADjoint is extremely

accurate, with the results from the ADjoint matching pure complex-step sensitivity re-

sults to the same precision requested from the �ow solver. The e�ciency of the ADjoint

approach in this implementation is also quite good, yielding an adjoint solution in less

time than that required to obtain a �ow solution. Thus, it is fair to conclude that the

ADjoint approach to sensitivity analysis is both accurate and e�cient and that it is a

practical hybrid approach to computing sensitivity information.

Despite the success of this work, there are still many avenues to be explored regard-

ing the ADjoint and many interesting new possibilities for research opened up by this

56

Chapter 6. Conclusions and Future Work 57

approach. Speci�cally regarding the ADjoint, some further work needs to be done exper-

imenting with the linear solution methods used within PETSc. While for the cases tested

here, PETSc was able to produce e�cient and accurate solutions, that success is by no

means guaranteed. Some e�ort needs to be spent exploring the parameters and options

inside PETSc to ensure that the solution methods used are both robust and suitable for

a wide variety of test cases. In more general terms, however, there are now a wide variety

of avenues open to exploration, primarily those involving optimization. Now that the

shape variable sensitivities have been developed, it is possible to explore a wide variety

of interesting optimization problems. The most obvious, of course, is aerodynamic shape

optimization. This can now be performed for a wide variety of cases both conventional

and unconventional. In addition to this, the door is now open to pursue the continued

development of the multidisciplinary design optimization (MDO) framework. The aero-

dynamic derivatives now available are a key enabling component for the development

of the coupled adjoint solver, which is itself the key element in performing MDO using

a multidisciplinary feasible (MDF) approach. Finally, now that the ADjoint has been

proved feasible using the Euler equations, the approach should be extended to the RANS

equations. While the Euler equations provide a useful proving ground for new ideas,

the additional physics present in a RANS solver is essential in the practical design of

aircraft in a modern simulation environment. Thus, this extension is important in order

to achieve the high-�delity design goal originally espoused.

References

[1] Alonso, J. J., LeGresley, P., van der Weide, E., Martins, J. R. R. A.,

and Reuther, J. J. pyMDO: A framework for high-�delity multi-disciplinary

optimization. AIAA Paper 2004-4480, Aug. 2004.

[2] ASC. Advanced simulation and computing. http://www.llnl.gov/asc, 2007.

[3] Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D.,

Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H. PETSc users

manual. Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory,

2004.

[4] Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G.,

McInnes, L. C., Smith, B. F., and Zhang, H. PETSc Web page, 2001.

http://www.mcs.anl.gov/petsc.

[5] Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. E�cient man-

agement of parallelism in object oriented numerical software libraries. In Modern

Software Tools in Scienti�c Computing (1997), E. Arge, A. M. Bruaset, and H. P.

Langtangen, Eds., Birkhäuser Press, pp. 163�202.

[6] Carle, A., and Fagan, M. ADIFOR 3.0 overview. Tech. Rep. CAAM-TR-00-02,

Rice University, 2000.

[7] Carpenter, M. H., Gottlieb, D., and Abarbanel, S. Time-stable boundary

conditions for �nite-di�erence schemes solving hyperbolic systems: Methodology

and application to high-order compact schemes. Journal of Computational Physics

111, 2 (Apr. 1994), 220�236.

58

References 59

[8] Carpenter, M. H., Nordström, J., and Gottlieb, D. A stable and conser-

vative interface treatment of arbitrary spatial accuracy. Journal of Computational

Physics 148, 2 (Jan. 1999), 341�365.

[9] Dwight, R. P., and Brezillion, J. E�ect of approximations of the discrete

adjoint on gradient-based optimization. AIAA Journal 44, 12 (2006), 3022�3031.

[10] Faure, C., and Papegay, Y. Odyssée Version 1.6: The Language Reference

Manual. INRIA, 1997. Rapport Technique 211.

[11] Giering, R., and Kaminski, T. Applying TAF to generate e�cient derivative

code of Fortran 77-95 programs. In Proceedings of GAMM 2002, Augsburg, Germany

(2002).

[12] Gockenbach, M. S. Understanding Code Generated by TAMC. IAAA Paper

TR00-29, Department of Computational and Applied Mathematics, Rice University,

Texas, USA, 2000.

[13] Hascoët, L. Tapenade: A tool for automatic di�erentiation of programs. In

Proceedings of 4th European Congress on Computational Methods, ECCOMAS'2004,

Jyvaskyla, Finland (2004).

[14] Hascoët, L., and Pascual, V. Tapenade 2.1 user's guide. Technical report 300,

INRIA, 2004.

[15] Hicks, R. M., and Henne, P. A. Wing design by numerical optimization. Journal

of Aircraft 15, 7 (1978), 407�412.

[16] Jameson, A. Aerodynamic design via control theory. Journal of Scienti�c Com-

puting 3, 3 (sep 1988), 233�260.

[17] Marta, A. C. Rapid Development of Discrete Adjoint Solvers with Applications

to Magnetohydrodynamic Flow Control. PhD thesis, Stanford University, Stanford,

California, 2007.

[18] Martins, J. R. R. A. A Coupled-Adjoint Method for High-Fidelity Aero-Structural

Optimization. PhD thesis, Stanford University, Stanford, California, 2002.

References 60

[19] Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J. High-�delity

aerostructural design optimization of a supersonic business jet. Journal of Aircraft

41, 3 (2004), 523�530.

[20] Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J. A coupled-adjoint

sensitivity analysis method for high-�delity aero-structural design. Optimization and

Engineering 6, 1 (March 2005), 33�62.

[21] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J. The connection be-

tween the complex-step derivative approximation and algorithmic di�erentiation.

In Proceedings of the 39th Aerospace Sciences Meeting (Reno, NV, 2001). AIAA

2001-0921.

[22] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J. The complex-

step derivative approximation. ACM Transactions on Mathematical Software 29,

3 (2003), 245�262.

[23] Mattsson, K., and Nordström, J. Summation by parts operators for �nite

di�erence approximations of second derivatives. Journal of Computational Physics

199, 2 (Sept. 2004), 503�540.

[24] Mattsson, K., Svärd, M., and Nordström, J. Stable and accurate arti�cial

dissipation. Journal of Scienti�c Computing 21, 1 (Aug. 2004), 57�79.

[25] Nemec, M., and Zingg, D. W. Newton�Krylov algorithm for aerodynamic

design using the Navierr�Stokes equations. AIAA Journal 40, 6 (June 2002), 1146�

1154.

[26] Nielsen, E. J., and Kleb, W. L. E�cient construction of discrete adjoint op-

erators on unstructured grids using complex variables. AIAA Journal 44, 4 (2006),

827�836.

[27] Pascual, V., and Hascoët, L. Extension of TAPENADE towards Fortran

95. In Automatic Di�erentiation: Applications, Theory, and Tools, H. M. Bücker,

G. Corliss, P. Hovland, U. Naumann, and B. Norris, Eds., Lecture Notes in Com-

putational Science and Engineering. Springer, 2005.

[28] Pironneau, O. On optimum design in �uid mechanics. Journal of Fluid Mechanics

64 (1974), 97�110.

References 61

[29] Rall, L. B., and Corliss, G. F. An introduction to automatic di�erentiation. In

Computational Di�erentiation: Techniques, Applications, and Tools, M. Berz, C. H.

Bischof, G. F. Corliss, and A. Griewank, Eds. SIAM, Philadelphia, Penn., 1996,

pp. 1�17.

[30] Reuther, J., Alonso, J. J., Jameson, A., Rimlinger, M., and Saunders,

D. Constrained multipoint aerodynamic shape optimization using an adjoint for-

mulation and parallel computers: Part I. Journal of Aircraft 36, 1 (1999), 51�60.

[31] Reuther, J., Alonso, J. J., Jameson, A., Rimlinger, M., and Saunders,

D. Constrained multipoint aerodynamic shape optimization using an adjoint for-

mulation and parallel computers: Part II. Journal of Aircraft 36, 1 (1999), 61�74.

[32] Ruo, S. Y., Malone, J. B., Horsten, J. J., and Houwink, R. The LANN

program � an experimental and theoretical study of steady and unsteady transonic

airloads on a supercritical wing. In Proceedings of the 16th Fluid and PlasmaDy-

namics Conference (Danvers, MA, July 1983). AIAA 1983-1686.

[33] Squire, W., and Trapp, G. Using complex variables to estimate derivatives of

real functions. SIAM Review 40, 1 (1998), 110�112.

[34] van der Weide, E., Kalitzin, G., Schluter, J., and Alonso, J. J. Unsteady

turbomachinery computations using massively parallel platforms. In Proceedings of

the 44th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV, 2006). AIAA

2006-0421.

[35] Wengert, R. E. A simple automatic derivative evaluation program. Commun.

ACM 7, 8 (1964), 463�464.

Appendix A

Generating an aerodynamic shape

optimization test case

The following steps are required to generate an aerodynamic optimization test case from

scratch for use with pyAerosurf, pyWarp and pyNSSUS.

• Use pyGeo.py � or some equivalent software � to generate .geo and .inp �les to

describe the desired geometry.

• Run pyAerosurf to generate a surface mesh, which will be stored in a .xyz �le (this

is in plot3D format)

• Copy a version of the .xyz �le to aero.xy0. This will be used as a reference when

aerosurf regenerates the surface mesh after the application of design variables. Note:

A parameter must be enabled in the .inp �le to use this feature.

• Use this surface �le to generate a volume mesh in .cgns format for the �ow solver.

This can be done with any grid generation tool, however the one used in this

work was IcemCFD, created by ANSYS. A description of the process required for

generating a compatible grid �le in IcemCFD is included in Appendix C

• Generate an input �le for the CFD solver, based on the .cgns �le created in the

previous step.

• Test run the CFD solution to ensure convergence.

62

Appendix A. Generating an aerodynamic shape optimization test case 63

• Modify the initialization calls in aerodynamicoptimization.py to specify the �les

for this test case. Initialization calls for the geometry class and the SUmbSolution

class should be modi�ed.

• Run a test of the aerodynamicoptimization.py script by calling: mpirun -np *

pyMPI aerodynamicoptimization.py, where * is the number of processors to use.

• Setup an optimization script � use lconst_dragmin.py as a template � using the

Aero_optimization class.

• Run the optimization by calling: mpirun -np 1 pyMPI <�lename>

Appendix B

List of input �les for aerodynamic

optimization using πADO

• Geometry � pyAerosurf

� *.geo � Component section de�nitions

� *.inp � Control parameter �le

� *.xy0 � Reference geometry in plot3d format. Dictates patch con�guration

and size.

• Mesh Warping � pyWarp

� *.cgns � Same as �ow solver

• Flow Solver � NSSUS

� <�lename> �ow solver input �le

� *.cgns

64

Appendix C

Creating a CFD grid using ICEM CFD

• Generate a plot3D surface mesh using Aerosurf

• Open ICEMCFD and start a new project

• Import the the plot3D geometry information by clicking on File-> Import Geometry

-> Formatted Point Data. Note: Make sure that the plot3D box at the bottom of

the panel is selected.

• Clean up geometry by combining curves and surfaces. e.g. combine all leading edge

curves for each wing into a single leading edge curve, combine surfaces together so

that there is one surface each for the top and bottom of the wing, etc.. The cleaner

the geometry de�nition is at this point the better/easier the mesh generation process

will be. Also It is a good idea to generate features that will be easily associated

with di�erent portions of the intended blocking.

• Use ICEM's geometry tools to generate the far-�eld boundary for the mesh. This

can be done by �rst generating points, connecting them with lines and then com-

bining groups of lines into surfaces.

• Create the desired blocking scheme. This generally starts with one large block,

which is then split multiple times to accommodate the desired geometry.

• Associate the vertices and edges of the blocking with the appropriate features on the

plot3D surface. This is a very important stage. If these associations are not correct,

the resulting mesh topology will end up unusable. Use the pre-mesh visualization

to see what the associations that have been made cause the mesh to look like.

65

Appendix C. Creating a CFD grid using ICEM CFD 66

• Once satis�ed with the association between the blocking and the geometry, add

nodes to the various block edges. ICEM will ensure that the number of nodes across

the various blocks stays consistent, so it is probably best to start with the partial

line segments on the surface of the body(plot3D surface) and work outwards. ICEM

has a number of linking and bunching aides to speed this process, but I have found

them unreliable when returning to saved projects, so use them with care. When

actually specifying the nodes, there are a number of distribution types available,

so use your discretion when setting these options. I have had some success with

the hyperbolic distribution option. Once again, check the pre-mesh visualization

as you go through this process to ensure that the nodes are going where you want

them to and to ensure that the mesh topology is what you expect.

• Create families of surfaces that will have like boundary conditions. This will likely

include one for the wing/aircraft surface and one for each far-�eld/symmetry bound-

ary condition. Also create a family for all of the blocks that are internal to the

body being modeled and deactivate them. This will prevent this part of the mesh

from being exported.

• The model is now ready for export. Under the File -> Blocking menu, select �save

multiblock mesh�, and save a volume mesh from your model.

• Select the output tab

• Set the solver type as CGNS, leave the common structural solver as NASTRAN.

• Set the boundary conditions for each of the surfaces using the create BC's tab. This

will most likely be under surfaces -> mixed/unknown -> create new -> BCType.

After creating the data, set the appropriate boundary condition type.

• Export the model. Click the �Write Input button�. Set the grid type to structured.

The default �lenames should be correct. Select 'no' for the �create default BC

patches� option and use CGNS library 2.4.

• Once created, use ADFViewer to concatenate the various boundary conditions to

a single boundary condition per block face. This really shouldn't be necessary,

however at this point it is required to ensure the accuracy of the ADjoint. Further

exploration into the ICEM export process may help this.

Appendix C. Creating a CFD grid using ICEM CFD 67

• create an NSSUS input �le to go with the *.cgns �le and the mesh should be ready

to go.

Appendix D

AD tools for Fortran

1. ADIFOR [6]

2. AD01

3. OPFAD/OPRAD

4. TAF [11],

5. TAMC [12]

6. Tapenade [14, 27]

For a detailed list of automatic di�erentiation tools for a wide variety of computer lan-

guages including Fortran, C/C++ and Matlab go to www.autodi�.org.

68

Appendix E

Modi�ed Complex Code Sections

E.1 pyAerosurf

E.1.1 Original code segments

IF (VS .ceq. ZERO) CYCLE ! Next N

IF (DELTAV /= ZERO) THEN

E.1.2 Complexi�ed code segments

IF ((VS .ceq. ZERO).and.(aimag(vs).ceq. ZERO)) CYCLE ! Next N

IF ((DELTAV .cne. ZERO).or.(aimag(deltav).cne. ZERO)) THEN

E.2 pyWarp

E.2.1 Original code segments

DFACEI(1,J,K) = (ABS (DELJ) * DELJ + ABS (DELK) * DELK) /

> MAX (ABS (DELJ) + ABS (DELK), EPS)

69

Appendix E. Modified Complex Code Sections 70

E.2.2 Modi�ed code segments

if ((aimag(ABS (DELJ) + ABS (DELK))/=0.0).or.

> (real(ABS (DELJ) + ABS (DELK))/=0.0))then

DFACEI(1,J,K) = (ABS (DELJ) * DELJ +

> ABS (DELK) * DELK) /

> (ABS (DELJ) + ABS (DELK))

else

DFACEI(1,J,K) = (ABS (DELJ) * DELJ +

> ABS (DELK) * DELK) /

> (EPS)

endif

	Introduction
	Motivation
	Research Overview
	Contributions

	The ADjoint Approach
	Adjoint Equations
	Automatic Differentiation
	The ADjoint
	ADjoint Implementation
	CFD Adjoint Equations
	Computation of R / w
	Computation of CD / w
	Adjoint Solver
	Total Sensitivity Equation

	ADjoint Validation Results
	Test Cases
	Lift and Drag Coefficient Sensitivity Results

	Conclusion

	Aerodynamic Shape Optimization Framework
	pyAerosurf
	pyCFD-CSM
	pyWarp
	pyNSSUS
	Discretization Overview
	Implementation Overview

	pySNOPT
	Framework Summary

	Sensitivity Analysis
	Geometry and Mesh Component Sensitivities
	Overview
	Implementation

	pyNSSUS Sensitivities
	Computation of R / w
	Computation of Ci / w
	Adjoint Solver
	Computation of R/ X(i,j,k)
	Computation of Ci/ X(i,j,k)
	Total Sensitivity Equation

	Total Design Variable Sensitivities

	Results
	Test Cases
	Infinite Wing
	Oblique Wing: Coarse Mesh

	Accuracy Results
	Timing Results
	Conclusions

	Conclusions and Future Work
	References
	Appendix
	Generating an aerodynamic shape optimization test case
	List of input files for aerodynamic optimization using ADO
	Creating a CFD grid using ICEM CFD
	AD tools for Fortran
	Modified Complex Code Sections
	pyAerosurf
	Original code segments
	Complexified code segments

	pyWarp
	Original code segments
	Modified code segments

