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Abstract
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University of Toronto
2007

The ADjoint is a hybrid sensitivity analysis method that takes advantage of the best
aspects of both Automatic Differentiation (AD) and the semi-analytic adjoint method.
The key feature of the ADjoint method is that it selectively uses AD to calculate the
required partial derivative terms in the discrete adjoint sensitivity equations. This se-
lective use of AD significantly reduces the computational cost and memory overhead of
using AD. Further, because of the use of AD, the method can provide exactly consistent
derivatives for arbitrarily complex governing equations and boundary conditions. In the
following work, the ADjoint method is applied to two three-dimensional Computational
Fluid Dynamics (CFD) solvers. The implementation in the first solver is simply a proof
of concept, while the implementation for the second solver is complete and provides
all the derivatives required for aerodynamic shape optimization. The resulting ADjoint

sensitivities are compared with complex-step derivatives to establish their accuracy.

i



Acknowledgements

First and foremost, I would like to thank my adviser, Professor Joaquim Martins, for all
his support and encouragement throughout this project. He was always willing to make
time to discuss the project and provide insights, particularly when major road blocks
presented themselves. Without his support, the project would not have been nearly the
success that it has turned out to be.

Secondly, I would like to thank Dr. Andre C. Marta for his contributions to the
project. Without the groundwork he provided, the development shown in this thesis
would not have been possible.

Finally, T would like to thank my colleagues, particularly Tan Chittick and Graeme
Kennedy, who provided valuable advice and who’s constant intervention helped me keep
my sanity during this work.

Financial support for this work was provided by the Natural Sciences and Engineering

Research Council of Canada and the University of Toronto.

iii



Contents

1 Introduction

1.1 Motivation . . . . . . . . . L
1.2 Research Overview . . . . . . . . . . 0 .
1.3 Contributions . . . . . . . . .

2 The ADjoint Approach

2.1 Adjoint Equations . . . . . . . . ...
2.2 Automatic Differentiation . . . . .. .. ... 0oL
2.3 The ADjoint . . . . . . . . e
2.4 ADjoint Implementation . . . . . .. .. ... Lo
2.4.1 CFD Adjoint Equations . . . .. ... ... ... ... ......
2.4.2  Computation of OR/Ow . . . . . ... ... L.
2.4.3  Computation of 0Cp /0w . . . . . . . ...
244 Adjoint Solver . . . . . . . ...
2.4.5 Total Sensitivity Equation . . . . . ... .. ... ...
2.5 ADjoint Validation Results . . . . . . . . ... .. ... ... .......
251 Test Cases . . . . . . . .
2.5.2 Lift and Drag Coefficient Sensitivity Results . . . . . . ... . ..
2.6 Conclusion . . . . . . . ..

3 Aerodynamic Shape Optimization Framework

3.1 pyAerosurf . . . .. e
3.2 pyCFD-CSM . . . . . e
3.3 pyWarp . . ..
3.4 pyNSSUS . . o e

3.4.1 Discretization Overview . . . . . . . . . . ... ...

v

W N = =

=~

13
14
15
16
17
18
18
18
19
21
23



3.4.2 Implementation Overview . . . ... ... .. .. ... ......
3.5 pySNOPT . . . . o e

3.6 Framework Summary . . . . .. ..o

4 Sensitivity Analysis
4.1 Geometry and Mesh Component Sensitivities . . . . . . . . .. ... ...
411 Overview . . . . .. e
4.1.2 TImplementation . . . . . . .. ... Lo
4.2 pyNSSUS Sensitivities . . . . . . . . ..o
4.2.1 Computation of OR/Ow . . . . . ... ...
4.2.2  Computation of 0C; /0w . . . .. ... ... Lo
4.2.3 Adjoint Solver . . . . . . ...
4.2.4  Computation of OR/OX (4,5, k) . . . .« . . o
4.2.5 Computation of 0C;/0X (i,5,k) . . . . .. .. ...
4.2.6 Total Sensitivity Equation . . . . .. .. ... ...
4.3 Total Design Variable Sensitivities . . . . . . . .. . ... ... ... ...

5 Results
5.1 Test Cases . . . . . . oo e
5.1.1 Imfinite Wing . . . . . . . . . ..
5.1.2  Oblique Wing: Coarse Mesh . . . . . . .. .. ... ... .....
5.2 Accuracy Results . . . . . . . . . .. ...
5.3 Timing Results . . . . . . .. .. ..

5.4 Conclusions . . . . . . . . L e
6 Conclusions and Future Work
References
Appendix
A Generating an aerodynamic shape optimization test case
B List of input files for aerodynamic optimization using 7ADO

C Creating a CFD grid using ICEM CFD

34
35
35
36
38
38
41
41
41
42
43
43

47
47
47
49
49
53
54

56

58

61

62

64

65



D AD tools for Fortran 68

E Modified Complex Code Sections 69
E.1 pyAerosurf. . . . . . . . 69
E.1.1 Original code segments . . . . . . . . .. ... ... ... ... 69

E.1.2 Complexified code segments . . . . . . . ... .. ... ... ... 69

E2 pyWarp . . . . . . 69
E.2.1 Original code segments . . . . . . .. .. .. ... ... ... 69

E.2.2 Modified code segments . . . .. .. ... 70

vi



List of Tables

2.1
2.2

5.1

5.2

5.3
5.4

Sensitivities of drag and lift coefficients with respect to M, . . . . . .. 22

ADjoint computational cost breakdown (times in seconds) . . . ... .. 22

CEFD mesh coordinate sensitivity verification: dJ/dX (i, j, k),in the Z co-

ordinate direction. . . . . .. .. ... Lo 51
Multiblock CFD mesh coordinate sensitivity verification: d//dX(i,j,k). . 52
Multiblock shape variable sensitivity verification . . . . . . . . .. .. .. 53
ADjoint computational cost breakdown (times in seconds) . . .. .. .. 54

vii



List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

5.1
5.2
5.3
5.4

Stencil for OR/Ow in SUmb . . . . . .. .. .. oo 17
Fine bump computational domain . . . . . . . .. . ... .00 L. 19
Contour plot of density . . . . . . . . ... ... oo 20
LANN wing computational domain . . . . . ... .. ... ... .. ... 20
Contour plot of density . . . . . . . . .. ... Lo 21
Parametric surface generation . . . . .. ... ... 25
Design variable application . . . . . . . . .. ... ... ... ... ..., 26
UML diagram of the designVariable class in pyAerosurf. . . . . . . .. 27
Warped mesh visualization . . . . . .. ... ... ... ... ..., 28
Stencil for the vertex-centred residual computation. . . . . . . .. .. .. 29
Block-to-block boundary stencil. . . . . . .. ..o 30
wADO analysis information flow . . . . . .. ... 0000 32
7ADO aerodynamic optimization information flow . . . . . . . .. .. .. 32
Geometry and mesh component complex-step function . . . ... .. .. 37
Stencil for the OR/Ow computation . . . . . ... .. .. ... .. ... 39
Stencil for the OR/0X computation . . . . . . .. .. ... ... ... 42
Infinite wing computational domain . . . . . . .. .. ..o 48
Density solution for a cross section of the infinite wing . . . . . .. . .. 48
Oblique wing: coarse mesh computational domain . . . . . . ... .. .. 50
Pressure solution for the surface of the oblique wing . . . . . . . ... .. 50

viil



Chapter 1
Introduction

As we push forward into the future of aircraft design, the requirements on aircraft de-
signers are becoming increasingly stringent. In addition to the traditional requirements
of designing a safe aircraft with good handling characteristics, the designer is also faced
with the constant demand of passengers who wish to fly farther, faster, for less money.
Further, the areas of environmental impact and noise pollution are also starting to have a
significant impact in aircraft design. These more restrictive sets of competing design goals
are causing the aircraft designer to explore new design methods in order to provide the
best overall aircraft performance for a given situation. One of these new tools is design
optimization. More specifically, in the particular case of aircraft design, Aerodynamic
Shape Optimization. Aerodynamic shape optimization is a process whereby numerical
analysis tools such as Computational Fluid Dynamics (CFD) are used in conjunction
with numerical search tools — also known as optimizers — to search a given design space
for the best solution for a given set of requirements. One class of tools that can be used
for this type of optimization is gradient-based search algorithms. However, in order for
these methods to work well, an efficient method for calculating the gradients for the
numerical analysis is required. Finding a method to efficiently compute the gradients of

large, complex numerical codes is the major focus of this work.

1.1 Motivation

This work discusses the ADjoint, an approach for the rapid development of discrete ad-
joint solvers. Adjoint solvers are a key component in the development of high-fidelity,

gradient based optimization algorithms. These are, in turn, a key tool in the imple-
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mentation of aerodynamic shape optimization methods. In order to take advantage of
the information provided by a high-fidelity analysis, it is generally desirable to include
a large amount of design flexibility when conducting a high-fidelity shape optimization.
This typically requires a large number of design variables to allow sufficient variability
in all components of the shape of the aircraft being optimized. However, because of this
large number of design variables, the optimization algorithm used needs to be able to
handle large numbers of design variables efficiently. While numerous examples exist of
gradient-free algorithms being used for shape optimization, it is generally accepted that
gradient-free algorithms become infeasible for more than 20 or 30 design variables. This
leaves gradient based algorithms as the only option for large scale design optimization. In
order to conduct large-scale gradient based optimization, an efficient sensitivity analysis
method is required. Otherwise, the computational time spent evaluating derivatives will
far outweigh all the other computational costs in the optimization.

This is where adjoint methods become useful. While the computational cost of meth-
ods like finite differences and the complex-step scale with the number of design vari-
ables [20, 30|, the cost of the adjoint method has been shown to be essentially independent
of the number of design variables, thus allowing for a large number of shape derivatives to
be calculated efficiently |16, 20, 30]. However, as will be discussed in section 2.3, the im-
plementation of adjoint methods in three-dimensional, high-fidelity, Computational Fluid
Dynamics (CFD) codes has proved to be quite difficult. As a result, the use of adjoint
methods in this field is still not particularly widespread. This is the motivation behind
the ADjoint approach. The ADjoint approach takes advantage of the best features of
both Automatic Differentiation(AD) and adjoint methods to provide a straightforward,

yet accurate and efficient, method for implementing adjoint methods.

1.2 Research Overview

In the following sections, the ADjoint approach will be introduced and discussed. The
early sections introduce the ADjoint as well as the basic concepts of automatic differen-
tiation and adjoint methods upon which the ADjoint is based. Section 2.4 discusses a
preliminary implementation of the ADjoint conducted on the first flow solver and shows
conclusively the advantageous properties of the ADjoint, namely the accuracy and com-
putational efficiency of the method. The later sections discuss the full implementation of

ADjoint sensitivities in the aerodynamic framework being constructed to conduct aerody-
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namic shape optimization. Section 4.2 discusses the full implementation of the ADjoint
method on the second code, including the parallelization and multiblock aspects of the
implementation. Finally, section 4.3 shows how the flow solver ADjoint sensitivities can
be combined with geometry and grid manipulation tools to compute the total aerody-

namic shape sensitivities required for shape optimization.

1.3 Contributions

The main contribution of this work is the idea of a hybrid approach between automatic
differentiation and adjoint methods. By combining the two together, the benefits of both
techniques are realized. The independence of computational cost from the number of
design variables typically associated with adjoint methods is attained, while the accuracy
and extensibility associated with AD are also achieved. Further, each technique tends to
eliminate the deficiencies of the other. In one case, the use of AD eliminates the tedious
process involved in generating the partial derivatives required for the adjoint equations.
In the other, using the adjoint method to reduce the scope of the AD significantly reduces
the implementation difficulties and memory costs frequently associated with AD. The
following research outlines the steps required to implement sensitivities using the ADjoint

approach and shows that it is both accurate and efficient.



Chapter 2

The ADjoint Approach

For gradient based optimization of complicated functions, determining the derivatives
of the objective function can be a significant bottleneck in the optimization process.
Traditional methods such as finite differencing can be relatively simple to implement, but
tend to sacrifice speed and accuracy as a result [22, 30]. Consider the general forward
finite difference formula,

di(z) I(x+h)—I(x)

= - . (2.1)

In this case, it is quite clear that the derivative with respect to each successive x requires a

further evaluation of the function f(z + h). Thus, for large numbers of design variables,
the cost of evaluating the derivatives is extremely high. Further, the accuracy of the
method is limited by opposite trends in truncation and round off error [22]. While
the truncation error decreases with step size, round off error, caused by subtractive
cancellation, increases as the step size decreases. Thus, there is a limit, greater than
machine zero, below which the error cannot be reduced [22]. Further, the minimum
error does not occur at a fixed step size, thus it is very difficult to achieve the minimum
theoretical error with this method.

Both of these issues are addressed by adjoint methods. Adjoint methods provide high
accuracy and have a computational cost that is essentially independent of the number
of design variables present [16, 30]. While this sounds like the ultimate solution to the
sensitivity problem, in reality, things are not so simple. In many cases, for example the
turbulence models in modern CFD codes, the partial derivatives required to compute
an adjoint solution are prohibitively complex to derive. As a result, assumptions are
often made to simplify the derivatives, which results in a reduction in the accuracy of the

derivatives provided by the method. An excellent discussion on this topic is presented
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by Dwight and Brezillion [9]. The key then, is finding a method with which one can
compute the partial sensitivities required by the adjoint method. The ADjoint approach
provides a robust method for dealing with this issue. By using automatic differentiation
to calculate the partial sensitivities in the adjoint equations, the efficiency of an adjoint
method is maintained, while allowing the method to be extended to codes of arbitrary
complexity without difficulty. The use of automatic differentiation also provides exactly
consistent partial derivatives, which leads to numerically exact total sensitivities.

In the following section, the ADjoint method is developed. The adjoint equations are
introduced, followed by a brief explanation of automatic differentiation. Then, the con-
cept of the ADjoint, which combines the two, is explained. To conclude the development,
exactly consistent derivatives, developed using the ADjoint on the first flow solver, are

shown.

2.1 Adjoint Equations

To derive the adjoint system of equations, consider a generic, single discipline case.
Further, consider a single objective function, that is a function of both the design variables

x as well as the system state variables w. In the generic case, let this be
I =I(z,w). (2.2)
Also, define a set of governing equations,
R (x,w (z)) =0, (2.3)

which represent the physics of the system and define the states of the system, w, when
they are satisfied. Next, consider the total derivatives of both the objective function I

and the governing equations R. These are written as follows:

dl 91l dw

PRl R (2:4)
dR OR OR dw
@ o Towda Y (2:5)

Unfortunately, both of these equations contain the total derivative dw/dz, which re-
quires the governing equations to be satisfied for every x. However, as is expressed in

equation (2.5), the total derivative of the residuals with respect to the design variables,
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i.e. the derivative including a solution of the system for each new design variable, will be
zero. The states will be modified as the system is solved to ensure that this is the case.
Because of this fact, the system in equation (2.5) can be rearranged to isolate dw/dz as
follows,
dw OR] ™ OR
= | == == 2.6
dz L%)] Oz (2.6)
Having done this, the result from equation (2.6) can be substituted back into equa-
tion (2.4) to create an alternate form of the total sensitivity equation as shown in equa-
tion (2.7)
dI oI oI [oR]'OR
- E4 (2.7)

dr 9z Ow |[0w] Ox

From this equation, one can generate either of the two typical semi-analytic methods
used. To get the direct method, one solves the system generated by the last two terms,
which is analogous to solving the system of equations represented in equation (2.6). This
method requires solving one linear system for each = of interest, which causes the cost
of the method to scale with the number of design variables, N,. The alternative is to

solve the system generated by the second and third terms in equation (2.7), which has

the form,
oI [oR]™
=—— | = . 2.
v ow [810} (28)
This approach is commonly referred to as the adjoint method, which is more traditionally
written as,
oR1" oI
— =——. 2.9
l@w] v ow (2.9)

In this case, one has to solve a linear system for each I, so the cost of computing deriva-
tives scales with the number of objective functions, Ny, rather than the number of design
variables N,. The selection of which semi-analytic method to use, adjoint or direct,
comes down to the relative number of design variables, N,, and objective functions, /N;.
For cases with large numbers of objective functions, the direct method is obviously more
efficient, while for cases with many design variables, the adjoint method is better. In
the case of aerodynamic shape optimization there are typically relatively few objective
values, usually Cp and C. However there can be on the order of hundreds or thou-
sands of design variables describing the shape of the design. Thus, for aerodynamic
shape optimization, the adjoint method will generally provide significant computational

advantages. Thus, for the following work, equation (2.7) will be solved using the adjoint
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method with the equations taking the following form:

orR1" ol
[%} w=-2 (2.10)

ﬂ—g+ TO_R
dr Oz or’

where 1 is the adjoint vector and dI/dx is the vector of total sensitivities required for

(2.11)

optimization.

2.2 Automatic Differentiation

The process of automatic differentiation, which is also known as computational differen-
tiation or algorithmic differentiation, has been around for many years. Its earliest im-
plementation dates back to the early 1960’s, for example the work published by Wengert
in 1964 [35]. Essentially, it is the process of systematically applying the chain rule of
differentiation to a computer code to accumulate the value of the derivative as the value

of the function is being computed or, as Rall and Corliss put it,

“ AD is the systematic application of the familiar rules of calculus to computer
programs, yielding programs for the propagation of numerical values of first,

second, or higher derivatives.” [29]

By treating the code in this manner, even very complex derivatives can be broken down
into components that are simple enough to treat with very basic derivative methods, the
total effect of which can be determined by the combination of the simple derivatives. A
more detailed description of the method is given below.

Consider a general problem with N, independent variables, z, and N, dependent
variables, y. Let the independent variables take the values ?;,%5,...%n,. In the case
of aerodynamic shape optimization these would be the design variables describing the
shape of the aerodynamic body. Then, let the dependent variables take the values
ENg 415 ENg 425 - - by g1 -+ -5ty - Where Ty, 11 to £, are the intermediate variables of
the algorithm and ¢,,,, to t,,4n, are the output variables of the algorithm. Given these
definitions, one can write write the value of the calculation at any stage of the algorithm
as follows,

ti=fi(ti,ta, ... tis1), =N, +1,N,+2,....m+N,. (2.12)
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Given this definition of the function at any stage in the algorithm, its derivative can be

formulated using the multivariable form of the chain rule as expressed in equation (2.13).

Ot _ 5 0fi Ot
ot; = Oty, 0t}

j=1,2,....n (2.13)
To demonstrate this, consider the simple problem defined by equations (2.14) and (2.15).

Yy = x2xg +sinxs (2.14)
Yo = T1Tox3+ e™? (2.15)

This example has two dependent output variables, y;, and three independent vari-
ables, x;. Next, using the notation of Rall and Corliss [29], one can write the evaluation

of y1 and ys in algorithmic form as a sequence of simple operations.

tr = 15+ 1tg
tl = I

no= tr
lo = X2

ts = t1 X9
t3 = I3

tg = 1g X3 (216)
ta = t1 X1t ¢

tlg = e~
ts = 14 X 1o

lin = tg+tio
tG = Sintg

y2 = 1In

Now, knowing that the intermediate variable t; represents the output y; and that the
intermediate variable ¢; represents the input z;, one can compute the derivative 0t;/0t;,
which represents the derivative of y; with respect to x;. The analytic derivative for this
case is simply,

Now, one can write the same derivative in terms of equation (2.13). In this case, i takes
on a value of 7 and j takes on a value of 1. Given these values, equation (2.13) can be
expanded as follows:

Ot _ 0t 0t | Dt Oty | OOty | Otr Oty | Obn Ot OOk

ot _ _ 518
Ot L0t DL ot | Otsot, 0t ot, | 0t | oty 0t (2.18)

Now, consider each of the derivatives in this section. First of all, consider the first

component in each term of the summation. These terms represent the change in the
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output variable, t7, caused by a change in each one of the intermediate variables. Based

on the expressions in equation set (2.16),one can write the following,

8t7 at?

—T =0 —T =0

8751 at4

8t7 8t7

b — =1 2.1
Oty 0 Ots (2.19)
8t7 at?

T =0 |

8753 a156

Thus, it becomes obvious that 7 depends explicitly only on ¢5 and .

Next, consider the second component in each term of the summation. These terms
represent the total change in the intermediate variables ¢; for a change in the input
variable of interest, in this case ¢;. Again, based on the expressions in equation set (2.16),

the following expressions can be written as,

%:1
%:0
g% — 0 (2.20)
%zau

ot Ots 0ty Ots Ot
> b4 2 2:t2X2t1+t4X0:2t1t2

9 Ohoh | ohoh
ots
8_751 = 0

Note that the chain rule from equation (2.13) is again used to represent the derivative
Ots /0ty because of its implicit dependence on t1, through ¢,. In this case, however, several
zero derivatives have been neglected to save space. Now, one can combine the expressions

from equation sets (2.19) and (2.20) to evaluate equation (2.18) as follows,

ot
aZ:0x1+Ox0+0x0+0x2h+1x2hb+1x0:2hm. (2.21)
1
Substituting in the original variables, one gets the result,
Iy
— =2 2.22
8]}1 T1X2, ( )

which is the same as the analytic result.
However, in practice, automatic differentiation tools do not apply the chain rule in

this brute force way. The application is done step by step in the algorithm, which leads
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to two distinct approaches: the forward mode and the reverse mode. The forward mode
approach, which is the easier of the two to grasp, starts with one input variable, ¢;, and
steps through the algorithm in the normal (forward) direction, building up derivative
information as it progresses. At the end of the algorithm, this approach produces deriva-
tive information for all of the algorithm output variables with respect to that single input

variable.

The reverse mode is somewhat less intuitive. With this approach, the algorithm
performs a single forward pass to calculate the values of all of the intermediate variables,
t. Having done this, the algorithm then performs a reverse sweep, accumulating the
derivative influence from output to input. The advantage of this approach is that because
it starts with a single output variable and steps backward through the algorithm, it can
compute the influence of all the input variables on that output in a single pass. In cases
where there are more input variables than output variables, this can lead to significant

computational savings.

To help illustrate this point, each approach will be examined in more detail using
the previous example. To demonstrate the forward mode, consider the input variable
x1, which corresponds to t;. In the forward mode approach, the algorithm computes
both the values and the derivative of the code at each step in the evaluation. The values
are evaluated as in equation set (2.16), while the derivative are evaluated as shown in
equation sets (2.23) and (2.24).

o _

0ty

ot _

0ty

% _

0ty

Oty

= 9t 2.93
ot ! (2.23)
Ots Oty Ots

T Y

ot 20t + Lot 12

It _

oty

Ot: Ots Ot

T I B 41w 28— ot

ot “ ot X ot 12

0

G ot

oty
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atg 8752

T X 14t x 2=t

ot 2 LTRSS
O o I g Oy
o,  *T o, "oy *7?
Ot1o

e 92.94
81511 at9 ath
T 22 20
ot 8t1+ o, °7?
3y2

LA

ot 2l3

Note that at each step, the derivative is only a function of the values and derivatives
computed previously. Thus, all of the derivatives with respect to ¢; can be computed in
a single forward pass. However, though the derivatives for all of the output variables are
generated in one pass, a separate pass has to be conducted for each input variable. In
the case of design or shape optimization, where there are typically many design variables,
this can incur a significant cost.

Now consider the reverse mode. In this case, one starts with a single output variable
and steps backward through the algorithm, developing the derivatives in reverse order.
For this process to work, the values of the intermediate variables must all be known before
hand, thus a single forward pass through the algorithm is a prerequisite to this process.
Consider the output value s, which is related to t;;. For the sample problem above, the

analytic results for the derivative of y, with respect to the three input variables are,

% = o
D, 23
dys )
L T2y 2.25
o, Toe T1T3 ( )
% = 1
ot 1T2.

Now using the reverse mode method, the differentiation is constructed as follows,

Oty

e |

Ot11

Ot11

— = 1 2.26
Ot11

e R |

Oto

Oty Ot11 Oty
i N L
Ot dty Ots
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Oty _ 0
Ot
Ot11 _ 0
Ot
Ot — 0
Ots
ot
Wj =0 (2.27)
82511 (97511 8t9
o U ) g =t
Ot Ot Ot 8
81511 87511 8t10 31511 8t8 t t
gu T8 1 X tge! £ty x 1 = tee? + 1t
ot Oty Oty | Ots Of 267 +13 X 11 =tp€” +ialg
6t11 atu atg
T Uyt = ot
oty ots Ot, >~ 72
giving the following final results,
9y _ .
92, 2T3
0
8—3‘; = 226™ + 2173 (2.28)
Oyz = 1T
ot5 1Z2.

Again, the derivatives are the same as the analytic results. However, this time, the
derivatives of a single output variable with respect to all of the input variables are com-
puted with only one forward pass and one backward pass through the algorithm. It is
apparent then, that if there are more input variables than output variables, the reverse
mode can allow significant computational savings.

However, while for this simple example it is fairly straight forward to break down
the problem and apply simple calculus rules, in practice the application for which AD is
intended are large and potentially very complex computer codes with thousands or even
millions of variables. In these cases, it is nearly impossible and most certainly impractical
to attempt a similar “manual” approach. As a result, computer tools have been developed
to aid in the implementation of AD.

There are two main approaches used by the tools developed to implement automatic
differentiation: source code transformation and operator overloading. Tools that use
source code transformation add new statements to the original source code that compute
the derivatives of the original statements. These statements would be analogous to the
derivative formulae developed in equation sets (2.23) and (2.24) for forward mode and

equation sets (2.26) and (2.27) for reverse mode when considering the simple example
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described previously. The operator overloading approach is implemented by defining a
new, user defined, data type that is used instead of real numbers. This new data type
includes not only the value of the original variable, but the derivative as well. In addition,
all of the intrinsic operations and functions have to be redefined (overloaded) so that the
derivative component is computed along with the desired function value.

There are automatic differentiation tools available for a variety of programming lan-
guages including Fortran, C/C++ and Matlab. A list of some of the available tools for
Fortran has been included in Appendix D for reference, however for this work the tool
Tapenade [14, 27, 13] was used. Tapenade is a non-commercial, source transformation
tool that includes support for Fortran 90, a requirement for this work. The tool, which
was developed at INRIA is the successor to Odyssée [10] and is capable of performing
differentiation in either forward or reverse mode.

Having outlined the basic concepts of AD and discussed the tools used to implement

it, it is now possible to discuss the ADjoint in more detail.

2.3 The ADjoint

While adjoint methods have been know for quite some time, for example one of the earliest
application to a fluids application is due to Pironeau [28| in 1974, the use of adjoint
methods in fluid dynamics is still not commonplace. Research applications of the adjoint
have progressed steadily. For example, the method was extended by Jameson to perform
airfoil shape optimization [16] in the 1980’s and was then used, in conjunction with a
Newton-Krylov solver, for airfoil shape optimization by Nemec and Zingg [25]. Since
then, the adjoint method has also been developed for more complex problems, leading to
its application to the design optimization of complete aircraft configurations considering
aerodynamics alone [30, 31|, as well as aerodynamic and structural interactions [19]. The
adjoint method has also been generalized for multidisciplinary systems [20].

Thus, given all of this activity in the research field, why has the adjoint method
not gained more commonplace use in everyday applications? One of the main reasons
for this is the complexity and effort involved in generating adjoint code in complex
three—dimensional flow solvers. In many cases, for example in the turbulence models
used to close the Reynolds-averaged Navier-Stokes (RANS) equations, the expressions
used in the flow solver are prohibitively difficult to differentiate by hand. Thus, in

many cases, implementing an adjoint computation is dismissed as too onerous. Often,
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to eliminate this problem, numerical differentiation techniques are used to alleviate the
difficulty. In many cases, finite—difference methods are used to generate the partial
derivatives outlined in section 2.1. However, this again leads to accuracy issues in the
derivatives. More recently, Nielsen and Kleb demonstrated a method to generate the
required derivatives using complex variables |26]. This approach has many similarities to
the ADjoint approach and was also able to provide accurate, efficient sensitivities. Thus,
given all of the previously discussed difficulties encountered when trying to compute
accurate and efficient sensitivities, the goal of the ADjoint approach is to reduce the
complexity of implementing an adjoint to the point where it is considered a competitive
alternative for sensitivity analysis in three-dimensional CFD solvers.

The idea behind the ADjoint approach is quite simple. It is a hybrid approach between
pure automatic differentiation and the adjoint method. The central idea of the ADjoint
method is simply to compute the four partial derivative terms in the expanded form of
the total sensitivity equation (2.7), OR /0w, 01 /0w, 01 /0x and OR/Jx, using automatic
differentiation. Once these terms are computed, the adjoint method, as described by
equations (2.35) and (2.36), is used to compute the desired vector of total sensitivities. By
approaching the problem in this manner, the advantages of both techniques are exploited.
The use of the adjoint method allows for efficient computation of the derivatives of few
outputs with respect to many input values, while the use of automatic differentiation to
compute the partial derivatives allows for very high accuracy and a relatively fast and
simple implementation. To demonstrate these points, the ADjoint approach was used to

implement an adjoint code on the three-dimensional CFD solver SUmb.

2.4 ADjoint Implementation

To demonstrate the feasibility of the ADjoint concept, the ADjoint approach was used
to develop sensitivities for the SUmb flow solver [34]. SUmb, which has been devel-
oped at Stanford University under the sponsorship of the D