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The use of steady-state aerodynamic optimization methods in the computational fluid dynamic

(CFD) community is fairly well established. In particular, the use of adjoint methods has proven

to be very beneficial because their cost is independent of the number of design variables. The

application of numerical optimization to airframe-generated noise, however, has not received as

much attention, but with the significant quieting of modern engines, airframe noise now competes

with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to

reduce airframe-generated noise.

In this thesis, a general framework is formulated to calculate the gradient of a cost function in

a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimiza-

tion algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based

optimizer uses the quasi-Newton method BFGS, Newton’s method is applied to the nonlinear flow

problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least

the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-

dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence

model, which are discretized using structured grids and a finite difference approach. The effective-

ness of the unsteady optimization algorithm is demonstrated by applying it to several problems of

interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic

buffeting, and an unsteady trailing-edge flow.

In order to address radiated far-field noise, an acoustic wave propagation program based on the

Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general

framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimiza-

tion algorithm in order to be able to optimize the shape of airfoils based on their calculated far-field

pressure fluctuations. Validation and application results for this novel hybrid URANS/FW-H op-

timization algorithm show that it is possible to optimize the shape of an airfoil in an unsteady flow

environment to minimize its radiated far-field noise while maintaining good aerodynamic perfor-

mance.
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Chapter 1

INTRODUCTION

Increased computer capabilities have enabled exceptional growth in the field of Computa-

tional Fluid Dynamics (CFD) such that numerical simulation and optimization of unsteady

turbulent flow conditions are now feasible. In this chapter, background information about

aerodynamic design optimization is given in Section 1.1, and a brief introduction to aircraft

noise is presented in Section 1.2. Finally, the objectives of this thesis and a document outline

can be found in Section 1.3.

1.1 Aerodynamic Design using Numerical Optimization

The goal of all aerodynamic design methods, be they experimental, analytical or computa-

tional, is to find a shape which improves an aerodynamic measure of interest, such as lift or

drag, while adhering to appropriate constraints, for example structural integrity, fuel tank

volume, etc. Since computational aerodynamic design methods tend to increase the level

of automation during the design process, they enjoy great popularity [68, 73]. Although

automation may reduce design processing time as well as the dependence of the result on

the expertise of the designer, its success depends heavily on the reliability and accuracy of

the computational methods and on how well the designer has set the goals.

The natural choice for solving design problems computationally is the use of numerical

optimization methods. Thus, the designer has to cast the given aerodynamic design problem

into a well-posed optimization problem. This includes the definition of an objective function

which is to be minimized, design variables which describe the aerodynamic shape, and pos-

sibly constraints which confine the feasible shapes. The numerical optimization method can

then determine, in an iterative, automated, and systematic approach, design variable values

within the feasible region of the design space which improve and eventually minimize the

objective function. The objective function value is calculated using a suitable flow analysis

1



2 Chapter 1. Introduction

tool, the so-called flow solver. The flow solver has a significant influence on the efficiency of

the numerical optimization method since the iterative process requires repeated evaluations

of the objective function. Furthermore, the accuracy of the objective function evaluations,

and hence the accuracy of the flow solver, also ultimately determines the overall accuracy of

the computational aerodynamic design method.

Numerical optimization methods that are available include direct search methods, stochas-

tic methods, and gradient-based methods [25, 44, 103]. Gradient-based methods are likely the

most effective for aerodynamic design problems, since significant design improvements can

be obtained in comparatively few evaluations of the objective function. However, gradient-

based methods require a relatively smooth design space and usually converge only to a local

optimum, which is certainly an improvement of the initial design but not necessarily the best

obtainable design. The main challenge for the implementation of gradient-based methods is

an accurate and efficient computation of the gradient. The use of an adjoint method [108] for

this purpose, which has been pioneered by Jameson [64] for steady-state aerodynamic design

optimization, has proved to be accurate and very efficient since its cost is independent of the

number of design variables [109]. For more details about all the aforementioned concepts see

Chapter 3.

The use of steady-state aerodynamic optimization methods in the CFD community is

fairly well established [1, 2, 32, 33, 65, 72, 104]. In particular, Nemec and Zingg [97, 101, 102]

successfully used a Newton-Krylov approach to two-dimensional steady optimization using

the Reynolds-Averaged Navier-Stokes (RANS) equations which lays the groundwork for this

thesis. However, a much smaller amount of work has been done on applying optimization

methods to unsteady aerodynamic problems even though many devices of interest, such as

helicopter rotors, turbomachinery blades and high-lift components, operate in unsteady flow

environments. Yee et al. [152] attempted aerodynamic shape optimization of rotor airfoils in

an unsteady viscous flow, and He et al. [52] applied active control and drag optimization to

unsteady flow past a cylinder. The optimal control of a vortex trapped by an airfoil with a

cavity was investigated by Iollo and Zannetti [62], and Duta et al. [30, 31] used a harmonic

adjoint approach to turbomachinery design. Marsden et al. [82, 83, 84] applied a surrogate

management framework to an aerodynamic noise reduction problem involving laminar and

turbulent trailing-edge flow. Nadarajah and Jameson [89, 90] designed airfoils undergoing

a pitching oscillation using a discrete adjoint approach to reduce the time-averaged drag
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coefficient while maintaining the time-averaged lift coefficient. Lastly, Mani and Mavriplis

applied a discrete adjoint formulation for flow problems on dynamically deforming unstruc-

tured meshes for the Euler equations in two dimensions [79, 81] and the Navier-Stokes equa-

tions in three dimensions [85] using the second-order accurate backward difference formula

temporal discretization. They also used the adjoint for time-step adaptation and error re-

duction in unsteady flow problems [80]. The work for this thesis was developed in parallel

and is distinguished from their work in several important respects, as the present work is us-

ing a more general framework to derive the adjoint equations (Section 3.3) which allows the

use of higher-order time marching methods (Section 2.3), remote objective functions (Sec-

tion 5.6), and the coupling with a wave propagation program (Chapter 4). In the context of

unsteady flows, frequency domain methods which allow for reduced computational expense,

particularly for problems with strong periodic behaviour, have also been used for unsteady

optimization by various authors [93, 94, 136]. However, most unsteady problems have no

dominant periodic behavior and therefore frequency domain methods should be viewed as

complementary to time-domain methods [85].

1.2 Introduction to Aircraft Noise

In all branches of engineering and technology, power requirements to overcome resistance

are reduced by decreasing the resistance of each component constituting the overall resis-

tance. Most people would agree that reducing power requirements by fifty percent is a major

advancement in engineering. However, a human listener would perceive an acoustic power

reduction of fifty percent as small since it amounts to just 3 dB on the logarithmic decibel

scale. In order for a human listener to realize that a noise has been subjectively halved, a

noise reduction of about 10 dB, corresponding to a drop in acoustic power of ninety percent,

is necessary (compare with Figure 1.1).

Aircraft noise is defined as the noise intensity, I(W/m2), as measured by an observer at

ground level directly below the aircraft, which corresponds to θ = 90◦, where θ is the angle

measured in the longitudinal flight plane from downstream. The OverAll Sound Pressure

Level (OASPL) radiated from this aircraft is then given by [76]

N(dB) = 120 + 10 log10 I(W/m
2). (1.1)
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Figure 1.1: Common environmental sound levels [135].

Aircraft noise sources are typically divided into two main sources; the engine and the air-

frame, which themselves are composed of many different noise sources. The three primary

noise sources of a turbofan engine are the fan, the fan jet, and the primary jet. Airframe noise

is generated by the air flowing over the airplane’s fuselage, wing, landing gear, and high-lift

devices such as the leading-edge slats and trailing-edge flaps. All these different noise sources

combine in a complicated fashion that can make it very difficult to achieve large reductions

in the OASPL. For example, a human observer clearly hears the noise of a dominant source,

but sources that are about 10 dB less than this dominant source are not heard. Thus, the

elimination of the dominant source would achieve a significant 10 dB reduction in noise. On
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the other hand, noise reductions made to the other noise sources would lead to little or no

reduction of the OASPL. In contrast, two sources of equal intensity produce a combined

noise that is 3 dB louder than either noise source alone. Thus, the elimination of one of the

sources would only result in an insignificant 3 dB reduction in noise.

The dominant source of aircraft noise in the past has been the engine. However, the

changeover from the turbojet engines to the high-bypass ratio turbofan engines has produced

a large reduction in engine noise and has concurrently resulted in a reduction in fuel burn,

implying economical and environmental benefits [76]. As a result, the noise produced by

individual aircraft has been reduced dramatically since the beginning of the jet age. Over

a period of thirty years from the mid 1960s to the 1990s, aircraft noise at a given thrust

level was reduced by 20 dB [113]. To the human listener, this is heard subjectively as

a fourfold reduction in noise as the acoustic power has been reduced by a factor of one

hundred. Nowadays during aircraft approach and landing, when engines operate at reduced

thrust and high-lift devices and undercarriage are in the deployed state, the noise from the

airframe is only marginally lower than the engine noise [69, 125, 149]. In some modern

aircraft the engine noise is even lower than the airframe noise [113] as shown in Figure 1.2.

1. Typical 1992-level aircraft, data taken from [149] 2. Typical 2002-level aircraft (A340-300) [113]

Figure 1.2: Breakdown of noise components during approach for two different aircraft and

decades.
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The importance of individual airframe noise sources is configuration dependent, but typ-

ically noise due to the high-lift system dominates for medium-sized aircraft, whereas under-

carriage noise is more important for larger aircraft [15]. Aircraft high-lift systems consist of

many sharp edges and corners, such as trailing edges, the cusps of the slats and the side edges

of the flaps. In general, the deployment of any high-lift component (slat or flap) increases the

far-field noise level, and the larger the deployment angle, the higher the noise. The changes

in noise levels with the high-lift system components are, however, frequency dependent. In-

creasing flap deployment angles affects almost the entire mid- and high-frequency domain

with the most significant effects at high frequencies. The noise predominantly comes from

the flow in the vicinity of the flap side edges, associated with flow separation in the flap cross-

flow [17]. When the flap angle increases, for example, from 0◦ to 50◦, the increase in noise

level can be as high as 10 dB at high frequencies [49]. On the other hand, the deployment of

slats mainly increases noise in the low- to mid-frequency domain, probably associated with

flow separation in the slat cove [47]. When, for example, the slats are deployed from the re-

tracted position to 20◦, the noise level is increased by up to about 4 dB within the frequency

band from 0.1 to 2.5 kHz [49]. In this case the flow can be approximated as two-dimensional,

leading to noise source distributions along the spanwise direction of the slats.

The fact that the slat deployment can be treated two-dimensionally and affects mostly

the low- and mid-frequency domain makes this an ideal test case for high-lift noise reduction,

since both conditions make the computational size of the problem viable. Significant acoustic

phenomena are intrinsically three-dimensional; however, the flow structures responsible for

generating noise can be quasi-two-dimensional like the flow separation in the slat cove. Singer

et al. [125] found that two-dimensional simulations can be used in this case to find the correct

features of the radiated sound, even though the amplitudes are overpredicted. For more

details see Chapter 4.

Noise from automobiles and aircraft is a significant problem around the world. In Europe,

for example, it is estimated that roughly twenty per cent of the European Union’s population

(close to 80 million people) are exposed to noise levels that are considered unacceptable [34].

It is well known that the noise from air traffic can be a source of irritation and annoyance,

but a study carried out as part of the HYpertension and Exposure to Noise near Airports

(HYENA) project [50] (a four-year study exploring the health effects associated with expo-

sure to aircraft noise) found that it can also be damaging to people’s health. The study
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showed that night-time noise from aircraft, traffic or even a partner snoring can increase a

person’s blood pressure even if it does not wake them. The increase in blood pressure was

related to the loudness of the noise, such that a greater increase in blood pressure could be

seen where the noise level was higher. People with high blood pressure (hypertension) have

an increased risk of developing heart disease, stroke, kidney disease and dementia [50]. A

similar study [114] found that people who have been living for at least five years under a

flight path near an international airport, have a greater risk of developing high blood pres-

sure than people living in quieter areas. It showed that an increase in night-time aircraft

noise of 10 dB increased the risk of high blood pressure by fourteen per cent in both men

and women.

Because of the projected growth in air travel and the increase in population density near

airports, it is clear that measures need to be taken to reduce noise levels from aircraft, in

particular during night-time, in order to protect the health of people living near airports.

Current Federal Aviation Administration (FAA) and European noise regulations do exactly

this and require future civil aircraft to be substantially quieter than current ones [128].

In state of the art aircraft, multiple sources are producing noise at similar intensities (see

Figure 1.2), thus all of these sources must be reduced by commensurate levels to achieve any

significant overall noise reduction.

The noise intensity at ground level for an aircraft in straight and level flight at some

flyover speed, V∞, in the “clean” configuration (flaps, slat and undercarriage stowed) and

with the engine cut back, varies approximately as V 5
∞ for a wide range of aircraft [10, 40, 59].

Here, the atmospheric sound absorption at higher frequencies is ignored due to the relatively

low heights involved in flyover experiments. This proportionality can be inferred from a

simple formula which can be derived by assuming that the turbulent boundary layer noise

scattered by the wing trailing edge is the dominant noise source [76]. Using the average lift

coefficient, C̄L, the free-stream Mach number, M∞, the speed of sound, a∞, the height above

ground, h, and the all-up weight, Wup = 0.5ρ∞V
2
∞AC̄L, where A is the wing area and ρ∞ the

free-stream density, the noise intensity at ground level is given by

I(W/m2) = K

(
WupV∞M

2
∞

C̄Lh2

)
= K

(
0.5ρ∞AV

5
∞

a2
∞h

2

)
, (1.2)

where K ≈ 7 · 10−7 for larger aircraft. Although the coefficient K varies with the Reynolds

number ranging from gliders, light aircraft, to large jumbo-jets, one can find that this formula
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fits the experimental data collected from ground noise measurements for all aircraft over the

past twenty-five years remarkably well [76], thereby covering an enormous range of weights

from about 10N to 4 · 106N . As an example for a larger aircraft in the “clean” configura-

tion with Wup = 2 · 106N , C̄L = 0.5, V∞ = 125m/s implying M∞ = 0.38 and h = 120m, the

resulting OASPL at the ground level is N = 95.4 dB. For other angles θ in the longitudinal

flight plane the noise directivity follows the sin2(θ/2) law [76].

It should be noted that Eq. (1.2) is not sufficient for accurate predictions or even noise

certification requirements. However, it gives some insight into the dominant noise charac-

teristics generated by “clean” aircraft. It also provides information on the lower bound of

airframe noise for present-day aircraft if it were possible to entirely eliminate all extra noise

arising from the “dirty” configuration (high-lift system and undercarriage deployed). For

aircraft flying in the “dirty” configuration, the radiated noise is highly geometry dependent

but it still remains proportional to about V 5
∞ [76].

By investigating Eq. (1.2) one can immediately think about a few operational measures to

reduce the airframe noise on approach. These include the use of lighter aircraft and steeper

approaches, as well as later high-lift system and undercarriage deployment. A reduction in

approach speed, which is typically about 1.3 times the aircraft stalling speed [76], would

also reduce noise significantly. All such measures would have implications for the design

of future high-lift systems and undercarriages and the challenge will be to aerodynamically

dissipate the large amounts of energy produced during approach with significantly less noise

than nowadays or to create the unavoidable noise at less obtrusive frequencies.

1.3 Objectives and Outline

When an aircraft is landing and the flaps and slats are deployed, the airflow around this high-

lift airfoil becomes unsteady and very complex, involving phenomena such as flow separation

and shear-layer instability both in the slat region and near the side edges of the flaps. These

complex flow features cause pressure fluctuations that can escape to the ground level as

noise, as described in the previous section and Chapter 4. The task of this research project

is to simulate this situation using a two-dimensional CFD simulation and a wave propagation

program, which enable the use of gradient-based numerical optimization, in order to change

the shape of the high-lift airfoil to minimize its radiated noise while maintaining good flight

performance.
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In more detail, the objectives of this thesis are two-fold:

1. Develop an efficient unsteady aerodynamic optimization algorithm based on a Newton-

Krylov and adjoint approach, where the underlying physical model is the Unsteady

Reynolds-Averaged Navier-Stokes (URANS) equations. Tasks which have to be ac-

complished in order to achieve this objective include

(a) Extend the two-dimensional steady turbulent Newton-Krylov based group codes

PROBE [111] (single-block) and TORNADO [97] (multi-block) to handle un-

steady turbulent flows using the URANS equations and the one-equation Spalart-

Allmaras turbulence model while maintaining the efficiency of the steady flow

solvers.

(b) Develop a general framework to derive the adjoint equations for the unsteady

turbulent flow solver.

(c) Apply the unsteady aerodynamic optimization algorithm to several problems of

interest in order to validate and test it. Factors under consideration are the

accuracy and efficiency of the gradient computation and the overall efficiency of

the unsteady optimization procedure.

2. Extend the unsteady optimization algorithm to be able to perform far-field noise min-

imizations by coupling the URANS solver with a wave propagation program. The

associated tasks include

(a) Evaluate available wave propagation programs, implement one, and validate it

by using model problems with analytical solutions and by directly comparing the

wave propagation program output with a URANS simulation.

(b) Use the developed framework to derive the adjoint equations for this hybrid acous-

tic prediction code. Validate the resulting hybrid acoustic prediction optimization

algorithm using remote inverse shape designs and apply it to airframe-generated

noise reduction problems.

Chapters 2 and 3 address tasks 1(a) and (b), as the underlying equations and numer-

ical algorithm of the flow solver and a description of all the components of the gradient

based unsteady aerodynamic optimization algorithm are presented, respectively. Chapter 4
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is concerned with task 2(a) since an overview of available wave propagation programs and

details about the implementation of the chosen two-dimensional Ffowcs Williams and Hawk-

ings (FW-H) equation in the frequency domain are given and results of validation cases are

shown. Chapter 5 presents the validation and evaluation of the unsteady aerodynamic opti-

mization algorithm as well as the hybrid acoustic prediction optimization algorithm based on

a wide spectrum of applications, therby covering tasks 1(c) and 2(b). Finally, Chapter 6 con-

cludes this thesis, highlights the contributions, and outlines some potential future research

directions. The development and application of this unsteady aerodynamic optimization

algorithm and the hybrid acoustic prediction optimization algorithm is also presented in

Rumpfkeil and Zingg [115, 116, 117, 118, 119, 120].



Chapter 2

GOVERNING FLOW EQUATIONS

This chapter discusses the underlying equations and numerical algorithm of the flow solver.

In Section 2.1, the unsteady thin-layer Reynolds-averaged Navier-Stokes equations are pre-

sented in conjunction with the one-equation Spalart-Allmaras turbulence model. Sections 2.2

and 2.3 discuss the spatial and temporal discretization of the governing flow equations, re-

spectively. Section 2.4 then describes how the nonlinear system of the discretized equations

is solved using an inexact Newton-Krylov algorithm.

2.1 Navier-Stokes Equations

The Navier-Stokes equations operate on the non-dimensional conservative variables

Q =


ρ

ρu

ρv

e

 , (2.1)

where the dimensional Cartesian coordinates x̃ and ỹ, density ρ̃, velocities ũ and ṽ, total

energy ẽ, and time t̃ are scaled as

x =
x̃

c
, y =

ỹ

c
, ρ =

ρ̃

ρ̃∞
, u =

ũ

ã∞
, v =

ṽ

ã∞
, e =

ẽ

ρ̃∞a2
∞
, t =

t̃a∞
c
. (2.2)

Here the ∞ subscript indicates free-stream quantities, c is the airfoil chord, a =
√
γp/ρ is

the speed of sound with γ = 1.4 for air and the pressure, p, is related to the flow variables

via the equation of state for an ideal gas where p = (γ − 1)
(
e− 1

2
ρ(u2 + v2)

)
.

The unsteady two-dimensional Reynolds-averaged Navier-Stokes equations in Cartesian

coordinates are given by

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
=

1

Re

(
∂Ev
∂x

+
∂Fv
∂y

)
, (2.3)

11
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with the inviscid fluxes

E =


ρu

ρu2 + p

ρuv

(e+ p)u

 , F =


ρv

ρuv

ρv2 + p

(e+ p)v

 , (2.4)

and the viscous fluxes

Ev =


0

τxx

τxy

φ1

 , Fv =


0

τxy

τyy

φ2

 , (2.5)

where

τxx = (µ+ µt)(4ux − 2vy)/3

τxy = (µ+ µt)(uy + vx)/3

τyy = (µ+ µt)(−2ux + 4vy)/3 (2.6)

φ1 = uτxx + vτxy + (µPr−1 + µtPr
−1
t )(γ − 1)−1∂x(a

2)

φ2 = uτxy + vτyy + (µPr−1 + µtPr
−1
t )(γ − 1)−1∂y(a

2).

Here µ and µt are the dynamic and turbulent eddy viscosities, respectively. The dynamic

eddy viscosity is related to the free-stream temperature, T∞ ≡ 460◦R, and the constant

S∗ = 198.6◦R via Sutherland’s law

µ =
µ̃

µ∞
=
a3(1 + S∗/T∞)

a2 + S∗/T∞
. (2.7)

The Reynolds number, Re, is defined as

Re =
ρ∞ c a∞
µ∞

, (2.8)

which is not based on u∞ like experimentally given Reynolds numbers, which are therefore

scaled by the free-stream Mach number M∞ = u∞/a∞ in the code. The laminar and

turbulent Prandtl numbers Pr ≡ 0.72 and Prt ≡ 0.90 are assumed to be constant.
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2.1.1 Turbulence Model

“When I meet God, I am going to ask him two questions:

Why relativity? And why turbulence?

I really believe he will have an answer for the first.”

Werner Heisenberg (1901-1976)

A turbulence model is needed for the Navier-Stokes equations to calculate the turbulent

eddy viscosity µt. The one-equation Spalart-Allmaras [131] turbulence model is used, which

is optimized for aerodynamic applications, particularly for flows past a wing. The non-

dimensional dependent variable is ν̃, with the transport equation given by

∂ν̃

∂t
+ u

∂ν̃

∂x
+ v

∂ν̃

∂y
=

cb1
Re

[1− ft2]S̃ν̃ −
1

Re

[
cw1fw −

cb1
κ2
ft2

]( ν̃

dw

)2

+
1 + cb2
σRe

∇ · [(ν + ν̃)∇ν̃]− cb2
σRe

(ν + ν̃)∇2ν̃ + Reft1∆U
2. (2.9)

The first term on the right hand side is the production term, the second is the destruction,

the third and fourth are diffusion terms, and the fifth is the trip, or transition, term. The

turbulent eddy viscosity µt is found from ν̃ by

µt = ρν̃fv1, (2.10)

where

fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
and ν = ρµ. (2.11)

The modified vorticity, S̃ is given by

S̃ = SRe+
ν̃

κ2d2
w

fv2, (2.12)

where S =
∣∣∣ ∂v∂x − ∂u

∂y

∣∣∣ is the magnitude of the vorticity, dw is the distance to the closest wall,

and

fv2 = 1− χ

1 + χfv1
. (2.13)

The destruction function fw is

fw = g

[
1 + c3w3

g6 + c6w3

] 1
6

, (2.14)



14 Chapter 2. Governing Flow Equations

with

g = r + cw2(r
6 − r) and r =

ν̃

S̃κ2d2
w

. (2.15)

Transition can be enforced using the two functions ft1 and ft2 [131]. They are set to zero in

this work. The remaining parameters are the following constants

cb1 = 0.1355 cb2 = 0.622

cw1 = cb1/κ
2 + (1 + cb2)/σ κ = 0.41

cw2 = 0.3 cw3 = 2.0

cv1 = 7.1 σ = 2
3
.

(2.16)

Ashford [3] proposed the following changes to Eqs. (2.12) and (2.13) to keep S̃ positive

S̃ = Sfv3Re+
ν̃

κ2d2
w

fv2, (2.17)

with cv2 = 5.0 in

fv2 =

(
1 +

χ

cv2

)−3

and fv3 =
(1 + χfv1)(1− fv2)

χ
, (2.18)

which are incorporated in this work.

2.1.2 Thin-Layer Approximation and Coordinate Transformation

The Navier-Stokes equations can be simplified using the thin-layer approximation in which

the viscous effects resulting from the derivatives in the streamwise direction are assumed to

be small enough to be neglected. This assumption does not hold for low Reynolds numbers

or highly separated flows.

Structured grids are used to discretize the physical domain. All grids are generated with

the multi-block grid-generation tool AMBER2D [96]. For single-element airfoils or cylinders,

single-block C- or O-topology grids are used, while for airfoils with blunt trailing edges or

multi-element airfoils, multi-block C- or H-topology grids are used. A curvilinear coordinate

transformation is applied to map the curved grid in physical coordinates (x, y) to a unit

square grid in curvilinear computational coordinates (ξ, η) [112]

ξ = ξ(x, y), η = η(x, y). (2.19)
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The two-dimensional thin-layer Navier-Stokes equations in curvilinear coordinates are given

by

∂Q̂M

∂t
+
∂Ê

∂ξ
+
∂F̂

∂η
=

1

Re

(
∂Ŝ

∂η

)
, (2.20)

and they operate on the conservative mean flow variables

Q̂M = J−1


ρ

ρu

ρv

e

 , (2.21)

where the metric Jacobian of the transformation J is

J−1 = (xξyη − xηyξ). (2.22)

The inviscid flux vectors become

Ê = J−1


ρU

ρUu+ ξxp

ρUv + ξyp

(e+ p)U

 , F̂ = J−1


ρV

ρV u+ ηxp

ρV v + ηyp

(e+ p)V

 , (2.23)

where U and V are the contravariant velocities

U = ξxu+ ξyv, V = ηxu+ ηyv. (2.24)

The modified viscous flux vector is

Ŝ = J−1


0

ηxm1 + ηym2

ηxm2 + ηym3

ηx(um1 + vm2 +m4) + ηy(um2 + vm3 +m5)

 , (2.25)

with

m1 = (µ+ µt)(4ηxuη − 2ηyvη)/3

m2 = (µ+ µt)(ηyuη + ηxvη)

m3 = (µ+ µt)(−2ηxuη + 4ηyvη)/3 (2.26)

m4 = (µPr−1 + µtPr
−1
t )(γ − 1)−1ηx∂η(a

2)

m5 = (µPr−1 + µtPr
−1
t )(γ − 1)−1ηy∂η(a

2).
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Finally, the Spalart-Allmaras turbulence model without transition terms in curvilinear co-

ordinates is given in the thin-layer approximation by neglecting all mixed derivatives as

follows

∂ν̃

∂t
+ U

∂ν̃

∂ξ
+ V

∂ν̃

∂η
− 1

Re

[
cb1S̃ν̃ − cw1fw

(
ν̃

dw

)2

+
1 + cb2
σ

T1 −
cb2
σ
T2

]
= 0, (2.27)

where

T1 = ξx
∂

∂ξ

[
(ν + ν̃) ξx

∂ν̃

∂ξ

]
+ ηx

∂

∂η

[
(ν + ν̃) ηx

∂ν̃

∂η

]
(2.28)

+ ξy
∂

∂ξ

[
(ν + ν̃) ξy

∂ν̃

∂ξ

]
+ ηy

∂

∂η

[
(ν + ν̃) ηy

∂ν̃

∂η

]
,

and

T2 = (ν + ν̃)

[
ξx
∂

∂ξ

(
ξx
∂ν̃

∂ξ

)
+ ηx

∂

∂η

(
ηx
∂ν̃

∂η

)
+ ξy

∂

∂ξ

(
ξy
∂ν̃

∂ξ

)
+ ηy

∂

∂η

(
ηy
∂ν̃

∂η

)]
. (2.29)

2.2 Spatial Discretization

The spatial discretization scheme of the thin-layer Navier-Stokes equations (2.20) is the one

used in ARC2D [112] for C- or O-topology grids and TORNADO [96] for H-topology grids.

The discretization for the inviscid fluxes uses a second-order centered-difference operator

with second- and fourth-order scalar artificial dissipation [66] in every node (j, k):

(
∂Ê

∂ξ

)
j,k

≈ Êj+1,k − Êj−1,k

2
−∇ξdj+ 1

2
,k and

(
∂F̂

∂η

)
j,k

≈ F̂j,k+1 − F̂j,k−1

2
−∇ηdj,k+ 1

2
.

(2.30)

The artificial dissipation term in the ξ-direction is given by

dj+ 1
2
,k = σj+ 1

2
,kJ

−1
j+ 1

2
,k

(
ε
(2)

j+ 1
2
,k
∆ξ(JQ̂M)j,k − ε

(4)

j+ 1
2
,k
∆ξ∇ξ∆ξ(JQ̂M)j,k

)
, (2.31)

where the combinations of operators acting on JQ̂M are adjusted near the boundaries and

Υj,k =
|pj+1,k − 2pj,k + pj−1,k|
|pj+1,k + 2pj,k + pj−1,k|

(2.32)

Υ∗
j,k = max(Υj+1,k,Υj,k,Υj−1,k) (2.33)

ε
(2)
j,k = κ2(

1

4
Υ∗
j+1,k +

1

2
Υ∗
j,k +

1

4
Υ∗
j−1,k) (2.34)

ε
(4)
j,k = max(0, κ4 − ε

(2)
j,k). (2.35)
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The spectral radius of the flux Jacobian matrix is σj,k = (|U |+ a
√
ξ2
x + ξ2

y)j,k, and the dis-

sipation constants have typical values of κ4 = 0.01 and κ2 = 0 for subsonic flows, such that

the pressure switch Υ to control first-order dissipation near shocks is disabled; κ2 = 1.0

for transonic flows. Lastly, ∆ξ and ∇ξ are the first-order forward and backward difference

operators

∆ξ(·)j,k = (·)j+1,k − (·)j,k and ∇ξ(·)j,k = (·)j,k − (·)j−1,k, (2.36)

and values at the half nodes are computed by averaging, for example

(·)j+ 1
2
,k =

(·)j+1,k + (·)j,k
2

. (2.37)

Analogous terms are used for the artificial dissipation in the η-direction. The viscous fluxes

are of the form

∂η(αj,k∂ηβj,k), (2.38)

and the discretization of this term uses the following conservative three-point stencil

∇η (αj,k+ 1
2

∆ηβj,k) = αj,k+ 1
2
(βj,k+1 − βj,k)− αj,k− 1

2
(βj,k − βj,k−1). (2.39)

The Spalart-Allmaras turbulence model (2.27) is discretized as described in [97, 131]. A

first-order upwind discretization is used for the convective term in the ξ-direction

U
∂ν̃

∂ξ
≈ 1

2
(Uj,k + |Uj,k|)(ν̃j,k − ν̃j−1,k) +

1

2
(Uj,k − |Uj,k|)(ν̃j+1,k − ν̃j,k) (2.40)

and an analogous term is used for the η direction. The diffusion term has the same form as

the viscous terms, Eq. (2.38), and thus the same discretization is applied. The magnitude

of the vorticity is discretized as follows

S ≈ 1

2

∣∣∣ξx(vj+1,k−vj−1,k)+ηx(vj,k+1−vj,k−1)−ξy(uj+1,k−uj−1,k)−ηy(uj,k+1−uj,k−1)
∣∣∣. (2.41)

2.2.1 Boundary Conditions

Boundary conditions need to be applied since the physical domain is bounded. A brief

overview is given here; for more details see Hirsch [55] and Nemec [97].
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Solid Wall

For inviscid flows, tangency is required at solid walls, which implies that Vn = 0. The

tangential velocity Vt and pressure are extrapolated from the interior and the stagnation

enthalpy, H = (e+ p)/ρ, is set to the free-stream value, H∞.

For viscous flows, the no-slip condition u = v = 0 is used, and the wall is considered to

be adiabatic. Furthermore, the pressure gradient is set to zero, which in conjunction with

the adiabatic condition and the perfect gas law, results in a zero density gradient as well.

Far-field

Two locally one-dimensional Riemann invariants

R1 = Vn +
2a

γ − 1
and R2 = Vn −

2a

γ − 1
, (2.42)

as well as the entropy function S = ργ/p and the tangential velocity Vt are used to define the

far-field boundary conditions. Here, Vn is the velocity normal to the boundary and Vn < 0

is considered an inflow situation. In the subsonic inflow case, R2 is extrapolated from the

interior and R1, Vt, and S are set to free-stream conditions. In the subsonic outflow case, R1

is extrapolated from the interior, while the remaining three variables are set to free-stream

values. Zero-order extrapolation is used in all cases.

For viscous flows downstream of the body, this approach is not appropriate due to effects

resulting from the wake crossing the outflow boundary, and a simple zeroth-order extrapo-

lation of ρ, ρu, ρv, and p is used instead.

Wake-cut and Block Interface

For H-topology grids and wake-cuts ρ, ρu, ρv, p and the turbulence variable ν̃ are averaged

at block interfaces in the normal direction. Block interfaces in the streamwise direction, on

the other hand, are overlapped using an appropriate number of halo or ghost points.

Turbulence Model

The boundary conditions used for the Spalart-Allmaras turbulence model are straightfor-

ward. At solid walls ν̃ is set to zero. At inflow far-field boundaries ν̃ is set to its free-stream
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value, ν̃∞ = 0.001, and at outflow far-field boundaries, a zeroth-order extrapolation from the

interior is used.

2.3 Temporal Discretization

“The only reason for time is so that everything doesn’t happen at once.”

Albert Einstein (1879-1955)

After the spatial discretization and the application of boundary equations, the thin-layer

Navier-Stokes equations (2.20) can be written as a coupled system of nonlinear Ordinary

Differential Equations (ODE’s):

dQ̂

dt
+R(Q̂) = 0, (2.43)

where R(Q̂) contains the spatially discretized convective and viscous fluxes as well as the

boundary conditions. For turbulent flows it also contains the spatially discretized one-

equation Spalart-Allmaras turbulence model (2.27) and its boundary conditions. Note that

the term dQ̂
dt

is only added to interior or time dependent boundary nodes. Q̂ denotes the

discrete flow variable vector with dimension NF for the remainder of this thesis. For a grid

withNB blocks, the total number of flow variables is given byNF = nmax ·
∑NB

i=1 (jmaxi · kmaxi),

where nmax = 5 for turbulent and nmax = 4 for laminar flows. At each node (j, k)

Q̂j,k =

[
Q̂M

Q̂T

]
j,k

= J−1
j,k



ρ

ρu

ρv

e

ν̃


j,k

, (2.44)

where Q̂T denotes the turbulence model variable, which is scaled with the metric Jacobian

and ignored for laminar flows.

The time-marching methods used in this work for temporal discretization are the second-

order Backward Difference Formula (BDF) and the Explicit first stage, Single diagonal coeffi-

cient, Diagonally Implicit Runge-Kutta (ESDIRK) scheme of fourth-order. For all temporal

discretization methods one has to choose a suitable time discretization step ∆t to compro-

mise between accuracy on the one hand and computational time on the other hand, while

maintaining stability.
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BDF2

Applying the BDF2 time-marching method to Eq. (2.43) leads to the following coupled

system of Ordinary Difference Equations (O∆E’s):

Rn(Q̂n, Q̂n−1, Q̂n−2) :=
3Q̂n − 4Q̂n−1 + Q̂n−2

2∆t
+R(Q̂n) = 0. (2.45)

These nonlinear O∆E’s implicitly define the solution at the next time step Q̂n, given the

solutions at the previous two time steps Q̂n−1 and Q̂n−2.

ESDIRK4

The ESDIRK scheme was developed by Bijl, Carpenter and Vatsa [6]. A fourth-order ac-

curate scheme for Eq. (2.43) using six stages is given by the following coupled system of

O∆E’s:

Rn
k(Q̂

n
k , . . . , Q̂

n
1 , Q̂

n−1) :=
Q̂n
k − Q̂n−1

∆t
+

k∑
j=1

akjR(Q̂n
j ) = 0 for k = 1, . . . , 6. (2.46)

Here, Q̂n
k is the solution for the next time step n at stage k, given the solutions at the

previous time level Q̂n−1 and previous stages Q̂n
j with j = 1, . . . , k − 1. The sixth and last

stage gives the solution at the new time level, that is Q̂n := Q̂n
6 . The terms akj are the

Butcher coefficients for the scheme, which are given in Table 2.1. The ck’s indicate the point

c1=0 a11=0 0 0 0 0 0

c2=1
2 a21=1

4 a22=1
4 0 0 0 0

c3= 83
250 a31= 8611

62500 a32=−1743
31250 a33=1

4 0 0 0

c4=31
50 a41= 5012029

34652500 a42=−654441
2922500 a43=174375

388108 a44=1
4 0 0

c5=17
20 a51= 15267082809

155376265600 a52=−71443401
120774400 a53=730878875

902184768 a54=2285395
8070912 a55=1

4 0

c6=1 a61= 82889
524892 a62=0 a63=15625

83664 a64= 69875
102672 a65=−2260

8211 a66 = 1
4

Table 2.1: Butcher table for a six-stage ESDIRK scheme.

in time t + ck∆t, which is represented by the solution at stage k1. One can also infer the

1This is only relevant for time dependent boundary conditions
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explicit first stage update since a11 = 0 which implies that Q̂n
1 := Q̂n−1. Because of this

trivial first stage, the actual implementation in the code is only a five-stage process [63]:

Rn
k(Q̂

n
k , . . . , Q̂

n
2 , Q̂

n−1) :=
Q̂n
k − Q̂n−1

akk∆t
+R(Q̂n

k) +
1

akk

k−1∑
j=1

akjR(Q̂n
j ) = 0 for k = 2, . . . , 6.

(2.47)

The presented ESDIRK scheme is L-stable, and each stage is at least second-order ac-

curate (see Bijl, Carpenter and Vatsa [6] for more details). In order to achieve fourth-order

accuracy in time, the nonlinear O∆E’s (2.47) at each stage of ESDIRK must be solved to

an appropriately small error [63].

2.4 Solving the Nonlinear System

The spatial and temporal discretization of the thin-layer Navier-Stokes equations (2.20) leads

to the nonlinear systems of O∆E’s (2.45) and (2.47), respectively. These equations describe

a classical root finding problem, and Newton’s method is a well known and fast method

for solving this problem. This section gives a brief overview of the inexact Newton-Krylov

algorithm incorporated in this work using the O∆E’s (2.45) as an example (the O∆E’s (2.47)

stemming from the ESDIRK4 temporal discretization are solved in an analogous manner).

For a more thorough description see Pueyo [110] and Chisholm [14].

Leaving Q̂n−1 and Q̂n−2 fixed while expanding Eq. (2.45) in a Taylor series around the

current iterate for the next time step Q̂p yields the following implicit definition of the next

iterate Q̂p+1

Rn(Q̂p+1, Q̂n−1, Q̂n−2) = Rn(Q̂p, Q̂n−1, Q̂n−2) + Ap∆Q̂p + . . . = 0, (2.48)

where ∆Q̂p = Q̂p+1− Q̂p, and Ap is the Jacobian of Rn(Q̂p, Q̂n−1, Q̂n−2) given by

Ap = ∇Q̂pR
n(Q̂p, Q̂n−1, Q̂n−2) =

3

2∆t
I +

∂R(Q̂p)

∂Q̂p
, (2.49)

which is a large sparse non-symmetric matrix with dimensions NF × NF. Ignoring higher-

order terms leads to the following linear system

Ap∆Q̂p = −Rn(Q̂p, Q̂n−1, Q̂n−2), (2.50)
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which has to be solved for each Newton update (“outer iteration” or “subiteration”)

Q̂p+1 = Q̂p + ∆Q̂p. (2.51)

Once converged, i.e. Rn(Q̂p+1, Q̂n−1, Q̂n−2) ≈ 0, Q̂n := Q̂p+1, and the next time step can be

calculated, if desired. A typical absolute convergence tolerance for the unsteady residual Rn

used in this work is 10−10 to avoid error propagation. The initial guess Q̂p
M is calculated

through linear extrapolation from the previous two time steps for BDF2 and through constant

extrapolation from the previous stage for ESDIRK4, whereas both methods use constant

extrapolation for Q̂p
T . The term inexact stems from the fact that an exact solution of

the linear system (2.50) is not required for fast convergence of Newton’s method [24], and

computational resources are saved by lowering the degree of convergence of the iterative

linear solver [110]. Typically, for turbulent flows the linear residual is dropped by two to

three orders of magnitude, whereas for laminar flows one order of magnitude is already

sufficient.

For start-up strategies, such as adding a local time step which is slowly phased out

and clipping negative ν̃ values, that are used in this work to solve the nonlinear system of

ODE’s (2.43) for steady state situations, see Chisholm [14].

2.4.1 The Linear Problem

The inexact solution of Eq. (2.50) is obtained using the matrix-free version of the Generalized

Minimal RESidual (GMRES(m)) Krylov subspace method [122, 123], where m represents

the number of search directions. Usually, forty search directions are sufficient to decrease

the GMRES residual by three orders of magnitude for turbulent and one order of magnitude

for laminar flow problems, and no restart is performed. Since GMRES only needs matrix

vector products of the form Apv, the flow Jacobian matrix does not need to be formed

explicitly (although an approximate form is still required for the preconditioner). Instead

a forward-difference approximation, which requires only one additional residual evaluation,

can be used

Apv ≈ Rn(Q̂p + εv, Q̂n−1, Q̂n−2)− Rn(Q̂p, Q̂n−1, Q̂n−2)

ε
, (2.52)

where ε =
√
εm / ||v||2, and εm = 2.2 · 10−16 is the approximate value of machine zero.
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Preconditioning, Scaling and Reordering

Preconditioning of the flow Jacobian is required in order to cluster its eigenvalue spectrum

around unity, which significantly improves the efficiency of GMRES. The preconditioning

matrix M is applied from the right side, so that the residual of the linear system is not

affected by it, and Eq. (2.50) becomes

ApM−1M∆Q̂p = −Rn(Q̂p, Q̂n−1, Q̂n−2). (2.53)

Pueyo [110] found that using an approximate flow Jacobian to determine the preconditioner

leads to more rapid convergence of the GMRES algorithm than using the true flow Jacobian

with its lack of diagonal dominance. Thus, the preconditioner is based on the flow Jacobian

matrix Ap, except that it is only formed with second-order dissipation, and the fourth-order

dissipation is approximated by adding extra second-order dissipation

ε(2)p = ε(2)r + φ ε(4)r , (2.54)

where the subscript r denotes the contribution from the residual, and the subscript p denotes

the resulting value for the artificial-dissipation coefficient used in the preconditioner. The

coefficient φ is assumed to be constant with respect to the flow variables, and a value of 6.0

was found to work the best [97, 110].

The preconditioning matrix is then decomposed using Incomplete Lower-Upper factoriza-

tion [87] (ILU(k)) with a level of fill k. Higher fill levels allow more non-zero entries during

the Gaussian elimination process, resulting in a better approximation of the lower and upper

factorization matrices. However, this gain in accuracy is counteracted by an increase in com-

putational cost. For a more detailed overview, see Saad [122]. The level of fill used for most

cases in this work is k = 2, but more complex flow problems require k = 4. In summary,

the preconditioning matrix is an incomplete factorization of a first-order flow Jacobian with

a reduced stencil size and an improved diagonal dominance compared to the true flow Jaco-

bian as a result of Eq. (2.54), leading to a reduction in the computational effort and storage

requirements for the ILU(k) factorization. The preconditioner is also frozen after the first

outer iteration of every time step, saving even more computational time.

In addition, all the entries within the flow Jacobian that correspond to boundary condi-

tions are pivoted and scaled since they are not of the same order of magnitude as the entries
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for the interior nodes, which can lead to poor convergence of GMRES. Lastly, the reverse

Cuthill-McKee reordering [20] of grid nodes based on an initial double-bandwidth ordering

for single-block and a reverse ordering for multi-block grids [97, 110] is used, leading to a

significant reduction of the bandwidth of the preconditioning matrix and therefore even more

savings in computational cost.



Chapter 3

UNSTEADY OPTIMIZATION

“But, Mr. Fogg, eighty days are only the estimate of the least possible time in

which the journey can be made.”

“A well-used minimum suffices for everything.”

In Around the World in Eighty Days by Jules Verne (1828-1905)

This chapter provides a description of all of the components of the gradient-based op-

timization algorithm for unsteady flows used in this work. The formulation of the discrete

time-dependent optimal control problem is presented in Section 3.1. A description of the

design variables and grid-perturbation strategies is given in Section 3.2, and the derivation

of the discrete gradient using a Lagrangian approach can be found in Section 3.3. Finally,

the optimizer, which is based on a quasi-Newton method, is discussed in Section 3.4.

3.1 Formulation of the Discrete Time-dependent Opti-

mal Control Problem

The control of an unsteady flow in the time interval [0, T ] is considered. The time-dependent

optimal control problem consists of determining values of design variables, Y , such that an

objective or cost function O is minimized:

min
Y

O(Q1, . . . , QN , Y ) =
N∑
n=1

In(Qn, Y ) (3.1)

subject to constraint equations Cj

Cj(Q
1, . . . , QN , Y ) ≤ 0 j = 1, . . . , Ncon, (3.2)

where the function In= In(Qn, Y ) depends on the time-dependent flow solution Qn and

design variables Y for n = 1, . . . , N . The number of time steps, N , can be calculated from

25
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the relation T = N∆t, where ∆t is the chosen constant time discretization step, and Ncon

denotes the number of constraint equations.

The optimization problem defined by Eqs. (3.1) and (3.2) can now be cast into an un-

constrained problem by including the constraint equations (3.2) into the objective function

O defined by Eq. (3.1), leading to the penalized objective function

J(Q1, . . . , QN , Y ) = O + wT

Ncon∑
j=1

Cj =
N∑
n=1

In(Qn, Y ) + wT

Ncon∑
j=1

Cj (3.3)

where wT is a user specified weight. The constraint equations (3.2) usually represent airfoil

thickness constraints that prevent the occurrence of infeasible shapes, for example airfoil

surface cross-overs, and to enforce structural requirements, such as minimum airfoil thick-

nesses. In that case, the constraints Cj are a function of the design variables only and are

expressed as a quadratic external penalty term as follows

Cj =

{
[1− h(xj)/h

∗(xj)]
2 if h(xj) < h∗(xj)

0 otherwise
, (3.4)

where h∗(xj) represents the minimum thickness allowed at location xj, and h(xj) represents

the current airfoil thickness.

The flow variables Qn have to satisfy the governing flow equations (2.45) using BDF2 or

(2.47) using ESDIRK4 within a feasible region of the design space Ω. Here, the definitions

are extended to include the design variables Y in the unsteady flow residuals

Rn(Q̂n, Q̂n−1, Q̂n−2, Y ) = 0 ∀Y ∈ Ω and n = 1, . . . , N

or (3.5)

Rn
k(Q̂

n
k , . . . , Q̂

n
2 , Q̂

n−1, Y ) = 0 ∀Y ∈ Ω and k = 2, . . . , 6 and n = 1, . . . , N.

These equations implicitly define Q̂n = J−1Qn and Q̂n = J−1Qn
6 respectively for n = 1, . . . , N

with J−1 the inverse of the metric Jacobian of the coordinate transformation, which is a

diagonal matrix of dimension NF ×NF.

At each step of the optimization procedure, a gradient-based optimizer requires the value

of the objective function J, which is provided by the solution of the flow equations (3.5),

as well as the objective function gradient ∂J
∂Y

. Thus, for a certain number of optimization

iterations (one objective function and gradient evaluation), the overall efficiency of the op-

timization algorithm is dominated by the time required to solve the flow equations (see
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Section 2.4) and to compute the gradient. The calculation of the gradient of time-dependent

problems is generally a computationally expensive task since one needs to solve the adjoint

equations in reverse time from a final solution (see Section 3.3). Thus one has to store the

entire flow history (potentially huge memory requirements) and then to integrate the adjoint

equations backwards in time (equally huge processor requirements).

3.2 Design Variables and Grid-Perturbation Strategies

The vector of design variables, Y , usually contains parameters that control the shape of an

airfoil. Depending on the problem of interest, other design variables may include the angle

of attack, the horizontal and vertical translations which control the position of slats and

flaps in multi-element configurations (relative deflection angles within a configuration are

kept constant), the angular velocity of a rotating cylinder, or the strength of a pulse in the

outflow pressure of a nozzle.

Cubic B-splines are used to parametrize the airfoil shape [22, 58], and the coordinates

of the B-spline control points are used as design variables. Only vertical displacements are

allowed and the control points associated with the leading and trailing edges remain fixed

(for more details see Nemec [97]).

As the shape of airfoils or the positions of slats and flaps change during the optimization

process, the location of the grid nodes has to be adjusted accordingly. This could be ac-

complished by simply generating a new grid for each new geometry using a grid-generation

tool. However, this is computationally expensive due to the need for elliptic grid smoothers

and very difficult to automate, especially for complex geometries. A better strategy is to

use a high-quality grid as a baseline for all other grids and to just perturb this base grid

into a new grid for the desired geometry. Note that a new grid should not be obtained by

perturbing the most recently used grid instead of perturbing the base grid since this results

in an objective function that is path-dependent, and thus non-unique and non-differentiable.

A simple algebraic grid perturbation technique for structured grids is to perturb each grid

line running from the airfoil surface to the outer boundary individually. Burgreen et al. [12]

computed the perturbation of each node on these grid lines by interpolating the perturbation

between the airfoil and the far-field based on the arc length along the line. Nemec [97]

modified this method for multi-block grids, where grid lines may not touch the airfoil or
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the far-field boundary, and he used trigonometric functions to preserve orthogonality for 2D

multi-element airfoils. These methods are very fast, but they can generate poor quality or

tangled grids for large perturbations.

A more physically meaningful alternative to the algebraic grid perturbation is to treat

the entire grid as an elastic medium. The interior deforms like a block of rubber according

to the equations of linear elasticity, when the geometry changes. Tezduyar et al. [134] used

a finite element method to compute the interior deformation by relating the stiffness of each

element to the inverse of its size. This makes the grid stiffer near the airfoil and causes

the deformations to propagate further towards the outer boundary. This linear elasticity

approach can also break down for large deformations; however, Bar-Yoseph et al. [5] proposed

a quasi-linear approach to avoid this. They deformed the geometry through a series of linear

increments and at each increment they locally increased the stiffness in highly strained areas.

This results in a quasi-linear elasticity grid perturbation method, that is very robust, even

with large geometry changes, but is also relatively computationally expensive (on the order

of one steady flow solve). It has been implemented by Truong [138, 139, 140] and is applied

in this work if the algebraic grid perturbation technique produces poor quality grids or fails

entirely. This only happened in the unsteady laminar trailing-edge flow test case presented

in Section 5.5.

3.3 The Discrete Adjoint Approach for the Gradient

Calculation

Historically, there are two different adjoint approaches: the discrete approach, in which

one works with the algebraic equations that come from the discretization of the original

fluid dynamic equations, and the continuous approach, in which the adjoint equations are

analytically formulated and then discretized [43]. For an explanation of the advantages and

disadvantages of both methods see Appendix A. Since the fully-discrete adjoint method is

conceptually more straightforward and the full flow Jacobian is already implemented [97],

this is the method of choice in this work.

For the discrete adjoint method the time discretization scheme for the governing equa-

tions (3.5) must be chosen at the beginning of the derivation. The framework is demon-
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strated here using the implicit Euler time-marching method. It is straightforward to modify

the equations to use any other time-marching method (e.g. see Appendix B for BDF2 and

Appendix E for ESDIRK4).

The initial flow solution Q̂0 at t = 0 is known, and for the implicit Euler method the

time-dependent flow solution Qn = JQ̂n for n = 1, . . . , N is implicitly defined via

Rn(Q̂n, Q̂n−1, Y ) :=
dQ̂n

dt
+R(Q̂n, Y )=

Q̂n− Q̂n−1

∆t
+R(Q̂n, Y )= 0, (3.6)

where R = R(Q̂n, Y ) contains the spatially discretized convective and viscous fluxes as well

as the boundary conditions and turbulence model.

The inexact Newton-Krylov strategy described in Section 2.4 can be used to drive

Rn= Rn(Q̂n, Q̂n−1, Y ) in Eq. (3.6) to zero. However, it does not matter how one solves

Eq. (3.6) as long as Rn = 0 for all n, since this is a requirement for the following derivation.

The task of minimizing the cost function J subject to Rn = 0 for all n can now be written

as an unconstrained optimization problem of minimizing the Lagrangian function

L(Q̂1, . . . , Q̂N, ψ1, . . . , ψN, Y ) =
N∑
n=1

In(Qn, Y ) + wT

Ncon∑
j=1

Cj(Y ) +
N∑
n=1

(ψn)TRn(Q̂n, Q̂n−1, Y )

(3.7)

with respect to Q̂1, . . . , Q̂N , ψ1, . . . , ψN and Y , where ψ1, . . . , ψN are the N vectors of La-

grange multipliers. Note that the flow Jacobian ∇Q̂nR
n in Eq. (2.49) and in the actual code

is given in terms of variables in the curvilinear space, and thus it is more convenient to derive

the adjoint equations in the same space, i.e., to take derivatives with respect to Q̂n rather

than Qn. This is easily accomplished for functions that depend on Qn, such as In(Qn, Y ),

as follows

∇Q̂nI
n =

∂In

∂Qn

∂Qn

∂Q̂n
= ∇QnI

n · J. (3.8)

A necessary condition for an extremal is that the gradient of L with respect to Q̂1, . . . , Q̂N ,

ψ1, . . . , ψN and Y should vanish. Since the states Q̂1, . . . , Q̂N are calculated starting from

Q̂0 using the residuals given by Eq. (3.6), it is automatically guaranteed that ∇ψnL = 0 for

n = 1, . . . , N .

The Lagrange multipliers ψn must now be chosen such that ∇Q̂nL = 0 for n = 1, . . . , N ,
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which leads to

0 = ∇Q̂nI
n + (ψn)T∇Q̂nR

n + (ψn+1)T∇Q̂nR
n+1

for n = 1, . . . , N−1 (3.9)

0 = ∇Q̂N I
N + (ψN)T∇Q̂NRN . (3.10)

This can equivalently be written as

ψN = −
(
(∇Q̂NRN)T

)−1

(∇Q̂N I
N)T (3.11)

ψn = −
(
(∇Q̂nR

n)T
)−1[

(∇Q̂nI
n)T+ (∇Q̂nR

n+1)Tψn+1
]

for n = N−1, . . . , 1. (3.12)

Since Q̂1, . . . , Q̂N have been calculated with the current iterate of Y , the vectors of

Lagrange multipliers ψn can be calculated recursively backwards from the final flow solution

(3.11) using (3.12). The system of equations (3.11) and (3.12) is known as the system of

adjoint equations for the model (3.6), or as the adjoint model. In this context, the Lagrange

multipliers are also known as the adjoint variables. Calculating the adjoint variables in this

manner ensures that ∇Q̂nL = 0 for n = 1, . . . , N .

Finally, one can evaluate the gradient of the objective function J with respect to the

design variables Y , as follows

∂J

∂Y
=

∂L

∂Y

∣∣∣∣
∂L
∂Q̂n

= ∂L
∂ψn

=0

=
N∑
n=1

∇Y I
n(Qn, Y ) +wT

Ncon∑
j=1

∇YCj(Y ) +
N∑
n=1

(ψn)T∇YR(Q̂n, Y ). (3.13)

Note that ∂L
∂Y

is evaluated given that ∂L

∂Q̂n
= ∂L

∂ψn
= 0 for n = 1, . . . , N is already satisfied,

which implies that Rn = 0 for n = 1, . . . , N and thus J = L| ∂L
∂Q̂n

= ∂L
∂ψn

=0 which yields Eq. (3.13).

Thus, the gradient of J is entirely determined by the solution of the adjoint equations in

reverse time from the final flow solution and the partial derivatives of the objective func-

tion, the constraints and the residuals with respect to the design variables (while Q̂n is held

constant).

In summary, the approach taken here is to delegate the majority of the computation to

specialized solvers, instead of attempting to minimize the Lagrangian (3.7) for all variables

simultaneously. For a given Y , the grid perturbation code and flow solver can be used to solve

the flow equations (3.6) and yield Q̂n. The linear adjoint systems in Eqs. (3.11) and (3.12)
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can then be solved to give ψn. Finally, Eq. (3.13) can be evaluated to yield a value for the

gradient ∂J
∂Y

which is then used by a gradient-based optimization algorithm (see Section 3.4)

to update Y . This process is repeated until a value of Y is found which gives ∂J
∂Y

≈ 0.

In order to solve the linear problem arising from the flow equations, the matrix-free

version of GMRES(m) is used with a forward-difference approximation to the matrix-vector

products (see Subsection 2.4.1). In addition to memory savings, the matrix-free approach is

much easier to implement, and a fairly accurate differentiation of the lengthy flow residual

equations is “automatically” provided. However, due to the transpose of the unsteady flow

Jacobian ∇Q̂nR
n in the adjoint equations, the matrix-free approach cannot be used here, and

the matrices are formed and stored explicitly, as are the terms ∇Q̂nI
n. The Bi-Conjugate

Gradient STABilized (Bi-CGSTAB) algorithm [145] is used to solve the linear systems in the

unsteady adjoint equations, since it is up to fifty percent faster than GMRES(m). However,

for a steady-state adjoint problem Bi-CGSTAB works not nearly as well and GMRES(m) is

used instead. The reason for this is most likely accounted for by the fact that (∇Q̂nR
n)T is

more diagonally dominant than the transpose of the steady flow Jacobian (∇Q̂R)T due to the

extra terms on the diagonal, which makes this matrix more suited for the use of Bi-CGSTAB.

Unfortunately, there are no computational savings by using Bi-CGSTAB for the unsteady

flow solves, and therefore GMRES(m) is used as mentioned in Subsection 2.4.1. This is

puzzling since the unsteady flow Jacobian and its transpose have the same eigenvalues, and

thus the iterative linear solvers are expected to show similar behaviour for the forward and

backward linear problems. However, there are also a few important differences in the linear

problems which may account for the different behaviour:

• The scaling of the adjoint solution is much worse, leading to solutions that span several

orders of magnitude as opposed to the flow solution which is on the order of unity.

• The linear adjoint problem must be converged further than the nonlinear problem in

the flow solve, presumably due to the large variations in the adjoint variables and the

associated residual vector.

• The nonlinear unsteady flow solve problem has a very good initial guess by using the

flow solutions from the previous time steps; the linear unsteady adjoint problem on the

other hand has a bad initial guess since the adjoint solution varies much more from

time step to time step.
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• Only a few linear iterations are used per nonlinear (outer) iteration in the forward

problem.

The remaining terms, namely the objective function sensitivities ∇Y I
n(Qn, Y ), the con-

straint sensitivities ∇YCj(Y ), and the residual sensitivities ∇YR(Q̂n, Y ), are evaluated using

fourth-order centered finite differences which are not computationally expensive for the few

design variables typically used and yield accurate results. Even the employment of the more

expensive quasi-linear elasticity grid perturbation method does not increase the overall com-

putational costs dramatically since the flow and adjoint solvers are so much more expensive

for typical time horizons used in this work. Overall the computational costs of unsteady

optimization problems are directly proportional to the desired number of time steps and

(almost) independent of the number of design variables.

3.4 Optimizer

The optimizer used to solve the optimization problem can have a significant impact on the

efficiency of the optimization procedure [67]. In this research L-BFGS-B [13, 153], a limited-

memory quasi-Newton code for large-scale bound-constrained or unconstrained optimization,

is used. Note that by using the quadratic penalty method (3.4) to incorporate constraints,

the optimization problems in this work are cast into unconstrained problems; however it is

still desirable to have lower and upper bounds on some or all of the design variables in order

to prevent too drastic changes and thus flow solver convergence problems.

L-BFGS-B has been developed at the Optimization Technology Center, a joint venture

of Argonne National Laboratory and Northwestern University and is described in detail in

Byrd et al. [13]. It is programmed in FORTRAN 77, uses reverse communication, does

not scale any of the design variables, and proceeds roughly as follows. At each optimization

iteration, a limited-memory BFGS [11, 42, 45, 124] approximation to the Hessian is updated.

This limited-memory matrix is used to define a quadratic model of the objective function. A

search direction is then computed using a two-stage approach. First, the gradient projection

method [13] is used to identify a set of active design variables, i.e. variables that will be

held at their bounds. In the second stage, the quadratic model is approximately minimized

with respect to the free design variables. The search direction is defined to be the vector
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leading from the current iterate to this approximate minimizer, and a line search is performed

along the search direction. The step length is determined by a routine [88] that enforces a

sufficient decrease and curvature condition. For unconstrained optimization problems, such

as the ones dealt with in this work, the well-known necessary condition for an optimum is

that the gradient of the objective function J is equal to zero, thus the optimizer has converged

when the maximum norm of the gradient vector is below a user specified absolute tolerance

(typically taken to be 10−6).
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Chapter 4

NOISE PREDICTION TECHNIQUE

“NOISE, n. A stench in the ear. Undomesticated music. The chief product and

authenticating sign of civilization.”

Ambrose Bierce (1842-1914)

A computational obstacle that immediately arises in problems concerning noise is that

accurate propagation of the pressure signatures over a large number of wavelengths can

only be obtained with very small computational mesh spacings. This makes all high-lift

noise reduction problems, where the computational domain has to cover tens or hundreds of

chord lengths, infeasible for even today’s largest parallel computers. A typical approach to

tackle high-lift noise reduction problems nonetheless is to represent the CFD solution on a

reasonable computational mesh that does not extend too far from the aircraft. The location

of a fixed near-field plane within the computational mesh can then be specified as shown in

Figure 4.1.

CFD Far­field

Ground Plane

Near­field

Figure 4.1: Schematic of the propagation of the aircraft pressure signature.

35
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This near-field plane or surface serves as an interface between the CFD solution and

a wave propagation program based on principles of geometrical acoustics and nonlinear

wave propagation [78, 129]. Such a program is able to model the wave propagation and

to calculate the pressure fluctuations at a user specified ground plane which can then be

used as a measure of the airframe-generated noise. In Section 4.1, the merits and drawbacks

of two different wave propagation formulations, namely the Kirchhoff and Ffowcs Williams

and Hawkings formulations, are discussed. Section 4.2 derives the two-dimensional Ffowcs

Williams and Hawkings equation in the frequency-domain, which is the wave propagation

formulation of choice in this work, and subsequently, the entire solution process is outlined.

Finally, Section 4.3 presents results of validation cases for the implemented wave propagation

formulation.

4.1 Acoustic Wave Propagation Modelling

Several prediction methodologies for far-field signals based on near-field inputs with a solid

physical and mathematical basis are currently available. The most popular among them are

the formulations based on the Lighthill acoustic analogy [75]: the Kirchhoff approach [37, 38]

and the Ffowcs Williams and Hawkings (FW-H) approach [41].

The Kirchhoff approach is based on an inhomogeneous wave equation which is derived

by assuming that the required acoustic pressure fluctuation (p′ = p− p∞) and its time and

normal derivatives are probed on a near-field surface which is located within the linear flow

region. However, the beginning of the linear flow region is not very well defined and thus

the placement of the Kirchhoff near-field surface has to be a judicious compromise between

being far enough from the source to be in the linear flow region, yet close enough to be

within the well resolved region of the grid. Despite this ambiguity, the Kirchhoff approach

has been used successfully by many authors [8, 9, 37, 38, 4, 106, 151].

The FW-H approach [41], on the other hand, is an exact rearrangement of the continuity

and momentum equations. The time histories of all flow variables on the near-field surface

are required, but their temporal or spatial derivatives are not needed. Di Francescantonio [26]

demonstrated that the FW-H approach - just like the Kirchhoff approach - can be applied

using a fictitious near-field surface that does not coincide with the surface of the solid body.

Singer et al. [126, 127] have shown that the FW-H approach produces correct results for the



4.2 THE 2D FW-H EQUATION IN THE FREQUENCY-DOMAIN 37

far-field signal when this fictitious surface is placed in the non-linear near-field, whereas the

Kirchhoff method, using the same surface, produces erroneous results. More applications of

the FW-H approach and comparisons between the FW-H and Kirchhoff approaches can be

found in the literature [107, 9, 8].

For three-dimensional flows, Farassat and Succi [39] developed the so-called formulation

1A of the FW-H approach, which is the best formulation because all significant acoustic

phenomena are three-dimensional. However, the computational cost to compute sufficiently

resolved three-dimensional data on the near-field surface is in most cases still prohibitively

large. Furthermore, the flow structures responsible for generating noise can be pseudo-two-

dimensional, with a finite correlation length in the third direction [77]. Singer et al. [125]

compared two- and three-dimensional solutions for slat noise and demonstrated the usefulness

of the two-dimensional results, which gave the correct features of the radiated sound, but

overpredicted the amplitude. This implies that two-dimensional simulations can be used to

find trends, even though they do not represent all of the underlying physics exactly. This

motivates the implementation of a two-dimensional wave propagation program based on the

FW-H approach for this work, which will be described in detail in the next section.

4.2 The 2D FW-H Equation in the Frequency-Domain

The FW-H equation [41] is the most general form of the Lighthill acoustic analogy [75]

and is currently the most accurate method available for calculating the far-field pressure

fluctuations caused by bodies in arbitrary motion and by non-linear flow regions. The dif-

ferential form of the FW-H equation, which is an exact rearrangement of the continuity and

momentum equations into the form of an inhomogeneous wave equation, is given by{
1

a2
∞

∂2

∂t2
− ∂2

∂x2
i

}
[a2
∞ρ

′H(f)] =
∂

∂t
[Qδ(f)]− ∂

∂xi
[Fiδ(f)] +

∂2

∂xi∂xj
[TijH(f)], (4.1)

where Tij is the so-called Lighthill stress tensor, and the monopole term Q and dipole terms

Fi are defined as

Q = [ρ(uj − vj) + ρ∞vj]
∂f

∂xj
, (4.2)

Fi = [ρui(uj − vj) + pδij − τij]
∂f

∂xj
. (4.3)
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Here, ρ = ρ∞ + ρ′, ui = Ui + u′i and p = p∞ + p′ are the total density, velocity and pressure,

respectively. Free-stream quantities are indicated by the subscript ∞, Ui are the components

of the uniform mean velocity, and a prime denotes a perturbation from the mean. The

Cartesian coordinates and time are xi and t respectively, δij is the Kronecker delta, τij is the

viscous stress tensor which is zero for inviscid flows, and repeated indices follow the usual

Einstein summation convention. The function f(xi, t) = 0 defines the near-field surface,

which always surrounds the moving source region such that f > 0 outside this source region,

and ∂f
∂xi

= ni, where ni is the unit normal vector that points into the fluid. The velocities

of the surface f = 0 are represented by vi, and H(f) is the Heaviside function. For more

details and a derivation of Eq. (4.1), see Appendix C.

The right-hand side of Eq. (4.1) consists of three inhomogeneous acoustic source terms

with clear physical meanings. The monopole source term Q, which is also known as the

thickness source term, accounts for the displacement of the fluid by the moving body, and is

completely determined by the geometry and kinematics of the body. The dipole or loading

source term Fi is generated by the force that acts on the fluid as a result of the presence of

the body. The last term, which is called the quadrupole source term, is a volume distribution

of sources and accounts for nonlinear effects, such as noise generated by shocks, vorticity,

and turbulence in the flowfield, and variations in the local sound speed or refraction of waves

by shear layers and wakes [35, 36]. As long as the integration surface is placed outside of

all regions where the quadrupole source term is large, its contribution is included in the two

surface source terms and hence it can be neglected. However, in some problems, such as

jets, the shear layers are nearly semi-infinite, and it is not possible to place the surface in

such a way as to neglect the computationally expensive volume integration of the quadrupole

contribution. Nonetheless, in many other cases, for example low-speed flows as encountered

in high-lift noise reduction problems, the quadrupole source distribution is only significant

near the body and thus the quadrupole contribution can be neglected, if the integration

surface is placed around all regions of high shear.

Although Eq. (4.1) is a three-dimensional equation, one can interpret the equation as

being two dimensional by running the indices only over 1 and 2. The main difficulty in

solving this equation in two dimensions is the semi-infinite time integral that arises when

using the appropriate two-dimensional Green function in the time-domain. This “tail effect”

requires an infinitely long time to account for all contributions of the sources and is thus
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infeasible. There is no such problem for the solution in three dimensions since the appropriate

three-dimensional Green function includes a delta function that makes the time integral

finite.

To avoid this costly or infeasible time integration in the two-dimensional time-domain,

the problem can be transformed into the frequency-domain [48, 77]. However, a direct

application of a Fourier transform to Eq. (4.1) is not useful because it is very difficult to

simplify the resulting spatial integrals. Thus, Lockard [77] assumes a uniform rectilinear

motion of the control surface f = f(xi + Uit), where Ui is the constant velocity of the surface.

His derivation, which is outlined in the following, continues with the application of a Galilean

transformation of Eq. (4.1) from the Cartesian coordinates (xi, t) to (yi, t̄), with

yi = xi + Uit , t̄ = t, (4.4)

∂

∂xi
=

∂

∂yi
,

∂

∂t
=

∂

∂t̄
+ Ui

∂

∂yi
, (4.5)

which yields {
∂2

∂t2
+ UiUj

∂2

∂yi∂yj
+ 2Uj

∂2

∂yj∂t
− a2

∞
∂2

∂y2
i

}
[ρ′H(f)]

=
∂

∂t
[Qδ(f)]− ∂

∂yi
[Fiδ(f)] +

∂2

∂yi∂yj
[TijH(f)]. (4.6)

The surface velocity vi has been replaced by −Ui, which can be inferred from f(xi + Uit) = 0.

Note that this implies that the mean flow is in the positive direction (or equivalently that the

surface moves in the negative direction) when Ui > 0. After the transformation f = f(yi) is

only a function of the spatial coordinates, u′i is substituted for ui, and Tij, Fi and Q become

Tij = ρu′iu
′
j + [p− a2

∞(ρ− ρ∞)]δij − τij, (4.7)

Fi = [ρ(u′i − Ui)(u
′
j + Uj) + ρ∞UiUj + pδij − τij]

∂f

∂yj
, (4.8)

Q = [ρ(u′j + Uj)− ρ∞Uj]
∂f

∂yj
. (4.9)

Eq. (4.6) is now in a convenient form to perform a Fourier transformation with the pair

F[φ(yi, t)] = φ(yi, ω) =

∫ ∞

−∞
φ(yi, t) exp(−iωt)dt (4.10)

and

F−1[φ(yi, ω)] = φ(yi, t) =

∫ ∞

−∞
φ(yi, ω) exp(iωt)dω. (4.11)
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By renaming yi to xi and using the customary notation p′ = a2
∞ρ

′, Eq. (4.6) becomes{
∂2

∂x2
j

+ k2 − 2iMjk
∂

∂xj
−MjMk

∂2

∂xj∂xk

}
[H(f)p′(x, ω)]

= −iωQ(x, ω)δ(f) +
∂

∂xj
[Fj(x, ω)δ(f)]− ∂2

∂xj∂xk
[Tjk(x, ω)H(f)], (4.12)

where k = ω/a∞ is the wavenumber, and Mj = Uj/a∞. One has to assume that limt→±∞ Q =

limt→±∞ ρ
′ = limt→±∞

∂ρ′

∂t
= 0 so that

[exp(−iωt) Q]∞−∞ = [exp(−iωt) ρ′]∞−∞ = [exp(−iωt) ∂ρ
′

∂t
]∞−∞ = 0 (4.13)

for Eq. (4.12) to be correct.

The Green function G of this convected Helmholtz equation for M < 1 is obtained from a

Prandtl-Glauert transformation of the 2D free-space Green function in the frequency-domain.

Denoting the two-dimensional source points as y and the observer position as x, this Green

function is given by

G(x, y, ω) =
i

4β
exp(iMkr1/β

2)H
(2)
0

(
k

β2

√
r2
1 + β2r2

2

)
(4.14)

where

r1 = (x1 − y1) cos θ + (x2 − y2) sin θ (4.15)

r2 =−(x1 − y1) sin θ + (x2 − y2) cos θ. (4.16)

The angle θ is defined via tan θ = U2/U1, H
(2)
0 is the Hankel function of the second kind of

order zero, M =
√
U2

1 + U2
2/a∞ and β =

√
1−M2 is the Prandtl-Glauert factor.

The solution to Eq. (4.12) for M < 1 is now given by the following convolution integral

over the entire two-dimensional space

[H(f)p′](x, ω) =

∫ ∞

−∞
G(x, y, ω)

∂[Fj(y, ω)δ(f)]

∂yj
dy

−
∫ ∞

−∞
G(x, y, ω)iωQ(y, ω)δ(f)dy

−
∫ ∞

−∞
G(x, y, ω)

∂2[Tjk(y, ω)H(f)]

∂yj∂yk
dy. (4.17)
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The dipole term can be simplified by moving the Green function inside the derivative operator

as follows:

∫ ∞

−∞
G(x, y, ω)

∂[Fj(y, ω)δ(f)]

∂yj
dy

=

∫ ∞

−∞

∂[G(x, y, ω)Fj(y, ω)δ(f)]

∂yj
dy−

∫ ∞

−∞
Fj(y, ω)δ(f)

∂G(x, y, ω)

∂yj
dy

= −
∮
f=0

Fj(y, ω)
∂G(x, y, ω)

∂yj
dl. (4.18)

The integral of the divergence is zero which can be inferred from Green’s theorem and the

fact that Fj goes to zero at infinity. Note that the final integral in Eq. (4.18) is only a

contour integral over f = 0. Application of similar manipulations to the quadrupole term

yields the final solution for the far-field pressure fluctuations in the frequency-domain:

[H(f)p′](x, ω) = −
∮
f=0

iωQ(y, ω)G(x, y, ω)dl

−
∮
f=0

Fj(y, ω)
∂G(x, y, ω)

∂yj
dl

−
∫
f>0

Tjk(y, ω)
∂2G(x, y, ω)

∂yj∂yk
dy. (4.19)

The Heaviside function H(f) on the left-hand side of Eq. (4.19) implies that the solution

at any point within the integration surface should be zero for all ω, which can be used as a

check for the accuracy of the computations. One can also simplify the expressions for Q, Fj

and Tjk by removing constant terms which do not radiate sound, yielding

Q = ρujnj, (4.20)

Fj = [ρ(uj − 2Uj)uk + pδjk − τjk]nk, (4.21)

Tjk = ρ(uj − Uj)(uk − Uk) + (p− a2
∞ρ)δjk − τjk. (4.22)

The required derivatives of the Green function can be evaluated analytically. The first

derivatives, which are the only ones required if the quadrupole contribution is neglected, are
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given by

∂G(x, y, ω)

∂y1

= −A(r1, ω)
iMk

β2
cos θH

(2)
0

(
krβ
β2

)
+A(r1, ω)

k

β2rβ
(r1 cos θ − β2r2 sin θ)H

(2)
1

(
krβ
β2

)
,

∂G(x, y, ω)

∂y2

= −A(r1, ω)
iMk

β2
sin θH

(2)
0

(
krβ
β2

)
+A(r1, ω)

k

β2rβ
(r1 sin θ + β2r2 cos θ)H

(2)
1

(
krβ
β2

)
, (4.23)

where rβ =
√
r2
1 + β2r2

2, and A(r1, ω) = i
4β

exp(iMkr1/β
2).

Impenetrable Surfaces

The above expressions for the monopole and dipole terms given by Eqs. (4.20) and (4.21)

can be further simplified when the source data is obtained on solid surfaces. Since for

impenetrable surfaces ui = 0, which implies that u′i = −Ui, these terms simplify to

Q = 0 and Fj = [pδjk − τjk]nk.

Note that the monopole term Q for impenetrable surfaces has no contribution to the frequency-

domain solution and only the time history of the pressure is needed to calculate Fj, which

leads to considerable savings in memory and computational requirements.

Windowing

Most unsteady CFD calculations simulate fluid phenomena with flows that are dominated

by tones and possess a periodic steady state. If the CFD calculations would give truly

periodic results, only one period of the flow data would be sufficient to calculate the far-field

pressure fluctuations with the above derived 2D FW-H equation in the frequency-domain.

However, CFD calculations are hardly ever truly periodic, or it is infeasible to run them

long enough to eliminate all transients. Additionally, the Q and Fj source terms can also

be out of phase. This inherent aperiodicity in the data would lead to an erroneous result

if a Fourier transformation is directly applied to it, because of the discontinuity between

the first and last points. This leads to the idea of multiplying the existing data by some

function that smoothly reduces the signal to zero at the end points, thus making the data



4.2 THE 2D FW-H EQUATION IN THE FREQUENCY-DOMAIN 43

artificially periodic. This process is called “windowing”, and the multiplying function is

called a “window” or filter function.

The windowing should be applied to Q and Fj after the respective mean values are

subtracted to minimize the errors incurred. The subtraction of the means has no effect on

the calculated noise because the first derivatives of the Green function all contain ω (see

Eq. (4.23)), and thus one can infer from Eq. (4.19) that there is no contribution to the

pressure fluctuation or noise for ω = 0 when the quadrupole term is neglected.

Standard window functions, such as the Hanning filter, significantly decrease the am-

plitudes of tonal dominated data and spread the energy over adjacent bands when only a

few periods are included, which is the case for most unsteady CFD calculations. Thus, the

window function proposed by Lockard [77] and shown in Figure 4.2 is used in this work since

it keeps the correct amplitude for 3/4 of the input data.
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Figure 4.2: The window function used to make the input data periodic.

The filter is essentially a Hanning filter on the ends with no scaling in the center region and

is given by

Wn =

{
1 if N/8 < n ≤ 7N/8

0.5{1− cos[8π(n− 1)/(N − 1)]} otherwise
(4.24)

Here, n is an index that runs from 1 to N , the total number of points in the data sample.
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The window is applied in an energy preserving manner by scaling the output of the Fourier

transformation by
√
N/
∑
W 2
n . This makes it easier to compare the time history of the

predicted far-field pressure fluctuations to the one given by CFD calculation, but one has

to keep in mind that this window function still preserves only energy and not peak ampli-

tude. The small amount of time data typically available from a CFD calculation leads to

inaccuracies in the windowed Fourier transformation in this frequency-domain formulation,

but time-domain formulations suffer from the small amount of data available as well and are

therefore not better.

Solution Process

In summary, the entire solution process to calculate the far-field pressure fluctuations via

the 2D FW-H equation in the frequency-domain is as follows:

1. Define an integration surface f(yi) = 0 that surrounds the object(s) in question

2. Compute ρ(yi, t), ui(yi, t), p(yi, t) as well as the surface normals ni = ∂f/∂yi for a

sufficient amount of source locations yi on that surface

3. Calculate Fj and Q as given by Eqs. (4.21) and (4.20), respectively

4. Apply, if necessary, the window function (4.24) to Fj and Q after subtracting the

respective mean

5. Perform the Fourier transformation given by Eq. (4.10) of Fj and Q, preferably via a

fast Fourier transformation (FFT)

6. Compute the Green function (4.14) and its first derivatives (4.23) for each ω used in

the Fourier transformation as well as for each desired observer location x

7. Evaluate the line integrals in Eq. (4.19) for each observer location x and frequency ω

to obtain p′(x, ω)

8. If desired, the inverse Fourier transformation given by Eq. (4.11) of p′(x, ω) can be

used via an inverse FFT to recover the pressure fluctuation in the time-domain p′(x, t)
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A disadvantage of the frequency-domain formulation is that the source and observer are

always a fixed distance apart, which means that Doppler effects are not accounted for. This

is not a problem if one simulates experiments in a laboratory frame where the observer to

source distances are typically fixed. However, comparisons for flyover experiments should

include the Doppler effects, which can only be incorporated in a time-domain calculation,

where the distance between the observer and the source can be changed for each time step.

4.3 Validation

In order to validate the program code for solving the 2D FW-H equation in the frequency-

domain, two examples are presented in the following subsections in which the results for the

far-field pressure fluctuations are compared to well-known analytical solutions. In the last

subsection a direct comparison between the FW-H output and that obtained from a CFD

simulation is performed to gauge the validity of the formulation for airframe generated noise.

4.3.1 Monopole in Uniform Flow

The first validation example considered is the acoustic field from a monopole line source.

According to Greschner et al. [46], the complex velocity potential for a stationary monopole

source placed at the origin in a uniform flow with velocity Ui and a flow angle tan θ = U2/U1

can be written as

φ(x1, x2, t) = A(x1, x2, t)H
(2)
0

(
k

β2
r̄

)
(4.25)

with

A(x1, x2, t) = A
i

4β
exp(iωt+ iMkx̄/β2)

r̄ =
√
x̄2 + β2ȳ2

x̄ = x1 cos θ + x2 sin θ

ȳ = −x1 sin θ + x2 cos θ,

where A is the amplitude, M is the Mach number, β =
√

1−M2, and k = ω/a∞ is the wave

number. The perturbation variables needed to calculate the monopole and dipole source
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terms are obtained from the real parts of

p′ = p− p∞ = −ρ∞
(
∂φ

∂t
+ U1

∂φ

∂x1

+ U2
∂φ

∂x2

)
u′i = ui − Ui =

∂φ

∂xi

ρ′ = ρ− ρ∞ =
p′

a2
∞
, (4.26)

where

∂φ

∂t
= iωφ

∂φ

∂x1

=
iMk

β2
cos θ φ−A

k

β2r̄
(x̄ cos θ − β2ȳ sin θ)H

(2)
1

(
k

β2
r̄

)
∂φ

∂x2

=
iMk

β2
sin θ φ−A

k

β2r̄
(x̄ sin θ + β2ȳ cos θ)H

(2)
1

(
k

β2
r̄

)
. (4.27)

The source terms are calculated from these flow variables evaluated over one period TP = 2π/ω

on the integration surface, which is a circle with a radius of rc. One hundred uniformly spaced

points on this circle are used as source locations. For this example,

θ = 20◦, M = 0.5, ω = 3000.0 rad/s, rc = 2m,

A = 0.01m2/s, p∞ = 1.00016 · 105 Pa and T∞ = 300K,

which leads to

a∞ =
√

1.402 · 287.05J/(kg ·K) · T∞ ≈ 347.47m/s

ρ∞ = p∞ · 1.402/a2
∞ ≈ 1.161 kg/m3

U1 = Ma∞ cos θ ≈ 163.26m/s

U2 = Ma∞ sin θ ≈ 59.42m/s.

Figure 4.3 compares the directivity from the FW-H calculation to the analytic solution

in the far-field at r = 500m, and Figure 4.4 makes a comparison for the time histories of the

pressure fluctuations at x1 = 500m and x2 = 0m. The agreement is excellent, demonstrating

that the two-dimensional FW-H formulation is valid for problems with a uniform mean flow.
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Figure 4.3: Directivity comparison for a monopole at r = 500m.
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Figure 4.4: Time history comparison for a monopole at x1 = 500m and x2 = 0m.
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4.3.2 Scattering by an Edge

The second validation example is the acoustic radiation from a two-dimensional line vortex

passing by a sharp edge of a half-plane. A schematic of the problem is shown in Figure 4.5.

Figure 4.5: Schematic of a line vortex moving around a half-plane.

A vortex of strength κ moves along the indicated path around the edge of a semi-infinite

plate. The maximum speed of M ≡ 0.01 of the motion occurs at time t = 0, when the vortex

is adjacent to the edge at x1 = b ≡ 1m and x2 = 0m. The general problem was solved

analytically by Crighton [18] for low Mach numbers. He matched the velocity potential for

the incompressible inner solution to the slightly compressible outer solution and applied a

radiation condition to the outer solution at infinity. His solution for the non-dimensionalized

velocity potential is given by

φ(x1, x2, t) =
2
√

2

[M2(r − t)2 + 4]1/4
sin(θ/2)

r1/2
, (4.28)

where r =
√
x2

1 + x2
2 is the with b non-dimensionalized distance from the edge, θ is the angle

measured relative to the positive x1-axis, and t is the with b/a∞ non-dimensionalized time.

Again, in this example

p∞ = 1.00016 · 105 Pa and T∞ = 300K,

leading to

a∞ =
√

1.402 · 287.05J/(kg ·K) · T∞ ≈ 347.47m/s

ρ∞ = p∞ · 1.402/a2
∞ ≈ 1.161 kg/m3.



4.3 VALIDATION 49

This time the perturbation variables required for the source terms are obtained from

p′ = p− p∞ = −ρ∞
∂φ

∂t
·M · ρ∞a2

∞

u′i = ui =
∂φ

∂xi
·M · a∞

ρ′ = ρ− ρ∞ =
p′

a2
∞
, (4.29)

where

∂φ

∂t
=

√
2

[M2(r − t)2 + 4]5/4
sin(θ/2)

r1/2
M2(r − t)

∂φ

∂x1

=
∂φ

∂r

∂r

∂x1

+
∂φ

∂θ

∂θ

∂x1

=
∂φ

∂r
cos(θ)− ∂φ

∂θ
sin(θ)/r

∂φ

∂x2

=
∂φ

∂r

∂r

∂x2

+
∂φ

∂θ

∂θ

∂x2

=
∂φ

∂r
sin(θ) +

∂φ

∂θ
cos(θ)/r

∂φ

∂r
= −

√
2(4 +M2(r − t)(2r − t))

[M2(r − t)2 + 4]5/4
sin(θ/2)

r3/2

∂φ

∂θ
=

√
2

[M2(r − t)2 + 4]1/4
cos(θ/2)

r1/2
. (4.30)

Since the exact Green function for this geometry is not known, the free-space Green

function in the frequency-domain, given by Eq. (4.14) with M = 0, has to be used. In order

to take this into account, the integration surface is extended far enough such that most of

the effective sources on the plate are enclosed by it. The surface extends from −200m to 2m

in x1 with 180 equidistant points, and from −2m to 2m in x2 with 40 equidistant points,

for a total of 440 points on the surface. A time history of the acoustic field from −20.0 s

to 20.0 s captures most of the features of the slowly varying signal as the vortex passes the

edge of the half-plane. This problem is not periodic in nature; however, the source terms

approach very small values for large negative and positive times so that they are naturally

windowed. The pressure fluctuations over time shown in Figure 4.7 exemplify the behaviour

of the source terms for large negative and positive times.

The directivity comparison between the exact and calculated solutions for observers at

a radius of 50m from the edge is shown in Figure 4.6 and the time histories of the pressure

fluctuations at r = 50m and −45◦ from the lower surface of the half-plane are compared

in Figure 4.7. Again the agreement is excellent, showing that the two-dimensional FW-H

approach is applicable to problems that are not dominated by a single frequency as well as

to problems where the source of the acoustic radiation is spatially distributed.
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Figure 4.6: Directivity comparison at r = 50m for a vortex passing an edge.

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t (s)

p’
(t

) 
(P

a)

 

 

Analytical
FW−H

Figure 4.7: Time history comparison at r = 50m and −45◦ from the lower surface of the

half-plane for a vortex passing an edge.
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4.3.3 Airfoil in Laminar Flow

In this subsection a direct comparison is presented between the pressure fluctuations calcu-

lated via the FW-H approach and those obtained from a CFD simulation. For more details

about the numerical implementation of the FW-H equation see Appendix F. The laminar

flow over the single-element NACA 0012 airfoil with a Reynolds number of 800, a free stream

Mach number of 0.2, and an angle of attack of 20◦ is considered. At these conditions the

airfoil experiences vortex shedding. A C-mesh with 848× 395 nodes and a non-dimensional

time step ∆t = 0.03 is used. After the flow solver has reached a periodic steady state, 1800

time steps are taken, which cover about five vortex shedding cycles, and the solution is

recorded. The fictitious or porous FW-H integration surface consists of one of the stream-

wise grid lines located at about 0.015c away from the airfoil, and the surface is closed at the

trailing edge with one of the existing vertical grid lines.
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Figure 4.8: Permeable FW-H integration surface and CFD probe locations.
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For comparison purposes, six distinct locations with increasing distance from the airfoil

are selected to probe the CFD results and extract the unsteady pressure fluctuations. The

spatial locations of the six probe stations are displayed in Figure 4.8. The extracted CFD

pressure fluctuations as well as those obtained from the FW-H solver are plotted in Figure 4.9

for three selected probe stations for more clarity and in Figure 4.10 for all six probe stations.
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Figure 4.9: Comparison of pressure fluctuations calculated by CFD (solid line) and FW-H

(dashed line) in selected probe locations.

The wavelength of the dominant tone of this quasi point source can be deduced from

these figures and is given in non-dimensional units (chord lengths) by λ = a∞/f = a∞ ·TP ≈
1 · 9.2 = 9.2. This explains why the pressure fluctuations in probe location 1 and 3 are

almost in phase since these locations are about one wavelength apart from each other. In

two dimensions one also expects that the sound intensity, which itself is proportional to the

square of the sound pressure, is inversely proportional to the distance of an acoustic point

source. This distance law is almost perfectly fulfilled by the pressure fluctuations which are

calculated with the FW-H approach.

By comparing the pressure fluctuations probe location by probe location one can make the
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Figure 4.10: Comparison of pressure fluctuations calculated by CFD (solid line) and FW-H

(dashed line) in different probe locations.

following observations: At probe locations 2 and 3, which are relatively close to the airfoil,

the pressure records from the CFD results and the FW-H approach are almost identical,

except for the beginning and end of the data, where the window function tarnishes the result

from the FW-H approach. The agreement at the first probe location is also fairly good,

except for the underprediction of the amplitude by the FW-H calculation. It has been tried

to resolve this problem by using different integration surfaces but without success. However,

since in real applications the observer position is never so close to the integration surface

this discrepancy is deemed to be a minor issue. At the fourth location the agreement in the

low- to mid-frequency range (broadband noise component) is still quite good, but the CFD

result shows attenuation of the high frequency (tonal noise) component, due to the coarser

grid this far away from the airfoil and the low order accuracy of the flow solver. Lastly, the

CFD results at probe locations 5 and 6 are basically useless, and it becomes apparent that

an accurate propagation of the pressure signatures to the far-field for moderate cost is only

achievable with an acoustic wave propagation code.

The directivities at a distance of ten chord lengths show the dipole nature of this problem
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Figure 4.11: Variation of directivity with solid and porous integration surface.

in Figure 4.11 . The figure also displays a comparison between the directivity obtained using

the porous integration surface described above and a solid surface that coincides with the

airfoil. One can see a good agreement; however, as a vortex passes through the porous

surface, a fictitious noise source is generated, which is caused by the time-varying force

on the integration surface as the vortex passes through it. This apparent noise would be

cancelled by the quadrupole term if it were included. However, the quadrupole contribution

for this low-speed flow is relatively small, and hence good agreement is achieved, even though

the quadrupole term is neglected.

The presented comparison confirms that FW-H calculations produce results that are

equivalent to the more direct but costlier CFD approaches. Figures 4.10 and 4.9 show ample

evidence of the ability of the FW-H code to calculate the pressure fluctuations without

introducing too much amplitude or phase distortion. However, the FW-H results are only as

good as the input data, and hence, care has to be taken to judiciously place the permeable

integration surface and to use a fine enough mesh in the near-field region.
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RESULTS

After introducing all the components that are required to optimize airfoils in unsteady flows

and to predict airframe generated noise in the previous chapters, it is time to present a

wide spectrum of applications in this chapter. On the basis of these results, the unsteady

optimization procedure can be validated and evaluated. Sections 5.1 and 5.2 deal with un-

steady internal flow problems: the inverse design of a pulse in a one- and two-dimensional

converging-diverging nozzle and the flow in a shock-tube are presented. The drag minimiza-

tion for viscous flow around a rotating cylinder is presented in Section 5.3, and the attempt

to mitigate the effects of transonic buffeting is covered in Section 5.4. In Section 5.5 the

aeroacoustic shape design for unsteady trailing-edge flow is addressed, and in Section 5.6

the remote inverse designs of single- and multi-element airfoils at a high angle of attack are

shown.

The final three sections address the validation of the hybrid URANS/FW-H optimiza-

tion algorithm using remote inverse shape designs, and the application of the algorithm to

turbulent blunt trailing edge flow and high-lift noise optimization.

5.1 Pulse in 1D and 2D Converging-Diverging Nozzle

As a first example the inverse design in one and two dimensions of a subsonic flow with a

pulse in the static outflow pressure in a converging-diverging nozzle is considered (published

in Rumpfkeil and Zingg [115]).

The one-dimensional case

The one-dimensional problem is governed by the quasi-1D Euler equations, and cubic spline

interpolation with six control points is used to represent the nozzle shape. Since the control

points at each end are fixed to ensure a well-posed design problem, there are four shape

55
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design variables, S̄, for this problem. The initial and target shapes of the nozzle together

with the location of the control points are shown in Figure 5.1.
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Figure 5.1: Initial and target converging-diverging nozzle shapes.

The pulse in the static outflow pressure is given by

p(t) = ps + A · sin(2πFt), (5.1)

where A and F are the given amplitude and frequency of the pulse, and ps is a constant. At

the inlet, constant stagnation conditions, p0 and T0, are enforced, and the remaining three

boundary conditions are calculated through linear extrapolation as follows: at the inlet, the

Riemann invariant R1 = u− 2a
γ−1

is used, and at the outlet, R2 = u+ 2a
γ−1

and H = E + p/ρ.

The flow solver is a one-dimensional implementation of the 2D solver described in Chapter 2.

The BDF2 time-marching method is utilized for a time-accurate flow solve, and 100 equally-

spaced nodes discretize the problem in space for all the presented cases. At t = 0, the

unsteady flow solve is initialized with the steady state solution Q0 of the quasi-1D Euler

equations with p(t = 0) = ps (see Figure 5.2).

The control variables Y = (A,F, S̄) are chosen, and two possible forms for the cost func-

tional O are considered:
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Figure 5.2: Initial and target pressure, velocity and density at t = 0.

1. The observation is only obtained for the final time T

O1 =
1

2

100∑
j=1

3∑
i=1

(QN
j,i −Q∗N

j,i )2 (5.2)

2. The observation is distributed at assimilation times 0 ≤ t ≤ T

O2 =
1

2
∆t

N∑
n=1

100∑
j=1

3∑
i=1

(Qn
j,i −Q∗n

j,i)
2 (5.3)

Here, Q∗n
j,i are the target or desired observations at node j, which are obtained as solutions

of the flow problem with the control vector Y ∗ = (0.05, 1.5, S̄∗), where S̄∗ are the four target

shape design variables. There are also two different initial guesses Y1 = (0.04, 1.4, S̄) and

Y2 = (0.08, 1.9, S̄) used for this optimal control problem, and T = 1.0 (in non-dimensional

units) is chosen as the time horizon.

Matlab’s command “fminunc” for unconstrained nonlinear optimization is used to solve

the presented inverse design problem. The LargeScale option is set to “off” so that Matlab

uses the BFGS Quasi-Newton method with a mixed quadratic and cubic line search proce-

dure. The adjoint equations given in Appendix B are implemented in Matlab to calculate
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the gradient. However, a slight modification is necessary to account for the required steady

flow solve after the shape of the nozzle is modified due to new values of the design variables

Y . Thus, one needs to add the steady contribution λTR(Q0, Y ) to the Lagrangian, which

leads to one extra adjoint equation for λ that needs to be solved

λ =−
(
(∇Q0R)T

)−1[
(∇Q0R2)Tψ2 +∇Q0R1)Tψ1

]
. (5.4)

Once Matlab is provided with the necessary routines to compute the cost function and

gradient, it is able to drive both objective functions O1 and O2, given by Eqs. (5.2) and

(5.3), respectively, for the initial guess Y1, to machine zero. The same is true for O2 with

the initial guess Y2, but for O1 (comparison only at the final time) and Y2, BFGS gets stuck

in a different minimum (see Figure 5.3).
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Figure 5.3: Convergence plots for O1 (dashed) and O2 (solid) using T = 1.0 (for Y1 as initial

condition in the left column and for Y2 in the right column.)

In order to gauge the accuracy of the adjoint gradient (ad) it is compared to the gradient

computed via the complex-step (cs) method [133] at the first design iteration. The agree-

ment is excellent with
((

∂O
∂Yk

)
ad
−
(
∂O
∂Yk

)
cs

)
/
(
∂O
∂Yk

)
cs
≤ 10−11 for all k and both objective

functions, showing that the adjoint approach yields a very accurate gradient.
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The two-dimensional case

In order to solve the full two-dimensional version of the pulse problem, the 2D multi-block

structured solver, TORNADO [97], is used in Euler mode with the BDF2 time-marching

method. The pulse in the static outflow pressure is given by Eq. (5.1), and constant stagna-

tion conditions at the inlet are specified for the remaining boundary conditions. Cubic spline

interpolation represents the nozzle shape, however this time with only five control points,

and since the inflow and outflow control points are fixed to ensure a well-posed design prob-

lem, there are only three shape design variables S̄. The x-locations of the control points

are 2.5, 5.0 and 7.5, respectively; the initial and target shapes of the nozzle are shown in

Figure 5.4 with the grid consisting of 99× 55 nodes.

Figure 5.4: Initial (red) and target (black) converging-diverging nozzle shapes in 2D.

The control vector is again given by Y = (A,F, S̄) and the objective function is as follows

O =
1

2
∆t

N∑
n=1

Je∑
j=1

Ke∑
k=1

4∑
i=1

(Q̂n
j,k,i − Q̂∗n

j,k,i)
2,

where Q̂n
j,k,i are the conservative flow variables at node (j, k) in the computational domain

(the map of the curvilinear grid into a uniform and equally spaced grid). For this problem the

following parameters are chosen: Je = 99, Ke = 55, and N = 200 with a constant time step

∆t = 0.1, which yields T = 20.0 as final time. The objective function O is always scaled by a
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factor such that the initial value is unity. The starting point Q0 is the steady-state solution

of the 2D Euler equations with p(t=0) = ps = 92 kPa. The target flow variables Q̂∗n
j,k,i are

obtained as the solution of the flow problem with the control vector Y ∗= (1000, 0.15, S̄∗),

and the non-dimensionalized target pressure at t = 0 is displayed in Figure 5.5.

Figure 5.5: Non-dimensionalized target pressure at t = 0 in 2D Nozzle.

The gradient of O with respect to the control variables Y is again calculated using the

adjoint equations given in Appendix B with the one additional adjoint equation for λ given

by Eq. (5.4).

In order to save computational time and storage, the flow field is only saved every five

time steps, and thus the flowfield is compared with the target flowfield only every five time

steps in the objective function as well. This means, in particular, that the transpose of the

Jacobian has to be inverted only 40 times as opposed to 200 times in order to calculate the

complete gradient. This approach has, of course, an influence on the accuracy of the gradient,

as the following example demonstrates. Using Y = (2500, 0.21, S̄) as an initial guess for the

control vector and second-order central finite-differences (fd) with a stepsize of h = 10−7 to

calculate the gradient at the first design iteration (thereby comparing the flowfields at every

time step) yields

(
∂O

∂Y

)
fd

= (−0.0519, 1.9142, −3.7971, 4.0757, 5.5990),
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which is in good agreement with the gradient calculated via the adjoint method (ad)(
∂O

∂Y

)
ad

= (−0.0519, 1.9142, −3.7661, 4.0911, 5.6017).

On the other hand, using the adjoint method while jumping over five time steps at a time

(ad5) yields (
∂O

∂Y

)
ad5

= (0.2219, 1.0391, −4.1309, 3.7740, 5.6894).

Nonetheless, one can see in the convergence plot for different initial guesses for A and F

in Figure 5.6 that the objective function can be driven to machine zero in all the pre-

sented cases, where it is important to note that only about half of all initial guesses tried

lead to convergence. It is also crucial to impose constraints on the shape design variables

(S̄ ∈ [0.7, 1.7]) to ensure that the flow through the nozzle always stays entirely subsonic

in the inverse design process. One has also to constrain the amplitude and frequency of

the pulse (A ∈ [−14000, 14000] and F ∈ [−0.5, 0.5]) to prevent pulses with excessively large

amplitudes or frequencies.
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Figure 5.6: Convergence plots for the inverse design of a pulse in a 2D nozzle.
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5.2 The Inverse Design of Flow in a Shock-tube

In this section the inverse design of a flow in a 1D shock-tube is presented. This shows

that unsteady optimization can be very useful in data assimilation problems, which try to

determine a “best” estimate for the initial state that leads to the observed flow behaviour,

given a set of actual measurements of this flow on [0, T ]. This shock-tube problem has been

explored before by Homescu and Navon [56], but here an analytic derivation of the adjoint

model is incorporated, whereas they linearized the nonlinear forward model code line by line

and viewed the resulting tangent linear model as the result of the multiplication of a number

of operator matrices O1O2 . . . OM . They then derived the adjoint model as the product of

adjoint subproblems OT
MO

T
M−1 . . . O

T
1 .

The shock-tube problem can be described as follows: a tube that is filled with gas is

initially divided by a membrane into two sections. The gas has a higher density and pressure

in one half of the tube than in the other half, with zero velocity everywhere. At time t = 0,

the membrane is suddenly removed and the gas is allowed to flow, which results in a net

motion in the direction of lower pressure. Assuming uniform flow across the tube, there is

variation in only one direction and the 1-D Euler equations apply. Thus, the same flow solver

that was used for the one-dimensional converging-diverging nozzle problem can be applied.

The control variables for this problem are chosen to be Y = (pL, pR, ρL, ρR), and the two

forms of the cost functional O given by Eqs. (5.2) and (5.3), respectively, are applied here

as well. This time the target or desired observations Q∗n
j are obtained as solutions of the

shock-tube problem for two different sets of initial conditions:

Y ∗
1 = (pL = 1.1, pR = 0.2, ρL = 1.1, ρR = 0.2)

Y ∗
2 = (pL = 1.5, pR = 0.6, ρL = 1.6, ρR = 0.4).

The Sod shock-tube values [130]

Y = (pL = 1.0, pR = 0.1, ρL = 1.0, ρR = 0.125)

are used as an initial guess for the optimizer, and the time horizon is T = 0.21 (in non-

dimensional units).

Figure 5.7 displays the different flow variables for the target observations at t = 0.21

obtained from the two different sets of initial conditions together with the observation of
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Figure 5.7: Pressure, velocity and density: initial guess (dashed line) and target observation

(solid line) at t = T = 0.21 using Y ∗
1 in the left column and Y ∗

2 in the right column.

the initial guess at the same output time (again using 100 equally-spaced spatial nodes and

the BDF2 time marching method). In order to provide Matlab’s BFGS algorithm with the

necessary gradient, the adjoint equations given in Appendix B are used, but since this is a

data assimilation problem, it is advantageous to write the gradient of O with respect to the

design variables Y as follows:

∂O

∂Y
=
∂L

∂Y
=

∂L

∂Q0

∂Q0

∂Y
=
[
(ψ2)T∇Q0R2 + (ψ1)T∇Q0R1

] ∂Q0

∂Y
. (5.5)

Matlab is able to drive both objective functions O1 and O2, given by Eqs. (5.2) and (5.3),

respectively, for the two target observations Y ∗
1 and Y ∗

2 , to machine zero (see Figure 5.8).

Once again, the resulting adjoint gradients of the cost functionals with respect to the

design variables at the first design iteration have been compared to the ones computed via

the complex-step method [133]. The agreement of ten digits is also excellent, thus showing
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Figure 5.8: Convergence plots for O1 (dashed) and O2 (solid) using T = 0.21 for the first set

of initial conditions in the left column and for the second set in the right column.

that the framework presented in Section 3.3 for deriving the adjoint equations encounters

no problems when dealing with discontinuities such as shocks.

5.3 Drag Minimization for Viscous Flow around a Ro-

tating Cylinder

Since the accuracy of the unsteady adjoint gradient calculation has been established in the

previous two sections, a more demanding problem can be investigated. In this section the

drag minimization for viscous flow around a rotating cylinder is examined (published in

Rumpfkeil and Zingg [115, 120]). The idea is that by rotating the cylinder and controlling

the angular velocity the drag can be decreased through the Magnus Effect (also known as

the Robin’s Effect), which can be observed for rotating spheres as well as cylinders. A deep
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understanding of the control strategies for flows past rotating bluff bodies can be very helpful

in areas such as drag reduction, lift enhancement, vibration control, and last but not least,

the particular interest of this thesis, noise control.

The laminar viscous flow past a circular cylinder has been comprehensively studied be-

cause of its simple geometry and its representative behavior of general bluff body wakes.

There are various flow regimes, which are highly dependent on the Reynolds number (Re)

and can be identified by the character of the flow in the wake and boundary layer of the

cylinder [16]. However, over a large range of Reynolds numbers (47 < Re < 107) there are

always eddies shed alternately from each side of the cylinder, forming rows of vortices in its

wake, the so-called Karman vortex street [146].

In order to solve the underlying 2D unsteady Navier-Stokes equations, the 2D single-block

structured thin-layer solver, PROBE [111], is used with the BDF2 time-marching method.

The rotational boundary conditions are implemented by requiring the normal velocity on

the surface of the cylinder to be zero and the tangential velocity to be equal to Ω · r, where

Ω is the angular velocity and r = 0.5 the radius of the cylinder. It is convenient to introduce

the Strouhal number

Sn = d · fn/u∞

for comparison purposes, where d = 1 is the diameter of the cylinder, fn is the Karman

vortex shedding frequency, and u∞ = M∞ = 0.2 is the free-stream velocity. Using an O-

mesh with 140× 90 grid nodes, an off-wall spacing of 10−4, and the BDF2 time-marching

method with a time step size of ∆t = 0.1, the results from PROBE for the mean value of the

drag coefficient C̄D and the Strouhal number Sn are compared with computationally [52, 57]

and experimentally [53, 148] obtained values by various authors in Table 5.1.

C̄D Sn

Reynolds number 100 1000 100 1000

Present work 1.45 1.53 0.179 0.252

He et al. [52] 1.35 1.52 0.167 0.239

Homescu et al. [57] 1.42 1.68 - -

Henderson [53] 1.35 1.51 0.166 0.237

Williamson [148] - - 0.164 -

Table 5.1: Mean drag coefficients and Strouhal numbers (the last two are experimental results).
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There is a reasonable agreement for both Reynolds numbers shown. Most of the observed

differences are likely due to the relatively large time steps and the relatively coarse grid. Also,

the use of the thin-layer Navier-Stokes equations is questionable for a bluff-body flow and will

deviate to some degree from a full Navier-Stokes solution. However, since the primary focus

of this thesis is on the optimal control of unsteady flows, the trade-off between accuracy and

performance is satisfactory, even though the computed unsteady flow is not grid converged.

The experimental work of Tokumaru and Dimotakis [137] motivated the attempt to find

an optimal angular velocity in order to minimize the drag. Several researchers [57, 52]

considered two control cases (but used different objective functions): the constant rotation

case, Ω(t) = Ω using Y = Ω as design variable, and the time harmonic rotary oscillation case,

Ω(t) = A · sin(2πFt) with Y = (A,F ) as design variables.

The objective function of choice for the constant and harmonic rotating cases is a time

averaged or mean drag minimization problem:

O = C̄D =
1

N−Nc

N∑
n=Nc+1

Cn
D, (5.6)

where Cn
D is the cylinder’s drag coefficient at time step n.

It is very important to have a practical knowledge of the design space to be able to

choose a reasonable time step and control window. The effect of different values of Ω on the

drag coefficient for the constant rotation case using a fixed time step of ∆t = 0.1 is shown

in Figure 5.9. The rotation starts impulsively, and after a transition period of about 1500

steps the mean drag coefficients of the rotating cylinders are all smaller than the mean drag

coefficient of the stationary cylinder.

In order to reduce the computational costs in the actual optimization runs, one can

“jump” over the adjusting or transition period as quickly as possible by taking a bigger time

step ∆tc = 0.5 for Nc = 300 steps. This larger time step is chosen in such a way that the

accuracy of the overall numerical solution is not significantly diminished. Once the domain

where one wants to control the problem is reached (the control window is indicated by the

box in Figure 5.9), a smaller time step ∆t = 0.2 is used for another 500 steps, for a total of

N = 800 time steps in each flow solve covering a time interval of [0, 250]. The corresponding

adjoint equations for this situation are given in Appendix D and the time horizons are

summarized in Table 5.2.
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Figure 5.9: Drag coefficients for the constant rotation case for different values of Ω (∆t = 0.1).

Nc ∆tc N −Nc ∆t N Adjustment interval Control interval

300 0.5 500 0.2 800 [0, 150] [150, 250]

Table 5.2: Time horizons for the constant rotating cylinder.

The optimizer BFGS [153, 13] is able to minimize the mean drag with gradient norms of

about 10−8 at the local minima when Ω is constrained to values between 0 and 1.9 to prevent

excessively large rotation speeds. The resulting design space is shown in Figure 5.10 with

the gradients at the design points represented by straight lines. One can see several local

minima in this design space, with the global minimum in the given interval at Ω = Ω∗ ≈ 1.16

leading to C̄D ≈ 0.11. This optimum value minimizes the mean drag value far beyond the

extent of the control window, as can be seen in Figure 5.9; this behaviour was also observed

by other researchers [57, 52].
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Figure 5.10: The design space of the constant rotating cylinder Ω(t) = Ω.

Just like in the two-dimensional pulse case, one can try to save computational time

and storage by saving the flowfield in the control time window only every other time step.

This leads to an inexact gradient but also to only 300 + 500/2 = 550 matrix inversions for

the adjoint solution as compared to 800 in the original case. The result is also shown in

Figure 5.10, and the gradients and objective function values are in reasonable agreement

with each other, thus leading to similar convergence histories, except that in this case the

local minima are slightly shifted (about 0.25 percent off) and the gradient norms only reduce

to 10−3 at these minima. Trying to skip time steps in the adjusting period or more than

every other time step in the control window did not work as well or did not converge at all.

In Figure 5.11 the effect of different values of A and F on the drag coefficient for the

harmonic rotation case using a fixed time step of ∆t = 0.1 is shown. The rotation starts
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smoothly, and after a transition period of about 750 steps the mean drag coefficients of the

harmonically rotating cylinders are again all smaller than the mean drag coefficient of the

stationary cylinder.

Figure 5.11: Drag coefficients for the harmonic rotation case for different values of A and F

(∆t = 0.1).

The chosen time horizons for this problem are shown in Table 5.3. Using the same

objective function as for the constant rotating cylinder given by Eq. (5.6) and constraining the

amplitude A to [0, 1.9] and the frequency F to [0, 0.3] to prevent rotations with excessively

large amplitudes or frequencies, the optimizer could minimize the mean drag value with

gradient norms of about 10−4 at the local minima.

The resulting design space is displayed in Figure 5.12, with the gradients at the different

design points represented by arrows, and the objective function values given by a colour
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Nc ∆tc N −Nc ∆t N Adjustment interval Control interval

375 0.2 400 0.1 775 [0, 75] [75, 115]

Table 5.3: Time horizons for the harmonic rotating cylinder.

scale with red representing the highest and blue the lowest values. Once again, several

local minima can be seen, with a global minimum for Y = Y ∗ ≈ (0.98, 0.114) leading to

C̄D ≈ 0.6832, which again leads to a minimized mean drag value far beyond the extent of

the control time window, as can be seen in Figure 5.11. Trying to skip any time steps while

saving the flowfield is not pursued due to the already fairly coarse time steps for this highly

oscillatory problem.
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Figure 5.12: The design space of the harmonic rotating cylinder and a zoom into the most

interesting region.
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5.4 Transonic Buffeting Shape Optimization

This section describes the attempts to mitigate the effects of transonic buffeting with the

help of unsteady turbulent shape optimization. The self-excited shock wave oscillations on

a RAE2822 airfoil with M∞ = 0.71, Re = 20× 106, and α = 7◦ form the test case. Instan-

taneous Mach contours are shown in Figure 5.13.

Figure 5.13: Instantaneous Mach contours for the RAE2822 airfoil.

Self-sustained shock wave oscillations on airfoils at transonic flow conditions are associ-

ated with the phenomenon of buffeting. The unsteady pressure fluctuations generated by

these low-frequency large-amplitude shock motions are highly undesirable for the structural

integrity and maneuverability of aircraft. Three distinct regions of transonic flight Mach

numbers can be defined for a fixed free-stream Reynolds number [150]. Below a critical

Mach number, the flow is steady and characterized by a weak shock wave near the mid-

chord. Above this critical Mach number, the flow becomes unsteady with shock-induced

flow separation and shock motions on the upper and lower surfaces of the airfoil which are

out of phase. As the Mach number is further increased, a steady shock reappears which is

again strong enough to induce flow separation. The physical mechanisms of the self-excited

oscillation are not very well understood. However, the necessary but not sufficient condition

for triggering periodic buffeting is a strong enough shock wave to cause boundary-layer sep-

aration [74]. Note that instead of increasing the transonic Mach number beyond the critical

value one can observe the same effects by increasing the angle of attack for a fixed critical

Mach number [150].
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The unsteady turbulent shape optimization uses ten B-spline control points as shape

design variables (five on the upper and five on the lower surface) and is started from three

different initial shapes, which are shown in Figure 5.14:

1. The original RAE2822 airfoil (in red)

2. The airfoil that results from setting all ten design variables to their specified upper

bounds (in blue)

3. The airfoil that results from setting all ten design variables to their specified lower

bounds (in black)

X
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-0.2
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Figure 5.14: The initial airfoil shapes.

The reason for the tight lower and especially tight upper bounds is that the flow solver

is not very robust in this unsteady transonic flow regime and thus cannot handle larger

shape changes. The flow solver PROBE [111] with the BDF2 time-marching method is

used on a C-mesh with 198× 60 nodes. The dissipation constant κ2 is set to zero, so that

the pressure switch Υ, given by Eqs. (2.32), which controls the first-order dissipation near

shocks, is disabled. This leads to more accurate gradients since this pressure switch is not

differentiated for the flow Jacobian in the current implementation.

Two objective functions are considered:

1. Mean drag minimization O = C̄D =
1

N−Nc

N∑
n=Nc+1

Cn
D

2. Mean drag over mean lift minimization O =
C̄D
C̄L

=

∑N
n=Nc+1C

n
D∑N

n=Nc+1C
n
L

where Cn
D and Cn

L are the airfoil’s drag and lift coefficient at time step n, respectively.

Two thickness constraints are imposed to maintain a certain structural feasibility. They
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are located at 35 and 99 percent chord length with a target thickness of 0.11c and 0.0015c,

respectively. The third initial shape (starting from specified lower bounds) slightly violates

both thickness constraints.

After each shape modification the flow solve is warmstarted from the original RAE2822

airfoil periodic steady state solution, and the flow is allowed to evolve for some time to

establish a new periodic steady state before the drag and lift coefficients are recorded (com-

pare with Figure 5.18). The time horizons used for this unsteady shape optimization are

summarized in Table 5.4 and the corresponding adjoint equations are given in Appendix D.

Note that ∆tc is not larger than ∆t for stability and robustness.

Nc ∆tc N −Nc ∆t N Adjustment interval Control interval

200 0.2 400 0.2 600 [0, 40] [40, 120]

Table 5.4: Time horizons for the buffeting shape optimizations.

Figure 5.15 presents the final improved airfoil shapes of the transonic buffeting shape

optimizations. For the mean drag over mean lift minimization all three initial shapes converge

to the same final shape shown in green. However, for the mean drag minimization each initial

shape leads to a slightly different improved shape.
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Figure 5.15: Final improved airfoil shapes of the buffeting shape optimizations.

The convergence histories of the mean drag minimizations are displayed in Figure 5.16.

Starting from the original RAE2822 airfoil leads to the best shape with a reduction of about

17 percent in the mean drag. However, the gradient norms are reduced by less than one

order of magnitude, implying that the optimizer did not converge due to stalls in the line

search algorithm.
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Figure 5.16: Convergence histories of the mean drag minimizations.
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Figure 5.17: Convergence histories of the mean drag over mean lift minimizations.
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The convergence histories of the mean drag over mean lift minimizations are shown in

Figure 5.17. All three initial shapes converge to the same final shape and thus objective

function value, which translates into a reduction in mean drag over mean lift of about 20

percent from the original RAE2822 airfoil. Once again, however, the gradient norms are

reduced by less than one order of magnitude due to line search stalls.

The time histories of CL and CD for the original RAE2822 airfoil before and after the

optimizations are shown in Figure 5.18. One can clearly see the unphysical adjusting period

for the improved airfoils in the time interval [0, 40] before they reach their new somewhat

periodic steady state. A reduced mean drag for both improved airfoils is also visible. The

mean drag over mean lift minimization leads to an increased mean lift as well, whereas

the mean drag minimization actually decreases the mean lift. As a last observation, both

objective functions lead to reduced oscillation amplitudes in both lift and drag. However,

the mean drag minimization yields smaller amplitudes that even seem to approach a steady

state with a fixed shock location, which is highly desirable from a structural integrity and

maneuverability point of view.
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Figure 5.18: Time histories of CL and CD for the RAE2822 airfoil before and after the

optimizations vs. time (∆t = 0.2).

The above presented transonic buffeting shape optimizations look fairly promising, but a



76 Chapter 5. Results

more in-depth investigation is clearly required to try to resolve flow solver and optimizer con-

vergence problems, and it should be stressed that the results have little practical importance

at this stage.

5.5 Aeroacoustic Shape Design for Unsteady Trailing-

Edge Flow

This section presents an unsteady aerodynamic noise reduction problem involving unsteady

laminar trailing-edge flow (published in Rumpfkeil and Zingg [116, 119]). The airfoil geom-

etry, which is a shortened version of the airfoil used in experiments by Blake [7], is shown

in Figure 5.19. This geometry is very similar to the one used by Marsden et al. [82] in

their noise minimization using a surrogate management framework. The thickness to chord

ratio at one to ten is identical, and the leading and trailing edge geometry is duplicated as

closely as possible. The free-stream Mach number is M∞ = 0.2 with a Reynolds number of

Re = 10, 000, and the angle of attack is 0◦.

x
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-0.05

0
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Figure 5.19: Blake airfoil with the thickness constraint line (dashed). The fifteen B-spline

control points which are used as design variables are shown as squares.

For unsteady laminar flow past an airfoil at low Mach number, the acoustic wavelength

associated with the vortex shedding is typically long relative to the airfoil chord [82]. The

noise generation from such an acoustically compact airfoil can be expressed using Curle’s

extension to the Lighthill theory [19], and a cost function O, which is proportional to the

total radiated acoustic power can be derived [84]:

O =

(
∂

∂t

∫
S

njp1j(y, t)ds

)2

+

(
∂

∂t

∫
S

njp2j(y, t)ds

)2

. (5.7)

Here pij is the compressive stress tensor, nj are the normalized components of the outward

normal to the airfoil surface S, and y is the airfoil surface position vector. The overbar
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denotes time-averaging over the chosen time interval, and repeated indices follow the usual

Einstein summation convention. The radiation in this case is of dipole type, caused by the

fluctuating lift and drag forces; see Wang et al. [147] for more details on airfoil self-noise due

to vortex shedding.

The right half of the upper surface is allowed to deform in the optimization process and

fifteen B-spline control points are used as shape design variables (see Figure 5.19). Since the

cost of the adjoint approach is independent of the number of design variables, considerably

more shape design variables are utilized than the five that Marsden et al. [82] could afford in

their study using a surrogate management framework, thus giving the airfoil more freedom in

the design space to take the most beneficial shape as given by the BFGS optimizer [13, 153].

However, Marsden’s minimum thickness requirement is imposed here as well, which is given

by a straight line connecting the left edge of the deformation region and the trailing edge, as

shown in Figure 5.19, and is implemented via thickness constraints at the B-spline control

point locations.

The algebraic grid movement algorithm is not capable of dealing with the occasional fairly

large shape changes and therefore the quasi-linear elasticity mesh movement method [139,

140] with three increments is utilized instead. In order to solve the underlying two-dimensional

unsteady compressible thin-layer Navier-Stokes equations, PROBE [111] with the BDF2

time-marching method is used on a C-mesh with 298× 95 nodes, which is a good com-

promise between the accuracy of the flow solution and the computational effort required.

Marsden et al. used a very similar non-dimensionalization to present their results as incor-

porated in PROBE. However, they used u∞ instead of a∞ as velocity scale. In order to

convert the objective function value from PROBE’s scaling to Marsden’s scaling it must be

divided by (M∞)6, and PROBE’s non-dimensionalized time must be multiplied by M∞ to

be comparable to Marsden’s non-dimensionalized time. For the remainder of this section all

the results are reported with Marsden’s scaling for ease of comparison.

The laminar flow around the original Blake airfoil exhibits unsteady vortex shedding (see

Figure 5.20), which leads to an oscillatory cost function, as shown in Figure 5.21 using a

time step size of ∆t = 0.005. The agreement between this cost function and the one shown

in Marsden et al. [82] is reasonably good, even though the grid used here is about five times

coarser.

In the actual optimization runs, the discrete version of the time-averaged cost function
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Figure 5.20: Instantaneous pressure coefficient contours of the initial Blake airfoil.
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Figure 5.21: Instantaneous (thin line) and time-averaged (thick line) cost function for the

original Blake airfoil vs. time.
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Nc ∆tc N −Nc ∆t N Adjustment interval Control interval

300 0.01 1400 0.005 1700 [0, 3] [3, 10]

Table 5.5: Time horizons for unsteady trailing-edge flow.
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Figure 5.22: The initial airfoil shapes.

given by Eq. (5.7) is used once it is sufficiently converged and the chosen time horizons

are displayed in Table 5.5. The optimization procedure is started from four different ini-

tial shapes, which are shown together with their objective function values (excluding the

quadratic penalty for thickness constraint violation) in Figure 5.22:

1. The original Blake airfoil (in red)

2. The airfoil defined through the thickness constraint line (in green)

3. The airfoil that results from setting all fifteen design variables to their specified upper

bounds (in blue)

4. The airfoil that results from setting all fifteen design variables to their specified lower

bounds (in black)

The first three initial shapes do not violate the thickness constraint; however, the fourth one

does.

The convergence histories of these aeroacoustic shape optimization problems are shown

in Figure 5.23. The objective functions are always scaled with the initial objective function

value of the original Blake airfoil (J0 = 1.33 · 10−5) to make comparisons easier. One can

see that all objective functions are driven to much smaller values in about two to ten design

iterations, and the improvement after that is only marginal. Starting from the thickness

constraint line leads to the best airfoil in terms of total radiated acoustic power. The gradient
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Figure 5.23: Convergence histories of the aeroacoustic shape design problems using fifteen

shape design variables.

norms are only reduced by one to two orders of magnitude, implying that the optimizer did

not fully converge due to stalling of the line search algorithm. Nevertheless, the reduction

in total radiated acoustic power is about 90 percent from the initial value, larger than the

80 percent achieved by Marsden et al. [82] using five design variables.

Figure 5.24 shows the final improved airfoil shapes together with their objective function

values (this time with the quadratic penalty for thickness constraint violation included),

which are interesting and unexpected. The increase in the trailing-edge angle to decrease

the trailing-edge noise was also found by Marsden et al. and was theoretically predicted by

Howe [60] for turbulent flow. However, the “wavy” part of the airfoil is to the best of the

author’s knowledge a novel result. Presumably Marsden et al. did not obtain similar “wavy”
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Figure 5.24: Final improved airfoil shapes (solid) and initial airfoil shapes (dashed).

shapes due to the fact that they used only five design variables and thus did not give their

optimizer enough freedom to come up with these novel shapes. This is partially confirmed in

Figure 5.25 where the use of only six design variables with otherwise unchanged conditions

leads to less wavy shapes and higher objective function values.
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Figure 5.25: Final improved airfoil shapes (solid) and initial airfoil shapes (dashed) using

only six shape design variables.

The four improved shapes using fifteen design variables lead to similar objective function

values, indicating a relatively flat design space. It cannot be determined whether the four

different shapes represent four distinct local minima, or we have been unable to fully converge

to a unique minimum. The gradient has been reduced by one to two orders of magnitude,

which is generally sufficient to indicate that the objective function is close to a minimum.

The effect of the waviness is examined in Figure 5.26, where the best airfoil shape’s objective

function value is compared to another less wavy shape’s objective function value. The second

shape is a derivative of the best airfoil shape which preserves the steep trailing-edge angle

and slimming of the airfoil while smoothing out the waviness. This result shows that the

waviness is indeed improving the objective function value (in this case by more than a factor
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of two). Reducing the Reynolds number to 5, 000 or Mach number to 0.175 leads to very

similar shapes (not shown) implying that the presented results are not a special case for a

particular set of operating conditions.
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Figure 5.26: Best improved airfoil shape in comparison.

A comparison of the mean lift and drag coefficients for the initial and improved airfoils is

displayed in Table 5.6. It is not necessary to add a lift constraint or a penalty for decreased

lift to the objective function since the mean lift coefficients for all improved airfoils either stay

about the same or increase in comparison to their initial values. The mean drag coefficients

are decreased in all cases. This means the optimizer has not only produced aeroacoustically

improved airfoils, but as a byproduct the initial airfoils have also been aerodynamically

enhanced.

Initial Improved

C̄L C̄D C̄L/C̄D C̄L C̄D C̄L/C̄D

Original Blake 0.284 0.076 3.75 0.284 0.049 5.79

Thickness line 0.265 0.054 4.95 0.283 0.049 5.77

Upper bound 0.134 0.119 1.12 0.285 0.049 5.82

Lower bound 0.305 0.055 5.57 0.282 0.049 5.75

Table 5.6: A comparison of the mean lift and drag coefficients for the initial and improved

airfoils.

The time histories of CL and CD for the original Blake airfoil and the best airfoil after

the optimization are shown in Figure 5.27. One can clearly see the unphysical adjusting

period for the improved airfoil in the time interval [0, 3] before it reaches its new somewhat
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periodic steady state. A reduced mean drag as well as reduced oscillation amplitudes for the

improved airfoil are also visible.
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Figure 5.27: Time histories of CL and CD for the original Blake airfoil (dashed) and the best

airfoil after optimization (solid) vs. time (∆t = 0.005).

An attempt was made to save computational time and storage by saving the flowfield in

the control window only every second time step. However, in this case this approach does

not work very well, since the optimizer is barely able to improve the initial airfoils even

slightly with this inexact gradient information.

5.6 Remote Inverse Designs

The usual adjoint implementations for shape optimization calculate the gradient of a cost

function which is computed from flow variables on the surface, for example of an airfoil, that

is being modified. However, for many problems, such as inlet design, turbomachinery design
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and airfoil-generated noise reduction, one wants to minimize an objective function using flow

quantities that are not collocated at the points where the surface is being modified. This

means one has to quantify the influence of geometric modifications on the flow variables at an

arbitrary location, for example the near-field plane, within the domain of interest. This type

of remote sensitivity calculation has been successfully used by Nadarajah et al. [91, 92, 95]

for the steady case of sonic boom minimization. This section only focuses on controlling the

near-field pressures of unsteady flows, which provide one of the inputs to a wave propagation

program as discussed in Chapter 4. In particular, the remote inverse shape design of a

single-element NACA 0012 airfoil at a high angle of attack in turbulent unsteady flow is

presented in Section 5.6.1. Additionally, in Section 5.6.2 the remote inverse design of the

multi-element NLR 7301 configuration [144] at a high angle of attack in laminar unsteady

flow is addressed.

5.6.1 A Single-element Airfoil in Unsteady Turbulent 2D Flow

The first test case is a remote inverse shape design problem which involves turbulent unsteady

flow over a single-element airfoil (published in Rumpfkeil and Zingg [115, 117]). The free-

stream Mach number is 0.2 with a Reynolds number of 4× 106, and the angle of attack is

20◦. At these conditions the airfoil experiences vortex shedding. PROBE [111] with the

one-equation Spalart-Allmaras turbulence model [131] and BDF2 as time-marching method

is used to solve this unsteady turbulent flow problem. Only four shape design variables are

used to keep the problem simple and to facilitate the comparison of the adjoint gradient

with a finite-differenced one in order to validate the accuracy of the gradient calculation.

The initial airfoil shape is the NACA 0012, and the four shape design variables are slightly

perturbed to get a target airfoil shape, as shown in Figure 5.28.

Figure 5.28: The initial (red) and target (black) airfoil shapes.
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The discrete cost function for a remote inverse design is given by

O =
1

2
∆t

N∑
n=Nc+1

∑
NF

(pn − p∗n)2, (5.8)

where pn is the near-field pressure obtained from the current airfoil, and p∗n is the target

near-field pressure obtained from the target airfoil (both at time step n). The sum over NF

implies a sum over all points that define the near-field plane. The choice for the near-field

plane in this case is shown in Figure 5.29, and the required pressures are simply obtained on

the grid nodes.
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Figure 5.29: The mesh where the near-field plane is shown in black.

In Figure 5.30 the drag coefficients for the initial and target airfoil shapes are shown over

time using a time step of ∆t = 0.05. Both flow solves are warmstarted from a NACA 0012

periodic steady state solution; thus one can see an adjustment period for the target airfoil

and the time horizons used in the remote inverse shape design are shown in Table 5.7.

The convergence history of this remote inverse shape design problem with the adjoint

approach in comparison to a second-order central finite-difference approach with a step size
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Figure 5.30: Drag coefficients for the initial and target airfoil shape (∆t = 0.05).

Nc ∆tc N −Nc ∆t N Adjustment interval Control interval

300 0.1 200 0.05 500 [0, 30] [30, 40]

Table 5.7: Time horizons for the single-element airfoil remote inverse shape design.

of h = 10−7 is shown in Figure 5.31. The objective function is always scaled such that its

initial value is unity. One can see that the objective function is driven to a small value in

about twenty-six design iterations and that the two approaches show a reasonable agreement,

which means that the adjoint approach for the gradient calculation is accurate. One can

try to save computational time and storage by saving the flowfield in the adjusting period

and in the control window only every fourth time step, leading to only 500/4 = 125 matrix

inversions for the solution of the adjoint equations. The result is also shown in Figure 5.31.

The gradients and objective function values are in reasonable agreement with the original

adjoint and finite-difference approach, thus leading to a similar convergence history while

saving 75 percent of computational resources in the adjoint calculation.
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Figure 5.31: Convergence histories of the remote inverse shape design problem with four

design variables.

5.6.2 A Multi-element Airfoil in Unsteady Laminar 2D Flow

The remote inverse design problem in laminar unsteady flow over a multi-element airfoil, the

NLR 7301 configuration [144], is the second test case (published in Rumpfkeil and Zingg [117,

120]). The free-stream Mach number is 0.2 with a Reynolds number of 800, and the angle of

attack is again 20◦. TORNADO [102] with BDF2 is used to solve the underlying 2D unsteady

laminar Navier-Stokes equations. Three cases, two with two design variables each and one

with four design variables, are considered, and the shapes are displayed in Figure 5.32:

1. The initial airfoil is the NLR 7301, and two shape design variables of the main element

are slightly perturbed to get a target airfoil.

2. The initial airfoil is the NLR 7301, and the horizontal and vertical translation design

variables are slightly perturbed.
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3. The initial airfoil is the NLR 7301, and two shape design variables of the main element

as well as the horizontal and vertical translation design variables are slightly perturbed.
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Figure 5.32: The initial (red) and target (black) airfoils for the three test cases.
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Figure 5.33: The grid with the two near-field planes shown in black.
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Two different choices for the near-field plane are considered, as shown in Figure 5.33, in

order to judge the robustness of the remote inverse shape design with the distance of the

near-field plane to the airfoil:

a) The near-field plane is a square that extends from −3 to 3 with a uniform spacing of

0.05 between points in both x- and y-directions.

b) The near-field plane is a rectangle that extends from −1 to 2 in the x-direction and

from −1 to 1 in the y-direction with a uniform spacing of 0.05 between points in both

directions.

The pressures (see Figure 5.34) at the points of the near-field plane are calculated using

biquadratic interpolation involving the closest nodes of the grid to the point in question.

Figure 5.34: Instantaneous pressure coefficient contours of the initial NLR 7301 configuration

with the rectangular near-field plane.

Figure 5.35 shows the drag coefficients for the initial and target airfoils for case 1 over time

using a time step of ∆t = 0.1. The chosen time horizons for the remote inverse shape design
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are summarized in Table 5.8. Since the focus of this section is to show the feasibility of an

unsteady remote inverse design, no grid convergence studies are performed and the relatively

large time steps and the relatively coarse grid with about 31, 000 nodes are satisfactory.
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Figure 5.35: Drag coefficient for the initial and target airfoils for case 1 (∆t = 0.1).

Nc ∆tc N −Nc ∆t N Adjustment interval Control interval

200 0.2 300 0.1 500 [0, 40] [40, 70]

Table 5.8: Time horizons for the multi-element remote inverse shape design.

The convergence histories of these remote inverse design problems with the adjoint ap-

proach in comparison to a second-order central finite-difference approach with a step size of

h = 10−7 are shown in Figure 5.36 for case 1, in Figure 5.37 for case 2 and in Figure 5.38 for

the third case. The objective function given by Eq. (5.8) is again always scaled such that

its initial value is unity. One can see that the two approaches show reasonable agreement,

which implies that the adjoint approach for the gradient calculation is accurate. The figures

also show that the distance of the near-field plane to the airfoil has not too much influence

on the two approaches in terms of optimization iterations required to converge.
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Convergence history for case 1a
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Convergence history for case 1b
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Figure 5.36: Convergence histories of the remote inverse design problem with two shape

design variables.
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Convergence history for case 2a
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Figure 5.37: Convergence histories of the remote inverse design problem with two transla-

tional design variables (note the log scale on all axes).
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Convergence history for case 3a
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Convergence history for case 3b
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Figure 5.38: Convergence histories of the remote inverse design problem with two shape and

two translational design variables (note the log scale on both axes for case 3a).



94 Chapter 5. Results

Once again, one can try to save computational time and storage by saving the flowfield in

the adjusting period and in the control window only every fourth and even only every tenth

time step, leading to only 500/4 = 125 and 500/10 = 50 linear solves for the solution of the

adjoint equations, respectively. The result for the first case is shown in Figure 5.36, and the

gradients and objective function values are in reasonable agreement with the original adjoint

and finite-difference approach, thus leading to a somewhat similar convergence history while

saving considerable computational resources.

Trying the same approach for the second case, namely saving the flowfield only every

fourth and tenth time step, shows a different result (see Figure 5.37). This time the optimizer

fails to converge if it uses only the information from every tenth time step. However, the

information from every fourth time step is still sufficient to converge in a similar manner

as the original adjoint. The flowfield is also saved only every fifth time step and one can

see that this approach still works, although it comes with a huge increase in optimization

iterations for the case 2a.

The third case shows yet another behaviour, as displayed in Figure 5.38. This time the

optimizer fails to converge if it uses the information from every tenth and every fifth time

step, but the information from every fourth time step is still sufficient to converge in a

somewhat similar manner as the original adjoint.

5.7 Remote Inverse Design Using Hybrid URANS/FW-H

This section, unlike the previous section which controlled the near-field pressures, focuses on

controlling the far-field pressures in an unsteady flow environment. This is also the first sec-

tion in which the hybrid URANS/FW-H optimization algorithm is validated. Furthermore,

the fourth-order ESDIRK scheme is used as time-marching method in addition to BDF2.

Several remote inverse shape design problems with a discrete cost function given by

O =
1

2
∆t

N∑
n=Nc+1

(pnobs − p∗nobs)
2, (5.9)

are presented. Here, pnobs is the pressure at some far-field observer location at time step n

obtained from a current airfoil shape, and p∗nobs is the target pressure at the same observer

location and time step obtained from the target airfoil shape. The target shape is given
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through a perturbation in four shape design variables of the initial NACA 0012 airfoil and

both shapes are shown in Figure 5.39. Once again, only four design variables are used to be

able to compare the adjoint gradient with a finite-differenced one.
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Figure 5.39: The initial (red) and target (black) airfoil shapes.

The unsteady flow conditions for this test case are exactly the same as the ones used

in the validation of the acoustic propagation code in Subsection 4.3.3, namely a Reynolds

number of 800, a free-stream Mach number of 0.2, and an angle of attack of 20◦. However,

a coarser mesh with only about 35, 000 nodes is used to reduce the computational costs.

Nonetheless, as displayed in Figure 5.40, the comparisons of pressure fluctuations calculated

by CFD and FW-H for the initial NACA 0012 show a good agreement at a point about two

chord lengths below the trailing edge for both time-marching methods.

Figure 5.41 shows the drag coefficients for the initial and target airfoils over time using

a time step of ∆t = 0.05 for BDF2 and ∆t = 0.5 for ESDIRK4. One can see the adjustment

period for the target airfoil. In order to reduce the computational costs in the actual opti-

mization runs, a bigger time step of ∆tc = 0.1 is utilized for the first Nc = 200 steps with

BDF2, and ∆tc = 0.5 for the first Nc = 40 steps is used with ESDIRK4. Once the domain

where the pressures are compared is reached, a smaller time step ∆t = 0.05 is used for an-

other 1200 steps (∆t = 0.5 for 120 steps with ESDIRK4), leading toN = 1400 (N = 160 with

ESDIRK4) time steps in total for each flow solve covering a time interval of [0, 80]. These

time horizons are summarized in Table 5.9 and the corresponding adjoint equations for this

situation are given in Appendices D and E for the BDF2 and ESDIRK4 time-marching

method, respectively. For details on how to calculate the required derivative of the far-field

pressure fluctuations with respect to the flow variables, see Appendix F.

Nc ∆tc N −Nc ∆t N Adjustment interval Control interval

BDF2 200 0.1 1200 0.05 1400 [0, 20] [20, 80]

ESDIRK4 40 0.5 120 0.5 160 [0, 20] [20, 80]

Table 5.9: Time horizons for hybrid URANS/FW-H remote inverse shape design.
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Figure 5.40: Comparison of pressure fluctuations of the initial airfoil calculated by CFD

(solid) and FW-H (dashed) about 2c below the trailing edge.
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Figure 5.41: Drag coefficients for the initial and target airfoil shapes.
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Figure 5.42: Convergence histories of remote inverse shape design problems using the hybrid

URANS/FW-H algorithm with four design variables and two time-marching methods.

The convergence histories of some remote inverse shape design problems using the hybrid

URANS/FW-H optimization algorithm are presented in Figure 5.42. The objective function

is always scaled such that its initial value for either time-marching method is unity. The

adjoint approach is compared to a second-order central finite-difference approach with a step

size of 10−7 for a location that is about two chord lengths below the trailing edge. One can see

that the objective functions are driven to small values in about forty to fifty design iterations,

and that the two approaches show a reasonable agreement for both time-marching methods,

which demonstrates that the adjoint approach for the gradient calculation is accurate. In

particular, the gradient at the first design iteration with BDF2 using the finite-difference

method (fd) yields

(
∂J

∂Y

)
fd

= (−52.83, −160.56, −56.68, −36.43),
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which is in reasonable agreement with the gradient calculated via the adjoint method (ad):(
∂J

∂Y

)
ad

= (−48.09, −162.26, −55.78, −36.68).

Using ESDIRK4, the same gradients are given by(
∂J

∂Y

)
fd

= (−53.11, −164.44, −58.90, −37.60),

and (
∂J

∂Y

)
ad

= (−48.37, −166.64, −57.89, −37.76).

The finite-difference approach for ESDIRK4 (dashed black line) does not fully converge,

and the scaled objective function value stalls at about 10−8. The reason for this is an

inaccurate gradient due to error cancellation for such small values of the objective function

in combination with the more involved time-marching method. The convergence history for

a location eighty chord lengths below the leading edge using only the adjoint approach but

both time-marching methods is shown in the same figure as well.

The results presented in this section prove that it is possible to recover far-field pressure

fluctuations via a remote inverse shape design in an unsteady laminar flow. Further appli-

cations and validations of the hybrid URANS/FW-H optimization algorithm are presented

in the following sections.

5.8 Turbulent Blunt Trailing Edge Flow

The shape of a NACA 0012 airfoil with a 0.03c thick blunt trailing edge in a turbulent flow is

optimized in this section (the BDF2 results presented here are also published in Rumpfkeil

and Zingg [118]). The free-stream flow conditions are given by M∞ = 0.2, Re = 2× 106,

α = 0◦, and the mesh consists of about 36, 000 nodes. First a remote inverse shape design

problem is solved with the objective function given by Eq. (5.9) and a far-field observer

located 40c below the leading edge. BDF2 and ESDIRK4 are again employed as time-

marching methods, and only two shape design variables are used to enable a comparison

between the adjoint gradient with a finite-differenced one and to thus validate the hybrid

URANS/FW-H optimization algorithm for turbulent flows. The initial and target airfoil

shapes are shown in Figure 5.43.
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Figure 5.43: The initial (red) and target (black) airfoil shapes.
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Figure 5.44: Comparison of pressure fluctuations calculated by CFD (solid) and FW-H

(dashed) about 1
3
c below the trailing edge of the initial airfoil for two time-marching methods.

The comparisons of pressure fluctuations calculated by CFD and FW-H in a location

about 1
3
c below the trailing edge of the initial airfoil are displayed in Figure 5.44 and show

good agreement for both time-marching methods. Figure 5.45 shows the drag coefficients

for the initial and target airfoil over time using a time step of ∆t = 0.005 for BDF2 and

∆t = 0.025 for ESDIRK4. Note that the target solution has not yet reached a periodic steady

state, however, the computational cost are too high to cover the required time interval. The

time horizons used in the remote inverse shape design for turbulent blunt trailing edge flow

are shown in Table 5.10. The chosen time step sizes lead to the same computational effort for

a flow or adjoint solution for the two time-marching methods, since the computational cost

for one time step using ESDIRK4 is roughly five times more expensive than using BDF2.
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Figure 5.45: Drag coefficients for the initial and target airfoil shapes.

Nc ∆tc N −Nc ∆t N Adjustment interval Control interval

BDF2 300 0.01 700 0.005 1000 [0, 3] [3, 6.5]

ESDIRK4 60 0.05 140 0.025 200 [0, 3] [3, 6.5]

Table 5.10: Time horizons for turbulent blunt trailing edge flow.

The convergence history of the remote inverse shape design problem for a turbulent blunt

trailing edge flow using the hybrid URANS/FW-H optimization algorithm is presented in

Figure 5.46. The objective function is again always scaled such that its initial value for

either time-marching method is unity. The adjoint approach in comparison to a second-

order central finite-difference approach with a step size of 10−5 is shown. One can see that

the objective functions are driven to small values in about ten design iterations and that

the two approaches show a reasonable agreement for both time-marching methods, which

implies that the adjoint approach for the gradient calculation is accurate.

In particular, the gradient at the first design iteration using the finite-difference method
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Figure 5.46: Convergence history of the remote inverse shape design problem with two design

variables.

(fd) yields (
∂J

∂Y

)
fd

= (−33.53, 34.18),

which is in good agreement with the gradient calculated via the adjoint method (ad):(
∂J

∂Y

)
ad

= (−34.36, 35.11).

Similarly, the finite-difference approach for ESDIRK4 at the first design iteration leads to(
∂J

∂Y

)
fd

= (−33.71, 34.74),

which can be compared to the adjoint gradient:(
∂J

∂Y

)
ad

= (−34.29, 35.14).

Both approaches for ESDIRK4 do not fully converge and the scaled objective function values

stall at about 10−10. The reason is again an inaccurate gradient due to error cancellation
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for such small values of the objective function in combination with the more complicated

time-marching method.

After the validation of the hybrid URANS/FW-H optimization algorithm for turbulent

flows using two time-marching methods, more practically relevant optimizations with two

different objective functions are considered:

1. Mean drag minimization JD = C̄D =
1

N−Nc

N∑
n=Nc+1

Cn
D (5.10)

2. Pressure fluctuation (noise) minimization JN =
N∑

n=Nc+1

(pnobs − p̄obs)
2 =

N∑
n=Nc+1

(p
′n
obs)

2 (5.11)

where p̄obs is the mean pressure at the observer location, which is located 40c below the

leading edge, and p
′n
obs = pnobs − p̄obs is the pressure fluctuation in the observer location at

time step n.
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Figure 5.47: Initial shapes of the turbulent blunt trailing edge flow optimizations.

Eight B-spline control points are used as shape design variables which are all located in

the aft 15 percent of the chord length (four on the upper and four on the lower surface).

The unsteady shape optimizations are started from three different initial shapes, which are

shown in Figure 5.47 together with their initial objective function values:

1. The initial airfoil (in red)

2. The airfoil that results from setting all eight design variables to their specified upper

bounds (in blue)

3. The airfoil that results from setting all eight design variables to their specified lower

bounds (in black)
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Only the BDF2 time-marching method is used here and the time horizons are the same

as given in Table 5.10 earlier in this section. Figure 5.48 presents the final optimized airfoil

shapes of the turbulent blunt trailing edge flow optimizations together with their objective

function values. All three initial shapes converge for each objective function to the same

respective final shapes shown in blue and black for the mean drag and noise minimizations,

respectively. As indicated in the figure, the mean drag value of the noise minimized airfoils is

slightly higher than the mean drag value of the mean drag minimized airfoils and conversely,

the pressure fluctuations of the mean drag minimized airfoils are a factor of two higher than

the ones from the noise minimized airfoils. This shows that noise and drag improvements

lead to qualitatively similar results to a first approximation, but they definitely do not yield

the same optimized shapes.

X

Y

0.7 0.8 0.9 1

-0.04

-0.02

0

0.02

0.04

Original J_D = J_N := 1.00E0
Lower and Upper bounds
Mean drag minimized J_D=0.61E0 J_N=4.35E-3
Noise minimized J_D=0.63E0 J_N=2.30E-3

Figure 5.48: Final improved airfoil shapes of the turbulent blunt trailing edge flow optimiza-

tions.

The convergence histories of the mean drag minimizations are displayed in Figure 5.49.

The objective function values are always scaled with the mean drag value of the original

airfoil, JD = 2.14 · 10−2, to make comparisons easier. Since all three initial shapes converge to

the same final optimized shape, they have the same objective function value, which translates

into a reduction in mean drag of about 39 percent from the original airfoil. The objective

function value is mostly reduced in the first few iterations, and the improvements after that

are only marginal. The gradient norms are reduced by three to four orders of magnitude

indicating that the optimizer has converged to a minimum in each case.

The convergence histories of the noise minimizations in Figure 5.50 show that this ob-

jective function is mainly reduced in the first five iterations and that the gradient norms
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Figure 5.49: Convergence histories of the mean drag minimizations for turbulent blunt trail-

ing edge flow.
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Figure 5.50: Convergence histories of the noise minimizations for turbulent blunt trailing

edge flow.
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are reduced by two to three orders of magnitude. The sum of the pressure fluctuations

for the optimized shape is reduced to 0.23 percent of the initial value of the original airfoil

JN = 5.43 · 10−7, which is again used to scale the objective function values to ease compar-

isons. Starting from the lower bound leads to a failed line search in the first iteration because

all gradients indicate that it would be beneficial to “slim” the airfoil even more, which is not

permitted by the box constraints imposed on the design variables to avoid grid movement

and flow convergence problems.
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Figure 5.51: Time histories of CL and CD before and after the optimizations vs. time.

The time histories of CL and CD for the original blunt trailing edge airfoil before and

after the optimizations are shown in Figure 5.51 using a time step of ∆t = 0.005. One can

clearly see the adjusting period for the improved airfoils in the time interval [0, 3] before they

reach their new somewhat periodic steady state. A reduced mean drag and constant mean

lift for both optimized airfoils is also visible, and both objective functions lead to reduced

oscillation amplitudes in both lift and drag.
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The hybrid URANS/FW-H optimization algorithm also works well in a turbulent flow

environment, as shown by the results in this section. Finally, the last section of this chapter

will address the attempt to change the shape of a high-lift airfoil to minimize the radiated

noise while maintaining good flight performance.

5.9 High-lift Noise Optimization

It is experimentally well established that high-lift devices are significant contributors to

airframe-generated noise in the mid- to high-frequency range [21, 27, 28, 51, 86]. In par-

ticular, the leading-edge slat and side edges of the flaps have been identified as dominant

noise sources [71]. In this section, BDF2 is the time-marching method of choice and a three-

element airfoil configuration, denoted as 30P30N [142, 143] and shown in Figure 5.52, is the

starting point for the unsteady design optimization process.
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Figure 5.52: The 30P30N high-lift airfoil configuration (red) with the FW-H integration

surface (black dashed).

The deflections of both the slat and flap are set at 30◦, hence the name 30P30N. The

free-stream flow conditions under consideration are given by M∞ = 0.2, Re = 7.2× 106 and

α = 8◦ which are typical approach conditions. The mesh consists of about 100, 000 nodes.

The comparison of pressure fluctuations calculated by CFD and FW-H for a location about
1
4
c below the slat trailing edge in Figure 5.53 show a good agreement.

The flow is assumed to be fully turbulent except in the slat cove region where it is

assumed to be quasi-laminar to eliminate excessive diffusive effects of the turbulence model

on the resolved unsteady flow structures [70, 71]. Accordingly, the production term in the
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Figure 5.53: Comparison of pressure fluctuations calculated by CFD (solid) and FW-H

(dashed) about 1
4
c below the slat trailing edge.

turbulence transport equation given by Eq. (2.27) is switched off in a limited zone that

encloses the cove area. The removal of the excess damping allows the shear layer to set up

large-scale disturbances that are self-excited.

The physical justification for this quasi-laminar assumption in the slat cove flow field is

given in detail by Khorrami et al. [71], but it is basically based on two observations: Firstly,

the slat boundary layer flow between the leading edge stagnation point and cusp is rapidly

accelerated and is extremely thin because of a strong favorable pressure gradient and the

short distance. Thus, it is basically laminar even up to flight Reynolds numbers. Secondly,

the velocities in the recirculating zone of the slat cove area are relatively small leading to

correspondingly small Reynolds numbers. As in the case of a shallow cavity most of the

large scale structures become trapped in this zone, leading to an unsteady recirculating flow

field which is again more or less laminar.

However, the quasi-laminar approach in the slat cove region in two-dimensional simula-
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tion produces large-scale vortical structures within the slat cove region that are excessively

energetic. This excess energy is caused by the absence of 3-D effects which would trigger the

onset of secondary instabilities of the spanwise rollers and convert spanwise vorticity into

streamwise vorticity [15]. Nonetheless, Khorrami et al. [70] believe that two-dimensional

simulations still provide sufficient insight into the most important physical effects.

Only two design variables are used in the optimization, namely the horizontal and vertical

translations which control the position of the slat. In order to get an insight into the required

time horizon for this flow problem the two design variables are slightly perturbed to get a

different slat position as shown in Figure 5.54.
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Figure 5.54: The original 30P30N slat position (red) and a perturbed position (black).

Figure 5.55 shows the drag coefficients for the original 30P30N slat position as well as

the perturbed position over time using a time step of ∆t = 0.005. One can see that even the

small movement of the slat leads to big changes in the drag fluctuations, and the mean drag

is also about two percent higher for the perturbed position of the slat.

In the following it is attempted to minimize the far-field pressure fluctuations at an

observer location 40c below the slat trailing edge by using the objective function given by

Eq. (5.11). In the actual optimization runs the adjusting period visible in Figure 5.55 is

“jumped” over with a time step of ∆tc = 0.007 for the first Nc = 300 steps. Once the time

domain where the far-field pressure fluctuations are calculated is reached, the same time

step for another 500 steps is used, leading to N = 800 time steps in total for each flow solve

covering a time interval of [0, 5.6]. Unfortunately, the high sensitivity of the flow field to

even the smallest movements of the slat leads to highly inaccurate gradients if calculated

using a finite-difference approach as shown in Figure 5.56 for the first design iteration.
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Figure 5.55: Drag coefficients for the original 30P30N slat position (red) and perturbed

position (black) vs. time (∆t = 0.005).
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Figure 5.56: The sensitivity of the gradient components to the step size of the finite-difference

approximation for the first design iteration.
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However, the finite-difference part of the adjoint approach is by far not as sensitive to step

size changes as can be inferred from the same figure, and since the accuracy of the adjoint

gradient has been validated in the previous sections it is assumed that the adjoint gradient

is correct. Several optimization runs from various slat positions as starting points were

conducted, and the resulting design space of the slat movement is displayed in Figure 5.57.

The gradients at the different design points are represented by arrows, and the objective

function values are given by a colour scale, with red representing the highest and blue the

lowest values. The objective function values are always scaled with the sum of the pressure

fluctuations of the original airfoil configuration JN = 9.60 · 10−8 to make comparisons easier.
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Figure 5.57: The design space of the slat movement and a zoom into the most interesting

region.

As can be seen in the figure, the design space is very noisy and the gradient values are

not greatly decreased. Nonetheless, the optimizer managed to reduce the objective function

value in one of the runs by almost forty percent given by the slat position (0.02137, 0.00408).
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In conclusion, a much higher mesh density is most likely required for this case in order to

make the flow solver much more accurate, and thus to hopefully reduce the high sensitivity

of the finite-difference approach, which is one of the manifestations of the noisy design space.

Khorrami and Lockard [70], for example, used for similar flow conditions and a similar three-

element airfoil configuration 1.318 million grid points of which about sixty percent were

clustered in the vicinity of the slat. Unfortunately, the 100, 000 nodes used here are already

pushing the limits of the serial code since one function and gradient evaluation already takes

about a day. Also, a hybrid URANS/LES or detached-eddy simulation (DES) [132] approach

is much better suited for acoustic predictions and should be the preferred method of choice for

such complicated flow problems. The results presented in this last section should be viewed

as a proof of concept rather than solid facts, and a lot of future work has to be done by

the CFD community and especially computer engineers before this particular optimization

problem can be tackled in a meaningful way.
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Chapter 6

CONTRIBUTIONS, CONCLUSIONS

AND RECOMMENDATIONS

Contributions

As mentioned in Section 1.3 of the Introduction, the objectives of this thesis are two-fold

and have both been accomplished. The contributions of this thesis can be summarized as

follows:

1. A general framework has been developed to derive a discrete adjoint method for the

optimal control of unsteady flows for any time and space discretization scheme, as

described in Chapter 3. This framework also applies to remote designs as presented

in Sections 5.6 to 5.9 and other approaches of simulating turbulence such as Large

Eddy Simulations (LES) or Detached-Eddy Simulations (DES) [132]. It also allows

the use of higher-order multi-stage time-marching methods (see Section 2.3 and Ap-

pendix E). Furthermore, more complicated grid movement algorithms [139, 140] can

be incorporated via residual equations and additional Lagrange multipliers as well.

2. The general framework has been applied to several problems of interest including shock-

tubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting,

unsteady trailing-edge flow, and remote inverse shape designs of single- and multi-

element airfoils (Sections 5.1 to 5.6). This large number of test cases allowed for a

thorough validation of the framework.

3. The adjoint equations for a novel hybrid URANS/FW-H optimization algorithm have

been derived (see Appendix F), and the accuracy of the adjoint gradients has been vali-

dated using remote inverse shape designs involving unsteady laminar flow in Section 5.7

and unsteady turbulent flow in Section 5.8.

113
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4. The novel hybrid URANS/FW-H optimization algorithm has been applied to airframe-

generated noise reduction problems for a single-element blunt trailing edge airfoil in

Section 5.8 and for a three-element airfoil configuration in Section 5.9.

Conclusions

Based on the results presented at the end of Chapter 4 and in Chapter 5 the following major

conclusions can be drawn:

• The gradients computed using the discrete unsteady adjoint equations derived via

the developed framework show good accuracy in comparison to second-order central

finite-differenced gradients for a variety of two-dimensional results. Additionally, as

mentioned in Sections 5.1 and 5.2, the adjoint gradients are in excellent agreement with

the ones computed via the complex-step method [133] (ten digits) for the investigated

one-dimensional problems.

• The developed general framework allows the use of more sophisticated, higher-order

time-marching methods, since it is straightforward to derive the corresponding adjoint

equations for them, as demonstrated for ESDIRK4 in Appendix E.

• The extension to unsteady turbulent flows of the two-dimensional turbulent Newton-

Krylov based group codes PROBE and TORNADO maintained the efficiency of the

steady flow solvers which can be inferred from the fact that only very few outer itera-

tions with few inner iterations per outer iteration are required to converge.

• It takes about two to three times the computational time of an unsteady flow solution to

calculate the corresponding gradient, due to a bad initial guess for the linear unsteady

adjoint problem. The nonlinear unsteady flow solve problem on the other hand has

a very good initial guess by using the flow solutions from the previous time steps,

altogether leading to fewer linear iterations per time step. Nonetheless, the overall

unsteady optimization algorithm utilizing a Newton-Krylov approach is very robust

and fast. This made the presentation of a large number of very diverse test cases in

this thesis possible.
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• Some of the investigated problems produced novel and counterintuitive results, such

as the wavy airfoils in Section 5.5 and the bulge close to the blunt trailing edge in

Section 5.8.

• The comparisons of pressure fluctuations calculated by CFD and FW-H for different

airfoils, flow conditions, and mesh densities show good agreement at locations which

are reasonably close to the airfoil where the mesh spacing is still fine enough to give an

accurate CFD solution. This establishes confidence in the ability of FW-H to predict

far-field pressure fluctuations.

• The novel hybrid URANS/FW-H optimization algorithm developed for this thesis

shows great potential to aid in reducing airframe-generated noise.

Other observations that can be made include:

• An absolute convergence tolerance for the unsteady flow residual Rn of 10−10 is a good

balance between avoiding error propagation in the flow solution Qn and spending too

much computational time.

• The residual for the inexact linear solve, which results from applying Newton’s method

to the unsteady nonlinear flow equations, is reduced by two to three orders of magnitude

for turbulent flows, whereas for laminar flows one order of magnitude is sufficient.

• The Spalart-Allmaras turbulence model works reasonably well for unsteady turbu-

lent flows for most of the investigated cases, as also discussed in Rumsey et al. [121].

However, for the three-element airfoil configuration in Section 5.9 it shows excessive

diffusive effects which could only be overcome by switching off the production term in

the slat cove region. In general, none of the available turbulence models are tuned for

unsteady flows, which can pose problems, as pointed out by Tucker [141].

• ESDIRK4 does not save computational time in comparison to BDF2 for the fairly

coarse time steps used in this work. In addition, it can even lead to convergence

problems since one has to use an approximately five times larger time step size in

order to not have to pay a penalty in computational time.
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• The linear systems in the adjoint equations are solved with an absolute convergence

tolerance of 10−6, which is equivalent to a relative convergence tolerance of 10−10 to

10−13 for most problems considered. This is again a good balance between avoiding

error propagation and spending too much computational time.

• Bi-CGSTAB solves the unsteady adjoint equations up to fifty percent faster than

GMRES. However, for a steady-state adjoint problem or the linear problem in the

unsteady flow solve, Bi-CGSTAB does not work as well and thus GMRES is used

instead.

• Marching with a bigger time step over unphysical adjusting periods as well as recording

the flow solution only, for example, every fourth time step works well in practice for

the simpler flow problems, thus resulting in significant savings in both memory and

computational time for simple unsteady optimization problems.

• Convergence to only local minima is a well-known limitation of gradient-based methods.

Attempts were made to verify the uniqueness of minima by starting from different initial

shapes, which worked in the case of the turbulent blunt trailing edge flow in Section 5.8,

but also showed the existence of several local minima in the rotating cylinder case in

Section 5.3.

• The quadratic penalty formulation which is used to impose airfoil thickness constraints

that prevent the occurrence of infeasible or undesired shapes performed well. This is

most likely due to the fact that the number of constraints considered is relatively small.

• The gradient norm is usually reduced by several orders of magnitude. However, very

noisy design spaces were encountered as well (e.g. the rotating cylinder, the lami-

nar trailing-edge flow, and above all the high-lift noise reduction problem) where the

gradient norms were hardly reduced, even though the objective function value was

considerably improved.

• The algebraic mesh movement algorithm works well for most cases considered, but

even the quasi-linear elasticity mesh movement method [139, 140] is computationally

not too expensive for two-dimensional problems.
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Recommendations

The conclusions drawn above immediately suggest a number of future research directions:

• Improvements to the flow solver

– Matrix or CUSP dissipation [100], higher-order space discretizations [23], and the

ability to predict boundary-layer transitions [29] would improve the accuracy of

the flow solver and consequently, the accuracy of the optimization.

– It would be desirable to be able to use a pressure switch for transonic flow op-

timization problems. However, the differentiation of the current pressure switch,

Eqs. (2.32), is not well defined, since it contains a combination of discontinuous

functions. It would also increase the bandwidth of the flow Jacobian. A different

strategy to deal with shocks is probably required in order to improve the accuracy

of the optimization.

– For a more thorough investigation of the transonic buffeting case presented in

Section 5.4 it is essential to improve the stability of the flow solver to avoid flow

convergence problems after shape changes have taken place.

– There is a dire need for turbulence models which are better suited for unsteady

flows than the current ones.

– It is necessary to have a parallelized code to allow the use of higher mesh densities,

in particular for the three-element airfoil configuration investigated in Section 5.9.

– A nonlinear frequency domain approach [93, 94, 136] can considerably reduce the

computational cost for unsteady problems with dominant periodic behavior.

– An extension to three dimensions in space [54, 85] is definitely required to simulate

noise problems in an accurate and physically meaningful way since all significant

acoustic phenomena are inherently three-dimensional [125].

– Hybrid URANS/LES or DES approaches are better suited than URANS to sim-

ulate flows involving flow separation or for acoustic predictions.
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• Improvements to the adjoint solver

– An improved initial guess for the solution of the linear adjoint systems could

decrease the computational effort greatly. Constant and linear extrapolations

from previous solutions as well as simply using zero as the initial guess were all

tried and resulted in a similar number of iterations to converge the residual to a

pre-specified convergence tolerance.

– In the debate about continuous versus discrete adjoint sensitivity analysis (see

Appendix A), one of the big questions is whether a lower order model for the con-

tinuous adjoint approach could yield accurate enough gradients for optimization

(e.g. use LES in the forward model and URANS with somehow averaged turbulent

quantities in the adjoint model [61]).

• The use of more sophisticated optimizers, such as Sequential Quadratic Programming

(SQP) methods [44], could decrease the number of objective function and gradient eval-

uations required for convergence and provide a more efficient treatment of constraints.

• Algorithms based on Newton-Krylov methods are promising for multidisciplinary op-

timization problems, such as aero-structural optimizations, since they are very robust

and fast.

• Multipoint optimizations with several on- and off-design points are very important in

a practical context [154] and should be considered for unsteady optimization problems.

• There are many more applications of interest for unsteady optimization algorithms

– Active flow control through suction and blowing

– Turbomachinery blades and helicopter rotors

– Sonic boom (which can be treated as a steady problem, however, the use of remote

sensitivities is still required)

• The adjoint variables are also very useful for error estimation and guidance for grid

refinement [98, 99, 105].

All these future research directions could reinforce the role of CFD in the overall design

process of future aircraft or for other applications such as automobiles.
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[146] T. von Karman, Über den Mechanismus des Widerstandes den ein bewegter Körper
in einer Flüssigkeit erzeugt, Nachrichten von der Königlichen Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse (1911), pp. 509–517.

[147] M. Wang, S. K. Lele, and P. Moin, Computation of Quadrupole Noise Using
Acoustic Analogy, AIAA Journal, Vol. 34, No. 11 (1996), pp. 2247–2254.

[148] C. H. K. Williamson, Oblique and Parallel Modes of Vortex Shedding in the Wake
of a Circular Cylinder at Low Reynolds Numbers, Journal of Fluid Mechanics, Vol. 206
(1989), pp. 579–627.

[149] W. L. Willshire, Jr. and D. P. Garber, Advanced Subsonic Transport Approach
Noise - The Relative Contribution of Airframe Noise. NASA Technical Memorandum
104112, 1992.



130 REFERENCES

[150] Q. Xiao and H. M. T. F. Liu, Numerical Study of Transonic Buffet on a Super-
critical Airfoil, AIAA Journal, Vol. 44, No. 3 (2006), pp. 620–628.

[151] Y. Xue and A. S. Lyrintzis, Rotating Kirchhoff Method for Three-Dimensional
Transonic Blade-Vortex Interaction Hover Noise, AIAA Journal, Vol. 32, No. 7 (1994),
pp. 1350–1359.

[152] K. Yee, Y. Kim, and D. Lee, Aerodynamic Shape Optimization of Rotor Airfoils
Undergoing Unsteady Motion. AIAA, 99-3107, 1999.

[153] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, L-BFGS-B: A Limited Memory
FORTRAN Code for Solving Bound Constrained Optimization Problems, Tech. Rep.
NAM-11, EECS Department, Northwestern University, 1994.

[154] D. W. Zingg and L. Billing, Toward Practical Aerodynamic Design Through Nu-
merical Optimization. AIAA, 2007-3950, 2007.



APPENDICES

131





Appendix A

THE DISCRETE AND CONTINUOUS

ADJOINT APPROACHES

The difference between the discrete and continuous adjoint approaches is shown schemat-

ically in Figure A.1. The goal of both approaches is to derive a set of discretized adjoint

equations which are suitable for a computer code. In the fully-discrete approach one starts

by discretizing the nonlinear Partial Differential Equations (PDE’s), and afterwards these

equations are linearized and transposed. In the continuous adjoint approach, on the other

hand, the PDE’s are first linearized and then the adjoint problem is formed and discretized.

One could even use an in-between approach by linearizing the original equations, discretizing

them and then taking the transpose.

Nonlinear Linearized Adjoint

PDE

Discretized
Equations

Fully-discrete Approach Continuous Approach

Figure A.1: Alternative approaches to forming discretized adjoint equations.

In principle, all three approaches should be consistent and converge to the correct analytic

value for the gradient of the objective function ∂J
∂Y

in the limit of infinite grid and time resolu-

tions and in the absence of shocks. However, for finite grids and time step sizes there will be

a discrepancy in the computed results, and since there are important conceptual differences
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between the different approaches, they all have important assets and drawbacks [43].

The advantages of the fully-discrete approach are

a) The exact gradient of the discrete objective function is obtained, which means that the

optimization process can fully converge. It also implies that it is relatively easy to verify

the programming implementation. In comparison, using the continuous approach one

does not know whether a convergence failure is a consequence of the inexact gradient

or a possible programming error.

b) The creation of the adjoint program is conceptually straightforward. In particular,

the same iterative solution method that is used for the original linear matrix is also

guaranteed to converge for the transposed matrix since they both have the same eigen-

values.

c) Automatic Differentiation can be used to substantially ease the development of the

adjoint CFD code.

On the other hand, the advantages of the continuous approach are

a) The physical significance of the adjoint variables and the role of the adjoint boundary

conditions are much more apparent. This better understanding of the nature of the

adjoint solutions is especially advantageous when approaching more difficult problems,

e.g. problems with shocks.

b) The adjoint program can be less complicated and require less memory than the fully-

discrete code since one can discretize the adjoint PDE in any consistent way, which

includes lower order time and space discretization schemes than the ones used in the

original problem.



Appendix B

ADJOINT EQUATIONS FOR BDF2

In this Appendix, the discrete adjoint equations are derived which result from discretizing

the time derivative in Eq. (3.5) with the second-order implicit backward difference (BDF2)

time marching method. Since this method is not self-starting, the implicit Euler method is

used for the first time step. The time-dependent flow solution Qn = JQ̂n is then implicitly

defined through the following unsteady residuals:

R1(Q̂1, Q̂0, Y ) :=
Q̂1 − Q̂0

∆t
+R(Q̂1, Y ) = 0

Rn(Q̂n, Q̂n−1, Q̂n−2, Y ) :=
3Q̂n − 4Q̂n−1 + Q̂n−2

2∆t
+R(Q̂n, Y ) = 0 for n = 2, . . . , N.

The problem of minimizing the discrete objective function J as given by Eq. (3.3) is equivalent

to the unconstrained optimization problem of minimizing the Lagrangian function

L =
N∑
n=1

In(Qn, Y ) + wT

Ncon∑
j=1

Cj(Y ) + (ψ1)TR1(Q̂1, Q̂0, Y ) +
N∑
n=2

(ψn)TRn(Q̂n, Q̂n−1, Q̂n−2, Y )

with respect to Q̂1, . . . , Q̂N , ψ1, . . . , ψN and Y . The Lagrange multipliers ψn must now be

chosen such that ∇Q̂nL = 0 for n = 1, . . . , N , which leads to

0 = ∇Q̂nI
n + (ψn)T∇Q̂nR

n + (ψn+1)T∇Q̂nR
n+1 + (ψn+2)T∇Q̂nR

n+2 for n=1, . . . , N−2

0 = ∇Q̂N−1I
N−1 + (ψN)T∇Q̂N−1R

N + (ψN−1)T∇Q̂N−1R
N−1

0 = ∇Q̂N I
N + (ψN)T∇Q̂NRN .

This can be written equivalently as

ψN =−
(
(∇Q̂NRN)T

)−1

(∇Q̂N I
N)T

ψN−1=−
(
(∇Q̂N−1R

N−1)T
)−1[

(∇Q̂N−1R
N)TψN+(∇Q̂N−1I

N−1)T
]

ψn =−
(
(∇Q̂nR

n)T
)−1[

(∇Q̂nR
n+2)Tψn+2+ (∇Q̂nR

n+1)Tψn+1+(∇Q̂nI
n)T
]

for n=N−2, . . . , 1.
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Finally, the gradient of J with respect to the design variables Y is again given by

∂J

∂Y
=
∂L

∂Y
=

N∑
n=1

∇Y I
n(Qn, Y ) + wT

Ncon∑
j=1

∇YCj(Y ) +
N∑
n=1

(ψn)T∇YR(Q̂n, Y ).



Appendix C

DERIVATION OF THE FW-H

EQUATION

In order to derive the FW-H Equation one starts with the continuity and momentum equa-

tions

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (C.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= −∂(pδij − τij)

∂xj
, (C.2)

where ρ = ρ∞ + ρ′, ui = Ui + u′i and p = p∞ + p′ are the total density, velocity and pres-

sure, respectively. Ui are the components of the uniform mean velocity, a prime denotes a

perturbation from the mean, δij is the Kronecker delta, and τij is the viscous stress tensor.

Now let the function f(xi, t) = 0 define a control surface in arbitrary motion with ∂f
∂xi

= ni,

where ni is a unit normal vector that points into the fluid. The idea is that f = 0 as a func-

tion of space and time always surrounds a moving source region of interest such that f > 0

outside this region. H(f) is the Heaviside function, which is one for f > 0 and zero for f < 0.

The derivative of the Heaviside function H ′(f) = ∂H/∂f = δ(f) is the Dirac delta function,

which is zero for f 6= 0, but yields a finite value when integrated over a region including

f = 0. The following identity holds:

dH

dt
= 0 =

∂H

∂f

(
∂f

∂t
+
∂f

∂xi

∂xi
∂t

)
=
∂H

∂t
+
∂H

∂xi

∂xi
∂t
, (C.3)

where one can define vi = ∂xi/∂t as the velocities of the control surface. This leads to

∂H

∂t
= −∂H

∂xi
vi = −∂H

∂f

∂f

∂xi
vi = −δ(f)nivi. (C.4)

To take the presence of the moving source region into account, the continuity (C.1) and

momentum (C.2) equations are multiplied by the Heaviside function H(f), and H(f) is

137



138 Appendix C. Derivation of the FW-H Equation

introduced inside the differential operators as follows

∂ρH

∂t
+
∂ρujH

∂xj
= ρ

∂H

∂t
+ ρuj

∂H

∂xj
(C.5)

∂ρuiH

∂t
+
∂ρuiujH

∂xj
= ρui

∂H

∂t
+ ρuiuj

∂H

∂xj

−∂(pδij − τij)H

∂xj
+ (pδij − τij)

∂H

∂xj
. (C.6)

Adding −ρ∞∂H/∂t to Eq. (C.5), ∂[a2
∞(ρ− ρ∞)H]/∂xj to Eq. (C.6), and rearranging yields

∂(ρ− ρ∞)H

∂t
+
∂ρujH

∂xj
= [ρ(uj − vj) + ρ∞vj]

∂H

∂xj
(C.7)

∂ρuiH

∂t
+
∂a2

∞(ρ− ρ∞)H

∂xj
= −∂TijH

∂xj

+[ρui(uj − vj) + pδij − τij]
∂H

∂xj
, (C.8)

where a∞ is the speed of sound in the undisturbed medium and Tij is the so-called Lighthill

stress tensor

Tij = ρuiuj + [p− a2
∞(ρ− ρ∞)]δij − τij. (C.9)

Applying the operator ∂/∂t to Eq. (C.7), taking the divergence of Eq. (C.8), and subtracting

the two resulting equations from each other leads to{
1

a2
∞

∂2

∂t2
− ∂2

∂x2
i

}
[a2
∞ρ

′H] =
∂

∂t

(
[ρ(uj − vj) + ρ∞vj]

∂H

∂xj

)
+

∂2

∂xi∂xj
[TijH(f)]

− ∂

∂xi

(
[ρui(uj − vj) + pδij − τij]

∂H

∂xj

)
. (C.10)

Finally, defining the dipole term Fi and the monopole term Q as follows

Fi = [ρui(uj − vj) + pδij − τij]
∂f

∂xj
(C.11)

Q = [ρ(uj − vj) + ρ∞vj]
∂f

∂xj
(C.12)

yields the differential form of the FW-H equation, which is an exact rearrangement of the

continuity and momentum equations into the form of an inhomogeneous wave equation{
1

a2
∞

∂2

∂t2
− ∂2

∂x2
i

}
[a2
∞ρ

′H(f)] =
∂

∂t
[Qδ(f)]− ∂

∂xi
[Fiδ(f)] +

∂2

∂xi∂xj
[TijH(f)]. (C.13)



Appendix D

ADJOINT EQUATIONS FOR BDF2

WITH TIME STEP SIZE CHANGE

In this Appendix, the discrete adjoint equations are derived in the form in which they are

used to present all the results in this work except for the pulse in a converging-diverging

nozzle (Section 5.1) and the shocktube problem (Section 5.2), which use the equations as

given in Appendix B. The time-marching method of choice is the second-order accurate

implicit backward difference (BDF2) method, the flow is controlled after a certain transition

period, and one can use different time step sizes in the transition period and the control

window.

The unsteady flow solve is warmstarted at some point in time which means that Q̂0 and

Q̂−1 are known. In order to “jump” over the adjusting or transition period as quickly as

possible, a bigger time step ∆tc for Nc steps is used. Once the domain where the problem

is supposed to be controlled is reached, a smaller time step ∆t for another N−Nc steps is

used for a total of N steps. To maintain the second-order time accuracy through this time

step size change, the time-dependent flow solution Qn = JQ̂n is implicitly defined via the

following unsteady residuals

Rn(Q̂n, Q̂n−1, Q̂n−2, Y ) :=
3Q̂n − 4Q̂n−1 + Q̂n−2

2∆tc
+R(Q̂n, Y ) = 0

for n = 1, . . . , Nc

RNc+1(Q̂Nc+1, Q̂Nc, Q̂Nc−1, Y ) :=
2∆t+ ∆tc

∆t(∆t+∆tc)
Q̂Nc+1 − ∆t+ ∆tc

∆t∆tc
Q̂Nc

+
∆t

∆tc(∆t+ ∆tc)
Q̂Nc−1+R(Q̂Nc+1, Y ) = 0

Rn(Q̂n, Q̂n−1, Q̂n−2, Y ) :=
3Q̂n − 4Q̂n−1 + Q̂n−2

2∆t
+R(Q̂n, Y ) = 0

for n = Nc+ 2, . . . , N.
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The problem of minimizing a discrete objective function J as given by Eq. (3.3) is then

equivalent to the unconstrained optimization problem of minimizing the Lagrangian function

L =
N∑

n=Nc+1

In(Qn, Y ) + wT

Ncon∑
j=1

Cj(Y ) +
N∑
n=1

(ψn)TRn(Q̂n, Q̂n−1, Q̂n−2, Y )

with respect to Q̂1, . . . , Q̂N , ψ1, . . . , ψN and Y . This leads to the following equations for ψn

0 = (ψn)T∇Q̂nR
n + (ψn+1)T∇Q̂nR

n+1 + (ψn+2)T∇Q̂nR
n+2

for n = 1, . . . , Nc

0 = ∇Q̂nI
n + (ψn)T∇Q̂nR

n+ (ψn+1)T∇Q̂nR
n+1+ (ψn+2)T∇Q̂nR

n+2

for n = Nc +1, . . . , N−2

0 = ∇Q̂N−1I
N−1 + (ψN)T∇Q̂N−1R

N + (ψN−1)T∇Q̂N−1R
N−1

0 = ∇Q̂N I
N + (ψN)T∇Q̂NRN ,

which can be written equivalently as

ψN = −
(
(∇Q̂NRN)T

)−1[
(∇Q̂N I

N)T
]

ψN−1= −
(
(∇Q̂N−1R

N−1)T
)−1[

(∇Q̂N−1I
N−1)T + (∇Q̂N−1R

N)TψN
]

ψn = −
(
(∇Q̂nR

n)T
)−1 [

(∇Q̂nI
n)T + (∇Q̂nR

n+1)Tψn+1 + (∇Q̂nR
n+2)Tψn+2

]
for n=N−2, . . . , Nc+1

ψn = −
(
(∇Q̂nR

n)T
)−1[

(∇Q̂nR
n+1)Tψn+1+ (∇Q̂nR

n+2)Tψn+2
]

for n=Nc, . . . , 1.

A little care must be taken in calculating derivatives of RNc+1 with respect to Q̂n since

the factors in front of Q̂Nc+1, Q̂Nc and Q̂Nc−1 differ slightly from the usual scheme. Finally,

the gradient of J with respect to the design variables Y is given by

∂J

∂Y
=
∂L

∂Y
=

N∑
n=Nc+1

∇Y I
n(Qn, Y ) + wT

Ncon∑
j=1

∇YCj(Y ) +
N∑
n=1

(ψn)T∇YR(Q̂n, Y ).



Appendix E

ADJOINT EQUATIONS FOR

ESDIRK4 WITH TIME STEP SIZE

CHANGE

In this Appendix, the discrete adjoint equations for the fourth-order ESDIRK scheme are

derived, where the flow is controlled after a certain transition period and different time step

sizes can be used in the transition period and the control window.

The unsteady flow solve is warmstarted at some point in time which means that Q̂0 is

known. In order to “jump” over the adjusting or transition period as quickly as possible, a

bigger time step ∆tc for Nc steps is used. Once the domain where the problem that is being

controlled is reached, a smaller time step ∆t for another N−Nc steps is used for a total of

N steps. The time-dependent flow solution Qn = JQ̂n is implicitly defined via the following

unsteady residuals where Q̂n
1 = Q̂n−1 and Q̂n = Q̂n

6

Rn
k(Q̂

n
k , . . . , Q̂

n
2 , Q̂

n−1, Y ) :=
Q̂n
k − Q̂n−1

akk∆tc
+R(Q̂n

k , Y ) +
1

akk

k−1∑
j=1

akjR(Q̂n
j , Y ) = 0

for n = 1, . . . , Nc and k = 2, . . . , 6

Rn
k(Q̂

n
k , . . . , Q̂

n
2 , Q̂

n−1, Y ) :=
Q̂n
k − Q̂n−1

akk∆t
+R(Q̂n

k , Y ) +
1

akk

k−1∑
j=1

akjR(Q̂n
j , Y ) = 0

for n = Nc+ 1, . . . , N and k = 2, . . . , 6.

The problem of minimizing the discrete objective function J as given by Eq. (3.3) is

equivalent to the unconstrained optimization problem of minimizing the Lagrangian function

L =
N∑

n=Nc+1

In(Qn, Y ) + wT

Ncon∑
j=1

Cj(Y ) +
N∑
n=1

6∑
k=2

(ψnk )
TRn

k(Q̂
n
k , . . . , Q̂

n
2 , Q̂

n−1, Y )
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with respect to Q̂n
k and ψnk for n = 1, . . . , N and k = 2, . . . , 6 as well as Y . The Lagrange

multipliers ψnk must now be chosen such that ∇Q̂nk
L = 0 for n = 1, . . . , N and k = 2, . . . , 6,

which leads to

0 = (ψnk )
T∇Q̂nk

Rn
k +

∑6
j=k+1(ψ

n
j )
T∇Q̂nk

Rn
j for k = 2, . . . , 5

0 = (ψn6 )T∇Q̂n6
Rn

6 +
∑6

j=2(ψ
n+1
j )T∇Q̂n6

Rn+1
j

}
for n = 1, . . . , Nc

0 = (ψnk )
T∇Q̂nk

Rn
k +

∑6
j=k+1(ψ

n
j )
T∇Q̂nk

Rn
j for k = 2, . . . , 5

0 = ∇Q̂n6
In + (ψn6 )T∇Q̂n6

Rn
6 +

∑6
j=2(ψ

n+1
j )T∇Q̂n6

Rn+1
j

}
for n = Nc+ 1, . . . , N − 1

0 = (ψNk )T∇Q̂Nk
RN
k +

∑6
j=k+1(ψ

N
j )T∇Q̂Nk

RN
j for k = 2, . . . , 5

0 = ∇Q̂N6
IN + (ψN6 )T∇Q̂N6

RN
6 ,

which can equivalently be written as

ψN6 =−
(
(∇Q̂N6

RN
6 )T

)−1[
(∇Q̂N6

IN)T
]

ψNk =−
(
(∇Q̂Nk

RN
k )T

)−1[∑6
j=k+1(∇Q̂Nk

RN
j )TψNj

]
for k = 5, . . . , 2

ψn6 =−
(
(∇Q̂n6

Rn
6 )T
)−1[

(∇Q̂n6
In)T +

∑6
j=2(∇Q̂n6

Rn+1
j )Tψn+1

j

]
ψnk =−

(
(∇Q̂nk

Rn
k)
T
)−1[∑6

j=k+1(∇Q̂nk
Rn
j )
Tψnj

]
for k = 5, . . . , 2

 for n = N − 1, . . . , Nc+ 1

ψn6 =−
(
(∇Q̂n6

Rn
6 )T
)−1[∑6

j=2(∇Q̂n6
Rn+1
j )Tψn+1

j

]
ψnk =−

(
(∇Q̂nk

Rn
k)
T
)−1[∑6

j=k+1(∇Q̂nk
Rn
j )
Tψnj

]
for k = 5, . . . , 2

 for n = Nc, . . . , 1.

Finally, the gradient of J with respect to the design variables Y is given by

∂J

∂Y
=
∂L

∂Y
=

N∑
n=Nc+1

∇Y I
n(Qn, Y ) + wT

Ncon∑
j=1

∇YCj(Y ) +
N∑
n=1

6∑
k=1

(
6∑
j=k

(ψnj )
T ajk
ajj

)
∇YR(Q̂n

k , Y )

with the definition a11

a11
= 0

0
:= 0.



Appendix F

IMPLEMENTATION DETAILS OF THE

FW-H EQUATION

The far-field pressure fluctuations in the frequency-domain are given by Eq. (4.19). Assuming

that the observer location x is outside the source region described by the function f(y) > 0

and neglecting the viscous stress tensor as well as the quadrupole contribution, they can be

stated as follows:

p′(x, ω) = −
∮
f=0

iωQ(y, ω)G(x, y, ω)dl

−
∮
f=0

Fk(y, ω)
∂G(x, y, ω)

∂yk
dl, (F.1)

where the monopole term Q and dipole terms Fk in the time-domain are defined as

Q(y, t) = ρ(y, t)ur(y, t)nr(y) (F.2)

Fk(y, t) =
[
p(y, t)δkr + ρ(y, t)

(
uk(y, t)− 2Uk(y)

)
ur(y, t)

]
nr(y), (F.3)

and the Green function G(x, y, ω) is given by Eq. (4.14).

In the actual code, Q(y, t) as well as Fk(y, t) are Fourier transformed using a FFT after

subtracting their respective mean and applying the window function Wn given by Eq. (4.24)

in an energy preserving manner. This yields for the monopole term in the frequency-domain

Q(y, ωl) = |W |
N∑
n=1

Q̂(y, tn) exp(−iωltn)Wn for l = 1, . . . , N (F.4)

where |W | =
√
N/
∑
W 2
n , ωl =

(
2π(l − 1)

)
/(N∆t), tn = (n− 1)∆t and

Q̂(y, tn) = Q(y, tn)−
1

N

N∑
n′=1

Q(y, tn′) for n = 1, . . . , N. (F.5)
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One obtains similar expressions for the dipole terms Fk(y, ωl). The contour integrals in

Eq. (F.1) are evaluated using the trapezoidal rule:

p′(x, ωl) = −
J∑
j=1

1

2
∆sj

[
iωlQ(yj, ωl)G(x, yj, ωl) + iωlQ(yj+1, ωl)G(x, yj+1, ωl)

+ F1(yj, ωl)
∂G(x, yj, ωl)

∂y1j

+ F2(yj, ωl)
∂G(x, yj, ωl)

∂y2j

+ F1(yj+1, ωl)
∂G(x, yj+1, ωl)

∂y1j+1

+ F2(yj+1, ωl)
∂G(x, yj+1, ωl)

∂y2j+1

]
,(F.6)

where J is the total number of nodes which define the closed integration contour path, and

∆sj =
√

(y1j+1 − y1j)2 + (y2j+1 − y2j)2 is the distance between neighboring points. Note

that variables with index J + 1 have the same value as those with index 1.

Differentiation with respect to the flow variables

If the FW-H equation is used as part of an objective function in the optimization frame-

work, the derivative of the far-field pressure fluctuations with respect to the flow variables

is needed explicitly. However, the derivative with respect to the design variables is obtained

using fourth-order centered finite differences as explained in Section 3.3. Denoting the non-

dimensional conservative variables given by Eq. (2.1) at source node location j and time step

n as Qn
j , the derivative of the far-field pressure fluctuations in the frequency domain with

respect to the flow variables is given by:

∂p′(x, ωl)

∂Qn
j

= −1

2

(
∆sj−1 + ∆sj

)[
iωlG(x, yj, ωl)

∂Q(yj, ωl)

∂Qn
j

+
∂G(x, yj, ωl)

∂y1j

∂F1(yj, ωl)

∂Qn
j

+
∂G(x, yj, ωl)

∂y2j

∂F2(yj, ωl)

∂Qn
j

]
(F.7)

with

∂Q(yj, ωl)

∂Qn
j

=
[
|W | exp(−iωltn)Wn −

|W |
N

N∑
n′=1

exp(−iωltn′)Wn′

]∂Q(yj, tn)

∂Qn
j

, (F.8)



Appendix F. Implementation Details of the FW-H Equation 145

and similar expressions for ∂F1(yj, ωl)/∂Q
n
j and ∂F2(yj, ωl)/∂Q

n
j . Lastly, using the expres-

sions for the monopole (F.2) and dipole terms (F.3) in the time-domain one finds

∂Q(yj, tn)

∂Qn
j

=


0

n1(yj)

n2(yj)

0

 (F.9)

∂Fk(yj, tn)

∂Qn
j

= (γ − 1)nk(yj)


1
2
[u2

1(yj, tn) + u2
2(yj, tn)]

−u1(yj, tn)

−u2(yj, tn)

1



+
Q(yj, tn)

ρ(yj, tn)


−uk(yj, tn)

1

0

0

+
(
uk(yj, tn)− 2Uk(yj)

)


0

n1(yj)

n2(yj)

0

. (F.10)

If, however, the derivative in the time-domain is required instead, the partial derivatives in

Eq. (F.7) have to be Fourier transformed for each node j using an inverse FFT, that is

∂p′(x, tñ)

∂Qn
j

=
1

N

N∑
l=1

∂p′(x, ωl)

∂Qn
j

exp(iωltñ). (F.11)

Given the last equation, it is straightforward to differentiate the pressure fluctuation objective

function used in Sections 5.8 and 5.9 and given by Eq. (5.11). Converted to the notation

used in this Appendix it reads as follows

JN =
N∑

ñ=Nc+1

(pñobs − p̄obs)
2 =

N∑
ñ=Nc+1

(
p′(x, tñ)− p̄′(x, tñ)

)2
, (F.12)

where p̄′(x, tñ) = 1
N−Nc

∑N
n′=Nc+1 p

′(x, tn′). Its derivative with respect to the flow variables

is then given by

∂JN

∂Qn
j

=
∂JN

∂p′(x, tñ)

∂p′(x, tñ)

∂Qn
j

= 2
N∑

ñ=Nc+1

(
p′(x, tñ)− p̄′(x, tñ)

)∂p′(x, tñ)
∂Qn

j

. (F.13)
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