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Abstract
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2005

This thesis examines several aspects of multi-point aerodynamic shape optimization in two

dimensions, including testing of an automated weighting formula, automated introduction of

design points, and three methods of imposing geometric constraints. A quasi-Newton algorithm

is used, with a quadratic penalty approach for the constraints. A Newton-Krylov algorithm is

used to solve the compressible Navier-Stokes equations; the same Krylov algorithm is used to

solve the discrete adjoint problem to calculate the gradient. Several different multi-point prob-

lems with varying Mach number and target lift coefficients are examined to consider trade-offs

in the solution and design point weighting. The automated weighting formula and automated

design point addition successfully achieve optimization over a broad range of Mach numbers.

The floating thickness and area constraints prove advantageous in providing more flexibility in

the optimization.
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Chapter 1

Introduction

1.1 Motivation

In order to improve the performance of an airfoil under certain flow conditions, a combination of

analysis and shape modification is used to determine the best solution to a particular problem.

Numerical optimization is one of the methods used in this process. It allows a designer to

specify one or more sets of operating conditions and the aerodynamic properties desired at

those design points, such as increasing lift or reducing drag. Since the process of modifying

the shape is governed automatically by the numerical optimization process chosen, the focus of

the designer is in properly formulating the problem, with the strengths and weaknesses of the

optimizer in mind, as well as the general restrictions of physical flow. The design objectives and

design points need to be chosen so as not to neglect a mode of operation that can be severely

disadvantaged if ignored.

Gradient-based methods and genetic algorithms are two of the favoured numerical optimiza-

tion methods. Genetic algorithms, based on the idea of natural selection and mating of designs

to produce an optimal design [10, 6, 16, 25, 27, 34, 32], is, as the nature of the process would

suggest, slow, and requires considerable computation to generate and analyze a viable mating

population [22, 30, 11]. Gradient-based optimization offers a more focussed and less computa-

tionally intensive method [9, 4, 24, 14, 18]. A local optimum can be found with gradient-based

methods using far fewer computational iterations. This advantage is partly due to effective gra-

dient calculation and convergence methods, such as adjoint methods and the Newton-Krylov

algorithm, by Nemec and Zingg [21]. The Newton-Krylov method, among the fastest of nu-

merical algorithms, is not only a fast flow solver, but the preconditioned generalized minimum

residual (GMRES) method [28] used in its application can also be used to solve for the objec-

1



2 CHAPTER 1. INTRODUCTION

tive function gradient, therefore saving on computational costs. Using quasi-Newton methods,

the gradient-based optimization method can be used to calculate the search direction in an

optimization, and approximate the curvature in the design space from the current solution.

Although the quasi-Newton strategy can be used in the context of an unconstrained optimiza-

tion problem, this requires careful attention in choosing the design variables and formulating the

objective function [3, 13, 29]. Volume and thickness requirements tend to be necessary [7]. The

design objectives need to be balanced against these constraints, and need to be implemented

in a way that offers the optimizing process the required flexibility to reach a best solution.

Typically these constraints are formed as a penalty function [17], but one alternative is to use

an SQP algorithm like SNOPT [8]. The Kreisselmeier-Steinhauser (KS) function [33, 1, 23, 2]

is another common method.

There are many comparisons of gradient-based strategies being used for aerodynamic opti-

mization. Obayashi [26] compared such a strategy to genetic algorithms for a transonic wing

design, while Weinerfelt [31] did the same for an ONERA M6 wing, with a lift-constrained

drag minimization problem. Leoviriyakit and Jameson [14] use the continuous adjoint method

to converge the flow solution, sensitivities, and final shape. The importance of using several

design points becomes clear when solutions show undesirable performance at the off-design

points [18], and examining Pareto fronts to evaluate the variety of optimum solutions and their

trade-offs becomes part of the design process [32]. Typically a weighted-sum approach is used

towards the objective function in multi-point design, for example in another ONERA M6 wing

optimization [34]. Since the weighting on each design point can play a role in the optimization

solution, the designer’s careful input is required in choosing these weights, or in choosing a

method for altering the weightings as a function of the performance, such as by Li, Huyse,

and Padula [15]. Another method of avoiding point-optimization effects is to minimize the

derivative of the drag coefficient with respect to M∞ [12].

1.2 OPTIMA Background

One of the optimization packages developed by the CFD group at UTIAS is OPTIMA2D, an

airfoil shape optimizer for single-block grids about single-element airfoils [19]. A Newton-Krylov

algorithm is used with the discrete-adjoint method to calculate the gradient of the objective

function. The adjoint equation
∂F T

∂Q
ψ =

∂JT

∂Q
(1.1)
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is solved using the preconditioned generalized minimal residual (GMRES) method [28]; the

adjoint variables, ψ, are then used to solve the for gradient:

dJ

dX
=

∂J

∂X
− ψT ∂F

∂X
(1.2)

where J is the objective function, F (Q,X) is the flow equation, Q is the vector of flow variables,

and X is the vector of design variables. GMRES is also used in conjunction with an inexact-

Newton approach to obtain flow solutions [22]. Typical optimization problems include lift and

drag optimization, multi-point problems, lift-to-drag ratio, and others [20]. Constraints are

applied using a penalty formulation, forming an unconstrained problem, which is solved using

a quasi-Newton method. One possible objective function can be expressed as:

J |Mi
= ωD

(

1 −
CD

C∗

D

)2

+ ωL

(

1 −
CL

C∗

L

)2

+ ωPP (1.3)

C∗

l and C∗

d are the targets for a lift and drag optimization problem, P is the penalty function

(typically thickness constraints), and ωD, ωL, and ωP are weights.

For several Mach number values, to avoid the poor performance of point-optimized problems

[5], the weighted sum can be written as

JM =

n
∑

i=1

wiJMi
(1.4)

Each Mach number has its own angle of attack α as a design variable.

1.3 Objectives

Using OPTIMA2D to solve multi-point aerodynamic shape optimization problems, the purpose

of this thesis is to:

1. Examine the trade-offs in performance between design points in several different

multi-point problems, as well as the relative importance of certain design points in

the optimization process.

2. Test the use of more generalized geometric constraints as alternatives to a fixed-

chord-location thickness constraint.
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3. Evaluate the use of an automated weighting method for the design point weights

and the automated introduction of additional design points to achieve a desired

performance over a range of operating conditions.



Chapter 2

Pareto Fronts

2.1 Fixed Mach Number, Varied Lift Coefficient Targets

Two simple two-point cases are studied to illustrate the ideas of design trade-offs and multi-point

optimization. It also allows us to examine the results as a Pareto front. In the first example,

the two design points have flow conditions at the same Mach number, but the lift coefficient

targets, C∗

L, are different. Both design points use the same objective function formulation:

Ji =











ωD

(

1 − CD

C∗

D

)2

+ ωl

(

1 − CL

C∗

L

)2

if CD > C∗

D

ωD

(

1 − CD

C∗

D

)2

otherwise
(2.1)

C∗

L and C∗

D are the lift and drag coefficient targets. Since the desired optimization problem is

lift-contrained drag minimization, an attainable lift coefficient target is chosen along with an

unattainable drag coefficient target. ωL and ωD are the weightings for the two components;

thickness constraints are added as a penalty term.

Fully turbulent flow is assumed, at a freestream Mach number of 0.75 and a Reynolds number

of nine million. The lift coefficient targets for the two different optimization points are 0.65 and

0.715, with a drag coefficient target of 0.01. The initial design shape is the RAE 2822 airfoil,

parametrized by a 15-point fourth-degree B-spline curve. All the spline control points are free

except three at the leading edge, and the trailing edge point. Since the trailing edge is defined

by two coincident points, this means there are 10 geometric design variables, with the angle

of attack added as an eleventh design variable. In order to preserve a minimum thickness and

prevent the surfaces from crossing, the following thickness constraints are used: t/c ≥ 0.121 at

5
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0.01415
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0.0143

0.01435

0.0144

0.01445

Figure 2.1: Pareto front from both objective functions and drag coefficient. Weights: ωL=1.0,
ωD=0.5, ωP=1.0

x/c = 0.25, t/c ≥ 0.009 at x/c = 0.92, and t/c ≥ = 0.002 at x/c 0.99. The weights in Eq. 1.3

are set to ωL=1.0 and ωD=0.05, to force drag optimization near the intended CL target. The

thickness constraint penalty weight is ωP =1.0.

In order to frame the problem to produce a Pareto front, the following composite objective

function is used:

J = wJCL=0.65 + (1 − w)JCL=0.715 (2.2)

where JCL=0.65 is the objective function evaluated using C∗

L = 0.65 in Eq. 1.3, with JCL=0.715

treated likewise. w is the weight on the CL=0.715 condition. By using a range of values for

w between 0.05 and 0.95 in increments of 0.05 (and including w=0.01 as the topmost point),

the Pareto fronts in Figure 2.1 are generated. The first shows the second objective function,

JCL=0.715, plotted against the first JCL=0.65, whereas the second shows the drag coefficient at

the target lift coefficients plotted against each other. The resulting Pareto front for the objective

functions is smooth as expected, showing an apparently smooth trade-off curve between the two

design points. The same is apparent in the second figure, save the last two points, which is

easily explained by the other terms in the objective function defined in Eq. 1.3. The trade-off,

though, while smooth, is not even. Reducing JCL=0.715 by 0.002 costs an increase of roughly

0.004 in JCL=0.65. This means that focussing on the higher CL target by giving it a higher

weight in Eq. 2.2 will result in a larger sacrifice on the lower C ∗

L final design than vice versa.

Three different final airfoil shapes are shown in Figure 2.2.
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Figure 2.2: Assorted airfoils on the Pareto front.

2.2 Fixed Lift Coefficient Target, Varied Mach Numbers

In the second two-point case, the CL target is the same for both points, but the Mach number

is different. The two Mach numbers used are M=0.75 and M=0.68, with a common CL target

of 0.715. ωL=1.0 and ωD=0.1 are used. All other conditions are the same as in the previous

Pareto front case. w is the weight on the design point at M=0.75.

Figure 2.3 shows the drag coefficient Pareto front from plotting the drag coefficient at M=0.75

and CL=0.715 vs. the drag coefficient at M=0.68 and CL=0.715, for varying w. In these figures

the two axes use equal spacing, showing the unequal trade-off between the two design points.

The drag coefficients at the design points are also listed in Table 2.1. There is a sharp drop in

drag coefficient at M=0.75 between w=0.1 and w=0.55, showing very little drag coefficient gain

at M=0.68 for a considerable reduction of CD at M=0.75. Although theoretically all points on

a Pareto front are considered optimums, the severe trade-off in this case makes the optimum

solution at w=0.55 at a glance far more desirable than any lower values, from a designer’s point

of view.

Further exploring these results, the drag coefficient at CL=0.715 is plotted vs. M in Figure

2.4 for the various w values. Very small reductions in CD at M=0.75 are offset by far worse

performance over the rest of the Mach number range shown. Between w=0.8 and 0.9, for

example, only a small reduction of 0.2% from CD=0.014067 to CD=0.014043 at M=0.75 is

gained for a much worse general performance between M=0.72 and M=0.65; at M=0.68, CD
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Figure 2.3: Drag coefficient Pareto front for fixed CD varied M case, with zoomed out view.

Table 2.1: CD at the design points for various values of w.
CD at

w M=0.75 M=0.68

0.1 0.015325 0.013580

0.3 0.014373 0.013709

0.5 0.014204 0.013728

0.55 0.014195 0.013719

0.7 0.014133 0.013812

0.75 0.014104 0.013859

0.8 0.014082 0.013985

0.85 0.014067 0.014004

0.9 0.014043 0.014157

is increased by 1% from 0.014004 to 0.014157, a comparably large trade-off.

Selection of the most appropriate design depends on the designer’s priorities. Some possible

quantitative goals are: 1) minimizing the area under the CD vs. M curve between the design

points, 2) minimizing the maximum CD for the design points, 3) minimizing the maximum

CD between and at the design points, or 4) equal drag for the design points. The minimum

area is achieved with w=0.1; this is also the worst design for reducing the drag coefficient at

M=0.75. The best design for the second condition, minimizing the maximum CD at the design

points, is at w=0.85. This design also has the most equal drag coefficients between the design

points. However, if we consider maximum CD between the design points as well, minimizing this

gives w=0.55 as the best value. Note that the performance at lower Mach numbers is greatly

improved from w=0.85, for a small increase in CD at M=0.75, as shown in Figure 2.5, which

also shows the final airfoil shapes. These examples illustrate the various trade-offs involved in

determining which design is the most desirable.
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Chapter 3

Generalized Shape Constraints

3.1 Area and Floating Thickness Constraints

One of the primary constraints in these optimization problems, and in general, are minimum

thickness requirements on the designed airfoil. These are usually mandated by structural

strength requirements and the need to store fuel in the wing. The usual method in the cases

in this thesis is to define a minimum thickness at a certain percentage of the chord. However,

this might unnecessarily constrain the problem, since the choice of the chord location is fixed

and needs to be chosen by the designer. Allowing more flexible constraint terms can allow

the optimization to find a better solution which may have been excluded by a poorly chosen

minimum thickness size and location.

One alternative is to use the area of the two-dimensional airfoil as a constraint. This could

be analagous to choosing a minimum volume for a wing fuel tank. The penalty term is defined

as:

Parea = ωP

A

A∗
(3.1)

where A and A∗ are the current and target area, respectively, and ωP is the weighting on the

penalty term.

Another method is to define a minimum thickness as before, but without setting a fixed

location where this condition has to be met. Instead, a range of x on the chord is defined where

this minumum thickness can be met. In other words, the new constraint, a floating thickness

constraint, allows the minimum thickness constraint to be satisfied anywhere in a certain x

range on the chord instead of one location. Other than checking over a range to determine the

11
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x location, the penalty formulation is the same as for a fixed thickness constraint.

3.2 Results

These alternative constraint methods are tested on both single and four-point optimization

problems. Starting with the single-point cases, C ∗

L=0.733 and C∗

D=0.012 are used, with weights

ωL=1.0, ωD=0.1, and ωP=1.0. The flow is assumed to be fully turbulent, with freestream Mach

number M=0.76 at a Reynolds number of 2.7 million. For the initial geometry the RAE 2822

is used, parametrized again with a 15 control point B-spline curve. Only the leading edge and

trailing edge points are frozen this time, leaving 13 design variables, 12 geometric plus the

angle of attack. For the regular fixed thickness constraint cases used for comparison, only one

thickness constraint is used: t/c ≥ 0.1206 at x/c = 0.35, and at x/c = 0.45 in a second case.

The conditions for the 4-point cases are described later.

For the area constraint case, the target area A∗ is simply the initial area of the RAE 2822

airfoil. No other constraints are used. A weighting of ωP =1000 is used to ensure the final area

is close to the target area; lower values in this case resulted in much smaller areas, making a

fair comparison to the other cases problematic. Finally, for the floating thickness constraint

case, the minimum thickness is set at x/c=0.1206, to be achieved within 0.2 ≤ x ≤ 0.55.

The drag coefficient at CL=0.733 vs. M is plotted for the final designs in Figure 3.1. The

results are predictably bad for anything other than the one design point at M=0.76. All

the solutions have roughly the same drag profiles, with some differences. The x/c=0.45 fixed

thickness case yielded virtually the same drag coefficient at M=0.76 as the floating thickness

constraint. This is because the latter case settled on x/c=0.45 for its maximum thickness

location. The final airfoil shapes for both, shown in Figure 3.1, are also very similar. The

x/c=0.45 fixed thickness case achieves a thickness of t/c=0.1179, compared to t/c=0.1173 for

the floating thickness constraint at the same point. The area constraint case, on the other

hand, settles on x/c=0.38 for its maximum thickness location, where t/c=0.1180, close to the

other cases. Near the design point, it perform slightly worse than the x/c=0.35 fixed thickness

case, but it performs better at lower Mach numbers than all the rest of the cases. These last

two cases also have similar airfoil shapes, which is not surprising considering the maximum

thickness locations.

The area constraint case achieves 99.97% of the initial (target) area, with the similarly

performing x/c=0.35 fixed thickness case achieving 97.8% . The floating thickness case achieves

93.7%, while the x/c=0.45 fixed thickness case reaches a close 92.9%. In fact, the drag coefficient
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Figure 3.1: Single-point constraint cases.

of the airfoils at M=0.76 rank in the same order as the area of the airfoils: the highest area

results in the highest CD. If the area constraint case is taken as the baseline, the proportion of

drag coefficients is even roughly proportional to the area achieved. The floating thickness case

give a drag coefficient 92.4% of the area constraint case, with the x/c=0.35 and x/c=0.45 fixed

thickness cases giving 97.9% and 92.36% respectively.

The difference of the single-point area constraint case compared to the others can also be

seen in the CP graphs in Figures 3.2-3.3. For the area constraint case, the pressure difference

is much higher in the middle of the airfoil, similar to the initial RAE 2822 airfoil. The fixed

and floating thickness cases all tend to load the leading edge, with little loading in the middle.

This can also been seen in the Mach number contour graphs in Figures 3.4-3.6. For comparison,
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Figure 3.2: Pressure distribution for the single-point alternative constraint cases.

the contour graph for the RAE 2822 airfoil is shown in Figure 3.5. If a more even pressure

distribution is desired, the area constraint option may prove more suitable than the others.

The alternative constraints are also tested on a four-point case. Four different Mach number

design points are used, M=0.68, 0.71, 0.74, and 0.76. C ∗

L=0.733 and C∗

D=0.012 for all points,

at a Reynolds number of 2.7 million. The objective function weights are ωL=4.0 and ωD=1.0;

the fixed thickness case uses a constraint weight ωP=1.0, with the following constraints: t/c ≥

= 0.0253 at x/c 0.01, t/c ≥ 0.1206 at x/c = 0.35, t/c ≥ 0.005 at x/c = 0.96, and t/c ≥ = 0.0012

at x/c = 0.99. The same geometry and parametrization are used, giving 13 design variables.

The objective function in such a problem is the weighted sum of the objective functions at each

Mach number, as given in Eq. 1.4. The weightings, from lowest Mach number to highest, are:

[0.2163 0.2218 0.1904 0.3715].

For the four-point area constraint case, ωP=1 and ωP=10 were used, in two separate runs.

The floating thickness constraint case uses the same constraints as in the single-point case.

The fixed and floating thickness constraint cases, while taking on different final shapes, give

almost identical CD profiles, as shown in Figure 3.7. The fixed case achieves t/c=0.1143 at

x/c=0.35; the floating case gives t/c=0.1138, once again settling on x/c=0.35 for its maximum

thickness location.

The 4-point area constraint cases show again the dependence on how much of the target area

is achieved. Using ωP=1, the final airfoil’s area is only 94% of the initial area, resulting in a

reduced maximum thickness of t/c=0.1109 at x/c=0.35. Its drag coefficient profile, in Figure
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Figure 3.4: Mach number contour graphs for the single-point area and floating thickness con-
straint cases.
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Figure 3.7: Mach number/drag sweeps and airfoils for the 4-point constraint cases.

3.7, comes close to the previous two cases, but performs slightly worse, especially at M=0.76.

When ωP=10 is used, the thickness is closer to the first two cases, t/c=0.1166 at x/c=0.35, but

the drag coefficient profile is noticeably worse across all Mach numbers, on average about 4%

higher. The reason for this may be the noticeably thicker trailing section, between 0.6c and

0.9c. The fixed thickness case achieved 89.7% of the original area, and the floating thickness

achieves 88.9%. Both have similar drag profiles, lower than the area constraint cases, which

achieve higher airfoil areas.

As in the single-point cases, the pressure distributions for the area constraint cases, shown

in Figure 3.8, have higher loading in the mid-section than the other two cases. The fixed and

floating thickness constraint cases display a larger lower surface near-supersonic Mach number

bulge. All the four-point cases, however, significantly reduce the leading edge shock wave in

the initial RAE 2822 airfoil (Figure 3.5).

Both alternative constraints show advantages. The floating thickness constraint in these cases

did not cost the design in performance, doing just as well in the drag coefficient sweeps as the

fixed constraint cases. This could be offset by a slightly more problematic shape, as in the four-

point case, but with proper problem formulation this disadvantage can probably be minimized

or eliminated, while allowing greater flexibility in the optimization process. The area constraint

also seems to show some advantage in producing a more even loading across the airfoil, should

this be a desireable feature. However, as shown in the four-point case, this can come at a cost

to performance in some cases, due to the focus on keeping the original area; other constraint

methods may achieve a solution with lower drag primarily because they also result in airfoils
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Figure 3.8: CP distribution for the 4-point constraint cases at M=0.76.

with smaller areas. Each can have its uses in allowing more flexibility in the formulation of a

design problem, when thickness constraints are not necessarily strict in their placement.
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Figure 3.9: Mach number contour graph for the 4-point area and floating thickness constraint
cases, at M=0.76 and CL=0.733.
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Chapter 4

Automatic Weighting Technique

4.1 Method

One of the many factors confronting a deisgner are the multitude of weighting factors that

needed to be decided. Often the usual method is to make educated guesses about the weightings

needed, making corrections through trial and error. However, it can be advantageous to remove

the designer input from the weighting of multi-point objectives, allowing an automated process

to adjust the weights according to a formula, iteratively correcting the weights to redirect the

design towards a certain objective.

The objective chosen to attempt this is to minimize as well as equalize the drag coefficients

of an airfoil across a broad Mach number range. This is mostly an arbitrary objective; while it

may be disadvantageous in most cases to equalize CD over several Mach numbers, the method

described here can be modified to drive the solution towards a different proportional distribution

of the drag coefficient profile.

Since any deviation from an equal CD profile needs to be corrected by the optimization process,

a greater weighting needs to be assigned to the deviated design points after an iteration, in order

to attempt to rectify the design in the next iteration. Therefore, the following formula is used

to calculate the weights for the next optimization run, or iteration:

wnew
i = wold

i + c

(

CDi
∑N

i=1
CDi

−
1

N

)

(4.1)

where N is the number of sampling points, and c is a user-specified constant. If wnew
i is negative,

21
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it is set to zero. Since the resulting sum of the remaining weights in this case will not be unity,

the difference of the total is divided and added equally to all remaining weights. (Note that

each iteration is a full optimization run. This should not be confused with the quasi-Newton

or line search iterations within an optimization run.)

Depending on the value of c, this method can vary some weights constantly, which can prove

problematic. An attempt to alleviate this while maintaining an aggressive c led to a second

possible method. The basic formula is the same as Eq. 4.1, except that the weight is only

changed if the CD exceeds the standard deviation of the CD at all the sampling points. Weight

sets that do not add up to one are tweaked as mentioned earlier. This will be called the standard

deviation method, as opposed to the automated weights method.

Along with drag deviations at the design points, there can be unexpected deviations at

other Mach numbers, as a result of undesirable trade-offs between design and off-design points.

Therefore, additional design points can be automatically added at any significant local maxima

in order to achieve a drag coefficient reduction across a broad range of Mach numbers.

4.2 Results

The automated weights method is tested on a 4-point multiple Mach number design (although

this turns into a 5-point problem as shown below). The initial Mach numbers for the design

points are M= 0.68, 0.70667, 0.73333, and 0.76, an even distribution between 0.68 and 0.76.

Initially the design point weightings wi = [0.25 0.25 0.25 0.25]. The targets are C∗

L=0.733 and

C∗

D=0.01, with ωL=1.0, ωD=0.1, ωP=1.0, and a Reynolds number of 9 million. The following

thickness constraints are used: t/c ≥ 0.0253 at x/c = 0.01, t/c ≥ 0.121 at x/c = 0.35, t/c ≥

0.0137 at x/c = 0.924, and t/c ≥ = 0.001516 at x/c 0.99. The first thickness constraint prevents

a sharp leading edge from developing (an alternate method to simply freezing the leading three

control points).

Case 1 uses the above general conditions, with the same initial geometry as before, an RAE

2822 airfoil with 13 design variables, and a c value of 30. Tables 4.1-4.2 show the progression

of the weights, drag coefficients, standard deviation of CD, maximum and minimum CD, and

CD range for each iteration. The standard deviation and range of CD is reduced with each

successive iteration, with a few exceptions. At the ninth iteration the weighting of the second

design point falls to zero. This means that CD at this point has dropped so low that it actually

needs to rise to be equalized. Due to the formulation of the objective function in Eq. 1.3, the

way to do this is to drop the design point and let the solution naturally sacrifice drag reductions
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Figure 4.1: Case 1, 13 design variables, c = 30; Mach number/drag sweeps and airfoil

at that point to lower the drag at other Mach numbers.

While the CD values do start to equalize in Table 4.2, it quickly becomes clear that the

drag coefficient at M=0.752 is not being reduced along with its neighbouring design points;

the desired equal drag over a broad Mach number range is not being accomplished. When the

original four design points have equalized drag to within 3.0 × 10−5 with a standard deviation

of 1.44 × 10−5, a fifth point is added at the local CD maximum at M=0.752. Once this point

is included in the optimization problem as of iteration 13, the weight is adjusted accordingly

from 0 to 0.175766. After this point the 5-point problem proceeds as the 4-point problem did

before. The second design point at M=0.70667 is reactivated as its CD rises high enough to

raise its weight above zero.

The CD sweeps for various iterations of Case 1 are shown in Figure 4.1, as well as the

final airfoil shape. This demonstrates dramatically how the drag coefficient for the lower Mach

numbers was in fact raised in order to equalize CD for all the design points, with a corresponding

decrease in the drag coefficient at the higher Mach numbers (the more difficult design points).

Once again it should be mentioned that equalizing the drag profile is an arbitrary design

objective; nonetheless, the effect shows that the automated weight formula does achieve its

intended purpose. Note the dip in CD around M=0.755, just before rising at M=0.76. CP

distributions and the Mach number contour graph for the design points are shown in Figures

4.2 and 4.3. They show the familiar narrowing in the mid-section, as well as the lower surface

Mach number bulge comparable to the previous design examples.
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Table 4.1: Weights for Case 1: 13 DV, c = 30

Weights (Mach No.)
c 0.68 0.70667 0.7333 0.752 0.76

1 0.250000 0.250000 0.250000 0.250000

2 30 0.120334 0.142760 0.261765 0.475141

3 30 0.067041 0.088363 0.273654 0.570942

4 30 0.106160 0.069881 0.231428 0.592531

5 30 0.095931 0.044117 0.234324 0.625628

6 30 0.117640 0.032004 0.219701 0.630654

7 30 0.114569 0.016515 0.226941 0.641976

8 30 0.127650 0.007144 0.223945 0.641261

9 30 0.130507 0.000000 0.228886 0.640606

10 30 0.129885 0.000000 0.230511 0.639604

11 30 0.130382 0.000000 0.230943 0.638675

12 30 0.130647 0.000000 0.230943 0.000000 0.638675

13 30 0.072119 0.000000 0.172499 0.175766 0.579616

14 30 0.182337 0.049099 0.113351 0.138609 0.516604

15 30 0.090059 0.016557 0.132988 0.205503 0.554893

16 30 0.132930 0.048126 0.109179 0.178950 0.530815

17 30 0.083416 0.040523 0.118175 0.203831 0.554056

18 30 0.113410 0.066985 0.099436 0.184570 0.535599

19 30 0.073779 0.063363 0.104617 0.204409 0.553832

20 30 0.090547 0.084214 0.090206 0.191643 0.543390

21 30 0.067512 0.087726 0.089605 0.202761 0.552395

22 30 0.077646 0.105856 0.078051 0.194173 0.544274

23 30 0.055519 0.109378 0.076721 0.205231 0.553151

24 30 0.063264 0.126137 0.065461 0.199387 0.545752

25 30 0.048599 0.132865 0.061611 0.206215 0.550710

26 30 0.047381 0.146111 0.053999 0.204023 0.548486

Table 4.2: Results for Case 1: 13 DV, c = 30

CD (CL=0.733)
0.68 0.70667 0.7333 0.752 0.76 Max CD Min CD St Dev CD range

1 0.014484 0.014528 0.014762 0.015181 0.015181 0.014484 0.0003192 0.000697

2 0.014639 0.014637 0.014767 0.014932 0.014932 0.014637 0.0001396 0.000295

3 0.014901 0.014787 0.014740 0.014866 0.014901 0.014740 0.0000733 0.000161

4 0.014768 0.014737 0.014794 0.014853 0.014853 0.014737 0.0000493 0.000116

5 0.014865 0.014798 0.014793 0.014832 0.014865 0.014793 0.0000334 0.000072

6 0.014803 0.014779 0.014824 0.014832 0.014832 0.014779 0.0000236 0.000053

7 0.014851 0.014806 0.014819 0.014824 0.014851 0.014806 0.0000187 0.000044

8 0.014830 0.014802 0.014834 0.014823 0.014834 0.014802 0.0000142 0.000032

9 0.014825 0.014798 0.014830 0.014825 0.014830 0.014798 0.0000143 0.000032

10 0.014828 0.014799 0.014828 0.014825 0.014828 0.014799 0.0000142 0.000029

11 0.014827 0.014798 0.014827 0.014825 0.014827 0.014798 0.0000144 0.000030

12 0.014827 0.014797 0.014827 0.015410 0.014825 0.015410 0.014797 0.0002646 0.000613

13 0.015272 0.015119 0.014848 0.014903 0.014839 0.015272 0.014839 0.0001912 0.000433

14 0.014620 0.014768 0.014897 0.015014 0.014943 0.015014 0.014620 0.0001560 0.000394

15 0.015046 0.015018 0.014880 0.014873 0.014880 0.015046 0.014873 0.0000852 0.000173

16 0.014737 0.014841 0.014882 0.014922 0.014918 0.014922 0.014737 0.0000758 0.000184

17 0.015004 0.014996 0.014883 0.014882 0.014884 0.015004 0.014882 0.0000642 0.000123

18 0.014768 0.014857 0.014879 0.014915 0.014911 0.014915 0.014768 0.0000599 0.000147

19 0.014959 0.014969 0.014882 0.014886 0.014891 0.014969 0.014882 0.0000430 0.000088

20 0.014821 0.014887 0.014877 0.014906 0.014901 0.014906 0.014821 0.0000339 0.000085

21 0.014934 0.014954 0.014880 0.014888 0.014889 0.014954 0.014880 0.0000330 0.000074

22 0.014824 0.014887 0.014875 0.014906 0.014900 0.014906 0.014824 0.0000329 0.000082

23 0.014921 0.014944 0.014874 0.014887 0.014884 0.014944 0.014874 0.0000293 0.000070

24 0.014848 0.014901 0.014875 0.014902 0.014897 0.014902 0.014848 0.0000231 0.000053

25 0.014897 0.014933 0.014881 0.014895 0.014894 0.014933 0.014881 0.0000194 0.000052

26 0.014861 0.014908 0.014874 0.014899 0.014894 0.014908 0.014861 0.0000194 0.000047
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Figure 4.2: Case 1, Cp graphs for all five design points, for Cl = 0.733 .
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Figure 4.3: Case 1, 13 DV, c = 30; Mach number contour graph at M=0.76, CL=0.733.

Case 2 uses the same conditions as Case 1, but the standard deviation method is used instead

of the plain automated weights formula. The data for this run are listed in Tables 4.3-4.4. In

this case, the fifth design point is added much sooner. However, even accounting for this, the

5-point problem then proceeds towards the same standard deviation of CD as Case 1 in fewer

iterations, 7 as opposed to 13. It is also notable that, due to the stabilising effect on the weights

of only changing the weights when the CD at a point exceeds the standard deviation, a design

point is only dropped for one iteration (the 8th). CD is plotted vs. M in Figure 4.4. It is

virtually the same solution as Case 1.

Case 3 also uses the standard deviation method, but the cut-off is half the standard deviation,

0.5σ, instead of simply σ. The second design point drops out for one iteration, the 8th (Table

4.5). The standard deviation of CD is reduced faster than in Case 1, but slower than Case 2

(Table 4.6). Figure 4.5 shows the familiar drag profile for this case.

Figure 4.6 shows the standard deviation and maximum CD plotted vs. iterations for Cases

1-3. The large spikes in the graph are from the addition of the fifth design point at M=0.752.

Since the fifth point is not consistently added after reaching the same standard deviation, it is

more instructive to look at the progress made after the large jumps. From these, it is obvious

that using c = 30 without mitigating it with the standard deviation method causes oscillation

in the maximum CD, which likely makes it slower to converge to a smaller standard deviation.

Even using σ as a cut-off instead of 0.5σ makes a difference, as Case 2 displays one major

oscillation at iteration 8.
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Figure 4.4: Case 2, 13 DV, c = 30, standard deviation method; Mach number/drag sweeps

Table 4.3: Weights for Case 2: 13 DV, c = 15, Standard Deviation method

Weights (Mach No.)
c 0.68 0.70667 0.7333 0.752 0.76

1 0.250000 0.250000 0.250000 0.250000

2 30 0.174953 0.174953 0.174953 0.475141

3 30 0.070732 0.169985 0.169985 0.589299

4 30 0.059115 0.158368 0.158368 0.624150

5 30 0.066749 0.135466 0.166002 0.000000 0.631784

6 30 0.012778 0.081496 0.112032 0.215881 0.577814

7 30 0.012778 0.081496 0.112032 0.215881 0.577814

8 30 0.000000 0.084690 0.115226 0.219075 0.581008

9 30 0.206683 0.033019 0.063555 0.167404 0.529337

10 30 0.195756 0.022092 0.052628 0.211114 0.518410

11 30 0.197052 0.023388 0.029474 0.212410 0.537676

12 30 0.200827 0.027163 0.014373 0.216186 0.541451

13 30 0.190857 0.032064 0.004710 0.221086 0.551284
14 30 0.187740 0.044530 0.001593 0.217970 0.548167

Table 4.4: Results for Case 2: 13 DV, c = 15, Standard Deviation method

CD (CL=0.733)
0.68 0.70667 0.7333 0.752 0.76 Max CD Min CD St Dev CD range

1 0.014484 0.014528 0.014762 0.015181 0.015181 0.014484 0.0003192 0.000697

2 0.014533 0.014602 0.014853 0.014962 0.014962 0.014533 0.0002032 0.000429

3 0.014735 0.014725 0.014837 0.014857 0.014857 0.014725 0.0000683 0.000132

4 0.014783 0.014763 0.014848 0.014839 0.014848 0.014763 0.0000417 0.000085

5 0.014765 0.014752 0.014834 0.015469 0.014839 0.015469 0.014752 0.0003029 0.000717

6 0.015448 0.015230 0.014860 0.014841 0.014820 0.015448 0.014820 0.0002842 0.000628

7 0.014650 0.014834 0.014949 0.014948 0.014923 0.014949 0.014650 0.0001267 0.000298

8 0.015603 0.015315 0.014860 0.014831 0.014807 0.015603 0.014807 0.0003583 0.000796

9 0.014803 0.014814 0.014798 0.014967 0.014911 0.014967 0.014798 0.0000762 0.000169

10 0.014871 0.014877 0.014818 0.014888 0.014923 0.014923 0.014818 0.0000380 0.000105

11 0.014878 0.014901 0.014849 0.014894 0.014909 0.014909 0.014849 0.0000239 0.000061

12 0.014855 0.014894 0.014856 0.014890 0.014904 0.014904 0.014855 0.0000228 0.000049

13 0.014887 0.014928 0.014881 0.014888 0.014900 0.014928 0.014881 0.0000187 0.000047
14 0.014852 0.014902 0.014871 0.014895 0.014899 0.014902 0.014852 0.0000215 0.000050
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Figure 4.5: Case 3, 13 DV, c = 30, half standard deviation method; Mach number/drag sweeps

Table 4.5: Weights for Case 3: 13 DV, c = 30, Half Standard Deviation method

Weights (Mach No.)
c 0.68 0.70667 0.7333 0.752 0.76

1 0.250000 0.250000 0.250000 0.250000

2 30 0.120334 0.142760 0.261765 0.475141

3 30 0.067041 0.088363 0.273654 0.570942

4 30 0.106160 0.069881 0.231428 0.592531

5 30 0.093253 0.062599 0.218520 0.625628

6 30 0.100333 0.046589 0.215513 0.637565

7 30 0.109219 0.034010 0.214459 0.000000 0.642311

8 30 0.059328 0.000000 0.164568 0.183683 0.592420

9 30 0.211512 0.069563 0.095104 0.120218 0.503603

10 30 0.094801 0.024190 0.123220 0.209325 0.548463

11 30 0.122707 0.051657 0.107020 0.186498 0.532118

12 30 0.092641 0.053395 0.108758 0.200200 0.545006

13 30 0.091688 0.067337 0.101201 0.195721 0.544053

14 30 0.080674 0.076188 0.096434 0.199186 0.547518

15 30 0.093971 0.095123 0.083664 0.190460 0.536781

Table 4.6: Results for Case 3: 13 DV, c = 30, Half Standard Deviation method

CD (CL=0.733)
0.68 0.70667 0.7333 0.752 0.76 Max CD Min CD St Dev CD range

1 0.014484 0.014528 0.014762 0.015181 0.015181 0.014484 0.0003192 0.000697

2 0.014639 0.014637 0.014767 0.014932 0.014932 0.014637 0.0001396 0.000295

3 0.014901 0.014787 0.014740 0.014866 0.014901 0.014740 0.0000733 0.000161

4 0.014768 0.014737 0.014794 0.014853 0.014853 0.014737 0.0000493 0.000116

5 0.014825 0.014779 0.014805 0.014835 0.014835 0.014779 0.0000244 0.000055

6 0.014836 0.014794 0.014816 0.014828 0.014836 0.014794 0.0000184 0.000042

7 0.014827 0.014795 0.014827 0.015408 0.014826 0.015408 0.014795 0.0002639 0.000613

8 0.015415 0.015208 0.014859 0.014874 0.014811 0.015415 0.014811 0.0002650 0.000604

9 0.014546 0.014723 0.014904 0.015055 0.014946 0.015055 0.014546 0.0002010 0.000509

10 0.014989 0.014988 0.014879 0.014863 0.014879 0.014989 0.014863 0.0000632 0.000126

11 0.014802 0.014879 0.014883 0.014911 0.014909 0.014911 0.014802 0.0000441 0.000109

12 0.014892 0.014929 0.014876 0.014883 0.014892 0.014929 0.014876 0.0000205 0.000053

13 0.014859 0.014909 0.014875 0.014894 0.014896 0.014909 0.014859 0.0000195 0.000049

14 0.014944 0.014958 0.014879 0.014889 0.014884 0.014958 0.014879 0.0000371 0.000079

15 0.014825 0.014867 0.014835 0.014876 0.014912 0.014912 0.014825 0.0000348 0.000087
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Figure 4.6: Standard deviation of drag and maximum drag at the design points (CL = 0.733)
for cases 1-3.
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Figure 4.7: Case 4, 13 DV, c = 15; Mach number/drag sweeps
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Table 4.7: Weights for Case 4: 13 DV, c = 15

Weights (Mach No.)
c 0.68 0.70667 0.73333 0.752 0.76

1 0.250000 0.250000 0.250000 0.250000

2 15 0.185167 0.196380 0.255883 0.362571

3 15 0.129128 0.153835 0.272768 0.444269

4 15 0.097432 0.123355 0.279181 0.500031

5 15 0.086286 0.101561 0.274521 0.537632

6 15 0.088032 0.085615 0.263894 0.562459

7 15 0.091966 0.072133 0.253812 0.582089

8 15 0.097655 0.060760 0.245141 0.596444

9 15 0.103324 0.050807 0.238547 0.607323

10 15 0.108992 0.040854 0.231953 0.618201

11 15 0.111648 0.032562 0.230368 0.625422

12 15 0.114774 0.025164 0.229324 0.000000 0.630738

13 15 0.092784 0.000000 0.204430 0.093403 0.609383

14 15 0.116322 0.003727 0.178253 0.117198 0.584500

15 15 0.117652 0.002795 0.165660 0.140850 0.573043

16 15 0.121049 0.005856 0.155519 0.154177 0.563398

17 15 0.119542 0.008486 0.148663 0.165163 0.558145

18 15 0.118187 0.012306 0.142821 0.172836 0.553850

19 15 0.117119 0.017163 0.137857 0.177421 0.550440

20 15 0.114678 0.021898 0.133787 0.181224 0.548414

21 15 0.112122 0.026864 0.129975 0.184043 0.546996

Table 4.8: Results for Case 4: 13 DV, c = 15

CD (CL=0.733)
0.68 0.70667 0.73333 0.752 0.76 Max CD Min CD St Dev CD range

1 0.014484 0.014528 0.014762 0.015181 0.015181 0.014484 0.0003192 0.000697

2 0.014477 0.014529 0.014762 0.015016 0.015016 0.014477 0.0002469 0.000540

3 0.014609 0.014614 0.014759 0.014953 0.014953 0.014609 0.0001617 0.000344

4 0.014721 0.014679 0.014746 0.014913 0.014913 0.014679 0.0001025 0.000234

5 0.014797 0.014727 0.014748 0.014888 0.014888 0.014727 0.0000715 0.000161

6 0.014814 0.014745 0.014759 0.014876 0.014876 0.014745 0.0000596 0.000131

7 0.014820 0.014753 0.014764 0.014855 0.014855 0.014753 0.0000480 0.000102

8 0.014836 0.014774 0.014788 0.014857 0.014857 0.014774 0.0000390 0.000082

9 0.014836 0.014774 0.014788 0.014857 0.014857 0.014774 0.0000390 0.000082

10 0.014829 0.014786 0.014812 0.014847 0.014847 0.014786 0.0000261 0.000061

11 0.014825 0.014783 0.014808 0.014833 0.014833 0.014783 0.0000221 0.000050

12 0.014827 0.014788 0.014813 0.015402 0.014831 0.015402 0.014788 0.0002630 0.000614

13 0.015062 0.014963 0.014814 0.015063 0.014821 0.015063 0.014814 0.0001230 0.000249

14 0.014913 0.014901 0.014843 0.015024 0.014849 0.015024 0.014843 0.0000725 0.000180

15 0.014923 0.014921 0.014856 0.014972 0.014858 0.014972 0.014856 0.0000493 0.000117

16 0.014889 0.014910 0.014863 0.014951 0.014870 0.014951 0.014863 0.0000355 0.000089

17 0.014889 0.014915 0.014867 0.014934 0.014875 0.014934 0.014867 0.0000281 0.000067

18 0.014896 0.014925 0.014876 0.014924 0.014884 0.014925 0.014876 0.0000225 0.000049

19 0.014886 0.014922 0.014878 0.014917 0.014888 0.014922 0.014878 0.0000198 0.000044

20 0.014885 0.014923 0.014879 0.014912 0.014891 0.014923 0.014879 0.0000185 0.000044

21 0.014885 0.014923 0.014879 0.014908 0.014892 0.014923 0.014879 0.0000179 0.000044

Case 4 is the same as Case 1, using the normal automated weight formula, but with c = 15.

In this case, the 4-point section proceeds slower than in Case 1, not reducing the maximum CD,

standard deviation, or CD range as fast (Tables 4.7-4.8). While Case 1 reaches σ=2.36×10−5

in 6 iterations, it takes Case 4 eleven iterations to reach σ=2.21×10−5. However once the fifth

point is added, Case 4 reaches the same maximum CD and a lower standard deviation than

Case 1, in 10 instead of 16 iterations. While speed is not the primary goal, it is nonetheless

interesting to note. Case 4 also had a point drop out for one iteration; the drag profile is shown

in Figure 4.7.

Case 5 uses c = 15 as in Case 4, but uses the half standard deviation method (no weight

change unless the CD exceeds 0.5σ). The Mach number drag sweeps are shown in Figure 4.8. It
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Figure 4.8: Case 5, 13 DV, c = 15, half standard deviation method; Mach number/drag sweeps

reduces the standard deviation slightly faster than Case 4 (Tables 4.9-4.10). Unlike Case 4, no

design is ever dropped. For a comparison of the two methods, Figure 4.9 shows little difference

between the two. Figure 4.10 does show however that c = 15 is a better choice for avoiding

oscillations in the maximum CD.

Cases 6 and 7 use a different geometry than the previous cases. The RAE 2822 airfoil is

parametrized by a 25-control-point B-spline instead of 15. Freezing the leading and trailing

edge points and adding the angle of attack gives 23 design variables. The same thickness

constraints are used. For Case 6, c = 30 is used. Looking at Tables 4.11-4.12, the max CD

and standard deviation fluctuate, sometimes considerably, going from low (3rd iteration) to

high (10th iteration) and suddenly back down (11th iteration). The solution does not proceed

towards equalization or minimization at a steady rate, but instead falls sharply and suddenly

in the final 3 iterations. In fact, c had to be reduced to 15 in order to stop the repeating

cycle of trading off low Mach number performance for high Mach number performance (note

the CD values after the fifth design point is added at M=0.753). The final iteration does have

better characteristics (CD, max CD, σ) than any of the previous cases. The drag coefficients

are reduced to just below 0.0148, instead of just below 0.0149; see Figure 4.11 for a comparison

of all the cases. The larger number of geometric design variables does give the optimizer more

freedom to achieve a better solution (Figure 4.12), but with a too aggressive value of c, the

process is unstable.
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Table 4.9: Weights for Case 5: 13 DV, c = 15, Half Standard Deviation method

Weights (Mach No.)
c 0.68 0.70667 0.73333 0.752 0.76

1 0.250000 0.250000 0.250000 0.250000

2 15 0.185167 0.196380 0.255883 0.362571

3 15 0.129131 0.153830 0.272777 0.444262

4 15 0.097386 0.123172 0.279011 0.500431

5 15 0.089627 0.101462 0.271252 0.537660

6 15 0.089905 0.085131 0.261980 0.562984

7 15 0.093629 0.071739 0.252754 0.581878

8 15 0.098068 0.060174 0.244958 0.596800

9 15 0.103280 0.050156 0.238689 0.000000 0.607875

10 15 0.084192 0.018490 0.211197 0.097334 0.588787

11 15 0.106496 0.019593 0.182335 0.122257 0.569319

12 15 0.106731 0.019829 0.166894 0.144957 0.561589

13 15 0.109806 0.022904 0.154118 0.158241 0.554931

14 15 0.112593 0.025690 0.144115 0.167319 0.550283

15 15 0.112056 0.025154 0.135240 0.177805 0.549746

16 15 0.110316 0.029497 0.130178 0.182003 0.548006
17 15 0.107411 0.033998 0.125961 0.185326 0.547304

Table 4.10: Results for Case 5: 13 DV, c = 15, Half Standard Deviation method

CD (CL=0.733)
0.68 0.70667 0.73333 0.752 0.76 Max CD Min CD St Dev CD range

1 0.014484 0.014528 0.014762 0.015181 0.015181 0.014484 0.0003192 0.000697

2 0.014477 0.014529 0.014762 0.015016 0.015016 0.014477 0.0002469 0.000540

3 0.014609 0.014613 0.014758 0.014954 0.014954 0.014609 0.0001627 0.000345

4 0.014724 0.014680 0.014746 0.014912 0.014912 0.014680 0.0001015 0.000232

5 0.014789 0.014724 0.014752 0.014888 0.014888 0.014724 0.0000718 0.000164

6 0.014815 0.014747 0.014763 0.014874 0.014874 0.014747 0.0000574 0.000127

7 0.014824 0.014761 0.014776 0.014865 0.014865 0.014761 0.0000476 0.000105

8 0.014834 0.014773 0.014788 0.014857 0.014857 0.014773 0.0000388 0.000083

9 0.014821 0.014769 0.014790 0.015411 0.014842 0.015411 0.014769 0.0002722 0.000642

10 0.015043 0.014938 0.014788 0.015056 0.014835 0.015056 0.014788 0.0001202 0.000268

11 0.014911 0.014888 0.014822 0.015011 0.014860 0.015011 0.014822 0.0000713 0.000189

12 0.014921 0.014908 0.014836 0.014966 0.014867 0.014966 0.014836 0.0000501 0.000129

13 0.014910 0.014912 0.014848 0.014942 0.014874 0.014942 0.014848 0.0000368 0.000095

14 0.014889 0.014901 0.014848 0.014944 0.014877 0.014944 0.014848 0.0000351 0.000096

15 0.014882 0.014914 0.014867 0.014913 0.014885 0.014914 0.014867 0.0000205 0.000047

16 0.014877 0.014913 0.014870 0.014908 0.014888 0.014913 0.014870 0.0000189 0.000043
17 0.014880 0.014916 0.014871 0.014903 0.014888 0.014916 0.014871 0.0000181 0.000045

In Case 7 c = 15 is used instead, with predictably more stable results as shown in Tables

4.13-4.14. There are no wild fluctuations in σ and the maximum CD, as is graphically shown

in Figure 4.13. No design points are dropped, and the final solution has lower CD values at

the design point than all the other cases, and also a lower standard deviation. The airfoil is, of

course, not as smooth as the cases with 12 geometric design variables instead of 23; there is a

small dent near the leading edge (Figure 4.14). The Mach number contour graph at M=0.76 is

shown in Figure 4.15, while CP plots are shown for all the design points in Figure 4.16. They

are very similar to Case 1 (Figure 4.2), with notable exceptions where the dip in the lower

surface occurs near x/c=0.1.

These cases demonstrate the various sensitivities of the automated weight formula (Eq. 4.1),

with or without the standard deviation method variation. However in general the automated

weight method has proven very effective at achieving equal drag coefficients across all the design

points, even if a drastically off-design fifth point is added to an otherwise equalized set of points.
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Figure 4.9: Standard deviation of drag and maximum drag at the design points (CL = 0.733)
for cases 4 and 5.
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Figure 4.13: Standard deviation of drag and maximum drag at the design points (CL = 0.733)
for cases 1, 6 and 7.

This incidentally also demonstrates a rough system for adding design points to smooth out the

performance of the airfoil over its Mach number range. Automating this process makes the

designer’s task of achieving specific drag targets easier and more automated, allowing more

attention to be paid to other areas. With modification, the method could potentially be used

to optimize for various non-equal CD profiles.
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Table 4.11: Weights for Case 6: 23 DV, c = 30

Weights (Mach No.)
c 0.68 0.70667 0.73333 0.752 0.76

1 0.250000 0.250000 0.250000 0.250000

2 30 0.044710 0.155513 0.222473 0.577303

3 30 0.005889 0.132202 0.217104 0.644806

4 30 0.069464 0.129667 0.167673 0.633196

5 30 0.008927 0.110014 0.194208 0.686851

6 30 0.100336 0.120044 0.137926 0.641694

7 30 0.005055 0.098756 0.195828 0.700360

8 30 0.119023 0.117659 0.124199 0.639119

9 30 0.119023 0.117659 0.124199 0.639119

10 30 0.250460 0.139977 0.042336 0.567227

11 30 0.050011 0.085249 0.207342 0.657398

12 30 0.068398 0.097306 0.176678 0.657617

13 30 0.039252 0.095330 0.183321 0.682096

14 30 0.068750 0.103267 0.156757 0.000000 0.671227

15 30 0.000000 0.037365 0.112563 0.224326 0.625746

16 30 0.152038 0.095906 0.037267 0.164560 0.550229

17 30 0.011143 0.076671 0.085014 0.224708 0.602464

18 30 0.161882 0.152571 0.042655 0.132717 0.510176

19 30 0.000000 0.096754 0.085478 0.229772 0.587996

20 15 0.142935 0.160200 0.043606 0.144453 0.508806

21 15 0.065988 0.133157 0.064559 0.188215 0.548080

22 30 0.033436 0.125945 0.072847 0.203202 0.564569

Table 4.12: Results for Case 6: 23 DV, c = 30

CD (CL=0.733)
0.68 0.70667 0.73333 0.752 0.76 Max CD Min CD St Dev CD range

1 0.014176 0.014391 0.014521 0.015211 0.015211 0.014176 0.0004473 0.001035

2 0.014567 0.014597 0.014632 0.014774 0.014774 0.014567 0.0000918 0.000208

3 0.014869 0.014739 0.014647 0.014721 0.014869 0.014647 0.0000924 0.000222

4 0.014528 0.014608 0.014698 0.014751 0.014751 0.014528 0.0000985 0.000223

5 0.014964 0.014803 0.014673 0.014695 0.014964 0.014673 0.0001330 0.000291

6 0.014450 0.014595 0.014749 0.014751 0.014751 0.014450 0.0001440 0.000300

7 0.015033 0.014846 0.014667 0.014687 0.015033 0.014667 0.0001700 0.000366

8 0.014407 0.014587 0.014775 0.014754 0.014775 0.014407 0.0001715 0.000369

9 0.015084 0.014868 0.014662 0.014682 0.015084 0.014662 0.0001965 0.000422

10 0.014228 0.014512 0.014941 0.014795 0.014941 0.014228 0.0003154 0.000712

11 0.014753 0.014741 0.014657 0.014717 0.014753 0.014657 0.0000427 0.000096

12 0.014623 0.014676 0.014693 0.014728 0.014728 0.014623 0.0000437 0.000105

13 0.014786 0.014743 0.014676 0.014706 0.014786 0.014676 0.0000475 0.000110

14 0.014623 0.014671 0.014725 0.015388 0.014721 0.015388 0.014623 0.0003172 0.000765

15 0.015283 0.015051 0.014719 0.014757 0.014718 0.015283 0.014718 0.0002530 0.000565

16 0.014358 0.014656 0.014820 0.014851 0.014831 0.014851 0.014358 0.0002081 0.000493

17 0.015307 0.015121 0.014827 0.014703 0.014703 0.015307 0.014703 0.0002705 0.000605

18 0.014273 0.014538 0.014779 0.014912 0.014865 0.014912 0.014273 0.0002664 0.000639

19 0.015254 0.015057 0.014795 0.014688 0.014703 0.015254 0.014688 0.0002476 0.000567

20 0.014296 0.014540 0.014775 0.014886 0.014864 0.014886 0.014296 0.0002512 0.000590

21 0.014564 0.014688 0.014764 0.014797 0.014804 0.014804 0.014564 0.0001005 0.000241

22 0.014795 0.014798 0.014770 0.014764 0.014767 0.014798 0.014764 0.0000164 0.000034
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Table 4.13: Weights for Case 7: 23 DV, c = 15

Weights (Mach No.)
Iteration c 0.68 0.70667 0.73333 0.753 0.76

1 0.25000 0.25000 0.25000 0.25000

2 15 0.14736 0.20276 0.23624 0.41365

3 15 0.07167 0.17371 0.24624 0.50837

4 15 0.01497 0.15141 0.24749 0.58613

5 15 0.01598 0.14456 0.23031 0.60915

6 15 0.02188 0.13996 0.21372 0.62444

7 15 0.03808 0.13543 0.19683 0.62966

8 15 0.04999 0.13010 0.18127 0.00000 0.63865

9 15 0.01311 0.09592 0.15396 0.11384 0.62317

10 15 0.05062 0.10483 0.12189 0.12695 0.59571

11 15 0.04409 0.10294 0.10973 0.15193 0.59131

12 15 0.04441 0.10647 0.09879 0.16495 0.58539

13 15 0.04430 0.11093 0.09259 0.17228 0.57990

14 15 0.04529 0.11475 0.08648 0.17772 0.57576

15 15 0.04622 0.11815 0.08234 0.18116 0.57214

16 15 0.04637 0.12041 0.07901 0.18481 0.56940
17 15 0.04560 0.12302 0.07655 0.18732 0.56751

Table 4.14: Results for Case 7: 23 DV, c = 15

CD (CL=0.733)
0.68 0.70667 0.7333 0.752 0.76 Max CD Min CD St Dev CD range

1 0.014176 0.014391 0.014521 0.015211 0.015211 0.014176 0.0004473 0.001035

2 0.014254 0.014435 0.014586 0.014915 0.014915 0.014254 0.0002801 0.000661

3 0.014351 0.014484 0.014576 0.014873 0.014873 0.014351 0.0002216 0.000522

4 0.014683 0.014652 0.014611 0.014769 0.014769 0.014611 0.0000668 0.000157

5 0.014720 0.014679 0.014632 0.014757 0.014757 0.014632 0.0000538 0.000125

6 0.014779 0.014698 0.014649 0.014736 0.014779 0.014649 0.0000553 0.000130

7 0.014750 0.014682 0.014642 0.014738 0.014750 0.014642 0.0000503 0.000108

8 0.014634 0.014647 0.014681 0.015378 0.014740 0.015378 0.014634 0.0003169 0.000744

9 0.015039 0.014897 0.014694 0.014918 0.014717 0.015039 0.014694 0.0001452 0.000344

10 0.014745 0.014768 0.014718 0.014901 0.014756 0.014901 0.014718 0.0000713 0.000183

11 0.014784 0.014800 0.014729 0.014847 0.014754 0.014847 0.014729 0.0000452 0.000118

12 0.014781 0.014804 0.014751 0.014818 0.014755 0.014818 0.014751 0.0000294 0.000067

13 0.014784 0.014798 0.014749 0.014806 0.014759 0.014806 0.014749 0.0000246 0.000057

14 0.014782 0.014794 0.014757 0.014795 0.014760 0.014795 0.014757 0.0000182 0.000037

15 0.014777 0.014787 0.014760 0.014794 0.014763 0.014794 0.014760 0.0000150 0.000034

16 0.014770 0.014787 0.014762 0.014786 0.014764 0.014787 0.014762 0.0000119 0.000025
17 0.014750 0.014774 0.014761 0.014782 0.014769 0.014782 0.014750 0.0000125 0.000033
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Figure 4.14: Case 7, 23 DV, c = 15; Mach number/drag sweeps and airfoil
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Chapter 5

Multiple Mach Number and Lift

Coefficient Problems

5.1 Nine-point General Cases

All the previous multi-point cases have been multiple Mach number cases only, with only the

Mach number being different between design points. The one exception is the first Pareto front

case, which varied only the CL target. However, since airfoils have to be designed for a variety

of conditions, it is useful to consider the problem of a case with design points that have both

different Mach number and C∗

L, as well as having even more design points. A properly specified

problem that takes into account all the various flying conditions and requirements will involve

many design points; therefore this type of problem needs to be explored.

For these multiple Mach number and C∗

L-varying problems, there are nine design points. For

the first case, three freestream Mach number conditions, M=0.68, 0.73, and 0.76, are combined

with three lift coefficient targets, C∗

L=0.65, 0.733, and 0.77 in each possible combination, with

C∗

D=0.01. The usual RAE 2822 airfoil with 13 design variables is used, and the following

thickness constraints are included: t/c ≥ 0.0253 at x/c = 0.01, t/c ≥ 0.121 at x/c = 0.35,

t/c ≥ 0.0137 at x/c = 0.924, and t/c ≥ = 0.001516 at x/c 0.99. The weightings used are:

ωL=1.0, ωD=0.1, ωP=1.0, and the design point weightings are even, w|Mi=1.0. As always,

fully turbulent flow is assumed.

The Mach number/drag profile for Case 1 is plotted in Figure 5.1, as well as the pressure

distributions for two design points: M=0.76 with CL=0.733 and 0.77. The drag profile is also

compared to the initial design, the RAE 2822, at the respective conditions. At CL=0.77 the

41
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Figure 5.1: Nine-point Case 1.

CD curve shows a large drag reduction at the higher Mach number conditions (M=0.73 and

0.76) with very little traded off at M=0.68. The same significant improvement for the other

two lift conditions, CL=0.733 and 0.65, is apparent at M=0.76. However, for CL=0.65 there

is a larger increase in CD at the lowest design point Mach number. The pressure distributions

for M=0.76 show that the shock has been weakened. Comparing the Mach number contours

for the surrounding flow field, the large shocks displayed with the RAE 2822 in Figure 5.2 are

significantly reduced for the Case 1 contours in Figure 5.3. The shock-induced separation also

disappears.

Case 2 is identical to Case 1 except for using the 23-design variable parametrization mentioned

earlier, from a 25 control-point B-spline. The resulting Mach number/drag sweeps are shown in
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Figure 5.2: RAE 2822 Mach number contour graph at a) M=0.76, CL=0.733, b) M=0.76,
CL=0.77.
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Figure 5.3: Nine-point Case 1 Mach number contour graph at a) M=0.76, CL=0.733, b)
M=0.76, CL=0.77.
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Figure 5.4: Nine-point Case 2 (23 DV instaed of 13 DV).

Figure 5.4, with the Mach number contours shown in Figure 5.5. Comparing Cases 1 and 2 in

Figure 5.6 shows an approximately 2% CD reduction at M=0.76, CL=0.77 and 0.733 resulting

from using more design variables. At M=0.68, the improvement is less than 1%, and it is

even smaller at other design points. These improvements come at a cost, however, as off-design

performance is worsened, such as at M=0.7, CL=0.77. The greater geometric flexibility allows a

more uneven CD profile for the airfoil. The pressure distributions and airfoil shape also display

a notch near the lower surface leading edge (Figure 5.4).

Case 3 is a 9-point problem with conditions identical to Case 1 (13 design variables), but with

lower lift coefficient targets: C∗

L = 0.65, 0.715, and 0.75. The same freestream M values are

used. Figure 5.7 shows the Mach number/drag sweeps for all three C ∗

L values compared to the

initial RAE 2822 airfoil. The highest CD curve for the highest lift coefficient target CL=0.75
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Figure 5.5: Nine-point Case 2 Mach number contour graph at a) M=0.76, CL=0.733, b)
M=0.76, CL=0.77.
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Figure 5.7: Nine-point Case 3.

does not show as clearcut an improvement as the CL=0.77 curve in Case 1 (Figure 5.1); while

there is again a large drag reduction at M=0.76, there is a larger trade-off in performance

around M=0.68. However for the three design points at CL=0.65, which are shared with Case

1, Case 3 does manage a small drag reduction: 1.2% at M=0.76, 0.7% at M=0.73, and 0.4%

at M=0.68. This is likely because the other 6 design points have a closer CL target to the

CL=0.65 design points than in Case 1, leading to a slightly easier optimization problem. It

may also be because the highest CL condition, C∗

L=0.75, did not show as broad an improvement

over the Mach number range as the C∗

L=0.77 points did in Case 1. Figure 5.8 shows the shock

wave reduction in Mach contours for the initial and final airfoils in Case 3.

Case 4 has a more compact set of design point conditions than the previous 9-point cases,

with Mach number range M=0.68, 0.705, and 0.73 and C ∗

L=0.71, 0.725, and 0.74. Since the

highest M and C∗

L are lower than the previous cases, and the design point conditions are closer

to each other in general, this optimization problem is clearly easier than the previous cases. All

three CD vs. M curves fall lower than the original RAE 2822 design at the same conditions, as

shown in Figure 5.9. The improvement in the Mach number contour field is shown in Figure

5.10. While there were nine design points competing for drag minimization, the fact that the

conditions were similar offered a predictable result, a broad improvement at all points. The

airfoils for Cases 3 and 4 are shown in Figure 5.11.
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Figure 5.8: Mach number contour graph at M=0.76, CL=0.75, for a) RAE 2822, b) Case 3.
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Figure 5.10: Mach number contour graph at M=0.73, CL=0.74, for a) RAE 2822, b) Case 4.
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Figure 5.11: Final airfoils for nine-point cases 3 and 4.
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5.2 Nine-point Automated Weights Cases

The multiple Mach number and lift coefficient target problem can be addressed with the auto-

mated weighting scheme discussed in the previous chapter, again with the goal being equalizing

CD between the different M values. However, since it is unrealistic to equalize the drag co-

efficients (across several Mach numbers) between design points with different CL targets, Eq.

4.1 is applied to each set of M points with the same C ∗

L as if it were a three point multi-point

problem. Dividing the resulting weights by three conveniently makes them sum to one for a

9-point problem. The new weights are then used in the next iteration, as outlined before.

Case 5 uses this method on Case 1 in the previous section, with c = 15. The resulting weights

and CD values can be found in Tables 5.1 and 5.2. Table 5.3 shows useful values such as the

sum of the standard deviation of each set of three design points at the same C ∗

L, the sum of the

maximum CD from each set, and the standard deviation of all nine points taken together. The

case is run for 6 iterations, at which point the sum of the standard deviations starts to rise; the

best iteration is the fifth. At this point, two of the design points have been dropped, CL=0.77,

M=0.73, and CL=0.65, M=0.68. By the fifth iteration, the sum of the maximum CD for each

set of lift coefficient targets is decreased by 2.8%, and the minimum CD sum increased by 1.8%

(after the first iteration, not from the initial RAE 2822 airfoil). The sum of standard deviations

goes down to 0.000806. The CD values at M=0.76 go down an average of 3.6% after the first

iteration, however those at M=0.73 and 0.68 increase an average of 2.1%. Airfoil shapes and

Mach number/drag sweeps are shown in Figure 5.12.

A problem with the method used in the previous case is that the sum of the weights for each

set of design points with the same C∗

L is kept fixed. The optimization runs might generate a

better airfoil if the weights were allowed to bias over time towards the more difficult, higher CL

target design points. To do this, a modified form of Eq. 4.1 is used:

wnew
i =

∑
NC∗

L

i=1
CDi|C∗

L
∑N

i=1
CDi



wold
i

N

NC∗

L

+ c





CDi|C∗

L

∑
NC∗

L

i=1
CDi|C∗

L

−
1

NC∗

L







 (5.1)

where NC∗

L
is the number of sampling points at a specific C∗

L, and CDi|C∗

L
is the CD at a specific

C∗

L. Since the drag coefficients at the higher C∗

L design points will be higher, the weights biased

towards this set by the first term, which is the ratio of CD totals between one set of C∗

L points

and all the points.
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Table 5.1: Nine-point Case 5 weights.

Weights

CL=0.65 CL=0.733 CL=0.77

M = 0.68 0.73 0.76 0.68 0.73 0.76 0.68 0.73 0.76

1 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111

2 0.07502 0.10062 0.15769 0.06415 0.08823 0.18095 0.03361 0.06597 0.23376

3 0.05107 0.09306 0.18920 0.09583 0.05832 0.17919 0.06911 0.02035 0.24388

4 0.02333 0.08433 0.22568 0.11365 0.03259 0.18710 0.08217 0.00000 0.25117

5 0.000000 0.074579 0.258754 0.127993 0.008092 0.197248 0.085666 0.000000 0.247667

6 0.000000 0.061769 0.271564 0.138475 0.000000 0.194858 0.092629 0.000000 0.240704

Table 5.2: Nine-point Case 5 drag coefficients.

CD

CL=0.65 CL=0.733 CL=0.77

M = 0.68 0.73 0.76 0.68 0.73 0.76 0.68 0.73 0.76

1 0.013659 0.013874 0.014352 0.014376 0.014589 0.015412 0.014877 0.015180 0.016750

2 0.013850 0.013988 0.014318 0.015198 0.014647 0.014899 0.015998 0.015236 0.015760

3 0.013800 0.013960 0.014341 0.015028 0.014640 0.014940 0.015790 0.015225 0.015839

4 0.013791 0.013954 0.014337 0.014989 0.014643 0.014951 0.015742 0.015228 0.015863

5 0.013803 0.013963 0.014321 0.015032 0.014648 0.014943 0.015796 0.015230 0.015839

6 0.013770 0.013935 0.014316 0.014909 0.014634 0.014984 0.015641 0.015226 0.015944

Table 5.3: Nine-point Case 5 performance characteristics.

Σ St. Dev. St. Dev. Σ Range Σ Min CD Σ Max CD

1 0.001908 0.000930 0.003603 0.042912 0.046515

2 0.000906 0.000748 0.001781 0.043733 0.045514

3 0.000822 0.000728 0.001543 0.043665 0.045208

4 0.000807 0.000727 0.001527 0.043661 0.045189

5 0.000806 0.000730 0.001512 0.043681 0.045192

6 0.000825 0.000734 0.001615 0.043629 0.045244
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Figure 5.12: Mach number/drag sweeps and airfoils for nine-point Cases 5 and 6.

This new formula is used in Case 6, with the results listed in Tables 5.4-5.6. Mach number

contour graphs for two design points are shown in Figure 5.13. The case is run through 8

weighting iterations, reducing the sum of the standard deviations to 0.000775, 0.000031 lower

than Case 5. The sum of the maximum CD values is 0.2% lower than Case 5, while the sum

of the minimums is 0.15% higher. The average drag coefficient at M=0.76 is reduced by 3.5%

after the first iteration, slightly less than Case 5, while the rest are increased by an average of

1.9%, slightly more than Case 5. Overall, the design points at CL=0.77 are better improved,

while CD is increased for all three CL=0.65 points after the first iteration. This makes sense

given that the weightings became biased towards the higher lift coefficient target. The final

totals for the weights were 0.48 for CL=0.77, 0.28 for CL=0.733, and 0.24 for CL=0.65. Several
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Figure 5.13: Nine-point Case 6 Mach number contour graph at a) M=0.76, CL=0.733, b)
M=0.76, CL=0.77.

design points were also dropped midway, as shown in Table 5.4, effectively changing the original

9-point problem into a 6-point problem. However, after the design points were dropped, CD at

those points barely changed. In this case, the automated weighting method may have pointed

out redundant design points. Final pressure distributions for all nine design points are shown

in Figure 5.14, and all show the familiar shift in loading towards the trailing edge, with the

mid-chord shocks at reduced at M=0.73 and 0.76.

The Mach number/drag sweeps and airfoils for Cases 5 and 6 are shown in Figure 5.12, along

with a comparison to the RAE 2822 initial design (which shows that all three cases showed

drastic drag reductions at higher Mach numbers). A comparison of the drag sweeps between

Case 6 and Cases 1 and 2 (13 and 23 DV, which did not use the automatic weighting method)

is shown in Figure 5.15. Except at CL=0.65, Case 6 significantly outperforms both Cases 1

and 2 at M=0.76. Of course this is paid for by a trade-off in the lower Mach number range, at

least partially an effect of the drag equalization goal of Case 6. A comparison of the airfoils for

Cases 1, 2, and 6 is shown in Figure 5.16. The 13 design variable shapes are similar.

The 9-points cases show the behaviour of OPTIMA in a design cases with many design points,

simultaneously across different Mach numbers and lift coefficient targets. In these cases, trade-

offs have to be considered not only between performance at different Mach number conditions,

but also between different lift requirements. A design case with design points that are spread

too far across several difficult conditions will have higher greater problems and trade-offs than



5.2. NINE-POINT AUTOMATED WEIGHTS CASES 53

Table 5.4: Nine-point Case 6 weights.

Weights

CL=0.65 CL=0.733 CL=0.77

M = 0.68 0.73 0.76 0.68 0.73 0.76 0.68 0.73 0.76

1 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111 0.11111

2 0.07084 0.09501 0.14890 0.06418 0.08827 0.18104 0.03547 0.06961 0.24667

3 0.04194 0.08204 0.17285 0.09552 0.05830 0.17982 0.07523 0.02522 0.26907

4 0.01235 0.06753 0.19550 0.11261 0.03273 0.18235 0.09984 0.00000 0.29709

5 0.000000 0.051411 0.209659 0.120073 0.009505 0.179138 0.115822 0.000000 0.314392

6 0.000000 0.036018 0.217304 0.123039 0.000000 0.172357 0.127256 0.000000 0.324027

7 0.000000 0.022371 0.223315 0.121332 0.000000 0.166870 0.133465 0.000000 0.332648

8 0.000000 0.010699 0.228357 0.119268 0.000000 0.162022 0.139002 0.000000 0.340651

Table 5.5: Nine-point Case 6 drag coefficients.

CD

CL=0.65 CL=0.733 CL=0.77

M = 0.68 0.73 0.76 0.68 0.73 0.76 0.68 0.73 0.76

1 0.013659 0.013874 0.014352 0.014376 0.014589 0.015412 0.014877 0.015180 0.016750

2 0.013819 0.013974 0.014331 0.015176 0.014628 0.014884 0.015980 0.015213 0.015730

3 0.013811 0.013974 0.014372 0.015048 0.014654 0.014929 0.015814 0.015229 0.015791

4 0.013806 0.013977 0.014396 0.015002 0.014668 0.014940 0.015757 0.015234 0.015792

5 0.013805 0.013977 0.014401 0.014990 0.014669 0.014942 0.015740 0.015232 0.015793

6 0.013802 0.013982 0.014418 0.014952 0.014677 0.014958 0.015690 0.015230 0.015799

7 0.013804 0.013986 0.014419 0.014938 0.014668 0.014951 0.015675 0.015219 0.015789

8 0.013807 0.013989 0.014421 0.014940 0.014670 0.014952 0.015676 0.015218 0.015784

Table 5.6: Nine-point Case 6 performance characteristics.

Σ St. Dev. St. Dev. Σ Range Σ Min CD Σ Max CD

1 0.001908 0.000930 0.003603 0.042912 0.046515

2 0.000928 0.000745 0.001827 0.043660 0.045487

3 0.000822 0.000717 0.001540 0.043694 0.045234

4 0.000794 0.000705 0.001483 0.043708 0.045190

5 0.000790 0.000702 0.001478 0.043706 0.045184

6 0.000779 0.000693 0.001465 0.043710 0.045175

7 0.000777 0.000687 0.001468 0.043692 0.045159

8 0.000775 0.000685 0.001462 0.043695 0.045156
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Figure 5.14: Case 6, Cp graphs for all nine design points.
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Figure 5.15: Comparison of Mach number/drag sweeps for the nine-point Cases 1, 2, and 6.

those that are more concentrated on a narrower set of conditions. The automated weighting

formula can also be applied to such problems. Allowing the formula to show unequal bias

between the different sets of points with the same C ∗

L proved slightly more advantageous in

this case. It also showed that certain design points can be dropped with apparently little

disadvantage, simplifying the problem and identifying possibly redundant design points, which

will improve as long as the rest of the design points do so.
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Chapter 6

Conclusions

A basic examination of the performance trade-offs, specifically the drag coefficient, in two-

point optimization problems is conveniently summarized by the Pareto front plots (Figures

2.1 and 2.3). In these cases the unequal trade-off between the two design points combined

with a designer’s varying needs show that not all the points on the Pareto front are optimal

cases in a practical sense. Certain points on the front are simply better than others, such as

where the trade-offs become extremely favourable due to the steepness in the Pareto front.

Different points on the front can also be considered desirable if further conditions are listed as

being important to the designer (minimax CD, integral of CD), and also indicate the preferable

weightings to be used in such situations. While any coupling of weight values for the two-point

design will produce a technically optimal solution (since it has been optimized), certain values

prove advantageous in other respects.

The issue of weightings is further explored in the testing of an automated weighting formula

(Eq. 4.1) for 4 and 5-point problems. The arbitrary goal of equalizing the drag coefficients in

a multiple Mach number problem was met satisfactorily through the use of the formula, which

reduced the standard deviation of the CD values at the design points. The automated weighting

formula is sensitive to the value of c, which, if set too high, can destabilize the problem over

several iterations, or cause a repetitive cyclic trade-off that skips over the compromise solutions

in between. Obviouslt a lower c can be chosen, or the method can be tempered by using the

standard deviation variant method, although the two have very similar effects. The advantages

of the latter may be in speeding up the process, although this is not the primary concern. If

equal drag was desired across several Mach number values, the automated weight formula can

successfully drive the solution towards that goal.

The automated weights formula can also reveal how certain design points can become redun-

57
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dant. In one 9-point case (Table 5.4), several weights were reduced to zero, and yet the drag at

those design points barely changed after they were taken out of the optimization problem. This

can indicate that some design points, while perhaps important to a designer, do not necessarily

need to be specified by the designer since improvements at other design points will have a

desirable effect on these points anyways.

The 9-point cases also demonstrate the various possible trade-offs in a design problem with

many design points, spread across several CL and M values. The further the design points

are from each other, the more complicated the trade-offs become, as several interacting factors

compete with each other. This is one of the dangers, of course, of over-specifying a problem.

More design points means a more difficult design problem, which may not satisfy a designer’s

requirements better than a problem which specifies all the requirements as part of the opti-

mization problem (hence the advantage to simplifying the case by removing possible redundant

design points). Problems with a large number of design points can reach a better solution

by adding more design variables. However this can result in worse performance at off-design

points, requiring the addition of more design points, which can in turn create a more difficult

problem. It can also mean tolerating irregularities in the final airfoil shape, or having to specify

more thickness constraints, which further limits the optimization process.

This leads to consideration of the appropriate method of geometrically constraining a problem.

If the design requirements allow it, alternative constraint methods such as area constraints or a

floating thickness constraint (not fixed to one chord location) can prove advantageous. They can

give the optimization algorithm more freedom to find an optimal solution. The floating thickness

constraint resulted in a maximum thickness location further towards the trailing edge than the

initial RAE 2822 design. It also gave a virtually identical solution to the case that chose that

same chord location with a fixed thickness constraint, meaning there is little drawback to using

the floating thickness constraint in the cases shown. The area constraint proved advantageous

in other ways, producing a slightly smoother-looking airfoil and keeping more of the mid-chord

pressure loading than the rest of the cases. It tends to reduce the maximum thickness of the

airfoil shape when compared to the thicnkess constraints; the thickness constraints, on the

other hand, tend to have lower areas. If minimum thickness requirements are not an issue to

the designer but area (or volume) is, the area constraint would be the more appropriate choice.

A variety of issues confront the designer formulating and running a multi-point optimization

problem. The designer must understand the nature of the possible performance trade-offs when

a problem is formulated, and needs to choose the right methods and techniques in order to apply

appropriate weights, constraints, and design point choices to get the best solution from an

optimization process. Improving the designer’s understanding of these issues, and automating
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as many inputs as possible, will help the designer get the most out of an optimization package.
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