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Abstract

A Newton-Krylov Approach to Aerodynamic Shape Optimization in Three Dimensions

Timothy Man-Ming Leung

Doctor of Philosophy

Graduate Department of Aerospace Science and Engineering

University of Toronto

2010

A Newton-Krylov algorithm is presented for aerodynamic shape optimization in three dimen-

sions using the Euler equations. An inexact-Newton method is used in the flow solver, a

discrete-adjoint method to compute the gradient, and the quasi-Newton optimizer to find the

optimum. A Krylov subspace method with approximate-Schur preconditioning is used to solve

both the flow equation and the adjoint equation. Basis spline surfaces are used to parameterize

the geometry, and a fast algebraic algorithm is used for grid movement. Accurate discrete-

adjoint gradients can be obtained in approximately one-fourth the time required for a converged

flow solution. Single- and multi-point lift-constrained drag minimization optimization cases are

presented for wing design at transonic speeds. In all cases, the optimizer is able to efficiently

decrease the objective function and gradient for problems with hundreds of design variables.
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Chapter 1

Introduction

1.1 Motivation

In the competitive business of commercial aviation, the type of aircraft that is designed, as well

as what methodology is used to design those aircraft, depends heavily on what is the most cost

effective. To the airlines (“operators”), the cost of ownership of an aircraft includes cost of

purchase or lease, operating costs, and maintenance costs. In particular, fuel cost is the most

significant expense for an operator. From the point of view of the aircraft manufacturers, there is

the cost of development of an aircraft–both in time and in human resources–and manufacturing

costs. For example, the development costs of the Airbus A380 and Boeing 787 programs are

estimated at e 11 billion and US$10 billion respectively, although exact figures are difficult to

obtain. Finally, there are also environmental concerns, most significantly through greenhouse

gas (GHG) emissions at high altitudes, and the impact aviation has on global climate change,

but this may include noise and pollution generated near airports as well.

1.1.1 Airline Profitability

The price of crude oil has risen dramatically in the past decade, from a low of $11USD a barrel

in early 1999 to more than $140USD in the summer of 2008 [136, 194], before retreating to

below $50USD in early 2009 amidst a global economic recession. As jet fuel prices are closely

linked to crude oil prices [78], this means significant uncertainties in fuel cost. Since 2006, fuel

cost has replaced labour cost as the single most significant expense for an operator, accounting

for 25.5% of the cost globally [2] (Table 1.1). In addition, the volatility of fuel prices is often

cited as a main contributor to financial difficulties in the airline industry, which resulted in

more than 25 airlines declaring bankruptcy worldwide in 2008.1 In order to cope, airlines have

1Through a process called hedging, operators sign long-term contracts with fuel suppliers to lock in future
deliveries of fuel at a fixed cost to limit the uncertainty over future costs. But as American and European airlines

1
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North American Europe Asia Pacific All Major Airlines

2001 2006 2001 2006 2001 2006 2001 2006

Labour 36.2% 25.2% 27.2% 25.8% 17.2% 17.2% 28.3% 23.3%

Fuel 13.4% 26.6% 12.2% 20.5% 15.7% 30.4% 13.6% 25.5%

Aircraft Rental/Lease 5.5% 3.7% 2.9% 3.1% 6.3% 2.4% 5.0% 3.5%

Table 1.1: Breakdown of operating costs for major airlines.
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Figure 1.1: Aircraft orders for Boeing and Airbus since 1989.

downloaded some of the costs to consumers, usually in the form of fuel surcharges or reduction

of in-flight services. In more drastic measures, many airlines grounded hundreds of their least

fuel efficient aircraft during the summer of 2008 when fuel price was at its peak.

Despite the financial difficulties, the global airline industry is expected to grow. Both Airbus

SAS and The Boeing Company, the world’s two largest aircraft manufacturers, posted record

sales for their commercial jets in recent years, with 1413 and 1341 sold respectively in 2007, and

668 and 777 respectively in 2008 [193, 195]. In contrast, Boeing and Airbus sold only 239 and

284 jets in 2003 (Figure 1.1). This growth in civil transport is aided in part by the tremendous

expansion of the industry in emerging economic markets in Asia and the Middle East. But the

sales figures also suggest that the rising fuel cost is forcing operators to accelerate the renewal

of their fleets, and to retire their less efficient aircraft.

As an aircraft usually has a service life of more than 20 years, the impact of decisions on

what types of aircraft the operators purchase and operate today will remain well into the 21st

century.

had a relatively low proportion of their 2008 fuel supplies hedged, they were especially sensitive to fluctuations
in fuel prices.
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1.1.2 Environmental Concerns

Continuing expansion of the global aviation industry also means increasing environmental im-

pact from air travel. Environmental effects from aviation are due primarily to greenhouse gas

emissions, of which carbon dioxide emission is a main focus, but also includes the formation

of condensation trails (“contrails”), other emissions such as ozone, methane, oxides of nitrogen

and oxides of sulphur, as well as other forms of pollution such as noise and particulates from

unburned fuel.

Carbon dioxide emission is of particular interest because its effects in the atmosphere are

measured in decades while effects from other emissions decrease after hours or days. There is

strong evidence to show that carbon dioxide in the atmosphere is a main contributor to climate

change. In current estimates, GHG emissions from aviation sources account for 2-3% of all

emissions from human sources globally, according to the Intergovernmental Panel on Climate

Change (IPCC). While the percentage has been steady for the past decade, the actual amount

of emission has been rising. In addition, the IPCC estimates that the effects of GHG emissions

at high altitudes are three times more significant than at sea level [150].

However, unlike automobiles–a larger source of GHG emissions–where “green” vehicles

such as hybrids are widely available, there are currently no immediate alternatives to the

air-breathing turbine engine technology used in commercial aircraft. The Royal Commission

on Environmental Pollution (RCEP) in the UK [1], as well as other advocacy groups, propose

a drastic–although unlikely–modal change: abandoning mass air transportation for short-haul

flights in favour of high speed railways that are more environmentally sustainable. However,

more likely ways to address environmental concerns will be through the optimal design of the

aircraft, i.e. improvements in aerodynamics, structures and engine, as well as optimizing the

aircraft’s operation, which may also include streamlining take-off and landing procedures at

airports.

1.1.3 Costs in the Design Cycle

Whether an aircraft design is financially successful depends on whether the manufacturer can

sell enough aircraft to recover the development cost. In the design of civil transportation

aircraft, projected sales of more than 500 are generally needed to justify the development cost.

From the moment where a market for a new aircraft is identified to when that new aircraft

fills that market gap, there is tremendous pressure to shorten the design cycle. Delays in

the design cycle may cost the company sales and profit, and additional development costs

may be downloaded to the operators. In terms of the aerodynamic design, traditionally, the

design process has relied heavily on experimental techniques such as wind-tunnel or flight tests.
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However, these techniques are slow and expensive.

With the improvement in computer technology, wind-tunnel tests during early stages of the

design cycle have largely been replaced by computational fluid dynamics (CFD), which allows

designers to quickly and accurately solve flows around complex shapes. It is now possible to

accurately solve three-dimensional turbulent flows over an entire aircraft in a few hours [118, 94].

From this point of view, CFD is seen as a major revolution to replace expensive experimental

techniques to obtain reliable data on aerodynamic performance. However, merely replacing

wind-tunnel tests with CFD does not address the question of what the optimal design is for

a given objective, and the design process still relies on a cut-and-try approach. As aircraft

become more refined, it becomes increasingly difficult and time-consuming to make even the

slightest improvements. Furthermore, in exploring unconventional aircraft configurations such

as the blended-wing-body, designers do not necessarily have the aid of empirical data that can

guarantee a competitive design, and the cut-and-try approach is expensive and risky at best.

In that sense, aerodynamic shape optimization represents a second revolution in the design

process, by automating and speeding up the process of obtaining the optimal shape.

1.1.4 Trends in Aircraft Design

There are three main trends in the shape design of the next generation of cost effective and

environmentally friendly aircraft. Similar views on this subject have been expressed by Mc-

Masters [119]. All three trends can benefit from an automated shape optimization tool with

short turn-around time.

• Continuing evolution of the current wing-fuselage configuration is the likely approach in

the short term because it does not involve drastic engineering advances. The design

process can be guided by the wealth of empirical data gathered from previous designs.

• Modification of the wing-fuselage configuration may be explored using novel ideas in terms

of wing shapes and placements. Many of the proposed novel approaches are based on

empirical theories. This makes testing them on an optimizer an appealing course of

action.

• A shift to unconventional shapes that represent a more radical departure from traditional

configurations may be a long-term solution. For example, the blended-wing-body config-

uration [191, 103] has been identified as a particularly attractive alternative.
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1.2 Aerodynamic Shape Optimization

1.2.1 Early Research

The idea of aerodynamic shape optimization is not a new concept. According to Gunzburger [59],

as early as 1687, Newton proposed and claimed to have “solved” the problem of minimizing

hydrodynamic resistance on a revolving surface. However, practical application of aerodynamic

optimization has not been realized until recently with the development of high-fidelity CFD

codes and improved computers. The first practical application of aerodynamic optimization

using a gradient-based method is generally credited to Hicks et al. [75]. An optimizer using

the method of feasible directions, based on the conjugate-gradient method, was used to de-

sign airfoil sections at transonic speeds, and the flow solution was obtained using a potential

flow solver. This research was extended to 3D wing design by Hicks and Henne [74] using a

steepest-descent optimizer. Another early application include that of Vanderplaats [184].

The early applications of optimization were the first to focus directly on improving the

performance measures of a geometry. This is in contrast to another well-established design

approach, the inverse design method. In the inverse design method, a desirable target pres-

sure distribution is specified, presumably by an experienced aerodynamicist, and the shape

of the wing or airfoil is adjusted to recover the target. The method was first introduced by

Lighthill [104] in 1945, and this approach was used to design the Liebeck high-lift airfoils [102].

It should be noted that the Liebeck airfoils have been obtained using aerodynamic shape op-

timization by Driver and Zingg [32], without exploiting any knowledge of Stratford pressure

recovery, used in [102]. Other applications of inverse design include Carlson [21], Tranen [181]

and Henne [68]. More recently, Fejtek et al. [41] extended inverse design to 3D in the design

of a complete aircraft. Giles and Drela [48] showed that the cost of an inverse design can be

as low as one flow solve. Their method used the 2D Euler equations coupled with a boundary

layer correction. Generally, the limitation of the inverse method is with difficulties in specifying

a desirable target pressure, especially for problems involving multiple operating conditions and

complex flow features such as flow separation and turbulence. In this thesis, an inverse design

problem is presented to validate the optimizer.

1.2.2 Newton-Krylov Flow Solver

One major challenge in high-fidelity aerodynamic shape optimization is the repeated compu-

tation of the objective function, which requires the flow solution to be solved efficiently. For

gradient-based optimizers, a typical optimization cycle requires several hundred flow solves.

The number is significantly higher with genetic (evolutionary) algorithms, where hundreds or

thousands of flow solutions may be necessary at each generation, depending on the number of
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design variables. To this end, the Newton-Krylov (NK) flow solvers are among the most efficient

approaches to solving the flow equations. The Krylov method GMRES [163] is found to be espe-

cially well-suited for CFD applications. Early work using the NK method can be found in Brown

and Saad [16], Wigton et al. [192], Johann et al. [87], Shakib [172] and Venkatakrishnan and

Mavriplis [189]. Other notable examples of NK solvers can be found in [152, 47, 91, 203, 197].

Summaries of different approaches for NK flow solvers can be found in [203, 90].

As the scale and complexity of the CFD and shape optimization problems increase, so too

does the demand on computing power. The development of the Beowulf-class parallel comput-

ers [177] and standardization of message passing software libraries such as the Message Passing

Interface (MPI) [55] promote parallel methods that are now common in CFD codes. For NK

based flow solvers, two parallel preconditioners for GMRES based on domain-decomposition are

most popular. The first is based on the alternating procedure by Schwarz [170]. Schwarz proved

that a computational domain can be divided into overlapping sub-domains, the governing equa-

tions solved in each sub-domain sequentially (or in parallel), and a converged solution can be

found iteratively. This procedure is used as an effective parallel preconditioner for Krylov meth-

ods. The earliest references to an overall “Newton-Krylov-Schwarz” (NKS) framework include

those of Cai et al. [20], Gropp et al. [56] and Keyes [88], which demonstrated the feasibility of

the method for parallel CFD applications. Venkatakrishnan [187, 188] also described additive

and multiplicative Schwarz methods as parallel preconditioners for GMRES. Other examples

of NKS solvers can be found in [6, 10, 174, 171, 200, 57].

Another domain-decomposition strategy that is gaining popularity is based on the Schur

complement method. Saad and Sasonkina [164] formulated an approximate-Schur precondi-

tioner for a flexible variant of GMRES (“FGMRES”) [161]. At the moment, there are few

examples of using approximate-Schur preconditioners in flow solvers. Hicken and Zingg [73]

is one notable example. Preconditioners based on the Schur complement are more common

in constrained optimization using sequential quadratic programming (SQP) methods, see for

example, Biros and Ghatti [11, 12].

The flow solver used in this thesis is based on work by Nichols and Zingg [139] and Hicken

and Zingg [73] for the 3D Euler equations on structured multi-block grids.

1.2.3 Optimizers

The choice of an optimizer has a profound impact on how the solution to the optimization

problem is obtained, in terms of the computational effort and speed. Optimizers used for aero-

dynamic shape optimization problems can generally be grouped into three classes: (a) gradient-

free methods, (b) gradient-based optimizers, which include both constrained and unconstrained

methods, and (c) one-shot methods.
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The general advantage of a gradient-free method is that the flow solver can be treated as

a black box that is interchangeable with other analysis codes with little modification, thus

avoiding the expensive development cost for gradient calculations (particularly with adjoint

methods). Therefore, these methods are more suitable for one-time use of an optimizer, while

a gradient-based method is more effective when the optimizer and analysis code are used re-

peatedly. This class of methods includes classical direct search methods such as the Nelder-

Mead simplex method [127]. The Nelder-Mead simplex method is rarely used in aerodynamic

shape optimization, for recent examples, see Duvigneau and Visonneau [33] and Désidéri and

Janka [31].

Genetic (evolutionary) algorithms [52], which are loosely based on the process of natural

selection, are the most popular gradient-free methods for aerodynamic shape optimization.

Recent examples of their use can be found in Holst and Pulliam [76], Epstein and Peigin [39],

Obayashi [146], Oyama [148] and Sasaki et al. [168]. Genetic algorithms have several advantages

over other gradient-free and gradient-based methods. The most important is their robustness

against local optima. They can also handle discontinuities in the design space, which are

problematic for gradient calculations. Also, the algorithm can handle discrete and categorical

design variables by using a bitwise representation of the design variables. However, this does

not appear to be a major issue with aerodynamic shape optimization problems.

Genetic algorithms also have several disadvantages compared to gradient-based methods.

The first is the convergence criterion. With genetic algorithms, the fittest members of the

population may not improve for many generations, and it is very difficult to determine whether

the optimizer has converged. In addition, genetic algorithms require a population many times

the number of design variables. For 3D optimization cases with hundreds of design variables

(such as in the design examples in Chapter 8), this could mean thousands of flow solves at

each generation. The need for more processors represents a substantial investment. However,

genetic algorithms can be easily made parallel by assigning distinct processors to compute the

flow solutions. For a comparison between genetic algorithms and gradient-based optimizers, see

Zingg et al. [201].

One-shot methods are also known as all-at-once methods, fully-coupled methods, and the

simultaneous analysis and design approach. The term one-shot is believed to have been coined

by Ta’asan et al. [179]. It is based on the same Lagrangian formulation as the gradient-based

methods (Appendix C), but the flow equations and the first-order optimality conditions are

coupled, thus avoiding repeated flow and gradient evaluations. However, the linear system from

the coupled system is twice the size of the flow equations plus the number of design variables,

and scales linearly with the number of objective functions considered. Gunzburger [59] provides

an excellent overview of the approach. Frank and Shubin [43] compared the one-shot method
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with an SQP optimizer for a one-dimensional nozzle flow problem, and concluded that the one-

shot method is considerably more efficient, but less robust than gradient-based methods. In the

one-shot method of Gatsis and Zingg [46], the update of the state, design and costate (adjoint)

variables are done using the Newton method, with a line-search algorithm. Similar work is also

done by Hazra [66, 65] and Hazra and Jameson [67] for 2D and 3D optimization. This method

uses a pseudo time-stepping with a preconditioner based on reduced SQP methods. The one-

shot method of Iollo et al. [79] is based on loosely coupling the flow and adjoint system, each

of the flow and adjoint systems are solved a few steps before updating. Other applications can

be found in Gumbert et al. [58].

Gradient-based methods remain the most popular approach for aerodynamic shape opti-

mization problems, since they can be the most cost effective approach. A brief comparison

between genetic algorithms and gradient-based optimizers is shown in Table 1.2. There are two

types of gradient-based methods, for constrained and unconstrained problems, depending on

how flow and geometric constraints are handled.

In terms of unconstrained optimization problems, the steepest descent method is most

popular, it was used by Hicks and Henne [74], and is used more recently by Nadarajah and

Jameson [124], Jameson et al. [85], Mavriplis [117], and Jameson et al. [86] for the design of low-

sweep transonic wings. A disadvantage of the steepest descent method is that convergence is

very slow near the optimum. The alternative is to use quasi-Newton methods such as BFGS [17,

42, 53, 173]. Nemec and Zingg [128, 132, 133, 134] applied it with a Newton-Krylov flow solver

in the design of airfoil shapes. Elliott and Peraire [35, 36, 37] also used BFGS in the design of

transonic wing-body configurations and business jets. Nielsen and Anderson [140] used another

quasi-Newton optimizer DFP for unconstrained optimization. A limited-memory variant of

BFGS (L-BFGS) [144] can be used as an alternative for large-scale problems where the number

of design variables is high. Unconstrained optimization has also been applied to optimization

of unsteady flows, see Nadarajah [125] who uses a steepest descent method, and Rumpfkeil and

Zingg [160, 159] using the L-BFGS method. For this thesis, the BFGS optimizer is used.

For constrained optimization problems, optimizers based on sequential quadratic program-

ming (SQP) are most popular. In particular, SNOPT [50] is used most widely in aerodynamic

shape optimization problems. It uses a BFGS update of the Hessian of the Lagrangian. Re-

cently the optimizer is used by Hicken and Zingg [72] in 3D optimization. SNOPT is used

by Kim et al. [89] to optimize the Boeing 747 and business jet configurations, and Carpen-

tieri et al. [24] in the design of airfoil shapes. Liu [105] compared the unconstrained BFGS re-

sults with SNOPT for 2D airfoil design problems, and found that in certain problems, SNOPT

outperforms BFGS. Another optimizer KSOPT [198], which also uses a quasi-Newton update,

is used by Anderson and Venkatakrishnan [9]. Cliff et al. [28] uses the NPSOL [51] optimizer
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Gradient-based Genetic Algorithm

Variables Continuous Discrete, categorical, continuous

Search Local Global

Computational cost Inexpensive (with adjoint) Expensive

Expensive (with finite-difference)

Development time Long (with adjoint) Short

Short (with finite-difference)

Table 1.2: Comparison of genetic algorithms and gradient-based optimizers.

in the design of supersonic transport jets.

1.2.4 Gradient Evaluation

Finite differencing is the simplest approach for obtaining the objective function gradient and

was popular in early research [75, 74, 184]. Its implementation is straightforward; however, its

limitations presented major hurdles preventing the widespread use of gradient-based optimiza-

tion applications. The first disadvantage is that the cost of a gradient evaluation scales with

the number of design variables. The number of design variables in early research was therefore

limited. The second disadvantage is that finite-difference schemes are prone to numerical errors.

The shortcomings of the finite-difference method are further discussed in Section 5.1.1.

A major breakthrough to address the first limitation was the development of the adjoint

method, which was pioneered by Pironneau [151] for optimization of fluid flows, and by Jame-

son [80] for aerodynamic shape optimization. The main advantage of the adjoint method is

that the cost of a gradient calculation can be made nearly independent of the number of design

variables. The method is further divided into the continuous and discrete approaches. In the

continuous approach, the governing equations are first differentiated to formulate the adjoint

equation, and then discretized. In contrast, in the discrete approach, the governing equation

is first discretized, and then differentiated to formulate the adjoint equation. The advantage

of the latter is that the adjoint solver can be easily added to an existing flow solver. Also, the

gradient computed from the discrete approach is exact since the gradient computed is based on

the exact linearization of the discrete equations. However, both approaches have been imple-

mented successfully in aerodynamic design optimization. The first applications by Jameson and

Pironneau use the continuous approach. Other notable examples of the use of this approach

include those of Jameson et al. [83] and Reuther et al. [156, 157] using multi-block structured

grids, and Anderson and Venkatakrishnan [9] using unstructured grids. Other applications us-

ing the continuous approach can be found in [85, 96]. Applications using the discrete adjoint
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approach can be found in [140, 126, 125, 132, 135, 129, 116, 117, 24]. Extensive discussions on

the two approaches can be found in [59, 124, 49]. The adjoint method is also used by Nemec

and Aftosmis [130] and Lee-Rausch et al. [95] to estimate the error of the flow solution.

The direct method, or the flow sensitivity method, follows a similar derivation as the adjoint

method. This method is used in airfoil shape optimization by Wong [196]. The derivation and

discussion of the direct method and the adjoint method are presented in Section 5.1.2. The

efficiency of the direct method compared to the adjoint method depends on the number of

design variables and objective functions: the direct method is more efficient if the number of

objective functions is higher than the number of design variables, while the adjoint method is

more efficient when the number of design variables is higher.

Gradient computation using the complex-step method is another notable alternative to

address the second limitation of the finite-difference method, because it effectively eliminates

subtractive cancellation errors, and the complex step-size can be arbitrarily small [113]. This

method is especially popular in multi-disciplinary optimization (MDO) research. The pros

and cons of the complex-step gradient are discussed in Section 5.1.3. The method was suc-

cessfully applied by Sturdza [178] in the design optimization of supersonic aircraft. New-

man et al. [137, 138] also used the method for the aero-structural design of a wing. Ander-

son et al. [8] analyzed its use for unstructured flow solvers, and found that the complex-step

gradient roughly doubles the flow solver time and memory requirements, but is able to produce

much more accurate gradients at small step-sizes. The complex-step method is often used as

a validation tool to test gradient accuracy; see for example, Martins [110, 111], who used a

coupled adjoint method for aero-structural optimization. The complex-step method is not used

in this thesis, since it requires a complex version of GMRES, which is not readily available.

However, this thesis uses an approach similar to that of Nielsen and Kleb [142], who incorpo-

rated a complex-step method in the formulation of the flow Jacobian matrix for discrete adjoint

gradient calculations. A more general study on the use of complex-step method can be found

in the works by Martins et al. [113, 112].

Automatic differentiation (AD), also known as algorithmic differentiation or computational

differentiation, is based on a systematic application of the chain rule of differentiation to each

operation in a computer program. Because this method is analytical, the AD derivatives are

exact. However, the resulting source code may be difficult to maintain. Popular AD imple-

mentations that have been used for aerodynamic optimization problems include ADIFOR [13],

and more recently, TAPENADE [63]. Bischof et al. [14] used ADIFOR to generate differen-

tiable volume grids for MDO applications. Anderson et al. [8] finds that the cost of using

ADIFOR to evaluate derivatives does not significantly increase with increasing the number of

design variables. TAPENADE is used by Hascoët et al. [64] in minimization of the sonic boom,
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Vàzquez et al. [186] in the design of flexible wings, and Martinelli and Beux et al. [109] in geom-

etry parameterization. Mader et al. [107] use AD to form the Jacobian matrix for computing

the discrete adjoint gradient as an alternative to the complex step. Additional information

about AD methods can be found in Griewank [54].

1.2.5 Geometry Parameterization

Many different approaches to geometry parameterization have been implemented for aerody-

namic shape optimization. Selecting a suitable parameterization strategy requires compromis-

ing between defining a geometry with as few parameters2 as possible, which helps convergence

of the optimizer, and maintaining the greatest amount of flexibility to capture the true optimal

shape, which requires more parameters, but may slow down the optimizer. Surveys and com-

parisons of different geometry parametrization methods can be found in [122, 25, 199, 167, 166].

Maintaining the greatest flexibility requires defining the geometry with a very high number

of design variables. An obvious choice is using the coordinates of the surface grid nodes as

design variables. This approach is used successfully by Jameson [80] and Mohammadi [120]

with a smoothing operator, and more recently in [85, 96]. However, when used in large-scale

3D problems with turbulent flows, the number of design variables may be prohibitively large,

affecting the convergence of the optimizer. The pros and cons of this approach are further

discussed in Appendix B.2.

Other parameterization strategies aim at defining the geometry with fewer design variables.

One notable method is the Hicks-Henne bump function, which belongs to a class of parameter-

ization strategies using analytical shape functions. It was introduced in [74] at a time when the

number of design variables had a profound impact on the cost of gradient evaluation. In this

method, smooth “bumps” (shape functions) are added to a baseline airfoil to change its geom-

etry. The method is used successfully in a wide range of optimization applications. Examples

of this approach can be found in Nadarajah and Jameson [124] and Reuther et al. [157]. Ap-

pendix B.1 presents further discussion on this method, as well as a simple way to generalize it for

3D optimization. The PARSEC method [175] uses engineering airfoil design parameters such

an airfoil thickness, leading-edge curvature and trailing-edge angle, etc. to define the airfoil.

Other geometry parameterization strategies include the class/shape function transformation

technique (the CST method) by Kulfan [92], the control grid method by Anderson et al. [7],

and the embedded Bézier shape parameterization of Désidéri and Janka [31].

Another popular approach is the spline approach, which is used in this thesis. The current

work uses basis splines (B-splines). Examples of B-splines can be found in [133, 134, 45]. B-

2Since design variables are parameters that evolve during the optimization cycle, the two terms can be used
interchangeably.



Chapter 1. Introduction 12

splines are found to be better suited than Bezier curves in allowing more local shape control and

can be easily integrated into a computed-aided design (CAD) environment. Another similar

approach uses non-uniform rational B-splines (NURBS) [165, 97], which further allow closed-

loop curves to be defined. In the B-spline formulation of Fudge and Zingg [45], the B-spline

controls can be grouped together to add another layer of planform variables.

A new trend for geometric parameterization is using a CAD-based approach, which allows

the optimizer direct access to the CAD parameters that define a shape. One promising ap-

proach is the Computational Analysis and Programming Interface (CAPRI) by Haimes [61, 60].

It is used in aerodynamic shape optimization studies such as Jameson et al. [85] and Ne-

mec et al. [131], and in MDO studies such as Deremaux et al. [30], and Choi et al. [27].

1.2.6 Multi-Point Optimization

Many examples of wing design optimization consider only a single operating condition, such

as a fixed Mach number or a fixed lift coefficient (“single-point optimization”). This serves

to prove the effectiveness of an algorithm but is not a practical approach to design. A wing

must operate in a range of conditions in the flight envelope, for example, a range of Mach num-

ber and lift coefficients. Trade-offs and compromises must be made between different operating

conditions to achieve an overall optimum. Nemec and Zingg [135] studied multi-point optimiza-

tion of airfoils using a discrete-adjoint method. Zingg and Elias [204] investigated automatic

selection of sampling points and weights. The work is extended in Zingg and Billing [202] to

include multiple cruise and dive conditions. Studies in multi-point wing design include those

by Reuther et al. [156, 157], Cliff et al. [28], Leoviriyakit and Jameson [96]. Jameson et al. [82]

studied multi-point aero-structural optimization of wings.

1.3 Thesis Objectives

The main objectives of this thesis are:

1. Extend the Newton-Krylov approach pioneered by Nemec and Zingg [128, 133, 132, 134]

(for aerodynamic shape optimization of airfoils in two-dimensions) to wing optimization

in three-dimensions. A comparison of the NK approach with other popular approaches

is shown in Table 1.3. The Newton-Krylov approach is used in the wing design using

structured multi-block grids. Note that structured grids are intended for relatively “clean”

geometries. Structured grid flow solvers are faster than unstructured flow solvers, which

are better suited for more complicated geometries.

In this approach, the inexact Newton method is used in the flow solver while the quasi-
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Newton method is used as the optimizer. A preconditioned Krylov subspace method is

used to solve the linear systems in both the flow solver and the adjoint equations. This

approach had been found to be very robust in a wide range of 2D problems. The Newton-

Krylov approach will form a framework for future optimization with viscous flows, and

eventually as a component for large-scale MDO applications. To achieve this objective,

original contributions are considered in the development and integration of key compo-

nents of the optimizer, including:

• a 3D geometry parameterization technique which will provide the optimizer with

geometric design variables

• an efficient 3D grid perturbation algorithm

• adjoint gradient computation

• an appropriate implementation of the optimizer, and

• implementation of the appropriate geometric constraints

2. Address the issues and challenges in the implementation of the Newton-Krylov approach,

including:

• the accuracy of the discrete adjoint gradient

• the efficiency of the optimizer, and

• the effect the starting geometry may have on optimizer convergence and the final

optimal shape

3. Characterize the performance, efficiency and effectiveness of the new 3D Newton-Krylov

algorithm through application to the design of wings in transonic flows. Design examples

will be shown for single- and multi-point optimization cases using lift-constrained drag

minimization.

1.4 Thesis Outline

The thesis is divided into nine chapters. Following this introduction, Chapter 2 presents the

framework of the optimization problem. The governing equations and flow analysis method

are presented in Chapter 4, and the optimization algorithm is presented in Chapter 5. An

algebraic grid movement algorithm is presented in Chapter 6. The numerical algorithm is

validated through a series of representative cases in Chapter 7. Results from design examples

are presented in Chapter 8. Based on these results, concluding remarks and recommendations
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Flow Solver Gradient Optimizer Geom. Param

Jameson et al. RANS Continuous Adjoint Steepest surface nodes
[82] Structured descent

Mavriplis RANS Discrete Adjoint Steepest surface nodes
[117] Unstructured Multigrid descent

Multigrid

Nielsen & Anderson RANS Discrete Adjoint DFP free-form
[140] Unstructured Preconditioned GMRES deformation

Implicit Euler

Newton-Krylov Euler Discrete adjoint BFGS B-spline
(Current) Structured MB Preconditioned FGMRES control surfaces

Newton-Krylov

Table 1.3: Other gradient-based approaches for 3D aerodynamic shape optimization.

for further research are presented in Chapter 9. Additional information on the development of

this thesis as well as additional results can be found in [101, 100, 99, 98, 205].



Chapter 2

Optimization Problem

2.1 Problem Formulation

The goal of aerodynamic shape optimization is to find a shape parameterized by a set of

design variables X such that a scalar objective function J (also known as the cost function) is

minimized:

min
X

J (X ,Q) (2.1)

Here, Q is the vector of state variables representing the flow solution at each node of the

computational grid. To ensure the optimizer yields a physically realistic shape, a set of equality

and/or inequality constraints may be imposed. For this research, only geometric constraints

that are functions of design variables are considered:

Cj(X ) ≤ 0 (2.2)

In addition, the discrete steady-state flow equations must also be satisfied:

R(X ,Q) = 0 (2.3)

which implicitly defines Q = Q(X ). The flow constraint in this case may be specified by the

discrete Euler equations for inviscid flows, or by the Reynolds-averaged Navier-Stokes (RANS)

equations for viscous and turbulent flows. The Euler equations, discussed in Chapter 4, are used

in this thesis. In practice, the flow solution is first computed for a given X , and the objective

function is computed based on the state variables and design variables, as shown in Figure 2.1.

When the geometric constraints are applied as a penalty term in the objective function, then

the overall optimization problem can be regarded as an unconstrained problem; the optimizer

treats the objective function as a function of design variables alone, i.e. J = J (X ).

15
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-R = 0 J- -

? ?
Q

X

Figure 2.1: Solving for objective function

2.2 Objective Functions

Determining which shape is optimal depends on how optimality is defined. For example, a

wing that is optimized for maximum range at transonic speeds is unlikely to be optimized for

endurance flights at subsonic speeds. Therefore the proper selection of the objective function

is crucial. For aerodynamic shape optimization problems, the objective functions are generally

based on performance measures, such as lift and drag coefficients (CL, CD). In particular,

lift-constrained drag minimization is an important problem to consider. For inverse design

problems, the objective function is based on a prescribed surface pressure distribution. Other

objective functions not considered for this research may include endurance factor [77] or sonic

boom reduction [126].

2.2.1 Lift-Constrained Drag Minimization

In the design of long-range cruise configurations, one of the most important equations in air-

craft design is the Breguet range equation [15, 5], which relates aerodynamic, structural and

propulsion factors that influence the range R of an aircraft. This equation is obtained if the

angle of attack and speed are assumed to be constant during flight.1 For transonic aircraft with

turbofan or turbojet engines, the equation can be expressed in this form:

R =
V

TSFC

L

D
ln

[

1 +
WF

WP + WS + WR

]

(2.4)

where V is the speed of the aircraft, TSFC is the engine’s specific fuel consumption at the flight

altitude, and WF, WS, WP and WR are weights of fuel, structure, payload and reserve fuel,

respectively. When these factors are constant, the range of an aircraft can be optimized by

maximizing aerodynamic efficiency (i.e. lift-to-drag ratio L/D). To highlight the importance

of aerodynamic efficiency, consider an aircraft with a similar configuration as a Boeing 737-

900ER.2 According to (2.4), for a fixed range, a 1% drag penalty in drag will result in about

1Such conditions will result in a cruise-climb flight path. Note that the range equation for a different type of
flight path would be different, such as the case with altitude and angle of attack held constant. Derivations of
those equations can be found in Appendix A.

2The empty weight of a 737-900ER is about 42500kg, the maximum take-of weight is 85000kg. The aircraft
has a fuel capacity of 24300L.
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4% reduction in payload weight.

The goal of the lift-constrained drag minimization problem is to improve the aerodynamic

efficiency while maintaining a required lift. For level flight, it is required that lift equals to

weight, i.e. L = W . For this type of problem, the objective function is of the form:

J = ωL

(

1 − L
L∗

)2

+ ωD

(

1 − D
D∗

)2

(2.5)

where

L = CL · S
D = CD · S

are the lift and drag coefficients multiplied by the wing’s reference area S, which is the planform

(projected) area.3 The objective function is formulated this way such that if S changes during

the optimization, the target lift can still be maintained by increasing CL. Targets in lift and

drag are specified by the user in L∗ and D∗, and weights ωL, ωD specify the relative importance

of maintaining lift vs. drag reduction. If the target lift is attainable and target drag is not,

this objective function represents lift-constrained drag minimization with the lift constraint

appearing as a penalty term. The advantage of an objective function in the form of (2.5) is

that additional terms (which may be considered as constraints) can be easily added.

For inviscid flows, the minimum induced drag predicted by Prandtl’s lifting-line theory [4]

provides a guideline to select the target drag D∗ = C∗
D · S:

C∗
D,induced =

(C∗
L)2

πAR
(2.6)

where AR is the wing’s aspect ratio. Note that D∗ must be selected with care because it affects

the design space. A target that is set too low will affect the convergence of the optimizer,

but if the target is set too high, the optimizer will converge without finding the shape with

the minimum drag. For the design examples in this thesis, the target is set to a physically

unattainable value just below the minimum predicted induced drag.

In optimization problems where a constraint on lift is automatically satisfied, the objective

function can simply be the drag coefficient:

J = CD (2.7)

For example, in Zingg and Billings [202], the angle-of-attack of an airfoil is considered as a state

variable that is adjusted during flow solve to satisfy an input CL. This objective function is

also valid if a constrained optimization method such as SNOPT [50] is used; the target lift will

appear explicitly as an equality constraint.

3This is equivalent to the lift and drag force scaled by the dynamic pressure, 1
2
ρV 2.
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The objective function in (2.5) is contrasted with:

J =
CD

CL
(2.8)

Both (2.8) and (2.5) maximize the lift-to-drag ratio, but differ in that in (2.8), no constraint is

placed on the maintaining lift. Note that for inviscid optimization problems of a wing alone,

directly maximizing CL/CD is problematic. Without viscous effects, drag coefficient always

scales with (CL)2, i.e. CD → 0 as CL → 0, and (2.8) can be minimized simply by changing

the wing’s angle of attack such that no lift is generated. However, (2.8) is useful in viscous

flow problems. In this case, total drag does not vanish as CL → 0. This objective function is

used with a viscous flow solver in the design of transonic airfoils [205], and also in the design

of high-lift configurations [133].

2.2.2 Inverse Design

The inverse design problem is also considered. The objective function for this problem is:

J =
1

2

Np∑

1

[

(Cp)i −
(
C∗

p

)

i

]2
(2.9)

In this case, the user specifies a known target pressure distribution
(
C∗

p

)

i
on each body surface

node i. By minimizing J , the optimizer recovers the shape that minimizes the least-square

error. Inverse design is strictly not a true optimization problem, since minimizing J does not

guarantee that the final geometry shape is in any way optimal. In addition, it requires the

user to have previous knowledge of an ideal pressure distributions. However, inverse design is

valuable as a validation tool for the optimizer.

2.3 The Newton-Krylov Approach

The optimization problem in Section 2.1 is solved using a Newton-Krylov approach applied

to a gradient-based optimizer. This approach was pioneered by Nemec and Zingg [132]. In

general, gradient-based optimizers for unconstrained problems follow the procedures shown

in Algorithm 2.1. In our current context, the Newton-Krylov approach refers to using the

Newton method and/or a Krylov subspace method to obtain the flow solution, objective function

gradient and the search direction. The steady-state flow solution is first computed using the

Newton method with pseudo-transient continuation. An approximate-Newton start-up stage is

used. A Krylov method is used to solve the linear system at every Newton iteration (Chapter 4).

An objective function is then computed based on the flow solution, and penalty terms are

added to the objective function if geometric constraints are violated. A gradient direction in
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the design space is then computed (Section 5.1.2) using the adjoint method, with the adjoint

system solved by the same Krylov method used in the flow solver. Based on the gradient, a

quasi-Newton search direction is computed (Section 5.2). Finally, a line search algorithm is

applied to compute a proper step length along the search direction. It should be noted that

in the current implementation, once the proper step length is found, the objective function

and gradient have already been computed for the updated design variables. A new grid is

generated using a grid movement algorithm (Chapter 6) after each iteration. Grid movement

is also required during gradient computation.

Algorithm 2.1: Gradient-based optimization

Data: X0

Result: X , J
Initial shape X01

for n = 0, 1, . . . do2

Generate grid G based on X using a grid movement algorithm3

Solve for Qn where R(Xn,Qn) = 0 and compute J4

Compute objective function gradient G5

Compute search direction Pn6

Compute step-length βn7

Update design variables Xn+1 = Xn + βnPn8

end9

Continue to iterate until G converged10



Chapter 3

Geometry Parameterization and

Design Variables

Design variables are design parameters that are allowed to evolve during the optimization cycle.

These variables may be continuous (e.g. “change of sweep angle at the leading edge”), discrete

(e.g. “the number of engines”) or categorical (e.g. “biplane vs. boxed wing”). For aerodynamic

shape optimization, design variables are generally continuous, while discrete and categorical de-

sign variables are more common in multi-disciplinary optimization (MDO) applications. When

using a gradient-based optimizer such as the current Newton-Krylov algorithm, it is further

required that both the design variables and the design space be smooth and continuous. Design

variables are usually part of a geometry parameterization strategy, but they may also include

operating parameters such as angle of attack (α) or Mach number (M).

A good geometry parameterization strategy is crucial to the efficiency and effectiveness of

the optimizer. A method that uses many design variables (e.g. locations of surface nodes)

has more flexibility over allowable shapes, and is therefore more likely to capture the true

aerodynamic optimum, but the high number of design variables may cause the optimizer to

converge slowly. On the other hand, a method that uses only a few variables (e.g. planform

variables) may converge in much fewer iterations, but not necessarily to the true optimum. In

general, a good strategy is one that makes a good compromise between speed and flexibility.

A geometry parameterization strategy using basis spline (B-spline) curves and surfaces is

considered based on Fudge et al. [45]. One advantage of using B-spline curves is their local

nature. Each control point has a unique associated basis function that is non-zero in only part

of the curve. The B-spline curve also has the added ability to change its order k while holding the

number of control points N fixed (assuming that N > k). Similar B-spline formulations using

NURBS (Non-uniform rational B-spline) have been used for aerodynamic shape optimization

by Samareh [165], Nielsen et al. [140] and Lepine et al. [97]. Two popular alternatives to the

20
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Figure 3.1: Example of third order B-spline basis functions

spline approach, the Hicks-Henne bump function, and the discrete approach, are discussed in

Appendix B.

3.1 B-Spline Curve and Surface Formulation

The k-th order B-spline parametric representation of a curve using N control points and basis

functions is given by:

~a(t) =

N∑

i=1

(XB)i Ni,k(t) (3.1)

where ~a is the position vector along the curve at a distance t from the origin, XB are the

locations of the B-spline control points, and Ni,k(t) are the basis functions of order k, defined

by the recursive Cox-deBoor relationships [158]:

Ni,1(t) =

{

1 if di ≤ t < di+1

0 otherwise
(3.2)

and

Ni,k(t) =

[
t − di

di+k−1 − di

]

Ni,k−1(t) +

[
di+k − t

di+k − di+1

]

Ni+1,k−1(t) (3.3)

where di represents the elements of a uniform open knot vector given by:

di =







0 1 ≤ i ≤ k

i − k k + 1 ≤ i ≤ N

N − k + 1 N + 1 ≤ i ≤ N + k

(3.4)

Using the definitions in (3.2)–(3.4), Figure 3.1 shows the basis functions generated for a third-

order (k = 3) B-spline curve with seven control points (N = 7). Locations of the knot elements

are shown in red. A B-spline curve using those basis functions is shown in Figure 3.2.
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B-Spline Curve
Control Points

Figure 3.2: Example of a third-order B-spline curve.

The B-spline curve formulation (3.1) can be extended to describe a surface in 3D space:

~a(s, t) =
M∑

i=1

N∑

j=1

(XB)i,j Mi,l(s)Nj,k(t) (3.5)

where ~a(s, t) is now the position vector of the surface at a parametric distance of (s, t) from

the origin of the surface. The basis functions N (k-th order) and M (l-th order) as well as

the knot vectors are calculated in the same way as specified in (3.2)–(3.4). In this thesis, the

orders of the basis functions are the same (i.e. k = l), and the second subscript is dropped for

simplicity. Furthermore, the design examples presented in Chapter 8 all use cubic (k = l = 3)

basis functions. This B-spline surface formulation can be further extended to parameterize an

entire computational grid, see for example Hicken and Zingg [71]. To better visualize how the

surface is generated, (3.5) can be written as:

~a(s, t) =
M∑

i=1

Di(t)Mi(s) (3.6)

where

Di(t) =
N∑

j=1

(XB)i,j Nj(t) (3.7)

3.2 Surface Grid Approximation and Generation

Before the start of the optimization cycle, the surface grid is extracted from an existing volume

grid and then parameterized using B-spline control surfaces. Consider a structured surface grid

with I and J nodes (indices i = 1 . . . I, j = 1 . . . J) in the parametric directions s and t. The
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B-spline representation (3.6)–(3.7) can be described in discrete matrix form as:

GS = UD
D = XBV

(3.8)

where

GS =







x11 · · · x1J

...
...

xI1 · · · xIJ







(3.9)

is the surface grid containing the x, y or z coordinates for each surface grid node j, k, while U
and V store the basis function values at parametric distances s and t from the grid origin:

U =







N1(s1) · · · NM (s1)
...

...

N1(sI) · · · NM (sI)







, V =







M1(t1) · · · M1(tJ)
...

...

MN (t1) · · · MN (tJ)







(3.10)

The distances s and t are calculated based on the nodal indices:

si =
i − 1

I − 1
(m − k + 2) (3.11)

tj =
j − 1

J − 1
(n − k + 2) (3.12)

The matrix D is an intermediate matrix of size M × J , and XB is a matrix containing the x, y

or z coordinates of the B-spline control points:

XB =







x11 · · · x1N

...
...

xM1 · · · xMN







(3.13)

The control point locations are found by first solving for D, and then XB in the least-squares

problems in (3.8).1 This process is repeated for each of the three coordinates. Figures 3.3a and

3.3b show the parameterization of an ONERA M6 wing.

To generate a new surface grid, the intermediate matrix D in (3.8) is first generated based on

the new control point locations (XB in (3.13)), and then the new surface grid GS is generated.

Following the previous example, Figures 3.3c and 3.3d show the generation of a surface grid

after one B-spline control point has been moved in the z-direction. In this example, the surface

grid is perturbed only near the perturbed control point. Based on the new surface grid, a new

volume grid can be generated using a grid movement algorithm (see Chapter 6).

1The least-squares problem is solved using the QR factorization routine in the LAPACK (Linear Algebra
PACKage) library, which is a set of FORTRAN 77 routines for solving systems of linear equations.



Chapter 3. Geometry Parameterization and Design Variables 24

X
Y

Z

(a) Surface Grid

X
Y

Z

(b) B-Spline Control Surface

X
Y

Z

PERTURBED
B-SPLINE
CONTROL PT

(c) Perturbed B-spline control surface

X
Y

Z

PERTURBED
SURFACE
GRID

(d) New Surface Grid

Figure 3.3: B-spline surface parameterization of an ONERA M6 wing.

3.3 Design Variables

All three degrees of freedom (translation in x-, y- and z-directions) of any B-spline control point

may be considered valid design variables. While using all three degrees of freedom of every

control point gives the optimizer the greatest flexibility to find the aerodynamic optimum, it

may increase the number of design variables. Instead, a two-level approach is used. At the

planform level, B-spline control points are grouped into a reduced set of planform variables

based on general engineering practices. This provides the designer with a more intuitive set of

parameters. At the wing section level, the z-coordinate of each individual control point may

move independently to adjust the wing section shape.
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3.3.1 Planform Design Variables

The B-spline control points can be grouped into a reduced set of planform variables. General

planform variables used to describe wings are considered: sweep (Λ), dihedral (Γ), twist (Ω),

semi-span (b/2) and chord (c). Other planform parameters such as taper ratio (λ) and aspect

ratio (AR) are extracted from the above planform variables.

The leading-edge (LE) and trailing-edge (TE) sweep angles are defined for each B-spline

section j:

Λj = tan−1

[
yj − yj−1

xj − xj−1

]

(3.14)

This is shown in Figure 3.4a. The design variable in this case is the change in the sweep angle

from the original geometry (∆Λj). This parameterization strategy allows both LE and TE

sweep angles to change independently at each section. However, in practice, the LE sweep

angle is generally constant from wing root to tip, while the TE sweep angle may change at one

or two spanwise locations. Examples of modifying an ONERA M6 wing are shown in Figure 3.4.

In Figure 3.4b, an additional 10 degrees is added to the LE sweep at the wing root, and the

wing is sheared along the chord-wise direction, i.e. TE sweep also changes. The wing’s surface

area and enclosed volume are therefore preserved. In Figure 3.4c, LE and TE sweep angles are

treated separately. In this case, the TE sweep is reduced at the wing root, and also after the

5th B-spline section. The wing’s volume is not preserved in this example. This example also

shows that the wing’s taper ratio can be effectively controlled by independently changing the

LE and TE sweep angles. The optimizer limits the range of allowable sweep angles to between

±60◦ to maintain grid integrity.2 For larger changes in geometry, regridding may be required.

However, in the design examples presented in this thesis, sweep angles at each optimization

iteration are generally well within this range.

Similarly, the dihedral angle at section j is calculated relative to the j − 1 section:

Γj = − tan−1

[
zj − zj−1

xj − xj−1

]

(3.15)

Like sweep angles, the change in dihedral angle at each section j can be considered as a design

variable. An example of changing the dihedral angle is shown in Figure 3.5. The angle is

modified at the wing root, and at the 11th and 16th sections with the values: ∆Γ1 = 5.0◦,

∆Γ11 = 20.0◦, and ∆Γ16 = 20.0◦. The changes at these sections are propagated towards the

wing tip. As the dihedral angle changes, the B-spline control points are translated in the z-

direction, and the wing’s semi-span and planform area are maintained. In practice, this method

2This is done by applying a hyperbolic tangent function to the input ∆Λ supplied by the optimizer:

∆Λactual =
“

π

3
− |Λinit|

”

× tanh (∆Λinput)
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Figure 3.4: Examples of changing sweep angle

should not be used for large ∆Γ, such as in the design of a winglet, as the integrity of the grid

may be compromised.

Another design variable is the change in the wing’s geometric twist (Ω). It is defined as

change in the wing section’s angle of attack from root to wing tip.3 Changing the twist is done

by translating the z-coordinates of the B-spline control points, based on their distance from

the leading edge. The twist angle varies linearly from wing root to wing tip. The modified

wing surface has the same planform as the original. An example is shown in Figure 3.6. In the

example, a 20◦ twist is added to an ONERA M6 wing.

3This is contrasted with the wing’s aerodynamic twist, which is defined as the angle between the zero-lift
angle of any spanwise section and the zero-lift angle of the root section. Aerodynamic twist is created through
modifying the wing’s cross-section.
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Figure 3.6: Wing twist example.

Finally, the change in the wing’s semi-span (∆b/2) can also be used as a design variable. In

this case, the wing’s original semi-span is defined in Figure 3.4a.

3.4 Geometric Constraints

There are several main purposes to apply geometric constraints: (1) to ensure a physically

feasible design, such as preventing wing surfaces from crossing over; (2) to exclude shapes that

are difficult to manufacture; and (3) to enforce other engineering limitations that are related

to structural and fuel storage requirements. Only constraints that are functions of the design

variables are considered. For this research, volume and thickness constraints are implemented.

When the constraints are violated, a quadratic penalty term is added to the objective function:

J = J0 +
∑

j

(Jp)j (3.16)
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where J0 is the design objective function described in Section 2.2, and (Jp)j is the penalty term

for each constraint violation.

3.4.1 Volume Constraint

For the volume constraint, the volume enclosed by the geometry V is allowed to deviate from

the original volume V0 by a user-specified factor vf . Written in the form of (2.2), the volume

constraint is expressed as:

|V − V0| − vfV0 ≤ 0 (3.17)

By setting vf = 0 (3.17) becomes an equality constraint. If the constraint is violated, the

penalty term is added to the objective function:

Jp,V = ωV
(|V − V0| − vfV0)

2

V 2
0

(3.18)

The penalty weight ωV is user-supplied.

3.4.2 Thickness Constraints

For thickness constraints, a minimum thickness is specified at a fixed relative position (x/c,

2y/b) on the wing. The constraint i is expressed as:

t∗i − ti ≤ 0 (3.19)

where ti is the current thickness and t∗i is the target minimum thickness. A penalty term is

added only if ti is lower than t∗i :

Jp,i =

(

1 − ti
t∗i

)2

if ti < t∗i (3.20)

The contributions from all thickness constraints are summed and multiplied by a user supplied

weight ωT:

Jp,T = ωT

∑

i

Jp,i (3.21)



Chapter 4

Flow Analysis

In order to obtain the lift, drag coefficients or pressure distribution needed to compute the

objective functions, a Newton-Krylov flow solver is used to obtain the flow solution. This flow

solver is largely based on Hicken and Zingg [70, 73], Nichols and Zingg [139], Nemec et al. [135,

128], Pueyo and Zingg [152] and Pulliam [153].

4.1 Governing Equations

The governing equations referred to in Section 2.1 are the Euler equations, which assume the

fluid to be inviscid. In conservative form, they can be written as:

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0 (4.1)

where Q is the vector of conservative variables, and E, F and G are the inviscid convective

fluxes:

Q =













ρ

ρu

ρv

ρw

e













, E =













ρu

ρu2 + p

ρuv

ρuw

u(e + p)













, F =













ρv

ρvu

ρv2 + p

ρvw

v(e + p)













, and G =













ρw

ρwu

ρwv

ρw2 + p

w(e + p)













(4.2)

Here, ρ is the density of the fluid, u, v and w are the velocity components of fluid, and e is

fluid’s total energy. The vectors Q, E, F and G are functions of x, y and z. From the equation

of state for a perfect gas, pressure p can be related to the flow variables by:

p = (γ − 1)

[

e − 1

2
(u2 + v2 + w2)

]

(4.3)

where the ratio of specific heats γ is 1.4 for a diatomic gas such as air.

29
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4.2 Coordinate Transformation

A generalized coordinate transformation is used to map the curvilinear structured grid (in the

physical domain with coordinates x, y and z) into a square grid (in the computational domain

with coordinates ξ, η, ζ) based on Pulliam [153] and Pulliam and Steger [154]:

ξ = ξ(x, y, z)

η = η(x, y, z)

ζ = ζ(x, y, z)

(4.4)

In the computational domain, the grid spacing between nodes is equal to one. This substantially

simplifies the spatial discretization procedures. A 2D example is shown in Figure 4.1.

In the computational domain, the Euler equations can be re-written in the form:

∂Q̂

∂t
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
= 0 (4.5)

where

Q̂ = J−1Q, Ê = J−1













ρU

ρuU + ξxp

ρvU + ξyp

ρwU + ξzp

(e + p)U













, F̂ = J−1













ρV

ρuV + ηxp

ρvV + ηyp

ρwV + ηzp

(e + p)V













, and Ĝ = J−1













ρW

ρuW + ζxp

ρvW + ζyp

ρwW + ζzp

(e + p)W













(4.6)

and U , V and W are contravariant velocities, given by:






U

V

W







=







ξx ηx ζx

ξy ηy ζy

ξz ηz ζz













u

v

w







(4.7)

The partial derivative terms in the matrix are referred to as the grid metrics. Directly computing

the metric terms is not straightforward. Instead, the metric terms are computed based on the

reverse transformation:






ξx ηx ζx

ξy ηy ζy

ξz ηz ζz







=







xξ xη xζ

yξ yη yζ

zξ zη zζ







−1

(4.8)

By taking the inverse of the right-hand-side matrix in (4.8), the partial derivatives in (4.7) are

expressed as:

ξx = J(yηzζ − yζzη) ξy = J(zηxζ − zζxη) ξz = J(xηyζ − xζyη)

ηx = J(zξyζ − zζyξ) ηy = J(xξzζ − xζzξ) ηz = J(yξxζ − yζxξ)

ζx = J(yξzη − yηzξ) ζy = J(zξxη − zηxξ) ζz = J(xξyη − xηyξ)
(4.9)
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ζ = ζ(x, y, z)

Figure 4.1: Mapping from physical domain to computational domain

The partial derivatives with respect to ξ, η and ζ can be obtained by applying finite differencing

at each grid node. However, if centred differencing is used to compute the metric terms, the

metric invariants are not satisfied [153, 154]. Instead, the centred difference is averaged. For

example ξx is expressed as:

ξx = [(µζδηy)(µηδζz) − (µηδζy)(µζδζz)] (4.10)

where δ is the centred difference operator, and µ is an average operator. Finally, J−1 is the

Jacobian (determinant) of the transformation, given by:

J−1 = (xξyηzζ + xζyξzη + xηyζzξ − xξyζzη − xηyξzζ + xζyηzξ) (4.11)
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4.3 Spatial Discretization

The Euler equations in (4.5) can be re-written in the form:

1

J

∂Q

∂t
+ R(Q) = 0 (4.12)

where

R(Q) =
∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
(4.13)

is the flow residual. In spatial discretization, the continuous flow variables Q(x, y, z) are stored

as discrete quantities at the nodes of the computational grid, i.e. Qj,k,m is stored at each

nodal location with indices (j, k, m) in each block. Similarly, only nodal values for the inviscid

convective fluxes (Ê, F̂ and Ĝ) and residual R are computed. The vectors Ê, F̂, Ĝ and R

are defined the same way analogous to Q → Q.1 Figure 4.2 shows a 12-block H-H topology

grid around a DPW-W1 wing, generated using the commercially available software program

ICEMCFD.

A finite-difference discretization scheme is used to approximate the derivatives of the inviscid

fluxes Ê, F̂ and Ĝ at each node. The spatial discretization scheme turns the system of PDEs

into a coupled system of ODEs. This scheme is based on [139, 153]. In a distributed-memory

parallel environment, each block of the computational grid is stored in memory locations of

different processors. Communications between the processors are only needed for interface

nodes. After spatial discretization, the Euler equations in transformed coordinates can be

expressed in semi-discrete form:
1

J

dQ

dt
+ R(Q) = 0 (4.14)

where Q = [Q1,1,1,Q1,1,2, . . . ,Qj,k,m]T is a vector of discrete flow variables, and R is the discrete

residual, which also contains the appropriate boundary conditions.

4.3.1 Inviscid Fluxes

At the interior nodes, spatial discretization of the inviscid fluxes is done using second-order

centred-differencing, with an artificial dissipation term added. The discrete residual R at each

interior node can be expressed as:

R(Q)j,k,m =
Êj+1,k,m − Êj−1,k,m

2
− D

(ξ)
j,k,m +

F̂j,k+1,m − F̂j,k−1,m

2
− D

(η)
j,k,m + (4.15)

Ĝj,k,m+1 − Ĝj,k,m−1

2
− D

(ζ)
j,k,m (4.16)

1For clarity, Q̂, Ê, F̂ , Ĝ and R̂ represent continuous functions of flow variables and fluxes in the ξ, η and ζ

coordinates, while the discrete form is presented in bold face: Q, Ê, F̂, Ĝ and R.



Chapter 4. Flow Analysis 33

X

Y

Z

BODY SURFACE
BOUNDARY
CONDITION

FAR-FIELD
BOUNDARY
CONDITIONS

Figure 4.2: An example H-H topology grid around a DPW-W1 wing

where D
(ξ)
j,k,m, D

(η)
j,k,m and D

(ζ)
j,k,m are artificial dissipation terms in the ξ, η and ζ directions.

4.3.2 Artificial Dissipation

Artificial dissipation is used because nonlinear processes governed by the Euler equations intro-

duce a continuous production of high-frequency components into the flow field. Their presence

may cause physically unrealistic properties or oscillations, and create instabilities in the numer-

ical solution. In real flows, these high-frequency components, such as shocks, are damped by the

viscosity of the fluid. However, no such damping mechanism exists in the Euler equation, where

the fluid is assumed to be inviscid. The dissipation is based on the work by Jameson et al. [84],

which has both second-difference (first-order) and fourth-difference (third-order) terms. Dissi-

pation for a one-dimensional domain is shown here, but the expression can easily be shown for
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three-dimensional cases. The artificial dissipation terms in a one-dimensional case are:

D = ∆T
ξ D(2)∆ξQ

︸ ︷︷ ︸

2nd-Difference

+ ∆T
ξ D(4)∆ξB∆T

ξ ∆ξQ
︸ ︷︷ ︸

4th-Difference

(4.17)

where the matrix ∆ξ ∈ R
(J−1)×J represents the first-order forward-difference operator, its

transpose ∆T
ξ represents the backward difference operator, and B ∈ R

J×J is a diagonal matrix:

∆ξ =










−1 1

−1 1
. . .

. . .

−1 1










; and B =













0

1
. . .

1

0













(4.18)

The diagonal matrices D(2) ∈ R
(J−1)×(J−1) and D(4) ∈ R

(J−1)×(J−1) contain the coefficients for

second- and fourth-difference dissipation:

D(2) =











d
(2)

1 1
2

d
(2)

2 1
2

. . .

d
(2)

J− 1
2











D(4) =











d
(4)

1 1
2

d
(4)

2 1
2

. . .

d
(4)

J− 1
2











(4.19)

where the coefficients are given by:

d
(2)

j+ 1
2

= 2
(
ǫσJ−1

)

j+ 1
2
,k,m

(4.20)

and

d
(4)

j+ 1
2

= max

[

0, 2κ4

(
σJ−1

)

j+ 1
2
− d

(2)

j+ 1
2

]

(4.21)

The values at the half nodes j + 1
2 are calculated by averaging between the two nodal points:

(·)j+ 1
2

=
(·)j+1 + (·)j

2
(4.22)

and σ is the spectral radius of the flux Jacobian:

σ = |U | + a
√

ξ2
x + ξ2

y + ξ2
z (4.23)

ǫj = κ2

[
0.5Υ∗

j + 0.25
(
Υ∗

j−1 + Υ∗
j+1

)]
(4.24)

Υ∗
j = max [Υj−1, Υj , Υj+1] (4.25)

Υj =
|pj+1 − 2pj + pj−1|
|pj+1 + 2pj + pj−1|

(4.26)
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Figure 4.3: Stencil for evaluating flux and dissipation without SATs

The term Υj acts as a pressure switch that is activated near shocks, while Υ∗
j acts as a smoother

for Υj . (4.21) is used to switch between using second-difference dissipation near shocks, and

fourth-difference elsewhere. At block boundaries, values of of ǫ, Υ∗ and Υ at boundary nodes

J are extrapolated from the adjacent interior nodes. The dissipation constants κ2 and κ4 are

user supplied.

4.3.3 Block Interfaces and Boundary Conditions

Figure 4.3 shows the general stencils for residual evaluation at block interfaces. Here, node J

on the local block is coincident with node 1 on the adjacent external block. In order to evaluate

the fourth-difference dissipation term in the ξ direction at node J , information is required from

nodes J − 1 and J − 2 in the local block, and from nodes 2 and 3 from the adjacent block.

In a parallel implementation, this adjacent block is likely to be stored in a memory location

that is only accessible by another processor. In this case, flow variables near block interfaces

must be passed to the appropriate processors via message passing, affecting the scalability of

the parallel method. Additionally, for accurate flux and dissipation evaluation at node J , the

grid must be at least C1-continuous across the interface [73]. This can potentially limit the

types of grids that can be used effectively.

This difficulty is addressed through the application of simultaneous approximation terms

(SATs). The method has been successfully used to enforce boundary conditions [22] and block

interfaces [23]. SATs are derived using summation-by-parts (SBP) operators. For further infor-

mation about the inviscid SATs for the Euler equations, see Hicken and Zingg [73]. An example

is shown of the application of SATs in a quasi-one-dimensional problem with a converging-

diverging nozzle, using the Euler equations. The method is generalized for 3D problems en-

countered in this thesis. In the quasi-1D example, numerical dissipation terms are neglected.
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Figure 4.4: One-dimensional domain with two sub-domains

The flow equations can be written as:

∂Q

∂t
+

∂E

∂x
− G = 0 (4.27)

where

Q =







ρS

ρuS

ρES







E =







ρuS

(ρu2 + p)S

ρuHS







G =







0

p∂S
∂x

0







(4.28)

and S is the nozzle cross-section area. The computational domain is divided into two sub-

domains, as shown in Figure 4.4. In this example, the nodes are equally spaced. The interface

nodes of the two sub-domains are coincident, i.e. xs = xs+1. In each of the sub-domains, the

semi-discrete form of the equation can now be written using SBP operators:

(PL ⊗ I3)
dQL

dt
+ (QL ⊗ I3)EL − (PL ⊗ I3)GL = ΣL (4.29)

(PR ⊗ I3)
dQR

dt
+ (QR ⊗ I3)ER − (PR ⊗ I3)GR = ΣR

where I3 is a 3 × 3 identity matrix. The SBP operators for the left sub-domain are given by:

PL =










∆x0

∆x1

. . .

∆xs










, QL =
1

2
















−1 1

−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 1
















(4.30)

where ∆x0 = (x1 − x0)/2, ∆xs = (xs − xs−1)/2, and ∆xi = (xi+1 − xi−1)/2 for i = 2 . . . s − 1.

SBP operators on the right domain are similarly defined. Note that multiplying P−1
L QL recovers

the second-order centred differencing operator for the interior nodes, and the first-order one-

sided differencing operator at the boundary and interface nodes. The flow variable, inviscid

flux and source terms for the left and right sub-domains are given by:

QL = [Q1, . . . ,Qs]
T , QR = [Qs+1, . . . ,QN ]T

EL = [E1, . . . ,Es]
T , ER = [Es+1, . . . ,EN ]T

GL = [G1, . . . ,Gs]
T , GR = [Gs+1, . . . ,GN ]T

(4.31)
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The operator ⊗ is the Kronecker product for matrices.2 Finally, the penalty terms on the

right-hand-side of (4.30) are given by:

ΣL =













−1
2(|A| + A)(Q1 − QBC,L)

0

...

0

−1
2(|A| − A)(Qs − Qs+1)













, ΣR =













−1
2(|A| + A)(Qs+1 − Qs)

0

...

0

−1
2(|A| − A)(QN − QBC,R)













(4.32)

At the interface, a penalty term is applied when Qs 6= Qs+1. Similarly, for boundary conditions,

penalty terms are added when Q1 6= QBC,L and QN 6= QBC,R. Body surface and far-field

boundary conditions will be described for 3D cases later in this section.

To compute the penalty term at the interface, the averaged state on both sides of the

interface 1
2(Qs + Qs+1) is used to compute the (3× 3) Jacobian matrix (A). The matrix |A| is

determined from |A| = X|Λ|X−1, where X are the right eigenvectors of A, and

|Λ| =







λ1 0 0

0 λ2 0

0 0 λ3







with

λ1 = max (|u + a|, Vnσ(A))

λ2 = max (|u − a|, Vnσ(A))

λ3 = max (|u|, Vlσ(A))

(4.33)

where σ(A) is the spectral radius of A, and the constants Vn and Vl are used to avoid the effect of

overly small eigenvalues in the Jacobian matrix at the interface. For transonic flows, Vn = 0.25

and Vl = 0.025 are used based on [26]. The eigenvectors can be found in Pulliam [153]. The

|A| − A term in (4.32) ensures that the appropriate boundary conditions are imposed to the

incoming and outgoing waves at the boundary. Therefore, the Riemann invariants do not need

to be calculated.

This formulation can be extended to general 3D problems. Figure 4.5 shows the new stencil

with SATs. In general, Qj in the local block and Q1 in the external block do not have the

same values. To evaluate the residual at interface node (J, k, m), including dissipation terms,

one-sided differencing is applied in the ξ direction, and centred differencing is applied in the η

and ζ directions:

R(Q)J,k,m = ÊJ,k,m − ÊJ−1,k,m − D
(ξ)
j,k,m +

F̂J,k+1,m − F̂J,k−1,m

2
− D

(η)
j,k,m + (4.34)

ĜJ,k,m+1 − Ĝj,k,m−1

2
− D

(η)
j,k,m + (ΣL)J,k,m

2If A is a m × n matrix and B is a p × q matrix, then C = A ⊗ B is a mp × nq matrix whose elements are
given by Cp(i−1)+k,q(j−1)+l = AijBkl
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Figure 4.5: Stencil for SAT terms at block interfaces

The treatment of dissipation terms near block interfaces is the same as at domain boundaries

described in Section 4.3.2. For second-difference dissipation, a (−1, 1, 0) stencil replaces the inte-

rior stencil (−1, 2,−1) at boundary node J . For fourth-difference dissipation, a first-order stencil

(−1, 2,−1, 0, 0) is used at the boundary node J , and a second-order stencil (−1, 4,−5, 2, 0) at

the J − 1 node [115].

Flow variable Qj,k,m from the external block is now coupled to the local block through the

penalty term (ΣL)j,k,m. The penalty term is derived in the same way as in (4.32), but with the

matrices |Λ|, A and X now 5 × 5 matrices.

The application of the SATs to boundary conditions is similar to interfaces. Boundaries

include the body surface and the far-field regions of the physical domain. Figure 4.2 shows

the location of the boundaries. As shown in (4.32), applying the boundary conditions means

choosing appropriate values for QBODY (body surfaces) and QFF (far-field).

In the Euler equations, the body surface is treated as a solid wall where no fluid is allowed

to flow through. Therefore, the velocity vector normal to the surface must be zero, and the

only velocity component of the flow is tangent to the body surface. The value for QBODY is

determined from the boundary node. An example is shown in Figure 4.6 to demonstrate the

application of SATs at a body surface boundary at m = 1. As in the case of the block interface,

flux and dissipation terms are calculated using one-sided differencing at boundary node (j, k, 1)

(Figure 4.6a). The normal component of the flow velocity Vn at (j, k, 1) is then computed

(Figure 4.6b). It is given by the equation:

Vn =
ζz

√

ζ2
x + ζ2

y + ζ2
z

ûi +
ζx

√

ζ2
x + ζ2

y + ζ2
z

vĵ +
ζy

√

ζ2
x + ζ2

y + ζ2
z

wk̂ (4.35)

The normal component Vn is subtracted from Vj,k,1 to obtain the tangential velocity Vt. The
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Figure 4.6: Computing QBODY for SAT terms at body surface boundaries

body boundary is therefore:

QBODY =
1

J













ρj,k,1

ρj,k,1Vt · î
ρj,k,1Vt · ĵ
ρj,k,1Vt · k̂

ρj,k,1H∞ − pj,k,1













(4.36)

The SATs are then added to the residual vector in the same way as the block interface, shown

in (4.35). This same boundary condition is also applied to the symmetry plane.

The same strategy is used for the far-field boundaries. In this case, QFF contains the far-field

values:

QFF =













1.0

M∞ cos α

0

M∞ sinα

1
γ(γ−1) + 1

2M2
∞













(4.37)

where α is the angle of attack of the wing.

4.4 Newton-Krylov Flow Solver

A steady-state solution is used to compute the objective function. At steady state, where

dQ/dt = 0, the residual must vanish:

R(Q) = 0 (4.38)
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This is the flow constraint described in (2.3). In the Newton method, the iterative process

begins with an initial guess Q(0) based on free-stream properties, noting that the initial guess

is unlikely to satisfy the steady-state requirement, i.e. R(Q(0)) 6= 0. A correction term ∆Q(n)

is sought such that R(Q(n) + ∆Q(n)) = 0. The first-order terms in the Taylor series expansion

about Q(n) gives:

R(Q(n) + ∆Q(n)) ≈ R(Q(n)) + A(n)∆Q(n) (4.39)

where the matrix

A(n) =
∂R

∂Q

∣
∣
∣
∣

(n)

(4.40)

is the flow Jacobian. Setting the left-hand side of (4.39) to zero, the correction ∆Q can be

obtained by solving the linear system:

A(n)∆Q(n) = −R(n) (4.41)

where R(n) = R(Q(n)). Since only the first-order term in the Taylor series expansion in (4.39)

is used, this process must be repeated until a suitable convergence is obtained. The update at

each iteration is given by:

Q(n+1) = Q(n) + ∆Q(n) (4.42)

The linear system in (4.41) is solved at each iteration n (“outer iteration”) until a steady-state

flow solution is obtained. For optimization problems, the adjoint gradient (Section 5.1.2) re-

quires the flow Jacobian from a fully converged solution in order to obtain an accurate gradient,

and therefore ten orders of magnitude reduction in the residual L2-norm is needed:

‖R(n)‖2

‖R(0)‖2
≡ R(n) < 10−10 (4.43)

For general flow analysis, in order to compute lift and drag (L and D), the norm of the residual

vector only has to decrease by a few orders of magnitude.

The Newton method converges quadratically when Q is sufficiently close to the solution.

With each iteration, the number of significant digits doubles. However, during start-up, when

the iterate Q(n) is far from the steady-state solution, convergence may not be possible. An

approximate-Newton start-up phase is used to help find a suitable initial iterate for the full

Newton method.

In the approximate-Newton phase, a first-order flow Jacobian (denoted by A1) replaces the

full Jacobian matrix A in (4.41). The first-order Jacobian is formed by combining the second-

and fourth-difference dissipation terms to reduce the bandwidth of the matrix:

κ̂2 = κ2 + σκ4; κ̂4 = 0 (4.44)
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A value of 4 ≤ σ ≤ 6 is recommended based on [139]. Replacing A with A1 does not affect the

steady-state solution, since it does not modify the residual calculation on the right hand side.

The approximate-Newton method can be used to solve the flow solution to steady state [203].

However, the convergence rate is generally slower. A spatially varying time step is also added

at each node i as a globalization strategy:

∆t
(n)
i =

∆t
(n)
ref

Ji(1 + 3
√

Ji)
(4.45)

where the reference time step for iteration n is defined as

∆t
(n)
ref = A(B)n (4.46)

Values of A = 0.1 and B = 1.5 are used. The value for B can be lowered if convergence in

early iterations is difficult. To summarize, during the approximate-Newton start-up phase, the

linear system solved at each iteration n is given by:

[

T(n) ⊗ I5 + A
(n)
1

]

∆Q(n) = R(n) (4.47)

where T(n) is a diagonal matrix containing the reciprocal of the local time step at each node,

and I5 is a 5 × 5 identity matrix.

The flow solver switches to the Newton phase when the normalized residual has dropped

below a threshold R(n) < τ . A value of τ = 0.1 is used based on [73]. During the Newton

phase, the pseudo-transient time step continues to be added to the diagonal of the matrix, with

the reference time step based on Mulder and van Leer [123]:

∆t
(n)
ref = max

[

α
(

‖R(n)‖2

)−β
, ∆t

(n−1)
ref

]

(4.48)

with α = 1.0 and β = 1.75. As the residual decreases, the time step approaches infinity, and

the full Newton step is recovered.

4.4.1 Preconditioned GMRES

At each iteration during the approximate-Newton and Newton phases, a sparse linear system

in the form

Ax = b (4.49)

must be solved. For the size of the problems encountered in most CFD applications, directly

solving the matrix (e.g. Gaussian elimination, lower-upper factorization) is too expensive to

be practical, while stationary iteration methods (Jacobi, Gauss-Seidel) converge too slowly.

Instead, a Krylov subspace method can be used to solve the system inexactly. In particular,

the General Minimal Residual (GMRES) [163, 162] method is found to be well-suited for CFD
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applications. The basic GMRES algorithm is presented in Appendix D. Krylov methods do

not require the matrix A to be inverted, instead only using a matrix-vector product with A.

This matrix-vector product in GMRES can be approximated using forward differencing:

Av ≈ R(Q + ǫv) − R(Q)

ǫ
(4.50)

The perturbation parameter ǫ is chosen based on [143] such that truncation error and round-off

errors are minimized:

ǫ =

√

Nδ

vTv
(4.51)

where N is the number of unknowns and δ = 10−13. With this approximation, the flow Jacobian

A does not have to be formed, leading to a “Jacobian-free” approach.

To further improve the convergence of the GMRES algorithm, the linear system in (4.49)

is right preconditioned with the matrix M:

(AM−1)(Mx) = b (4.52)

Note that right-preconditioning the system does not change the final solution x. Ideally, the

preconditioner matrix M is a matrix that closely approximates A, but significantly easier to

invert. Therefore, by preconditioning, the eigenvalues of AM−1 are much closer to unity than

those of A, thus improving the efficiency of GMRES. It should be noted that the preconditioner

matrix M still needs to be formed and inverted.

The linear system is then solved inexactly, such that

∥
∥
∥R

(n) −
(

T(n) ⊗ I5 + A(n)
)

∆Q(n)
∥
∥
∥

2
≤ ηn

∥
∥
∥R

(n)
∥
∥
∥

2
(4.53)

The forcing parameter ηn gradually decreases from 0.5 to 0.01 using the equation proposed by

Eisenstat and Walker [34]:

ηn = max
[

0.01, η
(1+

√
5)/2

n−1

]

(4.54)

As demonstrated by Dembo et al. [29], by approximately solving (4.52), enormous computa-

tional effort can be saved while retaining the convergence properties of the Newton method.

For problems using single processors, incomplete lower-upper (ILU) factorization has been

shown to be an excellent preconditioner. However, in a parallel environment, ILU precondi-

tioners suffer from the same deficiencies as direct solvers, namely that the factorization is not

easily made parallel. Instead, a preconditioner based on domain decomposition is implemented.

4.4.2 Approximate Schur Preconditioning

The approximate-Schur preconditioner presented here follows the development by Saad and

Sosonkina [164, 162]. In formulating the approximate-Schur preconditioner for GMRES, the
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matrix is divided among S sub-domains:







A11 · · · A1s

...
...

As1 · · · Ass













x1

...

xs







=







b1

...

bs







(4.55)

where Ai1 . . . Ais are stored on processor i. The sub-domains are generally non-overlapping.

With careful ordering of nodes, the diagonal blocks (Aii) and off-diagonal blocks (Aij) in each

sub-domain can be written as:

Aii =

[

Bi Ei

Fi Ci

]

, Aij =

[

0

Eij

]

(4.56)

where Bi are the internal entries, Ci are the interface entries, and Ei, Eij and Fi represent the

coupling between internal and interface entries. The solution vector x and the right-hand-side

b can be similarly partitioned for internal and interface entries:

xi =

[

ui

yi

]

, bi =

[

fi

gi

]

(4.57)

The part of the linear system that is local to the sub-domain i can now be written as:

[

Bi Ei

Fi Ci

] [

ui

yi

]

+

[

0
∑

i6=j Eijyj

]

=

[

fi

gi

]

(4.58)

The local entries ui can be solved once the interface entries yi are known:

ui = B−1
i (fi − Fiyi) (4.59)

Substituting ui into the equation for yi the following linear system for the interface can be

obtained:

Siyi +
∑

i6=j

Eijyi = gi − FiB
−1
i fi (4.60)

where Si is the “local Schur complement matrix”, defined as:

Si = Ci − FiB
−1
i Ei (4.61)

Si is generally dense. When written out for all sub-domains, the overall linear system from

(4.60) now becomes:












S1 E12 · · · · · · E1s

E21 S2 E23 · · · E2s

...
. . .

...
...

. . .
...

Es1 Es2 Es3 · · · Ss


























y1

...

...

...

ys














=














g′1
...
...
...

g′s














(4.62)
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The left-hand-side matrix is referred to as the “global Schur complement matrix”. In theory,

this Schur complement system can be assembled and solved for each yi, then for the internal

unknowns ui in (4.58). However, solving this linear system exactly is not competitive. Instead,

a system that approximates (4.62) is used as a preconditioner for the global problem (4.49).

Suppose Aii has been factored into Aii = LiUi, where

Li =

[

LBi
0

EiU
−1
Bi

LSi

]

; Ui =

[

UBi
L−1

Bi
Fi

0 USi

]

(4.63)

It can be shown that

Si = LSi
USi

(4.64)

Therefore the LU decomposition of the local Schur complement matrix can be obtained through

the LU decomposition of the local matrix Aii. Similarly, an approximate factorization of Si can

be found by the ILU factorization of Aii. The interface unknowns yi can be solved approximately

using this approximate local Schur complement system:

yi = U−1
Si

L−1
Si



gi − FiB
−1
i fi −

∑

i6=j

Eijyj



 (4.65)

This equation is equivalent to a single block-Jacobi iteration, which can be solved using a

Krylov-method such as GMRES. Once yi is found and exchanged on all sub-domains, the local

unknowns ui can be solved approximately, again with ILU factorization.

A linear solver that uses the approximate Schur preconditioner must be “flexible”, in that

the preconditioning may change from one inner iteration to the next. In light of this, a flexible

variant of GMRES (“FGMRES”) [161] is used. The overall approximate-Schur preconditioning

technique with modifications by Hicken and Zingg [70] is summarized in Algorithm 4.1.
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Algorithm 4.1: Approximate Schur Preconditioner

Data: m, η, u

Result: v

v = U−1
Si

L−1
i u // get residual of reduced system for a guess of zero1

w
(1)
(i) = Pv // P projects onto the space of internal-interface unknowns2

set β = ‖w(1)
(i) ‖2, w

(1)
(i) ← w

(1)
(i) /β, and H = 03

for j = 1, m do4

obtain external interface values, w
(j)
(i,ext)5

w
(j+1)
(i) = Eiw

(j)
(i,ext) // perform external matrix-vector product6

w
(j+1)
(i) ← U−1

Si
L−1

Si
w

(j+1)
(i) // apply diagonal block of Schur complement7

w
(j+1)
(i) ← w

(j)
(i) + w

(j+1)
(i) // finish the matrix-vector product8

for k = 1, j do Gram-Schmidt orthogonalization9

Hk,j = (w
(j+1)
(i) )Tw

(k)
(i)10

w
(j+1)
(i) ← w

(j+1)
(i) − Hk,jw

(k)
(i)11

end12

Hj+1,j = ‖w(j+1)
(i) ‖213

w
(j+1)
(i) ← w

(j+1)
(i) /Hj+1,j14

if reduced system residual tolerance ≤ η then15

set m = j and exit16

end17

end18

Define Wm = [w
(1)
(i) , . . . ,w

(m)
(i) ]19

Compute y(i) = Wmz(m) where z(m) = minz ‖βe1 − Hz‖2 and e1 = [1, 0, . . . , 0]T20

obtain external interface preconditioned values, y(i,ext)21

v ← v + P T P (u − Eiy(i,ext) − v) // updates internal-interface only22

v ← U−1
i

[
I + P T P (L−1

i − I)
]
v // forward solve is applied to interface only23
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Optimizer

5.1 Gradient Evaluation

5.1.1 Finite-Difference Gradient

In the finite-difference gradient calculation, a second-order gradient can be calculated using a

centred-difference scheme for each design variable Xk:

Gk ≈ J [X + hǫ̂k,Q(X + hǫ̂k)] − J [X − hǫ̂k,Q(X − hǫ̂k)]

2h
+ O(h2), k = 1 . . . NX (5.1)

where NX is the number of design variables, ǫ̂k is the k-th unit vector, and the finite-difference

step size is given by [128]:

h = max
(
ǫ · |Xk|, 1 × 10−4

)
(5.2)

For the optimization cases examined in Chapter 8, 10−4 > ǫ > 10−6 is found to be accurate.

The advantage of finite-differencing is that it is easy to implement, in that the flow solver can

be treated as a “black-box”. However, finite-difference gradients suffer from two important

weaknesses. The first is related to the cost of a gradient evaluation. In addition to the flow

solve required to compute the objective function, two additional flow solves per design variable

are required to compute the gradient. The cost can be reduced to only one additional flow solve

per design variable if first-order forward differencing is used. This makes optimization with a

large number of design variables prohibitive.

The second issue with finite-differencing is that the accuracy of the gradient is sensitive to

the step size h. Generally, finite differences are susceptible to two types of error. The first is

a truncation error, which arises because higher order terms in the Taylor series expansion are

dropped in formulating the finite-difference operator. In the case of centred differencing (5.1),

the truncation error is on the order of O(h2). The second error is a subtractive cancellation

error. This is due to the bit-wise representation of floating point values. The truncation error

46
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decreases as h → 0, while the subtractive cancellation generally increases as h → 0. The

selection of the proper step size is often difficult and time consuming. The finite-difference

gradient is useful for debugging purposes and to validate gradient accuracies of other methods.

5.1.2 Direct and Adjoint Gradients

In the adjoint and direct methods, the gradient is expressed by taking the partial derivatives

of the flow vectors and the design variables:

G =
∂

∂X [J (X ,Q)] =
∂J
∂X

∣
∣
∣
∣
Q

+
∂J
∂Q

∣
∣
∣
∣
X

∂Q

∂X (5.3)

This expression is valid as long as ∂Q/∂X is continuous. Also, from the flow constraint, the

residual vector must be zero (steady-state solution) regardless of the design variables, thus:

∂

∂X [R(X ,Q)] =
∂R

∂X

∣
∣
∣
∣
Q

+
∂R

∂Q

∣
∣
∣
∣
X

∂Q

∂X = 0 (5.4)

Solving for ∂Q/∂X in (5.4) and substituting it back into (5.3) results in the following expression:

G =
∂J
∂X − ∂J

∂Q

DIRECT
︷ ︸︸ ︷
(

∂R

∂Q

)−1 ∂R

∂X
︸ ︷︷ ︸

ADJOINT

(5.5)

The expression in (5.5) can be solved using either the adjoint method or the direct method

to obtain the gradient. In the direct method, also known as the flow-sensitivity method, an

intermediate problem is solved for each design variable Xk:
(

∂R

∂Q

)

Φ =
∂R

∂Xk
k = 1 . . . NX (5.6)

where Φ = dQ/dXk. The solution can then be substituted back into (5.5) to obtain the gradient.

Note that the left hand side of (5.6) is the same as (4.41) for the flow solution. This suggests that

the Jacobian-free preconditioned FGMRES method used in the flow solver can be used again to

solve (5.6). In the direct method, the objective function does not appear in (5.6), and the same

solution Φ applies regardless of the objective function. However, a different linear system must

be solved for each design variable. Therefore this method is most suitable when the number

of objective functions and constraints is higher than the number of design variables. For most

aerodynamic shape optimization problems, where there are hundreds of design variables but

usually only one objective function and a few constraints, the direct method is not as efficient.

In the adjoint method, the intermediate problem is defined as:

(
∂R

∂Q

)T

Ψ =
∂J
∂Q

T

(5.7)
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This is known as the adjoint equation, and the vector Ψ is known as the adjoint variable. The

adjoint variable is a vector of the Lagrange multipliers for each flow variable. Like the direct

method, the adjoint equation can also be solved with preconditioned FGMRES. Again, the

left-hand-side of (5.7) is similar to (4.41) for the flow solution, with both matrices differing

only by a transpose. In this case, the transpose operator prevents the use of the Jacobian-free

approach in FGMRES, and the flow Jacobian ∂R/∂Q matrix must be formed. The matrix

is obtained by hand linearization of the residual vector, except at the block interfaces and

boundaries, where linearization of SATs is done using complex steps. It should also be noted

that the dissipation terms contain non-differentiable functions, and the linearization process

assumes that the dissipation coefficients are frozen. Similarly, the right-hand-side term ∂J /∂Q

is also hand-derived for each objective function (Appendix E.1). Similar methods for solving

the discrete adjoint equation include those of Nielsen and Anderson [140], who also solve the

equation using GMRES, with a pseudo time step added, and the adjoint solution is marched

in time. In contrast, in Mavriplis [116, 117], the adjoint system is solved using an explicit

multigrid method adapted from the flow solver. Similarly, Elliott and Peraire [36, 35, 37] use

an explicit relaxation algorithm used in the flow solver.

Substituting Ψ back into (5.5), the gradient expression becomes:

G =
∂J
∂X − ΨT ∂R

∂X (5.8)

An important advantage of the adjoint method is that size of the linear system in (5.7) depends

on the number of state variables, and not the number of design variables. That is, if the

partial derivatives ∂J /∂X and ∂R/∂X can be evaluated inexpensively, the cost of a gradient

calculation is independent of the number of design variables. These partial derivatives can be

evaluated either analytically or approximated using finite differencing.

The approach used in this thesis is to use second-order centred differencing to compute the

partial derivatives:
∂R

∂Xk
≈ R[X + hǫ̂k,Q] − R[X − hǫ̂k,Q]

2h
(5.9)

∂J
∂Xk

≈ J [X + hǫ̂k,Q] − J [X − hǫ̂k,Q]

2h
(5.10)

The same finite-difference stepsize h is reused from (5.1). Note that evaluating these partial

derivative terms does not require additional flow solves. Using this approach, for a problem

with NGX geometric design variables, each gradient computation will require 2×NGX calls to

the grid movement algorithm. Finite-differencing is easy to implement, and it can be adapted

easily to different grid movement algorithms.

The choice to use finite-differencing to obtain the partial derivative terms is motivated by

the fact that the algebraic grid movement algorithm (Chapter 6) is inexpensive. For example,
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to generate the new grid in the example in the previous section required 0.2 seconds on 48

processors. For a design case with 170 design variables, the partial derivatives can be evaluated

in just over one minute, which is much less than the time required for a flow solution. However,

this approach is not suitable with more computationally intensive methods such as spring

analogy or linear elasticity, where the time required to generate a new grid is of the order of

a flow solution. It should be noted that when using finite-differencing to evaluate the partial

derivatives, gradient accuracy may suffer from the same numerical errors as using a finite-

difference gradient.

The alternative to finite-differencing is the exact evaluation of the partial derivatives. In

general terms, they can be written as:

∂J
∂Xk

=
∂J
∂G

∂G

∂GS
︸ ︷︷ ︸

∂J /∂GS

∂GS

∂Xk
(5.11)

∂R

∂Xk
=

∂R

∂G

∂G

∂GS

∂GS

∂Xk
(5.12)

where G is the volume grid, and GS is the surface grid. Exact differentiation involves first

differentiating the surface grid GS with respect to the design variable Xi. For B-spline control

point design variables, this is done by differentiating the least-squares problem in the geometry

parameterization (3.8). However, differentiation with respect to planform variables is consider-

ably more complicated.

For lift-constrained drag minimization problems using inviscid flows, the objective function

only depends on flow variables on the body surface QBODY. It is therefore possible to differ-

entiate the objective function with respect to the surface grid, i.e. ∂J /∂G by differentiating

the grid metrics (4.7) at the surface. However, for general problems that require flow variables

away from the surface, such as viscous flow problems, the volume grid G is differentiated with

respect to the surface grid GS by differentiating the grid movement algorithm. Finally, the

objective function or the residual vector is differentiated with respect to the volume grid, which

involves differentiating the grid metrics of the entire computational grid.

As an additional note, exact differentiation with respect to the grid and design variables is

necessary with computationally expensive grid movement algorithms, where finite differencing is

prohibitively expensive. In the case of the linear elasticity method, the volume grid is expressed

as the solution to the problem:

r(G,GS,X ) = 0 (5.13)

where r is the grid residual. A linear system needs to be solved to obtain the grid whenever

the design variables are perturbed. The grid equation (5.13) can be considered as an additional

constraint for the optimization problem described in Chapter 2. In this case, an additional
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adjoint system (“grid adjoint”) must be solved, but no additional calls to the grid movement

algorithm are required during gradient evaluation. Examples of the dual adjoint approach can

be found in [147, 183]. On 2D problems, it leads to a more complete convergence.

5.1.3 Complex-Step Gradients

The complex-step gradient, previously mentioned in Section 1.2.4, is another method to address

the shortcomings of the finite-difference method. It is based on the Taylor series expansion of

the objective function at J (X ), with an imaginary perturbation of each design variable (ih).

Therefore, for each design variable Xk
1:

J (X + iǫ̂kh) = J (X ) + iǫ̂kh
∂J
∂Xk

− h2

2

∂2J
∂X 2

k

− iO(h3) + O(h4) k = 1 . . . NX (5.14)

Solving for the imaginary part of this expansion yields a second-order approximation to the

gradient:

Gk ≈ Im[J (X + iǫ̂kh)]

h
+ O(h2) (5.15)

Both (5.1) and (5.15) have a truncation error of O(h2), but with a complex step, there is

no subtraction between two approximations and therefore the gradient is not susceptible to

subtractive cancellation errors. Thus a much smaller stepsize h can be be used compared to

finite differencing (e.g. h = 10−20). Also, only one additional objective function evaluation is

required for each design variable, compared to two in the second-order finite-difference method.

However, in order to take advantage of this, the flow solver must be modified to accept complex

numbers. This roughly doubles the memory usage and time required for a flow solve [8].

However, elements of the complex-step method can be incorporated into the adjoint method.

For example, Nielsen and Kleb [141] used a complex step to linearize the residual vector to

obtain the flow Jacobian. The current work uses the same method for the SATs at block

boundaries.

5.2 BFGS Optimizer

When minimizing an unconstrained function using a gradient-based optimizer, the goal is to

advance the design variables to a local optimum where the gradient L2-norm is zero. Here, the

optimization problem is solved using the quasi-Newton optimizer BFGS (Broyden-Fletcher-

Goldfarb-Shanno) coupled with a backtracking line search algorithm. A brief description is

presented here. Further information can be found in [128, 145].

1The implicit relationship Q(X ) is dropped for simplicity.
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The optimizer begins with an initial shape defined by X0, noting that it is unlikely that the

initial design variables represent a minimizer of J (X ). A search direction is sought to quickly

reach the minimum. In the Newton method, the search direction P is based on a quadratic

approximation of the objective function at X , and, defining a new function m(P):

J (X + Pn) ≈ J (X ) + PTG +
1

2
PTHP .

= m(P) (5.16)

where H = ∇∇TJ (X ) is the Hessian matrix. By setting ∇m = 0, it is obvious that the search

direction is given by:

P = −H−1G (5.17)

Since m(P) is only a quadratic approximation, the search direction P does not necessarily

lead to the true minimum in a single step. Therefore this method is then repeated until the

optimizer has converged to a local minimum. The Newton direction is guaranteed to be a

descent direction as long as the Hessian matrix H is positive definite. In a quasi-Newton

method, the Hessian is approximated. The BFGS approximation of the inverse of the Hessian

(B ≈ H−1) is obtained using the following formula:

Bn+1 = Bn − Bnvn (Bnvn)T

vT
nBnvn

+
δnδT

n

δT
n vn

+ vT
nBnvn

(
rrT

)
(5.18)

where

r =
δn

δT
n vn

− Bnvn

vT
nBnvn

δn = Xn+1 −Xn (5.19)

vn = Gn+1 − Gn

This formula is based on noting that the change in gradient in successive iterations yields

information about the Hessian. The approximation becomes increasingly accurate as the op-

timization progresses. Note that inaccuracies in gradient computations may lead to problems

in approximating the inverse Hessian. In such cases, it may be necessary to reset the matrix.

During the first iteration where previous gradient information is unavailable, B is set to the

identity matrix, i.e. the search direction is the steepest descent direction.

Once the search direction is found, the design variables are advanced in that direction by a

step length βn:

Xn+1 = Xn + βnPn (5.20)

The Newton method has a natural step length of β = 1. However, since the objective function

is generally not a convex quadratic, this step length may not actually lead to a satisfactory
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decrease in the objective function [145], or it may step outside of the design space, where the

flow solver does not converge. If this is the case, a line search algorithm is applied along the

search direction to find a new step length.

A function is defined for the objective function along the search direction:

φ(β) = J (Xn + βPn) (5.21)

Its derivative is simply the inner product between the gradient and the search direction:

φ′(β) = G(X + βP)TP (5.22)

An acceptable step length is one that satisfies the strong Wolfe conditions:

φ(β) ≤ φ(0) + βc1φ
′(0)

|φ′(β)| ≤ c2|φ′(0)|
(5.23)

The first condition is the sufficient decrease condition, which requires that the objective function

be decreased by a value proportional to the step length β and a fraction of φ′(0). The second

is the curvature condition, which requires that the slope at the new iterate be no more than c2

times the previous iterate. Typically for quasi-Newton methods, c1 = 10−4 and c2 = 0.9 are

used [145]. When the step length does not satisfy the conditions, a line search is performed.

A cubic interpolant is constructed for the function φ(β), based on φ(βk), φ(βk−1), φ′(βk) and

φ′(βk−1). The minimum of the interpolant is either at its endpoint or in the interior, which can

be found by the line-search iteration until (5.23) is satisfied:

βk+1 = βk − (βk − βk−1)

[
φ′(βk) + r2 − r1

φ′(βk) − φ′(βk−1) + 2r2

]

(5.24)

where

r1 = φ′(βk−1) + φ′(βk) − 3
φ(βk−1) − φ(βk)

βk−1 − βk
(5.25)

r2 =
√

r2
1 − φ′(βk−1)φ′(βk) (5.26)

In some cases when the Wolfe conditions cannot be satisfied after k ≈ 15 line search iterations,

the line search algorithm is considered stalled. In this case, the optimizer automatically resets

the search direction to the steepest descent direction, and the approximate Hessian inverse is

reset to the identity matrix.

5.3 Design Variable Scaling

Proper scaling of the design variables is crucial to the performance of the optimizer. An

optimization problem is considered poorly scaled if changes in one design variable produce
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Variable Measured in Typical ∆X
α degrees 10−1

B-spline pts z-coord z/c 10−5 to 10−3

Λ radians 10−1

Ω radians 10−2

Table 5.1: Change in design variable during a typical optimization cycle.

much larger variations in the value of the objective function than changes in other variables.

Here, the problem arises when there is a mixture of B-spline control point design variables and

planform variables. Using the existing geometry parameterization strategy, B-spline control

point design variables are measured by the change in z-coordinate, with the wing root chord

scaled to 1.0. Typically, in an optimization run, changes in these design variables are between

10−5 and 10−3. Sweep, dihedral, twist angles are measured in radians; in a typical optimization

run, the change in design variable value is on the order of 10−2 to 10−1. The angle-of-attack

design variable is measured in degrees, and the typical change during an optimization cycle is

on the order of 10−1 to 100. The design variables are summarized in Table 5.1.

Two scaling approaches based on Zingg et al. [205] are considered. In the first method, B-

spline design variables are scaled by their initial z-coordinates, and the angle-of-attack design

variable is scaled by its initial value. Planform variables are not scaled. In the second method,

B-spline design variables are scaled by the square root of their initial z-coordinates and the

angle-of-attack design variables variables are scaled by the square root of their initial value.

Again, planform variables are not scaled. The design variables are scaled by their initial scaling:

Xs = L−1X (5.27)

where the entries in Xs are the scaled design variables, those in X are the unscaled design

variables, and the diagonal matrix L contains the initial unscaled design variables. Effects

of design variable scaling on the convergence of the optimizer are shown for a single-point

optimization case in Section 8.2.



Chapter 6

Grid Movement Algorithm

During the course of an optimization cycle, changes in the geometric design variables affect the

surface geometry GS = GS(X ) through the geometry parameterization strategy, which in turn

changes the volume grid G through a grid generation or a grid movement algorithm. Regardless

of whether a gradient-based optimizer or gradient-free optimizer such as the genetic algorithm

is used, a unique volume grid is necessary for each function evaluation.

For Cartesian grids, which are not body-fitted, a new grid can be generated in a small

fraction of the cost of a flow solve [3], and it is possible to create, from scratch, a new grid for

both flow solution and evaluation of partial derivatives at each optimization iteration. However,

this approach is not without problems. In the case of body-fitted grids (both structured and

unstructured), grid generation is considerably more complicated, and is the topic of ongoing

research. Most grid generation algorithms have not achieved the speed and level of automation

in order to be practical for shape optimization applications. A review of grid generation methods

can be found in [180]. However, expensive grid re-generation can be avoided if a suitable

grid movement algorithm is employed. Each time the wing surface grid changes, the volume

grid is adjusted accordingly. Popular grid movement algorithms include the spring analogy

methods [40, 140, 108], linear elasticity method [182, 183, 108, 140], hybrid method [71] and

algebraic methods [128, 19, 156, 157].

A fast and robust algebraic grid movement algorithm is implemented. This algebraic method

is based on Nemec [128]. The movement of nodes k = 2 to kmax along a grid line are determined

by the algebraic equation:

~xnew
k = ~xold

k +
∆~x1

2
[1 + cos (πSk)] (6.1)

where ∆~x1 is the displacement of the surface node, and

Sk =

∑k
i=2 |~xi − ~xi−1|

∑kmax

i=2 |~xi − ~xi−1|
(6.2)

is the normalized arc-length distance along the grid line.

54
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Figure 6.1: Algebraic grid movement algorithm applied to a structured volume grid

For illustration purpose, the algorithm is applied to a coarse 8×8×8 grid shown in Figure 6.1.

In this example, the location of a corner is moved (Figure 6.1a). This may correspond to cases

where the corner of a block is on the surface of the geometry. In this example, (6.1) is first

applied to the grid line in the ξ direction to generate a new edge (Figure 6.1b). The equation

is then applied to all the grid lines in the η direction to generate a new face (Figure 6.1c).

Finally, the equation is applied to all grid lines in the ζ direction to generate a new volume grid

(Figure 6.1d). If an edge of the block lies on the surface of the wing, the algebraic equation will

only be used to generate the face, and then the volume grid, i.e. steps (b)–(d) only. Similarly, if

an entire face of the block lies on the surface, the algorithm is only used to generate the volume

grid based on the surface grid, i.e. applying steps (c) and (d) only.

An example of the grid movement algorithm is shown in Figure 6.2. In this example, the
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(a) ONERA M6 grid at symmetry plane
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(b) Perturbed grid at symmetry plane

Figure 6.2: Example of algebraic grid movement algorithm.

root location of an ONERA M6 wing is displaced, and the wing is rotated to a positive angle of

attack. The grid at the symmetry plane is shown. Although the grid movement algorithm does

not explicitly guarantee the new grid to be of good quality, this method has been found to be

effective for most aerodynamic shape optimization applications as long as the block boundary

is sufficiently far from the body surface.



Chapter 7

Validation

7.1 Overview

Flow solver and optimization results are obtained on the High Performance Advanced Comput-

ing Facility (HPACF) at University of Toronto’s Institute for Aerospace Studies (UTIAS). The

HPACF is a distributed-memory Beowulf-class cluster. The cluster uses Intel Itanium 2 pro-

cessors with a CPU speed of 1.5GHz. Each node consists of 4 processors, with 8GB of shared

memory per node. The nodes are connected by a high-bandwidth low-latency Myrinet net-

work. Communication between processors is done using message-passing interface (MPI) [55]

standard. Each component of the Newton-Krylov algorithm are individually validated, and the

results are presented in this chapter.

7.2 Flow Solver Accuracy

The accuracy of the flow solver is validated against experimental measurements on the ONERA

M6 wing by Charpin and Schmitt [169]. It should be noted that validation against experimental

results is difficult, since an Euler flow solver does not account for viscous and turbulent effects,

such as flow separation, and interactions between shocks and the boundary layer. However, the

flow solver should be able to accurately capture the locations of the shocks.

Validation cases are presented for three transonic operating conditions:

Case 1: M = 0.6990, α = 3.06◦

Case 2: M = 0.8350, α = 4.08◦

Case 3: M = 0.8831, α = 4.07◦

57
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In each test case, flow solutions are computed using three combinations of dissipation constants:

A: κ2 = 1.0, κ4 = 0.02

B: κ2 = 0.0, κ4 = 0.10

C: κ2 = 2.0, κ4 = 0.02

The first two sets of dissipation constants (A and B) are used in all flow validation cases.

The third set of dissipation constants (C) reflects a more aggressive approach to removing the

oscillations around the shock. This is only used in Cases 2 and 3.

The first set of dissipation terms (A) are values suggested by Nichols [139]. For the second

set of terms (B), second-difference dissipation is turned off while a higher fourth-difference

constant is used. This set of constants is used in the design examples presented in Chapter 8. In

constructing the flow Jacobian matrix (∂R/∂Q) for adjoint gradient calculation, the dissipation

terms are considered frozen, and the pressure switch (4.26 and 4.25) is not linearized. Therefore,

second-difference dissipation must be turned off in order to obtain accurate objective function

gradients. This is further discussed in Section 7.4. Without second-difference dissipation, the

higher κ4 value is found to be necessary for the flow solver to converge. Ideally this issue can

be addressed by linearization of the pressure switch.

Flow solutions are obtained on a 12-block H-H topology grid with 1,008,000 nodes. The grid

is shown in Figure 7.1. This grid is generated using an elliptical grid generator GEM3D [62].

In this grid, the wing’s semi-span (b/2) is scaled to unity (wing root chord croot = 0.674, wing

planform/reference area S = 0.563). On both top and bottom surfaces, there are 60 nodes in

the spanwise direction and 40 nodes in the chordwise directions. Off-wall spacing is 10−3, and

the far-field boundary is at a minimum of 22.0 semi-spans away from any point on the wing

surface. The flow solution is considered converged when ‖R(Q)‖2 < 10−10. Using 12 processors,

i.e. one block per processor, the flow solution takes an average 50 minutes to converge.

The first validation case (M = 0.699, α = 3.06◦) is the lowest Mach number for which

experimental results are available. For this case, the flow solver convergence histories are

plotted against iterations and CPU time in Figure 7.2. On the top surface, there is a mild

shock near the leading edge, while the lower surface is shock free. Pressure coefficients at six

spanwise locations
2y

b
= [0.20, 0.40, 0.65, 0.80, 0.90, 0.96]

are plotted against experimental results in Figure 7.3. In both results, the flow solver accurately

predicts the location and strength of the shock. Without second difference dissipation, the flow

solver slightly over-estimates the strength of the shock, and changing the dissipation constants

did not significantly affect the final solution. However, in shock-free regions, such as on the

lower surface, and downstream of the shock on the top surface, there is excellent agreement
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Figure 7.1: 12-block H-H grid around an ONERA M6 wing

Dissipation Terms CL CD

κ2 = 1.0, κ4 = 0.02 0.2352 0.006274

κ2 = 0.0, κ4 = 0.10 0.2392 0.006548

Table 7.1: Lift and drag coefficients for the ONERA M6 wing at M = 0.699, α = 3.06◦

between numerical and experimental results. Lift and drag coefficients from the converged

solutions are shown in Table 7.1. In this case, changing the dissipation terms changed the CD

value by 4%. This difference should be taken into account when doing an optimization cycle.

In the second validation case (M = 0.835, α = 4.08◦), there are two shocks on the top surface

of the wing. The bottom surface of the wing is shock free. A surface Mach number contour

plot for this operating condition is shown in Figure 7.4. Pressure coefficients at six spanwise

locations are plotted against experimental results in Figure 7.5. Similar to the previous case, in
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Figure 7.2: Convergence history for flow solver validation case at M = 0.699, α = 3.06◦

flow regions where second-difference dissipation is turned off–in this case the bottom surface of

the wing–there is excellent agreement between experimental and numerical results. On the top

surface, the general locations and strengths of the shocks are well-captured by the flow solver,

although again, the strength of the shocks near the wing root is over-estimated in the numerical

solutions. There is also an oscillation in the flow solution near the shocks when κ2 values of 0.0

or 1.0 are used. To fully eliminate the oscillation requires κ2 = 2.0. The convergence history

is shown in Figure 7.6. Lift and drag coefficients from the converged solutions are shown in

Table 7.2.

The operating conditions for the third case (M = 0.8831, α = 4.07◦) are the closest to the

operating conditions used in the optimization examples. In this case, the shape of the shocks

on the top surface are similar to Case 2, but the shocks are stronger. The bottom surface again

remains shock free. All three combinations of dissipation constants are used in this test case,
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Figure 7.3: Pressure coefficients on the ONERA M6 wing at M = 0.669, α = 3.06
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Figure 7.4: Mach number contours for the ONERA M6 wing at M = 0.835, α = 4.08◦

Dissipation Terms CL CD

κ2 = 1.0, κ4 = 0.02 0.3814 0.02108

κ2 = 0.0, κ4 = 0.10 0.3906 0.02163

κ2 = 2.0, κ4 = 0.02 0.3756 0.02086

Table 7.2: Lift and drag coefficients for the ONERA M6 wing at M = 0.835, α = 4.08◦
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Figure 7.5: Pressure coefficients on the ONERA M6 wing at M = 0.835, α = 4.08

but with κ2 = 2.0, the flow solution did not converge, as the flow solver encountered negative

densities after a Newton update. The convergence histories are shown in Figure 7.7.

Surface Mach number contours are shown in Figure 7.8. Pressure coefficients at six span-

wise locations are plotted against experimental results in Figure 7.9. In this case, it is noted

that numerical results are very different from published experimental results, in terms of the

placement and the strength of the shocks. The discrepancy may be attributed to the fact that

viscous and turbulence effects are not modelled in the flow solver. The increased viscous effects

at this high Mach number may lead to flow features that the flow solver is unable to model.

These may include interactions between the shock and boundary layer, or shock-induced flow

separation.

From the point of view of an optimization case, it is noted that the shock-free regions of

the flow field–such as the bottom surface of the wing–are well modelled by the flow solver

with κ2 = 0.0. This means that although the computed flow field may have inaccuracies in

the beginning of the optimization cycle, the final optimized geometry will remain optimal, as

long as the final geometry is shock-free or has weak shocks. Lift and drag coefficients from the

converged solutions are shown in Table 7.3.
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Figure 7.6: Convergence history for flow solver validation case at M = 0.835, α = 4.08◦

Dissipation Terms CL CD

κ2 = 1.0, κ4 = 0.02 0.4470 0.03857

κ2 = 0.0, κ4 = 0.10 0.4587 0.03969

Table 7.3: Lift and drag coefficients for the ONERA M6 wing at M = 0.8831, α = 4.07◦

7.3 Comparison of Grid Movement Algorithms

In this section, the algebraic grid movement algorithm described in Chapter 6 is validated

against the linear elasticity method of Truong et al. [182, 183]. The test cases are done using

a 146,004-node grid around an ONERA M6 wing, as shown in Figure 7.10. Each surface is

parameterized using a B-spline surface with 10 control points in the chordwise direction, and

15 in the spanwise direction, as shown in Figure 7.11.



Chapter 7. Validation 64

Newton Iterations

||R
||

2

20 40 60 80 100 120

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

κ2=2.0, κ4=0.02
κ2=0.0, κ4=0.10
κ2=1.0, κ4=0.02

(a) Iterations

CPU Time (sec)

||R
||

2

0 500 1000 1500 2000 2500 3000 3500

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

κ2=2.0, κ4=0.02
κ2=0.0, κ4=0.10
κ2=1.0, κ4=0.02

(b) CPU Time

Figure 7.7: Convergence history for flow solver validation case at M = 0.835, α = 4.08◦

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

M
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

TOP SURFACEBOTTOM SURFACE

Figure 7.8: Mach number contours for the ONERA M6 wing at M = 0.8831, α = 4.07◦
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Figure 7.9: Pressure coefficients on the ONERA M6 wing at M = 0.8831, α = 4.07

In the first validation case, a new surface grid is generated by moving the location of the

wing root, the angle of attack of the wing with respect to the far-field boundary, as well as

the sweep angle, using the geometry parameterization strategy in Section 3. A new volume

grid is then generated using both methods. Figure 7.12 shows different views of the resulting

grids. Both algorithms are able to maintain a good quality grid, but the linear elasticity method

is better able to maintain grid line orthogonality near the surface, as seen by examining the

grid lines at the block boundaries. In terms of the performance, using a single processor, the

algebraic method required about 3.0 seconds to complete, while the linear elasticity method

took about 919.0 seconds to solve the stiffness matrix inexactly using the conjugate gradient

(CG) Krylov method.

For the second validation case, a new wing surface is generated with an additional leading-

edge sweep angle of ∆ΛLE = 5◦ added at the wing root. This amount of change in the geometry

is typical in the optimization cases presented in this thesis. New grids are then produced using

two algorithms. Using the new grids, flow solutions are computed for 0.60 < M∞ < 0.89 at

a fixed angle of attack α = 3.06◦. The resulting lift and drag coefficients are compared in

Figure 7.13. It shows good agreement in CL and CD values for both algorithms. The algebraic

method required 3.0 seconds to complete, while the linear elasticity method took about 800



Chapter 7. Validation 66

XY

Z

(a) Wing surface

X

Z

-0.6 -0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

0.6

(b) Symmetry plane

Y

Z

(c) Wing root

XY

Z

(d) Wing tip
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Figure 7.11: B-spline parameterization of the coarse ONERA M6 grid



Chapter 7. Validation 67

X

Z

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

(a) Algebraic

X

Z

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

(b) Linear elasticity

X

Z

-0.5 0 0.5 1

0

0.5

1

(c) Block boundaries

——— Algebraic ——— Linear elasticity

Figure 7.12: New grids generated with the two algorithms



Chapter 7. Validation 68

Mach Number

C
L

C
D

0.6 0.65 0.7 0.75 0.8 0.85
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.015

0.02

0.025
CL Algebraic
CD Algebraic
CL Linear Elasticity
CD Linear Elasticity

Figure 7.13: Comparison of grid movement methods, with ∆Λ = +5o

seconds on a single processor.

7.4 Gradient Accuracy Evaluation

In this validation test, discrete adjoint gradients are compared to finite-difference gradients to

establish their accuracy. Two cases that are considered to be representative of the range of

optimization problems the optimizer may encounter are tested:

1. A subsonic lift-to-drag maximization problem

2. A transonic lift-constrained drag minimization problem

In each of these test cases, the flow solution is converged to 10 orders of magnitude reduction

in residual. For the adjoint gradient calculations, the linear residual of the adjoint equations is

converged by eight orders of magnitude. Finite-difference gradients are obtained using second-

order centred differencing, with a step size of h = 10−5 × Xi for each design variable i. The

same step size is also used when using second-order centred differencing to evaluate partial

derivatives (∂J /∂X and ∂R/∂X ) in the adjoint method for the B-spline, sweep and Mach

number design variables (5.10). In general, a step size of 10−4×Xi > h > 10−8×Xi is accurate.

Similar values are found by Nemec [128] and Wong [196] for 2D problems. For angle-of-attack

design variables, ∂J /∂α is hand derived (Appendix E.2), while ∂R/∂α is computed using the

complex step method (Appendix E.3). Gradient accuracy tests are done on a 12-block H-H

topology grid around an ONERA M6 grid with 430,000 nodes.
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Design Var. Adjoint FD Relative Diff. (%)

α 0.00658046 0.00658046 0.00001

B-Spline 1 0.01213377 0.01213290 0.0072

B-Spline 2 0.15142742 0.15142677 0.00043

B-Spline 3 -0.00217632 -0.00217520 0.0518

ΛLE 0.00239485 0.00239575 0.0376

Table 7.4: Gradients for the subsonic L/D maximization case with κ2 = 0.0

Design Var. Adjoint FD Relative Diff. (%)

α -234.120307 -234.120306 0.0000001

M -1289.998655 -1289.998563 0.0000071

B-Spline 1 -79.9814306 -79.9814300 0.0000004

B-Spline 2 -53.248897 -53.249054 0.0002949

B-Spline 3 -256.041027 -256.041210 0.0000716

ΛLE -3.2832813 -3.2832809 0.0000128

Table 7.5: Gradients for transonic lift-constrained drag minimization case with κ2 = 0.0

Two cases are used to validate the accuracy of the adjoint gradient. The first is a subsonic

case at a free-stream Mach number of M = 0.3 and an angle of attack of 2.0◦. The minimization

of CD/CL (2.8) is used as the objective function. The second case is a transonic case with a

free-stream Mach number of M = 0.84 at an angle of attack of 2.0◦. The lift-constrained drag

minimization objective function (2.5) is used, with the following targets and weights for lift and

drag:

C∗
L = 0.307 ωL = 100.0

C∗
D = 0.00877 ωD = 1.0

The design variables include change in sweep angle at the leading edge (∆ΛLE) from the original

configuration, three arbitrarily selected B-spline control points and the angle of attack. In

addition, Mach number is also considered in the transonic case. In order to obtain five or more

significant figures in gradient accuracy, it is necessary to reduce the linear residual in the adjoint

system by at least eight orders of magnitude.

The finite-difference and adjoint gradients are first computed with no second-difference

dissipation (κ2 = 0.0). The results are shown in Table 7.4 for the subsonic case (with κ4 = 0.02)

and in Table 7.5 for the transonic case (with κ4 = 0.10). It shows excellent agreement

between the two methods. Relative differences between finite-difference and adjoint gradients

are less than 0.0002% for the third B-spline control points, and several orders magnitude smaller

for other design variables. Note that since the partial derivatives are evaluated with finite
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Design Var. Adjoint FD Relative Diff. (%)

α 0.00652033 0.00650845 0.182

B-Spline 1 0.011890762 0.011893416 0.022

B-Spline 2 0.149028037 0.149976489 0.636

B-Spline 3 -0.002090154 -0.002088376 0.085

ΛLE 0.002596489 0.002653282 2.365

Table 7.6: Gradients for the subsonic L/D maximization case with κ2 = 1.0

Design Var. Adjoint FD Relative Diff. (%)

α -238.790372 -236.633832 0.9031102

M -1190.044217 -1287.863731 8.2198218

B-Spline 1 -95.454369 -93.312395 2.2439767

B-Spline 2 -49.316700 -49.800163 0.9803240

B-Spline 3 -280.230102 -277.522871 0.9660742

ΛLE -3.509072 -3.497541 0.3286186

Table 7.7: Gradients for transonic lift-constrained drag minimization case with κ2 = 1.0

differencing, it may still suffer the same numerical issues as finite-difference gradients.

The two test cases are then repeated with second-difference dissipation turned on (κ2 = 1.0,

κ4 = 0.02). The results are shown in Table 7.6 for the subsonic case, and in Table 7.7 for the

transonic case. In the subsonic case, turning on second-difference dissipation did not signifi-

cantly change the adjoint or the finite-difference gradient. Also, there is still good agreement

between finite-difference and adjoint gradients with κ2 = 1.0. The disagreements in the gradi-

ent in this case is higher than with κ2 = 0.0. In the transonic case, however, the accuracy of

the adjoint gradient suffers more with second-difference dissipation turned on.

This disagreement can be attributed to the way the Jacobian matrix is computed. The

pressure switch that is used to turn on the second-difference dissipation near shocks ((4.25)

and (4.26)) is a non-differentiable function. In the hand derivation of the Jacobian terms,

the dissipation terms are assumed to be frozen. In a shock-free subsonic case where second-

difference dissipation terms are usually turned off throughout the entire flow field, turning the

κ2 term on and off has little impact on the accuracy of the adjoint gradient. However, in the

transonic case with shocks present, second-difference dissipation is used, and the impact of κ2

on gradient accuracy is significant. In the optimization cases presented in Chapter 8, only

fourth-difference dissipation is used.
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7.5 Inverse Design

The goal of inverse design is to find a wing geometry that best matches a target pressure

distribution (2.9). In this validation case, the target pressure is based on the surface pressure of

the ONERA M6 wing at M∞ = 0.80 and α = 3.0◦. The flow solution for the target pressure is

computed using the dissipation constants κ2 = 0.0 and κ4 = 0.10. The grid used is a 48-block

H-H topology grid with 457,776 nodes around the ONERA M6 wing. The grid is shown in

Figure 7.14.

Both the top and bottom surfaces of the wing are parameterized with four cubic B-spline

surfaces, as described in Section 3.1. Each B-spline surface has five control points in the

chordwise direction and seven in the spanwise direction, shown in Figure 7.15. The design

variables are the z-coordinates of 132 B-spline control points, highlighted in blue in Figure 7.15.

They include every control point except near the leading edge and trailing edge. In addition,

the angle of attack (α) is also a design variable. The B-spline control point design variables

are perturbed from the ONERA M6 wing to generate the initial geometry. Thus the initial

geometry has the same planform as the ONERA M6, but with a different cross-section. The

initial wing is shown at the wing root (symmetry plane) in Figure 7.16. The initial angle of

attack was also perturbed to α0 = 3.5◦.

The inverse design validation case is performed with the design variable scaling methods

described in Section 5.3. The convergence histories for all three cases are shown in Figure 7.17.

In the case where the design variable is scaled by the square root of the initial value (Scaling=2,

red-line), convergence rate is the fastest. The objective function decreased by five orders of

magnitude, and the gradient L2-norm has also decreased by three orders of magnitude after

about 100 iterations. This is excellent convergence behaviour for such a large number of design

variables. In the cases where design variables are scaled by their initial values (Scaling=1, green

line) and with no scaling applied to the design variables (Scaling=0, blue line), the optimizer

converged the slowest.

The wing section geometries are shown with Scaling=2 at six spanwise locations in Fig-

ure 7.18 after 5, 10, 20 and 30 iterations. After about 30 iterations, the geometry is indistin-

guishable from the ONERA M6 wing.



Chapter 7. Validation 72

XY

Z

(a) Wing surface

Y

Z

(b) Wing Root

XY

Z

(c) Wing Tip

X

Z

-0.6 -0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

0.6

(d) Symmetry plane

Figure 7.14: 48-block H-H grid around a ONERA M6 wing
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Figure 7.15: B-spline parameterization of the ONERA M6 wing surface

Figure 7.16: Symmetry plane of initial grid for inverse design
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Figure 7.18: Comparison of initial and final wing cross-sections for inverse design
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Design Examples

The Newton-Krylov algorithm described in Chapters 2–6 is used in the design of wings in a

series of representative cases using the lift-constrained drag minimization objective function

(2.5). In Section 8.1, results are presented for a single-point optimization of an ONERA M6

wing. The single-point results are expanded to a multi-point case with three design operating

conditions in Section 8.3. The effects of design variable scaling on convergence is shown in

Section 8.2. In these three examples, a volume constraint is added to preserve the volume

enclosed by the wing at each iteration. Single-point optimization results are also presented for

a geometry based on the DPW-W1 wing [185] in Section 8.4. A thickness constraint is added to

maintain a minimum wing thickness. Finally, results are presented for a study to determine the

effect of starting geometry on the final optimized solution in Section 8.5, in particular, whether

a wing with forward sweep represent a locally optimum design. In this final case, both volume

and thickness constraints are used.

For all design examples, second-difference dissipation is turned off (κ2 = 0.0) to ensure an

accurate discrete gradient, while fourth-difference dissipation coefficient of κ4 = 0.10 is used.

Recall from Section 7.2, in the absence of second-difference dissipation, the higher κ4 value is

needed at higher transonic Mach numbers–such as those encountered in the design examples–in

order for the flow solver to converge. Flow solutions are converged by 10 orders of magnitude.

For the adjoint system, the linear residual is converged by eight orders of magnitude.

8.1 Single-Point Lift-Constrained Drag Minimization

A single-point optimization case is presented for drag minimization of an ONERA M6 wing

at transonic speed. The goal of this optimization case is to minimize drag at M = 0.90 while

maintaining the lift of the original ONERA M6 wing. The wing initially operates at α = 2.50◦.

76
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Parameter Value

Root chord (croot) 1.0

Semi-span (b/2) 1.5

Taper ratio (γ) 0.56

Aspect ratio (AR) 3.8

Leading-edge sweep angle (ΛLE) 30.0◦

Trailing-edge sweep angle (ΛTE) 15.8◦

Table 8.1: Planform parameters for the ONERA M6 wing

At this operating condition, the lift and drag coefficients are:

CL = 0.307

CD = 0.02804

The lift-constrained drag minimization objective function (2.5) is used for this case, with the

following targets and weights in the lift and drag terms1:

C∗
L = 0.308 ωL = 100.0

C∗
D = 0.00746 ωD = 1.0

The high ωL value is found to be necessary to maintain the lift coefficient. Based on linear

lifting-line theory (2.6), the minimum induced drag is CD = 0.00795. The target drag is

therefore set to a value that is purposely unattainable.

The volume grid around the ONERA M6 wing is the same H-H topology grid used in the

inverse design validation case (Section 7.5). The grid has 457,776 nodes. There are 33 nodes in

each of the chordwise and spanwise directions on the top and bottom surfaces of the wing. The

chord at the wing root is normalized to croot = 1.0. Off-wall spacing is 0.003croot, and far-field

boundaries are at least 22croot away from any point on the wing surface. The ONERA M6 wing

grid is shown in Figure 7.14. Planform parameters are shown in Table 8.1.

The wing surface geometry is parameterized using cubic B-spline surfaces. Each of the top

and bottom surfaces of the wing is divided into eight surface patches, each fitted with a 5 × 5

cubic B-spline surface. Overall, there are nine control points in the chordwise direction, and

17 in the spanwise direction. The B-spline control surfaces are shown for the top surface in

Figure 8.1. For this optimization case, z-coordinates of 165 B-spline control points are used

as design variables. Control points that are used as design variables are highlighted in blue

in Figure 8.1. This essentially includes every control point, except near the leading edge and

1Using the formulation in (2.5), the targets are set to L∗ = C∗

L · S = 0.351 and D∗ = C∗

D · S = 0.0085 using
a planform area of S = 1.14. For this design example, the planform area does not change from one iteration to
another, this formulation is equivalent.
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Figure 8.1: B-spline surface parameterization of the ONERA M6 wing for single- and multi-

point optimization

trailing edge, where the control points are fixed to prevent wing surface cross-over. Additionally,

the change in leading-edge sweep angle at the wing root (∆ΛLE1), changes in two sweep angles

near the wing tip (∆ΛLE14 , ∆ΛLE15), geometric twist (Ω) and angle of attack (α) are also

considered, for a total of 170 design variables. Note that as sweep angle changes, the wing

is sheared along the chordwise direction, and the planform area S is maintained during the

course of the optimization. B-spline control point design variables are scaled by the square

root of their initial z-coordinates (second scaling method described in Section 5.3). Further

discussions on the effect of design variable scaling are presented in the next section. Finally, a

volume constraint (3.18) is added to maintain the wing’s volume (with vf = 0.0). A penalty

weight of ωV = 50.0 is used.

During the optimization cycle, the flow solver requires an average of 8.2 minutes to reduce

the residual by 10 orders of magnitude, using 48 processors. The adjoint solver takes an average

of 2.2 minutes to reduce the residual by eight orders of magnitude. That the flow solution takes

about four times longer to solve than the adjoint solution is consistent with previous experience

with a 2D adjoint solver [132].

The optimization convergence history is shown in Figure 8.2. After 231 iterations, which

took about 44 hours, the objective function has reduced by more than two orders of magnitude

and the gradient L2-norm has reduced by three orders of magnitude. At this point, the lift and
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Figure 8.2: Convergence history for the single-point optimization of the ONERA M6 wing

drag terms are:

CL = 0.307

CD = 0.008936

This represents a 68% improvement in drag with no loss in lift. Note that the final drag is

within 15% of the minimal induced drag predicted by the lifting-line theory. It is not known

whether this is caused by numerical errors, or whether improved flexibility in the geometry

parameterization is needed. The spanwise lift distribution for the ONERA M6 and the opti-

mized geometries are compared to the elliptical lift distribution in Figure 8.3. It shows that the

lift distribution of the optimized geometry more closely matches the elliptical lift distribution,

indicating that the induced drag has been reduced.

In the final geometry, the sweep angle ΛLE at the wing root is increased from 30.0◦ to 43.7◦.

The angle of attack increased slightly from 2.50◦ to 2.62◦. A negative twist angle of Ω = −6.07◦

is added, creating a washout at the wing tip. Surface Mach contours of the final geometry are

compared to the ONERA M6 wing in Figure 8.4. It shows that the optimizer has eliminated the

shocks on the upper surface,2 thus minimizing the wave drag component. The shock reduction

can be seen further in the surface pressure coefficient plots at six spanwise stations, as shown

in Figure 8.5. The optimized wing’s cross-sections are also compared to the ONERA M6 wing

in Figure 8.5. Drag reductions after 20, 50 and 100 iterations for this design example are

shown in Table 8.2. The Mach contours on the wing’s top surface after 20 and 50 iterations are

shown in Figure 8.6. In this design example, most of the drag reduction occurs in the first 20

iterations, which takes about 4 hours using 48 processors.

2Note that near the wing root, there are initially two shocks on the top surface.
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Figure 8.4: Comparison of Mach contours on the wing top surface for the single-point optimiza-

tion case

During this optimization example, it is noted that the line search algorithm is rarely used,

in that the full Newton step β = 1.0 is usually sufficient. In rare cases when the line search

algorithm is called, the strong Wolfe conditions can generally be satisfied within two to three

line-search steps.



Chapter 8. Design Examples 81

X/c

Z
/c

C
p

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25
-1

-0.5

0

0.5

1

1.5

(a) 2 % span

X/c

Z
/c

C
p

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25
-1

-0.5

0

0.5

1

1.5

(b) 20% span

X/c

Z
/c

C
p

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25
-1

-0.5

0

0.5

1

1.5

(c) 40% span

X/c

Z
/c

C
p

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25
-1

-0.5

0

0.5

1

1.5

(d) 60% span

X/c

Z
/c

C
p

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25
-1

-0.5

0

0.5

1

1.5

(e) 80% span

X/c

Z
/c

C
p

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25
-1

-0.5

0

0.5

1

1.5

(f) 90% span

——— Initial ——— Final

Figure 8.5: Surface pressure coefficient plots and wing sections at six spanwise stations for the

single-point optimization case
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Iteration CD Drag Reduction

1 0.02804 —

20 0.01121 60%

50 0.01002 64%

100 0.00928 67%

Table 8.2: Drag reduction vs. iteration count for single-point optimization
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Figure 8.6: Mach contours after 20 and 50 optimization iterations

To demonstrate the robustness of the optimizer in design problems over a range of Mach

numbers, additional single-point optimization results are presented in Appendix F. As a final

note, in this design example, the increase in the sweep angle is particularly noteworthy. One

obvious implication is its effect on structural weight. The aerodynamic shape optimization

does not take into account whether an aerodynamically optimum design will have any additional

weight, and also ignores the structural loading on the wing. Additional structural weight, which

appears in the denominator in the logarithmic term in (2.4), will certainly affect the range of an

aircraft. The aerodynamic optimization also does not take into account trim and longitudinal

stability of the aircraft. So while the final geometry may be aerodynamically optimal based

on this particular objective function, additional constraints and considerations must be given

to ensure that the optimizer returns a practical design. Finally, the single-point optimization

does not address the fact that a wing must be optimized for a range of flight conditions in the

flight envelope. This last issue is addressed in Section 8.3.
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Figure 8.7: Convergence histories with different design variable scaling

8.2 Effects of Scaling on Optimizer Convergence

A single-point optimization case is presented to demonstrate the effects of design variable scaling

on optimizer convergence. This example is a single-point optimization problem at an operating

Mach number of M = 0.88. The following targets and weights on lift and drag are used with

(2.5):

C∗
L = 0.355 ωL = 50.0

C∗
D = 0.0102 ωD = 1.0

The optimization case is performed using the design variable scaling strategies discussed in

Section 5.3, and the resulting objective function convergence histories are plotted in Figure 8.7.

In this particular case, convergence is the slowest without any scaling (green line); the optimizer

requires double the number of iterations to decrease the objective function by two orders of

magnitude. In general, convergence is found to be the slowest when no design variable scaling

is applied, particularly in cases where there is a mixture of planform, B-spline control point

and angle-of-attack design variables. In this current example, optimizer convergence is fastest

when the design variables are scaled by the square-root of the initial coordinates (Scaling=2;

red line). In other transonic lift-constrained drag minimization cases shown in Appendix F,

this scaling method also appears to be the most robust. This scaling method is used in all

optimization cases presented in this chapter. Finally, when the B-spline control point design

variables are scaled by their initial values (Scaling=1, blue line) the optimizer stalled during a

line search. This line search stalling also occurred in some of the cases shown in Appendix F.
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This study demonstrates that the convergence rate of the optimizer indeed depends on the

scaling of the design variables. In particular, there is evidence to suggest that the optimizer

convergence is fastest when the design variables are scaled by the square root of their initial

values. An in-depth study is required to further investigate the effectiveness and efficiency of

each scaling method.

8.3 Multi-Point Drag Minimization

A well-known issue with single-point optimization is that a wing optimized for one operating

condition may perform poorly under different conditions. Generally, for single-point optimiza-

tion, the optimizer is able to remove all shocks at the design operating condition. However,

with even a small change in Mach number, shocks may develop rapidly. Using potential flow

theory to analyze the flow around a wing, Morawetz [121] demonstrated that shock-free tran-

sonic flows are isolated solutions, and that any small perturbations will cause the formation of

a shock wave.

In the single-point example presented in Section 8.1, the optimizer was able to significantly

decrease the drag at the specified operating condition at M = 0.90 and CL = 0.307. Compared

to the original ONERA M6 wing, the performance improvement is significant over all transonic

speeds, as shown in the drag divergence plots in Figure 8.8a. This is not surprising, since

the ONERA M6 wing is not designed using supercritical airfoil sections. However, when the

performance of the optimized wing is examined more closely, in Figure 8.8b, it is noted that

drag increases at speeds both lower and higher than M = 0.90.

The goal of a multi-point optimization is to improve the performance of the wing over

a wider range of conditions. In the current Newton-Krylov approach, a composite objective

function is defined as a weighted sum of the objective functions from each operating point i:

JT =
∑

i

ωiJi (8.1)

Each operating point can have a different operating Mach number, and the objective function

itself, as well as the targets in lift and drag, may also be different for each operating point. The

composite objective function can be considered as an approximation to the weighted integral:

JT ≈
∫ M2

M1

ω(M)J (M)dM (8.2)

to minimize the objective function over the range of Mach numbers of interest. Following (8.1),

a composite gradient is summed in similar fashion:

GT =
∑

i

ωiGi (8.3)
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Figure 8.8: Drag divergence plot for the optimized wing

Note that the flow solution and adjoint system must be solved at each operating point in order

to compute the composite gradient. The composite objective function and gradient (JT , GT )

replace J and G in the optimizer.

Results are presented for a three-point optimization case. The goal of this case is to minimize

the mean CD of the wing in the range 0.70 < M < 0.90, at a fixed lift coefficient CL = 0.307.

Note that in this case, each operating point has the same target lift and drag coefficients (C∗
L,

C∗
D), rather than the same target lift and drag, which scales with the square of Mach number.

The latter case would mean specifying the same C∗
LM2 and C∗

DM2 over all operating points.

In the current case, it is assumed that as an aircraft increases its speed, it is able to climb to

a higher altitude (lower ρ and a) such that the same lift is generated. Between M = 0.7 and

M = 0.9, this means a change of altitude of more than 8000ft. In a more extensive multi-

point optimization that involves dozens of operating conditions, such as the 2D cases studied in

Billings and Zingg [202] and Buckley and Zingg [18], operating conditions will include a range

of lift coefficients and Mach numbers, to account for take-off, cruise and dive conditions. In

Figure 8.8b, within the range of interest, CD is highest when M = 0.88, and it also increases

below M = 0.70. The reason for the dip in CD near M = 0.76 is not obvious, but similar

drag divergence behaviour is also observed in [82]. Based on this figure, operating points for

the multi-point optimization are chosen based on where CD values need to be reduced. The
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Figure 8.9: Convergence history for the three-point optimization case

selected operating points are: M1 = 0.70, M2 = 0.88 and M3 = 0.90. In this case, each

operating point is weighted equally (ωi = 1.0), but the weighting may change at the discretion

of the designer.

The same design variables from the single-point optimization case (Section 8.1) are re-used,

and the angles of attack at M1 = 0.70 and M2 = 0.88 are also considered as design variables

(total 172 design variables). The optimization begins with the final geometry from the single-

point case. The same targets and weights for lift and drag from the single-point optimization

case are re-used:

C∗
L = 0.308 ωL = 100.0

C∗
D = 0.00746 ωD = 1.0

As well, design variable scaling is also re-used from the single-point case.

The convergence history for the three-point optimization case is shown in Figure 8.9 after 78

iterations, which took 52 hours. The composite objective function and gradient L2-norm have

both reduced by about three orders of magnitude. Note that each iteration involves solving

one flow solution and one adjoint solution for each operating point. In the final geometry, the

leading-edge sweep angle is slightly increased to ΛLE = 44.3◦. The final washout angle is also

slightly reduced to Ω = −5.32◦. The final operating angles of attack are α = 1.37, 1.38◦ and

2.01◦ for the operating Mach numbers of M = 0.70, 0.88 and 0.90 respectively. The wing

cross-sections at six spanwise locations are compared to the single-point results in Figure 8.10.

The final wing cross-section shape is very similar to the single-point result. Although the

changes in the wing cross-section are small, there is a substantial difference in the performance

of the two wings. This can be seen in the drag divergence plot of the optimized wing at fixed
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Figure 8.10: Comparison of wing section shapes

CL = 0.307, shown in Figure 8.11. As expected, drag coefficients at M = 0.70 and = 0.88 have

been decreased, while that at M = 0.90 has increased slightly. The figure clearly shows that

the mean drag over the range of Mach numbers shown has substantially decreased.

8.4 Optimization Using Thickness Constraints

The goal of this single-point optimization case is to minimize the drag coefficient of the DPW-

W1 wing at M∞ = 0.76, while maintaining a lift coefficient of CL = 0.5. The DPW-W1 wing

originally created for the 3rd AIAA Drag prediction workshop (DPW-III) [185] has a blunt

trailing edge which is not suitable for an inviscid flow solver. A modified wing with a sharp

trailing edge is used instead. This case is taken from an optimization test suite described

by Epstein et al. [38]. The suite includes both single-point as well as multi-point optimization
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Figure 8.11: Drag divergence plot of the (three-point) optimized wing at fixed CL = 0.307

Optimizer Method Design Variables No. of Variables

SYN107 Continuous adjoint Surface nodes Thousands

MPOPT Response surface Spline at 4 spanwise stations 35

OPTIMAS Genetic algorithm Bézier curve at spanwise stations 55

Current: NK Discrete adjoint B-spline surface 176

Table 8.3: Summary of different optimizers

cases.3 Optimization results using the current Newton-Krylov approach are compared to results

in [38] using three other optimizers: SYN107 from Intelligent Aerodynamics International [80,

83], MPOPT from the Boeing Aircraft Company [93] and OPTIMAS from Israel Aerospace

Industries [149]. Each optimizer uses a different objective function to achieve the optimization

goal. The different optimizers are summarized in Table 8.3. Note that all these optimizers use

viscous flow solvers in the optimization, but the current algorithm uses an inviscid flow solver.

For this case, the lift-constrained drag minimization objective function (2.5) is used, with

3The current optimization case most closely corresponds to cases S4, M1 and O3 in [38].
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Parameter Value

Root chord (croot) 1.0

Semi-span (b/2) 3.0

Taper ratio (γ) 0.51

Aspect ratio (AR) 8.0

TE sweep (ΛLE) 17.2◦

LE sweep (ΛTE) 7.9◦

Table 8.4: Planform parameters for the DPW-W1 wing

the following targets and weights in lift and drag4:

C∗
L = 0.502 ωL = 100.0

C∗
D = 0.00995 ωD = 1.0

The volume grid used in this example is an H-H topology structured grid with 48 blocks.

In this grid, the chord at the wing root is normalized to croot = 1.0. Off-wall spacing is set to

0.003croot, and far-field boundaries are at least 22croot away from any point on the wing surface.

The grid has a total of 733,788 nodes. On each of the top and bottom surfaces, there are 40

nodes in the chordwise direction and 66 nodes in the spanwise direction. The grid is shown in

Figure 8.12, and planform parameters are shown in Table 8.4.

The wing surface is parameterized using eight cubic B-spline control surfaces to represent

the wing (four on the wing’s top surface, four on the bottom). Each surface has 6 control points

in the chordwise direction and 7 in the spanwise direction, i.e. on each of the top and bottom

surfaces, there are 13 control points in the spanwise direction, and 11 points in the chordwise

direction. The parameterization for the wing’s top surface is shown in Figure 8.13. Design

variables include the z-coordinates of all B-spline control points except near the leading- and

trailing-edges. There are a total of 175 B-spline control point design variables. The angle of

attack is also a design variable. Following [38], no additional planform design variables are

used.

The minimum thickness of the wing is constrained at two chordwise locations:

(t/c)∗ = 0.120 at (x/c) = 0.20

(t/c)∗ = 0.059 at (x/c) = 0.75

Both thickness constraints are implemented at 17 discrete spanwise locations along the wing.

The locations of the constraints and the thickness targets are summarized in Table 8.5. The

4The DPW-W1 wing has a planform area of S = 2.26. As the planform remains fixed for this optimization
case, the equivalent targets are for L∗ = 1.135 and D∗ = 0.022.
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Figure 8.12: 48-block grid around a DPW-W1 used for the design examples
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Figure 8.13: B-spline parameterization of the DPW-W1 wing

2y/b t∗ at x/c = 0.20 t∗ at x/c = 0.75

0.03 0.118 0.058
0.10 0.114 0.056
0.15 0.111 0.054
0.20 0.108 0.053
0.27 0.104 0.051
0.35 0.099 0.048
0.40 0.096 0.047
0.46 0.093 0.045
0.53 0.089 0.043
0.60 0.085 0.041
0.66 0.081 0.039
0.73 0.077 0.037
0.80 0.073 0.035
0.85 0.070 0.034
0.90 0.067 0.032
0.96 0.063 0.031
0.98 0.062 0.030

Table 8.5: Thickness targets for each thickness constraint

targets are specified as the absolute thickness of the wing at the constraint location. The

constraints are enforced using a penalty method (3.21). A penalty weight of ωT = 50.0 is used.

A constraint for maximum thickness is also described in [38], but it is found to be unnecessary

in this particular design case.

The convergence history is shown in Figure 8.14 after 96 iterations, which took 32 hours

with 48 processors. At this point, both the objective function and the gradient L2-norm have

reduced by about two orders of magnitude. Similar to the results in Section 8.1, the line-search

algorithm is rarely used; a full Newton step generally satisfies the strong Wolfe conditions. All
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Figure 8.14: Convergence history for the optimization of the DPW-W1 wing

thickness constraints are active at the end of the optimization, indicating that the thickness at

those locations is slightly below the specified minimum. The optimized wing’s cross-sections

and pressure distributions at six spanwise locations are plotted against the original DPW-W1

wing in Figure 8.15. It shows that the shock on the top surface of the wing has been removed.

The oscillation on the top surfaces on the wings in the Cp plots is due to the application of

the SATs at the block boundary on the top surface. In comparing the final geometries, the

optimized wing using the current algorithm is similar to those presented in [38].

The drag divergence plot of the optimized wing is compared to the DPW-W1 wing in

Figure 8.16. At the operating point of M = 0.76, the drag on the optimized wing is 18% lower

than the original DPW-W1 wing, although there is improvement even for M < 0.76. However,

at speeds above M = 0.78, the optimized wing does not perform as well as the original DPW-W1

wing.

The drag reduction using the Newton-Krylov approach is compared to the other optimizers

Table 8.6. The drag reduction reported by the NK approach is comparable to the other opti-

mizers. Note that the three other optimizers all use a RANS flow solver, while an Euler flow

solver is used by the Newton-Krylov optimizer. In the drag terms reported in [38], SYN107 and

MPOPT results do not distinguish between reduction in friction drag, wave drag and induced

drag. However, the results reported by the OPTIMAS code, the optimized shape had no im-

provements in viscous drag: all improvement come from reducing wave drag and induced drag.
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Figure 8.15: Surface pressure coefficient plots and wing sections at six spanwise stations for the

DPW-W1 single-point optimization case

Optimizer Drag Reduction

SYN107 -0.00129

MPOPT -0.00118

OPTIMAS -0.00171

Current: NK -0.00140

Table 8.6: DPW-W1 optimization results compared to other optimizers
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Figure 8.16: Drag coefficients at CL = 0.50 for the DPW-W1 optimization case

8.5 Effect of the Initial Geometry

The final design example studies the impact of the initial geometry on the wing’s final shape,

and to determine the uniqueness of the optimum achieved by the optimizer: whether or not

two starting geometries will converge to a unique solution. Hicken and Zingg have shown in the

design of wingtip devices [72, 69] that multiple local optima can exist. The focus of this design

example is on the sweep angle of the wing at transonic speeds.

The goal of this optimization is to find the shape, or shapes, which minimizes drag at an

operating Mach number of M = 0.76 and a lift coefficient of CL = 0.40. The following targets

and weight on lift and drag are used for (2.5):

C∗
L = 0.402 ωL = 100.0

C∗
D = 0.00610 ωD = 1.0

The optimization cases are performed using two initial geometries. The first geometry is a

tapered wing with planform parameters shown in Table 8.7 (CASE I). The original wing has a

cross-section shape that is constant from wing root to wing tip. The second geometry (CASE

II) has the same wing cross-section as CASE I, but the wing has an initial forward sweep angle

of ΛLE = −6.3◦ at the leading edge.

The volume grids around the two wings are 12-block H-H topology grids with 320,292 nodes.

On the top and bottom surfaces, there are 31 and 41 nodes on the chordwise and spanwise

directions respectively. The wing semi-span is scaled to unity, and the root chord is scaled to

croot = 0.667. Offwall spacing is 10−3, and the far-field boundaries are at least 37.5croot away
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Parameter Value

Root chord (croot) 0.667

Semi-span (b/2) 2.00

LE sweep angle (ΛLE) 5.2◦

TE sweep angle (ΛTE) −5.2◦

Twist angle (Ω) 0.00

Dihedral angle (Γ) 0.00

Taper ratio (γ) 0.55

Aspect ratio (AR) 8.27

Planform area (S) 0.967

Table 8.7: Planform parameters for the tapered wing

2y/b t∗ 2y/b t∗

0.01 0.0398 0.68 0.0266
0.05 0.0390 0.77 0.0249
0.20 0.0361 0.89 0.0225
0.40 0.0321 0.96 0.0211
0.60 0.0282 0.99 0.0206

Table 8.8: Leading-edge thickness constraints

from any point on the wing’s surface. The two initial geometries and their respective grids are

shown in Figure 8.17. At the start of the optimization runs, the drag coefficients at CL = 0.40

are CD = 0.0366 and CD = 0.0355 respectively for CASE I and CASE II.

Both the top and bottom surfaces of each wing are parameterized with cubic B-spline

surfaces. Each surface has 12 control points in the spanwise direction and 11 in the chordwise

direction. The z-coordinate of every B-spline control point is a design variable, except at the

leading and trailing edges, where the control points are fixed. There are 230 B-spline control

point design variables in total. In addition, the change in the wing’s sweep angle at wing root

(∆ΛLE), twist (∆Ω) and the angle of attack (α) are also design variables.

A volume constraint (3.17) is used to maintain the volume enclosed by the wings, with

the parameters vf = 0.0 and ωV = 50.0 used, following Section 8.1. Thickness constraints are

implemented near the leading and trailing edges to prevent grid crossover:

(t/c)∗ = 0.04 at (x/c) = 0.02

(t/c)∗ = 0.002 at (x/c) = 0.97

The actual thickness constraints are specified as an absolute thickness at a single location, as

shown in Tables 8.8 and 8.9. A penalty weight of ωT = 50.0 is used.

The objective function and gradient convergence histories are shown for both initial geome-
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Figure 8.17: 12-block grid around tapered wings used for the design examples

2y/b t∗ 2y/b t∗

0.01 0.0398 0.68 0.0266
0.05 0.0390 0.77 0.0249
0.20 0.0361 0.89 0.0225
0.40 0.0321 0.96 0.0211
0.60 0.0282 0.99 0.0206

Table 8.9: Trailing-edge thickness constraints

tries in Figure 8.18 after 250 optimization iterations for CASE I and 147 iterations for CASE

II. In CASE I, the objective function and gradient L2-norm have decreased by almost four
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Figure 8.18: Convergence histories with both initial geometries

Initial Geometry Initial CD at CL = 0.40 Final CL Final CD

Tapered Wing 0.0366 0.400 0.00671

Tapered wing with forward sweep 0.0355 0.399 0.00902

Table 8.10: Final CL and CD values for different initial geometries

orders of magnitude, and for CASE II, there was close to three orders of reduction. Most of

the reduction in the objective function is achieved during the first 20 iterations, consistent with

previous results in Sections 8.1 and 8.4. In both cases, both the volume and thickness con-

straints are active in the final geometry, with the final volumes and thicknesses within 0.15% of

the target. The final geometries from both cases have resulted in improvements in the aerody-

namic efficiencies, as shown by the CL and CD values in Table 8.10. Based on the convergence

histories, it appears that both cases have converged to a local optimum. However, despite both

cases have converged to a local optimum, their final planform geometries are very different.

In CASE I, the wing swept back to a LE sweep angle of ΛLE = 28.6◦, and washout angle of

Ω = −3.60◦. This is in contrast with CASE II. In this case, the forward sweep angle continued

to increase, to ΛLE = −29.4◦ in the final geometry. A smaller washout angle of Ω = −0.60◦ is

also added. Also, the optimized geometry from both cases produced very different CD values,

with the forward sweep case resulting in a substantially higher final CD value. This may be

due to y component of the flow near the leading and trailing edges of the wings. In the forward
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Figure 8.19: Initial and final geometries for the design case with different initial geometries.

sweep case, the y-component is towards the fuselage, while for the swept-back wing, the flow is

towards the wing tip.

For both cases, the final wings are compared to their respective initial geometries in Fig-

ure 8.19. They are shown with Mach contours on the wing surfaces. The figures show that the

shock (and therefore wave drag) have been eliminated in the optimized geometries. This can

be seen clearly in the pressure coefficient plots in Figure 8.20.
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Figure 8.20: Final pressure coefficients and wing sections for both initial geometries



Chapter 9

Conclusions and Recommendations

The primary objectives of this thesis are to extend the Newton-Krylov approach for aerodynamic

shape optimization pioneered by Nemec and Zingg [128, 133, 132, 134] to wing optimization

in three dimensions, to address the issues arising from this extension, and to characterize the

performance of the three-dimensional algorithm in a series of design examples. The goal is to

develop a framework for an aerodynamic shape optimization tool that can be used in industrial

applications. Ultimately, this optimizer should be incorporated as part of a multi-disciplinary

optimization approach.

9.1 Summary of the Newton-Krylov Algorithm

A summary of the overall algorithm is as follows. The Newton-Krylov approach refers to using

the Newton method and/or a Krylov subspace method to obtain the flow solution, objective

function gradient and the search direction. In the current implementation, a Jacobian-free

Newton method with pseudo-transient globalization is used to solve the steady Euler equations

in order to compute the objective function. The quasi-Newton gradient-based optimizer BFGS is

used to find the optimal design shape. The optimization problem is treated as an unconstrained

problem, with geometric constraints cast as penalty terms in the objective function. The linear

systems arising from each iteration of the flow solver as well as the adjoint system for the

gradient calculation are solved using the Krylov subspace method FGMRES. In both the flow

solution and the adjoint equations, the linear system is preconditioned with an approximate-

Schur preconditioner to improve convergence of the FMGRES algorithm.

The current Newton-Krylov method is built upon a parallel 3D inviscid Newton-Krylov

flow solver and discrete adjoint solver by Hicken and Zingg [73], which is based on flow solvers

by Nichols and Zingg [139], Nemec et al. [135, 128] and Pueyo and Zingg [152]. The spatial

discretization is based on the finite-difference scheme of Pulliam [153], with artificial dissipation

100
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terms based on Jameson et al. [84].

9.2 Conclusions and Original Contributions

The focus of this thesis is on the speed and efficiency of the algorithm, as it is applied to the

design of wings at transonic speeds. Since the Euler equations do not account for viscous and

turbulent effects, validation cases and design examples focus on minimization of wave drag and

induced drag at transonic speeds. Based on the validation cases discussed in Chapter 7 and

the design examples shown in Chapter 8, the advantages of the Newton-Krylov approach to

aerodynamic shape optimization can be summarized:

• The Newton-Krylov flow solver is fast, efficient and robust. The algorithm is able to

obtain a fully converged flow solution on a grid with one-million nodes in 50 minutes

using 12 processors, while in the design problems, a fully converged flow solution can

be obtained in eight minutes on a half-million node grid using 48 processors. The flow

solver can converge for a wide range of flow conditions from subsonic to transonic flows

as well as for different geometries. This robustness is key in the optimizer’s ability to do

multi-point optimization that may involve both subsonic and transonic flows.

• The Krylov method FGMRES used in the flow solver can be used to efficiently solve the

discrete adjoint equation to obtain the gradient. Solution to the adjoint system can be

obtained in roughly one-fourth the time of a flow solution.

• The quasi-Newton optimizer BFGS is able to obtain good design improvements in very few

design iterations, while offering a more complete convergence than the steepest descent

method if the designer needs to find a genuine optimum.

In addition, original contributions and findings for each component of the Newton-Krylov op-

timizer are presented in following subsections.

9.2.1 Optimizer Effectiveness

A quasi-Newton gradient-based unconstrained optimizer based on BFGS has been implemented.

This optimizer is capable of handling both single- and multi-point optimization problems, with

seamless restart capability if the optimizer is stopped. A line-search algorithm with backtracking

capabilities based on Nemec [128] has also been implemented. An automatic restart feature

using a steepest descent first step is used if the line search algorithm fails.

The optimization algorithm is found to be very efficient, in that it is able to converge to

a local optimum in a relatively small number of iterations. For problems with about 170-200
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design variables, the optimizer generally reduces the gradient L2-norm by more than three

order of magnitude after about 200 design iterations, where each design iteration consists of

one objective function evaluation and one gradient evaluation. The cost of an adjoint gradient

evaluation is on the order of an objective function evaluation. Overall, the cost of 200 design

iterations is comparable to the cost of 300 functional evaluations. The number of functional

evaluations is much fewer than gradient-free optimizers such as genetic algorithms, but appears

high compared to other published results for gradient-based optimization, where the cost of

a design optimization that is one order of magnitude more expensive than a flow solution is

often quoted, e.g. Jameson et al. [82]. However, in those cases, convergence histories are usually

not shown, and it is likely that the optimizer is not converged. For comparison, the current

Newton-Krylov optimizer is also able to achieve significant design improvements after only

about 10-20 iterations, which is consistent with other published works. It is concluded that the

overall Newton-Krylov approach is a fast and efficient alternative that is competitive against

other gradient-based optimizers.

With regards to the optimized geometry from the design examples in Chapter 8, changing

the sweep angle of the wing is found to be a direction of improvement that is favoured by the

optimizer. In most cases, the sweep angle increases, and higher final sweep angles are obtained

by the optimizer at higher Mach numbers. Note that increasing sweep may lead to heavier

wings (increased structural weight WS) which may decrease the aircraft’s range, as noted in

the Breguet range equation (2.4). If the geometry parameterization is given enough flexibility

to control the cross-sectional shape of the wing, it is possible to to eliminate shocks without

changing the sweep angle.

9.2.2 Application of Geometric and Performance Constraints

To ensure a physically realistic design and to enforce design limitations, two geometric con-

straints have been implemented: a volume constraint limits the change in the volume enclosed

by the wing, and thickness constraints specify minimum wing thicknesses at specific locations

on the wing. They are applied as penalty terms in the objective function. In addition, a

lift constraint is incorporated into the objective function itself. This allows the optimization

problem to remain an unconstrained problem.

In the design cases presented, most the constraints are active, i.e. they have small non-zero

penalty terms, at the end of the optimization cycle. This means that the constraints are violated

slightly. Such violations can be avoided with careful selection of constraint targets and weights.

However, it may also be advantageous to use a constrained optimizer such as SNOPT [50] which

also uses a quasi-Newton optimizer.
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9.2.3 Gradient Accuracy

Both discrete adjoint and finite-difference methods for gradient calculation have been imple-

mented. A study to determine the accuracy of the adjoint gradient against finite differencing

has been performed. The accuracy of the discrete-adjoint gradient is found to be excellent

compared to second-order centred differencing. Gradients computed using both methods differ

by less than 0.01% in both subsonic and transonic validation cases with two different objective

functions. The discrete adjoint gradient is obtained at a substantially lower cost than finite dif-

ferencing. For transonic flow problems, good agreement is only obtained when second-difference

dissipation terms are turned off.

It should be noted that finite differencing is still used to evaluate partial derivatives ∂J /∂X
and ∂R/∂X in the adjoint gradient calculations. With the inexpensive algebraic grid movement

method currently used, finite differencing is an obvious option to implement. However, the

adjoint gradient may therefore be affected by the same numerical errors as finite-differencing,

namely truncation and subtractive cancellation errors. In this case, hand linearization of these

partial derivatives, while labour intensive, is a good alternative.

In addition, the linearization of the residual vector (flow Jacobian matrix) assumes that the

second-difference dissipation terms are frozen. In order to obtain an accurate gradient, second-

difference dissipation must be turned off during the optimization cycle. In single-point opti-

mization, the final geometry is usually shock-free, i.e. effects from turning off second-difference

dissipation are small. However, for more complicated multi-point optimization cases where the

optimized geometry may not be shock free, having second-difference dissipation will improve

the accuracy of the flow solution.

9.2.4 Geometry Parameterization and Design Variables

An efficient geometry parameterization strategy using B-spline control surfaces is implemented.

The algorithm extends the capabilities of the CAD-free parameterization of Fudge et al. [45, 44]

in its improved flexibility for spanwise control of the geometry. The current method uses two-

levels of design variables to allow two levels of control over the geometry. At the top level, a set of

planform variables control the overall shape of the wing using a reduced set of design variables,

and at the lower level, individual B-spline control points change the wing’s spanwise cross

section shapes. Moreover, the angle of attack and free-stream Mach number are implemented

as design variables as well.

This parameterization method is an effective technique to manage design variables; an entire

wing can be parameterized using 200 to 300 B-spline control points. The number of design vari-

ables is similar to using the Hicks-Henne bump functions (Appendix B.1), e.g. parameterization
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of wing sections at four spanwise stations, using 15 basis functions at each section will require

120 design variables. The number of design variables is also far below the discrete method using

surface nodes (Appendix B.2), which will require more than 2000 design variables for the grids

used in the design examples, even if only z-coordinates are considered. This number will be

closer to 7000 if all three degrees of freedom are used.

9.2.5 Grid Movement Algorithm

A fast and robust algebraic grid movement algorithm based on Nemec [128] has been imple-

mented. This algorithm provides an inexpensive and robust alternative to generate a new

computational grid at each iteration, as well as for evaluations of partial derivatives. The al-

gorithm is found to work well even for large changes in geometry–especially for sweep angle

changes–as long as the block boundaries are sufficiently far from the body surface. In the event

that the new grid produces inverted or degenerate cells, the negative Jacobian is detected and

the optimizer backtracks.

One weakness of the grid movement algorithm is the range of geometry changes that it

can handle. Although the algorithm performs well for the optimization problems studied in

Chapter 8, it may fail for larger changes in geometries than those encountered, such as “growing”

a winglet from a previously flat wing.

9.3 Future Work

Based on the findings and conclusions, the following future work should be considered:

1. Extension of the flow solver to the Reynolds Averaged Navier-Stokes (RANS) equations

with a suitable turbulence model, such as the Spalart-Allmaras model [176], will be nec-

essary for more accurate drag prediction, and to better capture realistic flow phenomena

such as flow separation, local unsteadiness, and interaction between shocks and a bound-

ary layer. In particular, since there is no flow separation in the Euler equations, locally

optimal shapes that are permitted using the Euler equation may not be realistically op-

timal. A RANS solution may give a more comprehensive understanding of the optimal

shapes.

2. Perform a range optimization by directly maximizing the range using (2.4). It should be

noted that without any suitable structural models, and without accounting for viscous

drag effects, such range optimization always results in a higher operating Mach number,

and a highly swept-back wing optimized for that operating condition. The idea for range
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maximization is prompted by results by Jameson et al. [86] which suggested that optimiz-

ing the range leads to wings with lower sweep angles operating at lower Mach numbers.

Such an optimization case will involve using the Mach number as a design variable. The

Mach number at which an aircraft operates has profound impact on the sweep angle,

which is related to the range through structural weight WS. An aircraft’s operating Mach

number also affects the engine’s specific fuel consumption [114]. The latter is addressed

by casting the fuel consumption term as a function of Mach number in the objective

function. Additionally, one way to address the effects of additional weight on the range of

the aircraft is to cast any weight penalty as an appropriate penalty term in the objective

function, similar to thickness and volume constraints. A better alternative, however, is

to incorporate a suitable structural model into the optimization for a full aero-structural

optimization.

3. The capabilities of the geometry parameterization must be further generalized in order

to give it enough flexibility to define and modify wing-fuselage and unconventional con-

figurations, and to ensure the integrity of the surface grid at the junction between the

wing and the fuselage. Such generalization is needed for optimization of a wing in the

presence of a fuselage, or more comprehensive optimization of the wing and the fuselage

together. Further improvements in the geometry parameterization may include allowing

flexible control over the local twist of the wing in the spanwise direction.

4. In order to optimize a wing-fuselage configuration and unconventional aircraft designs,

other constraints based on performance measures should be investigated. For example,

a pitching moment constraint (C∗
M = 0) may be required to ensure the stability of the

aircraft.

5. By casting the geometric constraints as penalty terms in the objective function allowed the

use of the unconstrained optimizer BFGS. However, the selection of targets and penalty

weights for these geometric constraint’s is not trivial. One alternative is to use a con-

strained optimizer such as SNOPT [50] which also uses a quasi-Newton optimizer. A

study to compare the effectiveness and efficiency of SNOPT against the unconstrained

optimizer BFGS may be useful to determine which optimizer is better suited for this type

of optimization problems.

6. In order to perform multi-point optimization problems where the final geometry may

not be shock-free, improvements in gradient accuracy is required when second-difference

dissipation terms are turned on. This can be done in one of several ways. One way is

to linearize the differentiable functions in the dissipation terms in (4.20), (4.23), (4.24)
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and (4.26), while freezing the non-differentiable portions in (4.21) and (4.25). Another

approach is to apply the complex-step method to the dissipation terms. This approach

is similar to what is already done with the SATs at block boundaries, and also similar

to the approach by Nielsen and Kleb [141] to form the flow Jacobian using the complex-

step method entirely. An alternative may be to use automatic differentiation to form

the Jacobian [107]. Another area where the gradient accuracy can be improved is in the

partial derivative with respect to the design variables ∂J /∂X and ∂R/∂X . The partial

derivative of the objective function can be obtained by hand linearization, as described in

Section 5.1.2. The partial derivative with respect to the residual vector may be obtained

using complex step. A more accurate gradient may also improve the efficiency of the

optimizer, leading to a more complete convergence of the optimizer.

7. Finally, a study of different strategies for geometry control may be needed to examine

their fidelity (how many design variables are needed for comparable resolution), effective-

ness (how well the different methods are able to capture an aerodynamic optimum) and

efficiency (how the methods affect the optimizer convergence).
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Appendix A

Additional Notes on Range Equation

For an aircraft powered by turbojet or turbofan engines, the thrust specific fuel consumption

(TSFC) is defined as the weight of fuel burned per thrust per unit time:

TSFC =
Weight of fuel burned per unit time (N/s)

Unit thrust (N)
(A.1)

For a specific power plant, TSFC is a function of the operating Mach number [114]. Based on

this definition, the distance flown by an aircraft per unit weight of fuel burned can be calculated:

distance (m)

weight of fuel (N)
=

dR

dW
=

V

TSFC · T =
V

TSFC

L

D

1

W
(A.2)

where T is the engine’s thrust. This expression is based on assuming that during level flight,

lift equals the weight of the aircraft, L = W , and drag equals the thrust, D = T = WD
L . To

obtain the range equation requires integrating the above equation with respect to weight:

R = −
∫ Wf

Wi

V

TSFC

L

D

dW

W
(A.3)

where Wi and Wf are the initial and final weights respectively. Note that this integral ignores

climb and descent during take-off and landing. This assumption is valid for most civil transport

aircraft, where level flying accounts for most of the duration of a flight.

The common form of the range equation, known as the Breguet range equation, is obtained

by directly integrating (A.3), and assuming that only W varies during flight:

R =
V

TSFC

L

D
ln

[
Wi

Wf

]

(A.4)

The initial and final weights can be defined as:

Wi = WS + WP + WR + WF

Wf = WS + WP + WR

(A.5)
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where WF, WS, WP and WR are weights of fuel, structure, payload and reserve fuel respectively.

Substituting these terms into Wi and Wf , (A.4) can be written as:

R =
V

TSFC

L

D
ln

[

1 +
WF

WP + WS + WR

]

(A.6)

which is equation in (2.4). Based on this equation, the range can be maximized by:

• decreasing structural weight WS,

• increasing engine’s efficiency by decreasing TSFC,

• flying as fast as possible, i.e. increasing V , and

• optimizing the aerodynamic efficiency (lift-to-drag ratio L/D) at that operating speed.

Note that in obtaining (A.4), the aircraft’s speed V and the L/D ratio are assumed to be

constant during the entire flight. The lift generated must also always equal to the weight.

Therefore, as W decreases during flight, the lift generated must be decreased by reducing ρ (by

increasing altitude). This would result in a cruise-climb flight profile. Generally, this type of

flight profile is not permitted for transport aircraft, because of the desire of air-traffic controllers

to keep all aircraft at a constant altitude and airspeed. The Concorde was the only exception

that uses the cruise-climb flight profile, as its operating altitudes were higher than any other

commercial aircraft. On longer flights, however, air traffic control may allow an aircraft to

climb to a more optimal altitude in a “stairstep” flight profile as fuel is expended [155].

In the alternative derivation of the range equation, as described by Vinh [190], V is expressed

as a function of the weight and lift coefficient, again assuming that L = W during level flight:

L = W =
1

2
ρV 2SCL −→ V =

√

2W

ρSCL
(A.7)

Substituting this expression into (A.3) results in the following integral:

R = −
∫ Wf

Wi

√
2

ρS

1

TSFC

√
CL

CD

dW√
W

(A.8)

Assuming again that only weight varies, the integral yields:

R =
2

TSFC

√
2

ρS

√
CL

CD

(√

Wi −
√

Wf

)

(A.9)

In this case, in obtaining (A.9), the aircraft’s speed varies with the weight, while density ρ is

assumed to be constant, i.e. constant altitude. Therefore, as W decreases during flight, the

aircraft must slow down to decrease lift.

It should be noted that neither range equations, (A.4) nor (A.9), accurately represents an

actual flight path of an aircraft. A more comprehensive characterization of an aircraft’s flight

profile is needed to calculate its range.



Appendix B

Alternative Parameterization

Strategies

A geometry parameterization strategy based on B-spline control surfaces is described in Chap-

ter 3. This appendix describes two notable alternative approaches, the Hicks-Henne bump

function, and the discrete approach. Both methods can be easily adapted into the current

Newton-Krylov algorithm. The advantages and drawbacks of each method are discussed.

B.1 Hicks-Henne Bump Functions

The sinusoidal bump functions were first introduced by Hicks et al. [75] for 2D airfoil optimiza-

tion, and then in Hicks and Henne [74] for 3D wing optimization. This approach remains one

of the most popular geometry parameterization methods. In this strategy, the changes from

the original geometry z are described by a weighted sum of N bump functions:

z = zbasis +
N∑

j=1

ajfj(x) (B.1)

where zbasis is the z-coordinate of the original airfoil shape, and aj are the coefficients, which

are used as design variables. The bump functions fj are defined in Wu et al. [199] as:

fj(x) = sin4(πxmj ) , mj =
log 0.5

log xMj

(B.2)

The functions are defined for chord-wise coordinates 0 ≤ x ≤ 1, and xMj
are pre-selected values

corresponding to the location where fj is maximum. This equation is used in [199]:

xMj
= 0.5 × [1 − cos θj ] , θj =

πj

N + 1
(B.3)

It should be noted that this formulation of the bump functions can vary. For example, Cas-

tonquay and Nadarajah [25] use only a sine function rather than its fourth power, while Hicks
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Figure B.1: A set of 20 Hicks-Henne bump functions
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Figure B.2: Approximating an RAE 2822 airfoil using Hicks-Henne bump function

and Henne [74] only used five shape functions. Using the formulation in (B.2) and (B.3), the

Hicks-Henne bump functions with N = 20 are shown in Figure B.1. In Figure B.2, an RAE 2822

airfoil is approximated as perturbations from a NACA 0012 airfoil using the bump functions

described in Figure B.1. Twenty bump functions are used on each of the top and bottom surface

of the airfoil.

The bump functions in Figure B.1 share similarities to the B-spline basis functions (Fig-

ure 3.1) in shapes. Also, both methods are able to control the airfoil shapes locally. In the case

of the B-spline approach, because the control points have 3 degrees of freedom, it offers more

flexibility than the Hicks-Henne functions. In the previous example, the Hick-Henne bump

functions are not able to well represent the airfoil near the trailing edge.
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Figure B.3: Example of a surface perturbation using a 3D Hicks-Henne formulation.

It is possible to extend the Hicks-Henne functions to three-dimensions in a way that is

analogous to extending B-spline curves to surfaces. In this formulation, the perturbations on

the wing can be described as:

z = zbasis +

N∑

k=1

N∑

j=1

ajkfj(x)gk(y) (B.4)

To the author’s knowledge, this formulation has not been used. An example is shown in

Figure B.3. The surface is perturbed from a flat plate by setting the coefficient a4,7 = 0.5.

B.2 Discrete Approach

In the discrete approach–also known as the free surface approach–to geometry parameteriza-

tion, all three coordinates (x, y z) of each surface node can be treated as a design variable.

This method is easy to implement, as it requires no explicit external parameterization scheme;

thus it can be adapted to work with any existing body-fitted grids. The obvious advantage of

this approach is that it gives the optimizer the highest amount of flexibility to describe a shape.

Additionally, if the discrete approach is used with the algebraic grid movement method in Chap-

ter 6, exact derivation of ∂J /∂X and ∂R/∂X , required for the adjoint gradient calculations,

can be simplified.

It is noted that the discrete approach, when used without modification, may result in non-

smooth surface geometries during the optimization cycle. This may create problems for the flow
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solver to converge to a steady-state solution, and a non-smooth geometry may be difficult to

manufacture. In contrast, the B-spline curve is always smooth. If all three degrees of freedom

of every surface node are used as design variables, the number of design variables may be

very high. For example, consider the DPW-W1 grid used in the design examples. Using only

the z-coordinates of the surface nodes as design variables, there will be more than 5600 design

variables, compared to less than 200 with the B-spline control points. For large-scale viscous 3D

problems, which may have over a million surface nodes, the approach may become prohibitively

expensive. In this case, the cost is not associated with the cost of a gradient computation, since

the cost of an adjoint gradient is nearly independent of the number of design variables. Rather,

the cost is associated with the convergence of the optimizer. Some of these shortcomings are

addressed by Jameson and Kim by projecting the gradient into a Sobolev space [81].



Appendix C

Derivation of the Adjoint Method

Using Lagrange Multipliers

In the optimization problem in Section 2.1, a scalar objective function J (X ,Q) is minimized

subject to the equality constraint R(X ,Q) = 0. Vector quantities X (design variables), Q

(discretized flow variables), and the residual R are highlighted in bold face following the notation

used in Chapter 4. Note that since R is a vector of size N (number of flow variables), the

optimization problem is in fact constrained by N equations. The Lagrangian is defined as:

L = J (X ,Q) + ΨTR(X ,Q) (C.1)

where Ψ is the vector of Lagrange multipliers. For clarity, the Lagrangian is a scalar function

of many variables:

L = L(X1, . . . ,XNx ,Q1, . . . ,QN , ψ1, . . . , ψN ) (C.2)

where Nx is the number of design variables. At any stationary point we must have:

∇L = 0 (C.3)

Taking the partial derivative of L with respect to the Lagrange multipliers recovers the discrete

flow constraint equation:

∇ΨL =







∂L
∂ψ1

...

∂L
∂ψN







= R(X ,Q) = 0 (C.4)

Similarly, taking the partial derivative of L with respect to the state variables results in the

adjoint equation:

∇QL =







∂L
∂Q1

...

∂L
∂QN







=
∂J
∂Q

− ΨT ∂R

∂Q
= 0 (C.5)
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Finally, taking the partial derivative of the Lagrangian with respect to the design variable

recovers the objective function gradient equation (Equation 5.8):

∇XL =







∂L
∂X1

...

∂L
∂XNx







=
∂J
∂X − ΨT ∂R

∂X = 0 (C.6)

The necessary conditions (Equations C.4, C.5 and C.6) are a system of coupled partial

differential equations, the solution of which yields the optimal solution for X , Q and Ψ. It is

possible to solve this coupled system and obtain the optimal states and design variables. This

is called a one-shot method or simultaneous analysis and design (SAND). This method has

been applied to aerodynamic shape optimization. See Gatsis and Zingg [46] for example. Note

that the size of this coupled system is much larger than the state system, therefore in many

applications it may not be desirable to solve this coupled system directly.



Appendix D

GMRES

An iterative method may be used to solve the non-symmetric linear system from the Newton

method formulation inexactly (Section 4.4). Classical methods such as Jacobi, Gauss-Seidel

or successive overrelaxation (SOR), discussed in [106], may be used if the system is diagonally

dominant, which is not the case with the present spatial discretization. Classical methods are

easy to implement, but they generally converge slowly. Instead, a Krylov subspace iterative

method is a more attractive alternative. The Generalized Minimal Residual (GMRES) algo-

rithm by Saad and Shultz [163] and its variants have been found to be particularly efficient

methods for CFD and aerodynamic shape optimization problems.

D.1 GMRES

The GMRES algorithm approximates the solution to the linear system

Ax = b (D.1)

with the iterate

x = x0 + z (D.2)

where x0 is the initial guess. The correction z is obtained from minimizing the linear residual

r = b − Ax over the Krylov subspace span by:

span
[

r0,Ar0,A
2r0, . . . ,A

k−1r0

]

(D.3)

where k is the dimension of the Krylov subspace, and r0 is the linear residual based on the

initial guess:

r0 = b − Ax0 (D.4)

The basic GMRES algorithm is shown in Algorithm D.1. Note that when computing the flow

solution, the matrix A is the flow Jacobian matrix at each Newton iteration. In this case,
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Algorithm D.1: GMRES

Data: A, b

Result: x

Compute r0 = b − Ax, β = ‖r0‖2 and v1 = r0/β1

for j = 1 . . .m do2

Compute wj = Avj3

for i = 1 . . . j do4

hij = (wj ,vi)5

wj = wj − hijvi6

end7

Compute hj+1,j = ‖wj‖28

Compute vj+1 = wj/hj+1,j9

Define Vm = [v1 . . . vm] and Hm = {hij}1≤i≤m+1,1≤j≤m10

end11

Compute ym the minimizer of ‖βe1 − Hmy‖2 and xm = x0 + Vmym12

the matrix-vector product in Line 3 of Algorithm D.1 can be approximated using forward

differencing (4.50).

D.2 Right-Preconditioned GMRES

When the system is right-preconditioned, a linear system in the form:

(AM−1)(Mx) = b (D.5)

is solved. Right preconditioning the system does not change the solution x. When right

preconditioning is applied to GMRES, every reference to the matrix A in Algorithm D.1 is

replaced by AM−1, and references to x are replaced by Mx. In this case, the work vector wj

in Line 6 is now defined as:

wj = Az where Mz = vj (D.6)

It is therefore necessary to solve the preconditioning system

Mz = vj (D.7)

Similarly, Vm in Line 12 is replaced by:

Z = M−1Vm (D.8)

D.3 Flexible GMRES

In the right-preconditioned GMRES, the solution after m Krylov (inner) iterations can be

expressed as a linear combination of the preconditioned vector zi = M−1vi for i = 1 . . .m. The
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Algorithm D.2: FGMRES

Data: A, M, b

Result: x

Compute r0 = b − Ax, β = ‖r0‖2 and v1 = r0/β1

for j = 1 . . .m do2

Compute zj = M−1
j vj3

Compute wj = Azj4

for i = 1 . . . j do5

hij = (wj ,vi)6

wj = wj − hijvi7

end8

Compute hj+1,j = ‖wj‖29

Compute vj+1 = wj/hj+1,j10

Define Zm = [z1 . . . zm] and Hm = {hij}1≤i≤m+1,1≤j≤m11

end12

Compute ym the minimizer of ‖βe1 − Hmy‖2 and xm = x0 + Zmym13

vectors are all obtained using the same preconditioner M−1. In the flexible variant of GMRES

(FGMRES), a different preconditioner can be used at each inner iteration:

Mjzj = vj (D.9)

The FGMRES algorithm is shown in Algorithm D.2. The algorithm is almost identical to the

standard GMRES, and the differences are highlighted in red. The additional cost of FGMRES

over GMRES is that the set of vectors {zj}j=1...m from each inner iteration must be saved.

However, the FGMRES algorithm has the flexibility that any iterative method can be used as a

preconditioner, including classical methods mentioned above, multigrid, as well as Krylov meth-

ods such as GMRES. This property is needed when using the approximate Schur preconditioner

(Chapter 4.4.2). Additional information about FGMRES can be found in [161].



Appendix E

Derivation of Partial Derivatives for

Adjoint Calculations

E.1 Derivation of ∂J /∂Q

The right-hand-side of the adjoint system, ∂J /∂Q, is hand-derived for each objective function.

Using the chain rule, for objective functions based on lift and drag (L, D), the partial derivative

at each node i can be expressed as:

∂J
∂Qi

=
∂J
∂L

∂L
∂pi

∂pi

∂Qi
+

∂J
∂D

∂D
∂pi

∂pi

∂Qi
(E.1)

The equation is applicable to inviscid flows with pressure forces only, and must be modified for

viscous and turbulent flows. ∂J /∂Qi is nonzero at body surfaces only. In this case, the terms

∂J /∂L, ∂J /∂D and ∂pi/∂Qi are straightforward to compute, but ∂L/∂pi and ∂D/∂pi require

more careful derivation. The lift and drag coefficients are computed by first summing the forces

on all the surfaces, and resolving into the appropriate directions:

L = F · L̂
D = F · D̂

(E.2)

where
L̂ = î sin α + ĵ cos α

D̂ = î cos α − ĵ sinα
(E.3)

are directions of lift and drag respectively, and

F =
∑

△
pavg · N (E.4)

is the sum of all pressure forces on the body. Here pavg is the average pressure at the corners

at each triangular element (Figure E.1), obtained by simple averaging of the three corners of
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Figure E.1: Triangular elements used to compute body forces.

the triangular element, and N = n · A△ is the area-weighted vector normal to the surface of

the triangular element. Substituting this expression for F into L and D and taking the partial

derivative with respect to pi results in the equation:

∂L
∂pi

=
∑

△

(
dpavg

dpi
N · L̂

)

(E.5)

∂D
∂pi

=
∑

△

(
dpavg

dpi
N · D̂

)

(E.6)

Since the average pressure pavg is only a simple average of the corners, dpavg/dpi = 1/3 for

every triangular element that includes the node i in its corner, and 0 everywhere else. Thus

it is possible to loop through every surface point and insert the pressure contribution to all

related parts of the vector.

E.2 Derivation of ∂J /∂α

For angle-of-attack design variables, the derivation of ∂J
∂α can be done in a similar fashion as

∂J
∂Q

, by using the chain rule:

∂J
∂α

=
∂J
∂L

∂L
∂α

+
∂J
∂D

∂D
∂α

(E.7)

Since lift and drag coefficients are only explicitly related to α in L̂ and D̂ (E.2), the expression

is simple to derive by hand. For geometric design variables, finite differencing is used.



Appendix E. Derivation of Partial Derivatives for Adjoint Calculations 134

E.3 Derivation of ∂R/∂α

For angle of attack design variables, the complex step method is used by adding a complex

perturbation to α:

α̂ = α + ih

with a step size of h = 10−20. In residual calculations, α is only explicitly referred to in

free-stream properties. Thus complex free-stream properties are set using the new α and the

residual vector is computed. The imaginary part contains the solution ∂R/∂α. For geometric

design variables where regridding is required, finite differencing is used.



Appendix F

Additional Optimization Results

To demonstrate the robustness of the optimizer for design problems in a range of Mach numbers,

additional results are presented for five single-point optimization cases for the ONERA M6 wing

at various Mach numbers. For these cases, the lift-constrained drag minimization objective

function (2.5) with the same targets and weights on lift an drag as in Section 8.1 are reused:

C∗
L = 0.308 ωL = 100.0

C∗
D = 0.00746 ωD = 1.0

The same volume grid, surface parameterization, design variables, and volume constraint are

also reused from Section 8.1. The operating Mach numbers are M1 = 0.70, M2 = 0.75, M3 =

0.80, M4 = 0.84 and M5 = 0.87. At least 100 optimization iterations are performed for each

case, until the objective function and gradient L2-norm have reduced by at least two orders of

magnitude.

The drag divergence for each optimized geometry is computed at a fixed lift coefficient of

CL = 0.307. The lift-to-drag ratios of the optimized wings are shown in Figure F.1 and in

Table F.1. The optimization results for M = 0.90 (Section 8.1) are also shown for comparison.

In every case, the final L/D ratio is found to be nearly independent of the operating Mach

number. However, the minimum induced drag predicted by lifting-line theory (2.6) cannot

be achieved in all of these cases. This may indicate that more flexibility in the geometry

parameterization may be needed. In particular, additional local twist control may be desirable.

It is also difficult to determine exactly how much numerical error is present.

The wing sections of the optimized wings are shown in Figure F.2. The final sweep angles

for all optimized wings are compared in Table F.1. In general, it is found that at lower Mach

numbers, wings have lower sweep angles.
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Figure F.1: Drag divergence of various optimized wings at CL = 0.307

M Final L/D Λfinal

0.70 35.05 30.1◦

0.75 35.09 30.7◦

0.80 35.01 29.0◦

0.84 34.17 31.7◦

0.87 34.22 34.4◦

0.90 34.35 44.3◦

Table F.1: Final L/D ratios and sweep angles of various optimized wings
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Figure F.2: Comparison of wing section shapes of single-point optimized wings at various span-

wise locations


