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Practical aerodynamic shape design problems must balance the goal of performance

optimization over a range of on-design operating conditions with the need to meet de-

sign constraints at various off-design operating conditions. Such design problems can be

cast as multipoint optimization problems where the on-design and off-design operating

conditions are represented as design points with corresponding objective or constraint

functions. Two methods are presented for obtaining optimal airfoil designs that satisfy

all design objectives and constraints. The first method uses an unconstrained optimiza-

tion algorithm where the optimal design is achieved by minimizing a weighted sum of

the objective functions at each of the operating conditions. To address the competing

design objectives between on-design and off-design operating conditions, an automated

procedure is used to weight the off-design objective functions so as to limit their influ-

ence on the overall optimization, while satisfying the design constraints. The second

method uses the constrained optimization algorithm SNOPT, which allows the aerody-

namic constraints imposed at the off-design operating conditions to be treated explicitly.

Both methods are applied to the design of an airfoil for a hypothetical aircraft, which is

formulated as an 18-point multipoint optimization.
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Chapter 1

Introduction

The aircraft design process applied in industry is a complex endeavour that involves

concurrent engineering of the many systems that comprise a fully functional aircraft.

In addition to the aerodynamic performance of an aircraft, equal consideration must be

given to the disciplines tasked with specifying appropriate structures, controls, materials,

and propulsion systems necessary to satisfy a truly comprehensive set of design require-

ments. In this day and age, where greenhouse gas emissions associated with commercial

aviation are of public concern with regard to climate change, and rising jet fuel prices

are negatively impacting profits of commercial carriers, the design objective of improving

aircraft fuel efficiency has become increasingly important. If it can be shown that a novel

aerodynamic shape will provide the greatest improvement in aircraft fuel efficiency, then

this shape should drive the design process such that the above mentioned disciplines

strive to adapt their systems in order to minimize divergence from this optimal shape.

The coupling of computational fluid dynamics with numerical optimization techniques

has resulted in aerodynamic shape optimization algorithms that are efficient at produc-

ing aircraft shape configurations with improved performance characteristics at a given

aircraft operating condition. While significant progress in the field of aerodynamic shape

optimization has been made over the past 20 years, further advancement is still required

1



Chapter 1. Introduction 2

to make numerical optimization techniques useful to solve practical aerodynamic design

problems. Practical aerodynamic design problems are characterized by comprehensive

design requirements that must be satisfied over a broad range of aircraft operating con-

ditions. For aerodynamic shape optimization to be considered a viable alternative to the

traditional cut-and-try approach to aerodynamic design, it must be capable of producing

an optimal design that satisfies the design requirements over this broad range of oper-

ating conditions. This type of optimization, in which more than one aircraft operating

condition is considered, is commonly referred to as multipoint optimization.

1.1 Overview of Aerodynamic Shape Optimization

In general, the goal of an aerodynamic design process is to find an aerodynamic shape

that achieves a given set of design objectives. Within the context of aircraft design, the

aerodynamic design process is applied to the shape of various components of the aircraft

that interact with the surrounding air to provide lift, stability, and control. The wings

of an aircraft are obvious examples of aerodynamic shapes that are subject to the design

process. A common design objective is to minimize drag on the wings while generating

adequate lift required to keep the aircraft aloft. An optimal aerodynamic design is

one that best satisfies the design objectives. Referring to the above design objective

example, there may be many wing configurations that satisfy the lift requirements, but

only the optimal solution satisfies the lift requirements and has the lowest drag of all the

configurations under consideration.

Aerodynamic shape optimization can be used as a design tool to produce optimal

configurations with respect to design objectives. Design objectives and operating condi-

tions are translated into optimization problems that can be solved by numerical methods.

The following provides a brief overview of the aerodynamic optimization process. A flow

solver is used to determine the properties of the flow field around an aerodynamic shape
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at a given set of operating conditions. The flow solution yields the properties of the flow

field that are used to determine performance characteristics of the shape such as lift and

drag. An objective function is formulated to evaluate the performance of the shape with

respect to the design objectives. A mathematical representation of the geometry of the

shape provides a means to make alterations to the shape via design variables. An opti-

mization algorithm uses information about the objective function at the current design

iteration to determine how to modify the design variables to improve the performance of

the shape. The updated shape specified by the modified design variables is presented to

the flow solver and the process is repeated iteratively until criteria are satisfied indicating

that an optimal solution has been achieved and no further improvement in performance

is possible.

The simplest aerodynamic optimization problem is to find a shape with the best

performance at a single operating condition. For example, to find the shape of a wing

that has the minimum drag when flying at an expected cruising speed for the aircraft.

This type of optimization problem is referred to as a single-point optimization. The

drawback of a single point optimization in some cases is that performance degrades

significantly with even the slightest deviation from the expected operating condition.

A multi-objective optimization problem seeks to find a shape where the optimal per-

formance is a compromise between competing design objectives at a common operating

condition. For example, it may be desireable to have a wing that generates a high lift

coefficient at a given operating condition and we may also want to minimize the drag

on the wing at this operating condition. However, increased lift comes at the expense

of increased drag, and conversely, a reduction in drag is achieved by sacrificing lift. One

option is to perform a single-point optimization with the objective function formulated

to maximize the lift to drag ratio. Alternatively, each of the design objectives can be

represented with separate objective functions. Each objective function is specified as

part of a design point definition along with an operating condition that is common to
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both design points. A composite objective function may be formed as a weighted sum

of the individual objective functions at their respective design points. Multi-objective

optimization has the benefit of allowing the competing design objectives to be prioritised

via weight assignments.

Regarding multi-objective optimization problems, a designer may be interested in the

trade-offs in performance associated with each of the design objectives. A Pareto front

defines a family of optimal solutions to a multi-objective optimization problem obtained

by varying the weights associated with each of the design objectives. By plotting the

competing performance values for the set of Pareto-optimal solutions, a designer can

quickly visualize these trade-offs and select the design that achieves the most appropriate

compromise.

The extension of the concept of multi-objective optimization leads to a more gener-

alized problem formulation where multiple design points are considered, each potentially

having a unique objective function and operating condition. This is commonly referred to

as multipoint optimization. As with multi-objective optimization, a composite objective

function is formed as a weighted sum of the objective functions at each design point.

The highly localized solutions typical of single-point optimization can be de-sensitized to

variations in operating conditions by performing a multipoint optimization over a range

of operating conditions.

1.2 Review of Multipoint Optimization Applications

Researchers have addressed the topic of multipoint optimization under various contexts

within the realm of aerodynamic design problems. Recently, Epstein et al. [5] used

multipoint optimization to minimize wing drag at the main cruise operating condition and

nearby secondary cruise operating conditions. Cliff et al. [3] compare two approaches to

multipoint optimization as applied to the aerodynamic shape optimization of the NASA
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Technology Concept Airplane, simultaneous multipoint design vs. sequential cruise-point

design followed by trim optimization at transonic conditions. Zingg and Elias [26] as well

as Li et al. [8] have used multipoint optimization techniques applied to airfoil design

to achieve constant drag over a range of cruise Mach numbers. Although significant

contributions have been made by these researchers and others in the area of multipoint

optimization, the scope of its application to practical aerodynamic design problems has

been limited.

1.3 Practical Aerodynamic Design Problems

The design requirements of a practical aerodynamic design problem must consider the

broad range of operating conditions that an aircraft is expected to encounter within its

flight envelope. These design requirements correspond to the intended flight mission

of the aircraft. An aircraft intended for regional flights may spend most of its time

ascending and descending to and from cruise speed and altitude and a relatively short

time flying at these cruise conditions, whereas an aircraft intended for trans-continental

flights will spend the majority of its time at cruise conditions. Lift requirements also vary

significantly over the duration of a flight due to changes in weight as fuel is consumed. In

any case there are several distinct areas within the flight envelope having widely varying

operating conditions and design requirements. An aircraft must operate efficiently over

this range of flight Mach numbers and lift requirements.

A dichotomy exists in practical aerodynamic design problems between optimizing

performance and satisfying design constraints. Constraints are required to ensure that

the design is feasible with respect to manufacturing capabilities, structural soundness,

safety requirements, etc. The distinction between performance goals and constraints can

be addressed within a multipoint optimization framework by designating design points

as either on-design or off-design. In a multipoint optimization problem formulation, on-
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design points refer to the operating conditions where it is desired to optimize aerodynamic

performance according to specified design objectives. For example, we may wish to

optimize an aerodynamic shape such that drag is minimized over a range of expected

cruise Mach numbers and lift requirements. Whereas off-design points refer to operating

conditions where aerodynamic constraints are imposed on the optimization. For example,

the off-design requirement that an aerodynamic shape must have high lift at low speeds

constrains the potential for drag minimization at cruise conditions.

The work described in this thesis follows from the investigation of multipoint optimiza-

tion applied to practical aerodynamic design problems undertaken by Zingg and Billing

[25]. Their goal was to demonstrate that multipoint optimization techniques can be ap-

plied to complex aerodynamic design problems that encompass a broad range of require-

ments extending beyond typical drag-minimization-over-a-range-of-cruise-conditions ob-

jectives. This broad range of design requirements also includes high lift at low speed and

consideration of maneuverability under dive conditions. Zingg and Billing used a design

specification for a hypothetical aircraft as the basis for a practical aerodynamic design

problem. The design specification was used to define a multipoint optimization problem

consisting of 18 design points categorized as either on-design points or off-design points.

The optimization algorithm used by Zingg and Billing minimized a weighted sum of the

objective functions at each of the design points given by:

Jcomp =
18∑

i=1

ωiJi (1.1)

where ωi and Ji are the weights and objective functions, respectively, at the design points.

The methods presented herein for solving practical aerodynamic design problems focus

on several key findings from their investigation:

1. Performance at on-design operating conditions is compromised by the need to sat-

isfy off-design constraints.
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2. On-design performance may be unnecessarily sacrificed if off-design constraints are

over-satisfied.

3. Over-satisfaction of off-design constraints may be prevented by appropriate selec-

tion of their respective off-design weights.

The off-design weights mentioned above refer to the weights applied to the respective

off-design objective functions in the composite objective function. A problem with mul-

tipoint optimization noted by several researchers [26, 8] is that the appropriate off-design

weights are not known a priori. As implied by the findings of Zingg and Billing, a poor

assignment of off-design weights will result in one of two outcomes:

1. The off-design constraints are violated, or

2. The on-design performance is unnecessarily compromised

One might assume that there is an ideal weight value for any given off-design point

that will result in a final optimized shape where its constraint value is exactly satisfied.

However, a practical aerodynamic design problem may include off-design points that will

have their constraints satisfied regardless of the weight applied to them, referred to as

redundant points. Given this property of redundant off-design points, their ideal weight

is zero.

1.4 Objectives

The work presented in this thesis investigates the application of two different methods

to solve a practical aerodynamic design problem. The goal of the first method using

an unconstrained optimization algorithm is to determine the ideal weights for all of the

off-design points considered in a practical aerodynamic design problem in a way that does

not require user intervention. A procedure is introduced for automatically obtaining the
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ideal off-design weights by exploiting aerodynamic performance trends as they evolve

throughout the optimization. The second method uses the constrained optimization

algorithm SNOPT, which allows the aerodynamic constraints imposed at the off-design

operating conditions to be treated explicitly. The off-design points in this method are not

included in the composite objective function (which contains only on-design objectives).

Rather they are used as constraints in conjunction with the composite objective function

to define a Lagrangian function that we seek to minimize to find the optimal solution.

The main objective of this work is to characterize, evaluate, and compare these two

different approaches to solving practical aerodynamic design problems. When assessing

the merits of these methods, foremost consideration is given to their ability to optimize

performance at on-design operating conditions while ensuring that design constraints at

off-design operating conditions are satisfied. Further consideration is given to the level

of user expertise and involvement required to achieve an optimal solution to the design

problem. In this respect, a method that requires minimal user intervention is highly

desireable, and accordingly, the development of a method that is fully automated is a

top priority. Finally, the computational effort required to solve a practical aerodynamic

design problem is a significant factor in the viability of any method. With regards to

both methods, steps are taken to improve overall computational efficiency.



Chapter 2

The Optima2D Platform

Generally speaking, to solve an aerodynamic shape optimization problem, an optimiza-

tion algorithm is required to determine how to modify the design variables, X, to optimize

performance according to the design objectives. Working in conjunction with the opti-

mization algorithm, a set of tools is required to evaluate candidate designs obtained from

modified design variables during the course of an optimization.

The two methods for solving practical aerodynamic design problems described in this

thesis both make use of a common set of design evaluation tools contained within the

two-dimensional airfoil optimization algorithm Optima2D. A summarized description of

these tools is provided in the following sections.

2.1 Airfoil Geometry Manipulation Using B-Spline

Curves

Cubic B-spline curves are used to represent a wide range of airfoil shapes during the

course of an optimization. The parametric representation of an airfoil shape with a

9
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B-spline curve is given by

xa (wj) =

n+1∑

i=1

Xc
iBi,k (wj) (2.1)

ya (wj) =
n+1∑

i=1

Y c
i Bi,k (wj) (2.2)

where (xa, ya) are the Cartesian coordinates of the airfoil surface, Bi,k are the B-spline

basis functions, (Xc
i , Y

c
i ) are the coordinates of the B-spline control points, and n + 1 is

the total number of control points. The optimization algorithm modifies the vertical co-

ordinates, Y c
i , of the B-spline control points to make local changes to the airfoil geometry.

These parameters are referred to as geometric design variables.

2.2 Grid Perturbation

After the airfoil geometry has been modified by manipulation of the geometric design

variables, the computational grid surrounding the airfoil must conform to the changes in

geometry in such a way that the accuracy of the flow solution is preserved. An algebraic

grid perturbation strategy is used to perform this task and is given by

ynew
k = yold

k +
∆y

2
[1 + cos (πSk)] , k = 1, . . . , kmax − 1 (2.3)

where ∆y represents the airfoil shape change. Sk is the normalized arclength distance

given by

S1 = 0

Sk =
1

Lg

k∑

i=2

Li, k = 2, . . . , kmax − 1 (2.4)

where Li is the length of a segment between nodes k and k−1. Lg is the grid-line length

from the body to the outer boundary given by

Lg =

kmax∑

i=2

Li (2.5)
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2.3 Flow Solver

At each design iteration, the flow around the airfoil represented by the compressible

Reynolds-averaged Navier-Stokes equations is solved with the Newton-Krylov method

developed by Nemec and Zingg [11, 12]. A brief description of the main features of this

flow solver are provide in this section.

For a two-dimensional flow in Cartesian coordinates (x, y) with density ρ, velocities

(u, v), and total energy e, the compressible Navier-Stokes equations are given by

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= Re−1

(
∂Ev

∂x
+
∂Fv

∂y

)
(2.6)

where Q is the vector of conservative flow variables mass, momentum, and energy given

by

Q =





ρ

ρu

ρv

e





(2.7)

The convective flux vectors are given by

E =





ρu

ρu2 + p

ρuv

u (e+ p)





and F =





ρu

ρuv

ρv2 + p

v (e+ p)





(2.8)

and the viscous flux vectors are given by

Ev =





0

τxx

τxy

ϕ1





and Fv =





0

τxy

τyy

ϕ2





(2.9)

where τxx, τxy, τyy are the viscous stresses, and ϕ1, ϕ2 are terms associated with heat

conduction. The viscous stresses include the dynamic eddy viscosity, µt, to account
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for the effects of turbulence. The value of µt is determined using the Spalart-Allmaras

one-equation turbulence model [19]. Pressure, p, is dependent on the flow variables and

satisfies

p = (γ − 1)

[
e−

1

2
ρ
(
u2 + v2

)]
(2.10)

from the ideal gas law, where γ is the ratio of specific heats, cp/cv. The sound speed, a,

is given by

a =

√
γp

ρ
(2.11)

To simplify the Navier-Stokes equations, the thin-layer approximation, which neglects

the viscous stream-wise derivatives, is used. A coordinate transformation is used to

map the curvilinear grid surrounding the airfoil in the physical domain to a grid in

the computational domain having uniform spacing equal to one. Taking into account the

thin-layer approximation and the coordinate transformation, the Navier-Stokes equations

are re-written as

∂Q̂

∂τ
+
∂Ê

∂ξ
+
∂F̂

∂η
= Re−1

(
∂Ŝ

∂η

)

(2.12)

See Pulliam and Zingg [17] for details on the thin-layer approximation and the coordinate

transformation. The spatial derivatives of the Navier-Stokes equations are discretized us-

ing second-order centered differences, and the temporal derivative is neglected for steady

flows, resulting in the non-linear system of equations commonly referred to as the resid-

ual, given by

R(Q̂,X) = δξÊ + δηF̂ −
1

Re
δηŜ −∇ξDξ −∇ηDη = 0 (2.13)

The artificial dissipation terms, ∇ξDξ and ∇ηDη are added to counteract numerical

instability in the solution caused by interaction of high-frequency waves.

An inexact-Newton method is used to find the solution Q̂ that satisfies equation 2.13

as follows

A(n)∆Q̂(n) = −R(n) (2.14)
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where

A =
∂R

∂Q̂
(2.15)

is the flow Jacobian matrix. The linear system arising at each Newton iteration is solved

inexactly using the generalized minimal residual (GMRES) Krylov subspace method to

yield ∆Q̂(n). The Newton update is then calculated as

Q̂(n+1) = Q̂(n) + ∆Q̂(n) (2.16)

To ensure global convergence of the Newton method, an implicit Euler time-marching

scheme using the approximate-factorization approach of ARC2D in diagonal form [17] is

used as a startup algorithm to obtain a good initial solution, Q̂(0), for equation 2.14.

2.4 Objective Functions

The flow solution, Q̂, is used to calculate quantifiable performance characteristics of the

airfoil that are relevant to the design objectives. Two basic performance characteristics

that are used in the formulation of objective functions are the coefficients of lift and drag,

Cl and Cd

For the practical aerodynamic design problem considered, the on-design performance

goal is to minimize drag over a range of expected cruise operating conditions. At each

cruise operating condition, a specified lift coefficient must be maintained. Therefore, a

lift-constrained drag minimization objective function is required and is defined as

J =
Cd

J0
(2.17)

where J0 = Cd,0, and Cd,0 is the drag evaluated using the initial airfoil geometry. In a

multipoint optimization, all objective functions are normalized by their initial values to

ensure they all start with a consistent order of magnitude. The lift constraint is satisfied

using the approach described by Billing [2] whereby the angle of attack is varied within

the flow solution to achieve the desired lift.
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A lift maximization objective function that is used at off-design points representing

high-lift requirements is of the following form

J =

(
1

J0

)(
1 −

Cl

C∗
l

)2

(2.18)

where C∗
l represents an unattainable lift target.

2.5 Gradient Evaluation

The two approaches examined for solving practical aerodynamic design problems both

use gradient-based optimization algorithms. This class of optimization algorithms makes

use of the objective function and its gradient with respect to the design variables at the

current design iteration to determine how to modify the design variables in order to min-

imize the objective function. The discrete adjoint method is used to calculate objective

function gradients because the computational effort required is of the same order as a

single flow solution and is almost independent of the number of design variables. Piron-

neau [15] was the first to recognize the benefit of the adjoint method in its application

to aerodynamic shape optimization problems. The following is a brief summary of the

discrete adjoint method.

Consider an objective function

J = J (Q̂,X) (2.19)

Recall that the conservative flow variables Q̂ obtained from a converged flow solution

must satisfy the residual of the discretized governing flow equations such that

R(Q̂,X) = 0 (2.20)

A small perturbation δX of the design variables X will produce a corresponding pertur-

bation in the objective function, δJ , given by

δJ =
∂J

∂Q̂
δQ̂+

∂J

∂X
δX (2.21)
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where δQ̂ can be evaluated as

δQ̂ = Q̂ (X + δX) − Q̂ (X) (2.22)

Similarly, the perturbation in the residual, δR, is given by

δR =
∂R

∂Q̂
δQ̂+

∂R

∂X
δX (2.23)

Taking into account equation 2.20, δR = 0. Hence we can multiply both sides of equation

2.23 by an arbitrary vector ΨT and subtract from equation 2.21 to give

δJ =
∂J

∂Q̂
δQ̂+

∂J

∂X
δX − ΨT

(
∂R

∂Q̂
δQ̂+

∂R

∂X
δX

)
(2.24)

which can be rearranged as

δJ =

(
∂J

∂Q̂
− ΨT ∂R

∂Q̂

)
δQ̂+

(
∂J

∂X
− ΨT ∂R

∂X

)
δX (2.25)

This implies that we can evaluate δJ without evaluating δQ̂ (which would require an

additional flow solution for each design variable) if

∂J

∂Q̂
= ΨT ∂R

∂Q̂
(2.26)

Equation 2.26 is known as the adjoint equation. It is a linear system which is solved

using GMRES to obtain the adjoint solution ΨT . Substituting ΨT into equation 2.25

and rearranging reveals the gradient of the objective function with respect to the design

variables

G =
dJ

dX
=

(
∂J

∂X
− ΨT ∂R

∂X

)
(2.27)



Chapter 3

Optimization Algorithms

Given the capabilities for design evaluation described in Chapter 2, an optimization

algorithm is utilized to determine the values of the design variables, X, that minimize

the objective function J . The optimization problem is written mathematically as

min
X

J (Q̂,X) (3.1)

subject to constraint equations Cj

Cj(Q̂,X) ≤ 0 j = 1, . . . , Nc (3.2)

where Q̂ is the vector of conservative flow variables, and Nc is the number of constraints.

The two methods developed to solve practical aerodynamic design problems each use

a different type of optimization algorithm. Optima2D was originally developed with a

quasi-Newton BFGS optimization algorithm for unconstrained optimization whose ori-

gins can be traced to the CONMIN algorithm written by Shanno and Phua [18]. The

SNOPT algorithm for constrained optimization problems written by Gill, Murray, and

Saunders [6] has been integrated into Optima2D as an alternative to the BFGS optimizer.

The following sections provide an overview of each optimization algorithm employed.

16
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3.1 Newton’s Method for Function Minimization

Newton’s method is the basis of the strategy employed by the BFGS algorithm for finding

the minimum value of the function J . For the purpose of illustration, let J be a scalar

valued function of a single design variable x. A local minimum of J is found at a location

x∗ where its slope, defined by its first derivative, is zero and its curvature, defined by its

second derivative, is positive. These are the first and second-order necessary conditions

[13], respectively, for x∗ to be a local minimizer of J . The first-order necessary condition

is given by

G (x∗) = ∇J (x∗) = 0 (3.3)

Using Newton’s method to find a solution x∗ that satisfies equation 3.3 gives

Hn∆xn = −Gn (3.4)

where

Hn = ∇2J (xn) (3.5)

is the Hessian. Each iteration of equation 3.4 yields ∆xn, commonly referred to as

the search direction within the context of gradient-based optimization techniques. The

updated design variable is then calculated as

xn+1 = xn + ∆xn (3.6)

Newton iterations are executed until a solution x∗ is found that satisfies equation 3.3 to

within some user-defined tolerance.



Chapter 3. Optimization Algorithms 18

3.2 BFGS Algorithm for Unconstrained

Optimization Problems

The quasi-Newton BFGS1 algorithm can be used to find a local minimum of an uncon-

strained function J . The following sections summarize the algorithm and address the

issue of constraints.

Consider a multivariate scalar function, J (X), where

X = [x1, x2, . . . , xj ] , j ≥ 2 (3.7)

As stated in Section 3.1, Newton’s method requires the gradient and inverse Hessian

at each iteration to obtain the search direction ∆Xn. The Hessian is a square matrix

of dimension [j × j]. For problems where calculation of the Hessian is prohibitively

expensive, the concept of a quasi-Newton method is distinguished by its use of a less-

expensive approximation of the Hessian that requires only an evaluation of the gradient

G and the function J . The BFGS algorithm uses an approximation to the inverse of the

Hessian, M, to obtain the search direction ∆Xn given by

∆Xn = −MnGn (3.8)

The update of the function variables is then calculated as

Xn+1 = Xn + βn∆Xn (3.9)

where β is a step size determined by a line-search procedure.

The BFGS secant update is used to determine the approximation to the inverse

Hessian at each iteration and is given by

Mn+1 = Mn −
Mnvn (Mnvn)T

vTMnvn

+
δnδ

T
n

δT
n vn

+ vT
nMnvn

(
rnr

T
n

)
(3.10)

1Broyden Fletcher Goldfarb Shanno
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where

rn =
δn
δT
n vn

−
Mnvn

vT
nMnvT

n

(3.11)

and

δn = Xn+1 −Xn (3.12)

vn = Gn+1 − Gn (3.13)

The steepest descent direction, −G0, is used as the initial search direction, ∆X0. It is

obtained by setting M0 equal to the identity matrix. After the first step but before the

first update of M, the value of M0 is set to

M0 =
vT

n ∆Xn

vT
n vn

I (3.14)

This formula attempts to make the size of the eigenvalues of M0 similar to those of the

Hessian at X0 and has been found to work well in practice [13].

At each design iteration, a line search algorithm is used to choose a step size βn that

satisfies the strong Wolfe [13] conditions given by

J (Xn + βn∆Xn) ≤ J (Xn) + c1βnG (Xn)T ∆Xn (3.15)

|G (Xn + βn∆Xn)T ∆Xn| ≤ c2|G (Xn)T ∆Xn| (3.16)

where c1 = 0.9 and c2 = 1 × 10−4. Satisfaction of the strong Wolfe conditions ensures

that a reasonable approximation of the inverse Hessian is maintained over successive

iterations. The step size that satisfies the strong Wolfe conditions produces a sufficient

decrease in the objective function and gradient norm.

The line search algorithm begins with a step size of β0 = 1. If the strong Wolfe

conditions are not satisfied with β0, then a new step size is calculated by finding the

minimum of a cubic interpolant of the objective function along the search direction. The

objective function and gradient at each line-search attempt are used to construct the

cubic interpolant model.
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3.2.1 Quadratic penalty method for geometric constraints

The mathematical description of the optimization problem given by equations 3.1 and

3.2 allows for consideration of constraints. The practical aerodynamic design problem

investigated in this thesis includes geometric constraints on airfoil thickness that are

imposed to prevent the formation of infeasible shapes such as may occur with trailing edge

cross-over and to ensure structural and manufacturing design requirements are satisfied.

Since the BFGS algorithm can only handle unconstrained problems, a strategy is required

that allows for consideration of constraints. For the cases in this thesis that use the BFGS

algorithm within Optima2D, the thickness constraints are added to the objective function

as quadratic penalty terms. The formulation is given by

J = Jd + ωT

NT∑

j=1

Tj (3.17)

where Jd represents a design objective function, Tj are the penalty terms representing

the thickness constraints, NT is the number of thickness constraints, and ωT is a user-

defined weight applied to the penalty terms to control how well the thickness constraints

are satisfied. The penalty terms, Tj , are given by

Tj =






[1 − h (xj) /h
∗ (xj)]

2 if h (xj) < h∗ (xj)

0 otherwise
(3.18)

where h (xj) is the airfoil thickness at location xj in the chordwise direction, and h∗ (xj)

is the target thickness. For further information on quadratic penalty methods, see [13].

3.3 SNOPT Algorithm for Constrained

Optimization Problems

The SNOPT algorithm uses a sequential quadratic programming (SQP) approach to

solve non-linearly constrained optimization problems. It performs operations with con-

straints directly during the course of an optimization to ensure they are explicitly satisfied
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at the solution, in contrast to the quadratic penalty method, which indirectly satisfies

constraints by way of penalty terms in the objective function.

The SQP approach used by SNOPT obtains search directions from a sequence of

quadratic programming (QP) subproblems. Each QP subproblem minimizes a quadratic

model of a Lagrangian function that represents an objective function subject to con-

straints. Each SNOPT major iteration is the iterate from a line search that reduces a

merit function along a search direction obtained from the solution of a QP subproblem.

The quadratic model of the Lagrangian at each QP subproblem uses an approximation

of the Lagrangian’s Hessian. On completion of the line search after each QP subproblem,

the approximate Hessian of the Lagrangian is updated using the BFGS secant update

described in equations 3.10 - 3.13. SNOPT minor iterations are the steps required to

minimize the quadratic model of the Lagrangian at each QP subproblem. The minor

iteration steps are based on search directions obtained using active-set methods. For a

complete description of the SNOPT algorithm, see Gill, Murray and Saunders [6].



Chapter 4

Solving Practical Aerodynamic

Design Problems

4.1 Design Problem Definition

In order to define a practical aerodynamic design problem, a design specification for a

hypothetical aircraft is considered1. The aircraft has a maximum weight of 100,000 lbs,

a wing area of 1000 square feet, with a 35-degree sweep. The maximum cruise Mach

number of the aircraft is 0.88. The design of the wing section at the mean aerodynamic

chord is considered, and it is assumed that the sectional lift coefficient is equal to the

wing lift coefficient. The target thickness to chord ratio is 0.118. Regions of the flight

envelope considered for this design problem include cruise, long-range cruise, dive, and

low-speed conditions.

The first four operating conditions, labeled A-D in Table 4.1, correspond to cruise.

Due to the sweep angle, the effective Mach number is 0.72. Two sets of operating weights

and altitudes are considered. For operating point A the altitude is 29,000 feet, the weight

is 60,000 lbs.; for B the altitude is the same, but the weight is 100,000 lbs.; for C the

1The design specification was provided by Dr. Tom Nelson at Bombardier Aerospace

22
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Operating Point Reynolds Number Mach Number Lift Coefficient

A 27.32 × 106 0.72 0.17

B 27.32 × 106 0.72 0.28

C 18.57 × 106 0.72 0.27

D 18.57 × 106 0.72 0.45

E 24.22 × 106 0.64 0.21

F 24.22 × 106 0.64 0.36

G 16.46 × 106 0.64 0.34

H 16.46 × 106 0.64 0.57

I 28.88 × 106 0.76 0.28

J 28.88 × 106 0.76 0.15

K 28.88 × 106 0.76 0.46

L 28.88 × 106 0.76 0.25

M 19.62 × 106 0.76 0.45

N 19.62 × 106 0.76 0.24

O 19.62 × 106 0.76 0.74

P 19.62 × 106 0.76 0.40

Q 11.8 × 106 0.16 -

R 15.0 × 106 0.20 -

Table 4.1: Operating conditions for an 18-point optimization

Operating Operating On-Design Off-Design

Point Condition Objective Constraint

A-D cruise lift-constrained drag minimization -

E-H long-range cruise lift-constrained drag minimization -

I-P dive - Mmax ≤ 1.35

Q-R low-speed - Cl,max ≥ 1.60

Table 4.2: Design objectives and constraints for an 18-point optimization

altitude is 39,000 feet, the weight is 60,000 lbs.; for D the altitude is 39,000 feet, the

weight is 100,000 lbs. This leads to the Reynolds numbers and lift coefficients given in

Table 4.1.
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Figure 4.1: Visualization of cruise and long-range cruise operating conditions (used with

permission from B. Y. Zhou [24])

The next four operating conditions, labeled E-H, correspond to long-range cruise.

The Mach number is 0.78, producing an effective Mach number of 0.64. The altitudes

and weights are the same as for A-D respectively. The green and blue surfaces shown in

Figure 4.1 provide a graphical representation of the cruise and long-range cruise operating

conditions, respectively.

The cruise and long-range cruise conditions represented by design points A-H are

considered on-design operating conditions. The on-design performance goal for these
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Figure 4.2: Visualization of dive operating conditions (used with permission from B. Y.

Zhou [24])

eight design points is to minimize drag while maintaining their specified lift coefficients.

A complete problem specification could involve a careful prioritization by the designer

of these operating conditions based on the knowledge of the aircraft mission require-

ments. In the present design problem specification, all on-design points are assigned

equal importance.

The next eight operating conditions (I-P) are associated with a safety requirement

for maneuverability under dive conditions. The flight Mach number is 0.93, making
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the effective Mach number 0.76. In addition to the two sets of weights and altitudes

considered for the on-design points, two load factors are also taken into account. The

combination produces a total of eight dive operating conditions. For operating point I,

the altitude is 29,000 ft., the weight 60,000 lbs., and the load factor is 1.3. For operating

point J, the altitude and weight are the same, but the load factor is 0.7. Operating

points K and L have an altitude of 29,000 ft., a weight of 100,000 lbs., and load factors

1.3 and 0.7, respectively. For operating points M and N, the altitude is 39,000 ft., the

weight is 60,000 lbs., and the load factors are 1.3 and 0.7, respectively. Operating points

O and P have the same altitude and load factors, but the weight is 100,000 lbs. The dive

maneuverability requirement is achieved by keeping shock strengths modest under these

conditions, such that the upstream Mach number at all shocks is less than or equal to

1.35. The red surface shown in Figure 4.2 provides a graphical representation of the dive

operating conditions.

The final two operating points reflect a safety requirement to be able to achieve an

adequate maximum lift coefficient at low speed conditions. For operating condition Q,

the altitude is sea level, the weight is 60,000 lbs., and the effective Mach number is 0.16.

For operating point R the weight is 100,000 lbs., and the effective Mach number is 0.20.

The safety requirement specifies that the maximum attainable lift coefficient under these

conditions is at least 1.752.

The last ten design points, I-R, represent off-design operating conditions. The design

requirements at these conditions impose constraints on the optimization. These eighteen

operating points span the flight envelope. Table 4.2 summarizes the design objectives and

constraints for this design problem. This design problem definition is meant to illustrate

a basic set of on-design and off-design specifications that can be used to formulate a

multipoint optimization problem. In practice, additional operating conditions, such as

2The optimization procedures applied to this design problem are demonstrated on a coarse mesh.
Prior experience has shown that using a lower target lift coefficient of 1.60 on our coarse mesh will yield
a lift coefficient of at least 1.75 on a finer mesh.
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climb, also need to be considered, but can be easily accommodated by the methods

presented in this thesis.

4.2 A Strategy For Obtaining Ideal Weights For Off-

Design Points (Method 1)

Practical aerodynamic design problems as defined in this thesis are by nature constrained

optimization problems. The composite objective function used in this method written in

terms of on-design and off-design points is given by

J =

# of

on-design∑

p=1

ωpJp +

# of

off-design∑

q=1

ωqJq (4.1)

The goal of the strategy used in this method is to find the values for the off-design

weights, ωq, that allow the best possible on-design performance to be achieved while

satisfying the off-design constraints. These ideal off-design weights are obtained using

an automated weight update procedure that exploits aerodynamic performance trends as

they evolve throughout the optimization. The strategy presented in this section employs

the unconstrained BFGS optimization algorithm described in Section 3.2.

The objective function used at on-design points A-H and off-design points I-P is

J = Cd. The lift requirements for these points specified in Table 4.1 are satisfied using

the technique described by Billing [2] whereby the angle of attack is altered during the

iterations of the flow solution such that the desired value of Cl is obtained at convergence.

The design variable vector X for this objective function contains only geometric design

variables (B-spline control points that define the airfoil geometry).

It is important to note that the off-design constraints are represented as objective

functions in this method, as shown in equation 4.1, because they cannot be handled

directly by the BFGS algorithm. The off-design constraints are satisfied indirectly by
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minimizing objective functions known to correlate with the constraint values. For exam-

ple, the off-design constraints at operating points I-P are given by Mmax ≤ 1.35. The

upstream Mach number near a shock on the airfoil has a loose correlation to the drag

coefficient. By reducing the drag coefficient, the maximum Mach number in the flow

field is also reduced. Therefore, the objective function representing these off-design con-

straints is given by J = Cd. At off-design points where Mmax > 1.35, the corresponding

off-design weights are adjusted so that Cd is reduced just enough to satisfy the Mmax

constraint value at exactly 1.35.

The same logic is applied to the high-lift constraints at off-design points Q and R

where the constraints are given by Cl,max ≥ 1.60. In this case, the objective function

representing these constraints is given by

J =

(
1 −

Cl,max

Ĉ∗
l,max

)2

(4.2)

where Ĉ∗
l,max is a target maximum lift coefficient specific to the objective function not to

be confused with the desired target maximum lift coefficient C∗
l,max (see equation 4.6 used

in the weight update formula). The value of Ĉ∗
l,max is set to a value that is unattainable

and hence this corresponds to lift maximization. The optimization algorithm will strive

to attain the objective-function-specific target lift value Ĉ∗
l,max at points Q and R while

their corresponding weights will be adjusted to ensure that the desired target lift value

C∗
l,max is obtained. For this lift maximization objective function, the angle of attack, α,

is a design variable in addition to the geometric design variables.

In a sense, the weight update strategy attempts to emulate the behaviour of a con-

strained optimization algorithm. The off-design weight update strategy was the first of

two methods developed for practical aerodynamic design problems. This approach was

pursued in order to take advantage of the strong legacy of work and experience supporting

the BFGS optimization algorithm within Optima2D.
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4.2.1 On-design-first optimization

In this approach, the procedure begins with an optional start-up optimization. The term

on-design-first refers to this start-up optimization, which includes only the on-design

points. The composite objective function used for the on-design-first optimization is

given by

J =

# of

on-design∑

p=1

ωpJp (4.3)

Performing an initial optimization with only on-design operating points serves two

purposes. First, the initial airfoil may be poorly suited to the off-design operating points,

which may cause flow solver convergence difficulties. In such cases, performing the on-

design-first optimization typically provides a better starting shape for introducing the

off-design points. Second, it gives a clear picture of the performance trade-offs associated

with the off-design constraints. The resultant airfoil geometry from the on-design-first

optimization minimizes a weighted sum of the objective functions at all on-design points

given by equation 4.3. Under the assumption that all of the on-design operating con-

ditions are of equal importance, all on-design objective functions are weighted equally;

however the weight assignment is ultimately at the discretion of the designer, who may

choose to weight the on-design points differently according to design priorities. This on-

design-first airfoil is the starting point for the main optimization procedure that includes

both the on-design points and the off-design points.

In cases where the initial airfoil geometry does not cause flow solver convergence

difficulties at any of the off-design points, the on-design-first optimization is not necessary.

Moreover, the method is more efficient if the on-design first optimization can be omitted

as shown by the results presented in Section 5.

Treatment of leading edge geometry

For cases where an on-design-first optimization is necessary, a special treatment of the

airfoil leading edge is required. In the absence of constraints at off-design points Q and R
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representing high lift requirements, an on-design-first optimization with the performance

goal of drag minimization will produce an airfoil leading edge with a very small radius of

curvature approaching a sharp point. This is problematic because flow-solver difficulties

will likely be encountered when the off-design points are introduced, in particular at

the high-lift points. This situation can be avoided by freezing the control point at the

leading edge as well as the control points above and below the control point at the leading

edge, which has the effect of preserving the leading edge geometry from the initial airfoil

throughout the on-design-first optimization. After the on-design-first optimization, the

control points above and below the leading edge are un-frozen during the off-design weight

update procedure. It is due to the presence of the high-lift points that the leading edge

geometry remains feasible during this stage since any thinning of the leading edge would

counteract the optimizer’s effort to increase lift.

4.2.2 Weight update formula

For any given off-design point, there are 3 possibilities for the value of its respective

aerodynamic constraint:

1. Constraint is violated

2. Constraint is exactly satisfied

3. Constraint is over-satisfied

For off-design points where the aerodynamic constraints are violated, a higher weight

is required on these points to pull them into the feasible region of the design space. For

off-design points where the aerodynamic constraints are exactly satisfied, the weight is

appropriate and does not require modification. For off-design points where constraints

are over-satisfied, a lower weight is required to allow them to drift toward the boundary of

the feasible region of the design space. As there is no particular benefit to over-satisfying
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an off-design aerodynamic constraint, it is desirable to shed weight on the off-design

points that are in this category to reduce the negative impact on on-design performance.

To facilitate the modification of off-design weights, a simple weight update formula is

employed.

The concept for this approach to off-design weight modification can be credited to

the work of Zingg and Elias [25] that demonstrates a similar technique for obtaining

equal drag coefficients across a range of cruise Mach numbers by altering the objective

function weights of design points in a multipoint optimization. For an aerodynamic

constraint given by ψ ≤ ψ∗, where ψ is some functional, the weight update formula used

in this procedure is:

ωn+1 = ωn

(
ψn

ψ∗

)h

(4.4)

where ψn is the current off-design aerodynamic constraint value, ωn and ωn+1 are the

current and updated off-design point weights, the exponent h is a user defined parameter

that affects the magnitude of the weight change, and n is the index of weight update

cycles.

For off-design points representing requirements for Cl,max, the values of ψn and ψ∗ to

be used in the weight update formula are:

ψn =
1

Cn
l,max

(4.5)

ψ∗ =
1

C∗
l,max

(4.6)

For off-design points with a maximum local Mach number constraint, Mmax ≤M∗
max, the

values of ψn and ψ∗ to be used in the weight update formula are defined in equations 4.7

and 4.8 respectively.

ψn = Mn
max (4.7)

ψ∗ = M∗
max (4.8)

The first application of the weight update formula to obtain initial off-design weights

ω1 requires special treatment because there are no previous weights to use in the formula.
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An arbitrary value of unity is assigned to ω0 for all off-design points. The off-design

constraint values ψ0 are evaluated using the initial airfoil geometry (or the on-design-

first airfoil geometry in some cases). Initial off-design weights ω1 are then calculated

using the weight update formula with ω0 = 1. It is important to clarify that the ω0

weights are not used at any time during the optimization procedure; they only facilitate

the calculation of ω1. The weight update formula is subsequently used at regular intervals

(after every weight update cycle) throughout the main optimization procedure to update

the off-design point weights.

4.2.3 Angle of attack sweep to obtain Cl,max

For a given high-lift off-design point, the angle of attack, α, used during the last opti-

mization iteration of a weight update cycle does not necessarily produce the Cl,max value

attainable at that airfoil geometry. An α that produces Cl,max is only guaranteed at

a solution that minimizes the high-lift objective function given by equation 4.2; i.e. at

the converged solution. Since the solution at the end of a given weight update cycle

is not necessarily converged, a method is required to obtain an α that produces a bet-

ter estimate of Cl,max at each high-lift point for calculation of the constraint ψn defined

in equation 4.5. During the early weight update cycles when the solution is far from

converged, the need for such a method is greater than during the later weight update

cycles. To obtain an α that produces a better estimate of Cl,max, an angle of attack sweep

is performed using the airfoil geometry from last optimization iteration of the current

weight update cycle. Given that a costly flow solution is required for each data point in

an angle of attack sweep, the method presented in this section is designed to efficiently

identify the value α∗ that attains Cl,max such that the minimum number of flow solutions

are required.

There are three possible Cl scenarios corresponding to the angle of attack value used

during the last optimization iteration of a weight update cycle, α0:
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1. α0 = α∗. Cl,max is attained at α0

2. α0 < α∗. Cl is increasing for values of α > α0

3. α0 > α∗. Cl is decreasing for values of α > α0

Figure 4.3 illustrates these scenarios respectively. To determine which scenario is

applicable, Cl is evaluated at α0 + ∆α and α0 − ∆α. If Cl (α0 − ∆α) < Cl (α0) >

Cl (α0 + ∆α) then scenario 1 has been identified (α0 = α∗). In this case α0 gives a good

estimate of Cl,max; therefore set Cl,max = Cl (α0) and return to the calculation of the

high-lift constraint ψn. If Cl (α0 − ∆α) < Cl (α0) < Cl (α0 + ∆α) then scenario 2 has

been identified (α0 < α∗). In this case, α0 is successively incremented by ∆α until Cl,max

is bracketed as in scenario 1; then return to the calculation of the high-lift constraint.

Finally, if Cl (α0 − ∆α) > Cl (α0) > Cl (α0 + ∆α) then scenario 3 has been identified

(α0 > α∗). In this case α0 is successively decremented by ∆α until Cl,max is bracketed as

in scenario 1; then return to the calculation of the high-lift constraint.

4.2.4 Weight update cycles

The weights of the off-design points are updated periodically based on the values of

their respective aerodynamic constraints during the course of the optimization. A weight

update cycle consists of a user-specified number of optimization iterations followed by

an angle of attack sweep to determine values of Cl,max for the high-lift points, and finally

an evaluation of the off-design aerodynamic constraints with a corresponding update of

the off-design weights. A new weight update cycle begins with a restarted optimization

using the updated off-design weights and the final airfoil geometry from the previous

weight update cycle. If the magnitude of the change in the updated weights is less than

a user-specified tolerance, the optimization leaves the weights unchanged and continues

until the next weight update cycle. In this manner, weight update cycles are executed

until a converged optimal solution is obtained. At the converged optimal solution, the
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Figure 4.3: Cl,max Scenarios For Angle of Attack Sweep

off-design weights are as low as possible while satisfying all of the off-design aerodynamic

constraints.

4.3 An Alternative Strategy Using Constrained Op-

timization (Method 2)

An alternative strategy for solving practical aerodynamic design problems utilizes the

SNOPT algorithm for constrained optimization problems developed by Gill, Murray and
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Saunders [6]. The SNOPT algorithm allows us to treat the off-design operating condi-

tions as explicit constraints within the framework of a constrained optimization problem.

SNOPT uses a sequential quadratic programming (SQP) method that obtains search

directions from a sequence of quadratic programming (QP) subproblems. Each QP sub-

problem minimizes a quadratic model of a Lagrangian function which is used to represent

an objective function subject to inequality constraints.

The Lagrangian function in terms of a practical aerodynamic design problem is given

by

L(X, Q̂, π, λ) =

# of

on-design∑

p=1

ωpJp(X, Q̂) −

# of

off-design∑

q=1

πqCq(X, Q̂) −

NG∑

r=1

λ∗rCr(X) (4.9)

where the first term is a weighted sum of on-design objectives. The second and third

terms are weighted sums of off-design constraints and geometric constraints, respectively.

The objective function used at on-design points A-H is J = Cd. A maximum Mach

number constraint function is used at off-design points I-P, and a high-lift constraint

function is used at off-design points Q and R. The lift requirements specified at on-design

points A-H and off-design points I-P are achieved using Billings’ method [2] whereby

the angle of attack is altered during the iterations of the flow solution such that the

desired value of Cl is obtained at convergence. Note that the off-design constraints

are functions of performance values, Mmax and Cl,max, obtained from flow solutions, Q̂,

at their respective operating conditions, whereas the geometric constraints are solely a

function of the geometric design variables contained within X.

The significant distinction between this approach to solving practical aerodynamic

design problems and the off-design weight update approach described in Section 4.2 is that

the SNOPT algorithm performs operations with constraints directly during the course of

an optimization to ensure they are explicitly satisfied at the solution, in contrast to the off-

design weight update approach which indirectly satisfies constraints by reducing objective

functions known to correlate with constraint values. The SNOPT algorithm seeks to
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satisfy the first-order optimality conditions for a constrained optimization problem, also

known as the Karush-Kuhn-Tucker (KKT) conditions [13]. The KKT conditions that

define an optimal solution, (X∗, Q̂∗, π∗, λ∗), to the Lagrangian defined in equation 4.9 are

given by

∇xL(X∗, Q̂∗, π∗, λ∗) = 0 =

# of

on-design∑

p=1

ωp∇Jp(X
∗, Q̂∗) −

# of

off-design∑

q=1

π∗
q∇Cq(X

∗, Q̂∗) −

NG∑

r=1

λ∗r∇Cr(X
∗)

(4.10)

and

Cq(X
∗, Q̂∗) ≥ 0, for all q ∈ [off-design constraints] (4.11)

π∗
q ≥ 0, for all q ∈ [off-design constraints] (4.12)

π∗
qCq(X

∗, Q̂∗) = 0, for all q ∈ [off-design constraints] (4.13)

Cr(X
∗) ≥ 0, for all r ∈ [geometric constraints] (4.14)

λ∗r ≥ 0, for all r ∈ [geometric constraints] (4.15)

λ∗rCr(X
∗) = 0, for all r ∈ [geometric constraints] (4.16)

The conditions 4.13 and 4.16 are the complementarity conditions for the off-design

constraints and the geometric constraints, respectively. They imply that the Lagrange

multipliers, π∗
q and λ∗r, corresponding to inactive off-design and geometric constraints are

zero, respectively. It is interesting to note that the off-design weights, ωq, of Method 1

exhibit similar behaviour to the Langrange multipliers for the off-design constraints, π∗
q ,

in that the values of ω∗
q at the solution are also zero at off-design points with inactive

constraints. This observation is highlighted in the results presented in Section 5.5

4.3.1 On-design-first optimization with SNOPT

As with the off-design weight update strategy, it may be necessary to perform an on-

design-first optimization to obtain a favourable airfoil geometry for use as a starting



Chapter 4. Solving Practical Aerodynamic Design Problems 37

point before the introduction of the off-design constraints. In such cases SNOPT is used

to minimize a weighted sum of the objective functions at all on-design points. This

composite objective function is subject only to geometric thickness constraints which are

satisfied explicitly by SNOPT. The same leading edge treatment described in Section

4.2.1 is applied in this case.

4.3.2 KS function used for evaluation of maximum Mach num-

ber constraints

Off-design points I-P representing dive conditions are subject to the constraint that

the maximum Mach number in the flow field not exceed 1.35. B-spline control points

are used as design variables for the maximum Mach number constraint function. This

function is not continuous with respect to the design variables and therefore cannot be

handled directly by SNOPT. This is because SNOPT assumes continuity in the first and

second derivatives of the objective and constraint functions used in the construction of

the quadratic model of the Lagrangian at each major iteration. A change in the design

variables may cause a change in the nodal location of the maximum Mach number and

a discontinuous jump in the corresponding Mach number at the new location. Since the

Mach number at each node is continuous with respect to the design variables, a Mach

number constraint could be assigned to each node in the flow field. However, performing

an adjoint gradient evaluation of the Mach number constraint at each node would be

prohibitively expensive. Instead, the Kreisselmeier-Steinhauser (KS ) function is used as

a means to aggregate the Mach number constraints at all nodes in the flow field into a

single composite function that is continuously differentiable. The KS function produces

an envelope surface that is C1 continuous and represents a conservative estimate of the

maximum among the set of constraint functions considered [22]. The KS function has

been used in various applications where constraint aggregation is required for efficient

use of gradient-based optimization methods including aerodynamic shape optimization [1]
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and aircraft design [20, 9, 16]. An alternate formulation of the KS function proposed by

Wrenn [22] is used to reduce numerical difficulties associated with the original formulation

and is given by

KS [g (X)] = gmax (X) +
1

ρ
ln

[
m∑

j=1

eρ[gj(X)−gmax(X)]

]
(4.17)

where g (X) contains the set of constraints, gmax is the maximum constraint value evalu-

ated at the current design iteration, X, and ρ is the draw-down parameter that governs

the conservativeness of the estimate of gmax such that

lim
ρ→∞

KS (X, ρ) = gmax (X) (4.18)

The constraints gj (X) are evaluated at every node in the flow field with the exception

of the nodes on the surface of the airfoil and are given by:

gj (X) =
Mj (X)

M∗
− 1 (4.19)

where M∗ = 1.35 is the upper bound on the Mach number constraint, Mj (X) is the

Mach number at node j at the current design iteration, and the constraint is considered

satisfied if gj (X) ≤ 0. The maximum constraint value, gmax, is given by:

gmax (X) =
Mmax (X)

M∗
− 1 (4.20)

where Mmax (X) is the maximum Mach number in the flow field at the current design

iteration.

A conservative estimate of the maximum Mach number is given by:

Mks (KS) = (KS + 1)M∗ (4.21)

The actual constraint that SNOPT works with is Mks. To obtain a solution that satisfies

the desired maximum Mach number constraint, M∗, appropriate values of ρ and the Mks

target must be specified and are case dependent. Currently, an ad-hoc approach is taken

to determine these values. See Section 5.5 for a description of this approach.
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4.3.3 Evaluation of high-lift constraints

Off-design points Q-R representing design requirements for high lift at low speeds are

subject to the constraint that Cl,max must be at least 1.60. The constraint function

assigned to these points is given simply as Cl. For this high-lift constraint function, the

angle of attack is a design variable in addition to the geometric design variables.

4.3.4 Off-design constraint function gradients

The gradients of the constraint functions Mks and Cl with respect to the design variables,

X, are computed using the discrete adjoint approach. To make use of the existing adjoint

gradient evaluation capabilities of Optima2D described in Section 2.5, new definitions for

the partial derivatives ∂J

∂ bQ
and ∂J

∂X
have been created for the off-design constraint functions

Mks and Cl. The partial derivative ∂J

∂ bQ
is calculated analytically for both constraint

functions, while ∂J
∂X

is calculated using finite differences for the Cl constraint function.

Since the Mach number at any given node has no direct sensitivity to the design variables,

X, ∂J
∂X

= 0 for the Mks constraint function.

4.4 Parallel Computing Implementation

For practical aerodynamic design problems, the vast majority of the computational effort

is devoted to solving the governing flow equations and the adjoint equation for gradient

calculations at each operating condition considered in the multipoint optimization. The

computational effort increases at a linear rate with the number of operating conditions

required to represent the design problem. Previously, Optima2D only had the capabil-

ity to perform serial multipoint optimizations. For serial multipoint optimizations, one

processor is used to perform calculations at all operating conditions. At each design

iteration, a flow solve and gradient calculation is performed for each operating condition,

one at a time. After evaluation of all operating conditions has been completed, the com-
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posite objective function and composite gradient are formed. In a serial implementation

of a practical aerodynamic design problem, as with the computational effort, the time

required also increases linearly with the number of operating conditions. For design prob-

lems with many operating conditions, such as the problem described in Section 4.1, the

time required to obtain a solution using a serial implementation is a major imposition.

To overcome excessive time requirements associated with serial multipoint optimiza-

tions, a parallel version of Optima2D has been developed specifically to handle large

multipoint optimizations. The parallel implementation assigns a dedicated processor to

each operating condition in a multipoint optimization. The flow solves and gradient

calculations at N operating conditions are all calculated at the same time on N proces-

sors. While the computational effort for the parallel implementation remains the same

as for the serial implementation, the time requirements are independent of the number

of operating conditions, rendering large multipoint optimizations surmountable.
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Results

The results presented in this section demonstrate the application of both methods to

the practical aerodynamic design problem described in Section 4.1. A variety of cases

are used to validate the methods as well as illustrate similarities and differences between

them.

5.1 Multipoint Optimization Setup

For all cases, the airfoil geometry is parametrized using 15 B-spline control points. Three

control points are frozen at the leading edge and two at the trailing edge. The remaining

10 control points are designated as design variables and are split evenly between the top

and bottom airfoil surfaces. A floating thickness constraint of 11.9% chord is imposed

to ensure a thickness of at least 11.8% chord. In addition, thickness constraints of 1%

chord and 0.2% chord are imposed at 95% chord and 99% chord respectively to prevent

trailing edge crossover. The latter is typically inactive once convergence is achieved. The

meshes used have a C topology with 289 nodes in the streamwise direction and 65 nodes

in the normal direction; the off-wall spacing is 2 × 10−6 chord. The values of the second

and fourth order artificial dissipation coefficients are κ2 = 0.0 and κ4 = 0.02 respectively.

Second order artificial dissipation is not used because it significantly reduces the acuracy

41
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of the adjoint gradient calculation. Further discussion of this issue is provided in Section

6.1.4. Cases 1 to 3 use the off-design weight update method described in Section 4.2.

Case 4 uses the constrained optimization method described in Section 4.3. The Optima2D

input files used for these cases are included in Appendix A.

5.1.1 Off-design weight update setup for Cases 1 - 3

For design points A through P, the design objective is lift-constrained drag minimization.

For each of these design points, the corresponding objective function is given by J = Cd.

For design points Q and R, the design objective is to meet minimum Cl,max requirements

needed at low speeds. A value of 2.0 is used for Ĉ∗
l,max in the high-lift objective function

4.2. Off-design objective functions at design points I - R are used to satisfy corresponding

off-design constraints as described in Section 4.2. The objective functions at all design

points are normalized by their respective objective function values obtained using the

initial airfoil geometry. The weights for the on-design points A - H remain fixed at unity

throughout the duration of the optimization procedure. The weights for the off-design

points I - R are periodically modified throughout the optimization procedure according

to the strategy described in Section 4.2. Ten optimization iterations are executed per

weight update cycle. The value of the exponent used in the weight update formula,

equation 4.4, is h = 4.

5.1.2 Determination of parameter values for KS constraint func-

tion

The results presented in this section illustrate the procedure used to determine the values

of ρ and M∗
ks used in Case 4.

Table 5.1 compares evaluations of Mks to Mmax at point O performed on the initial

airfoil geometry of Case 4 at several values of ρ. It can be seen that the spread between
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Mmax Mks ρ

1.45 1.74 40

1.45 1.60 60

1.45 1.50 80

1.45 1.47 100

Table 5.1: A comparison of Mks to Mmax at point O for various values of ρ

Mmax M∗

ks
ρ

1.40 1.50 40

1.38 1.50 37

1.36 1.50 34

1.35 1.50 31

1.32 1.50 28

- 1.50 25

Table 5.2: The effect of varying ρ on the value of Mmax at point O at the converged

solution

Mmax M∗

ks
ρ

1.43 1.52 40

1.42 1.51 40

1.40 1.50 40

1.38 1.49 40

- 1.48 40

- 1.47 40

Table 5.3: The effect of varying M∗
ks on the value of Mmax at point O at the converged

solution

Mks and Mmax decreases as ρ is increased. As stated in equation 4.18, Mks is expected

to approach Mmax in the limit as ρ approaches infinity. However, in practice, there is

an upper bound on ρ because it becomes increasingly difficult to obtain estimates of

second derivatives of the KS function at values of X where constraints intersect. At such
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locations, the curvature of the KS function can be very large for large values of ρ. See

[16] for further details. The target value M∗
ks is used by SNOPT as the upper bound

on the constraint function. SNOPT will ensure that Mks ≤ M∗
ks at the final converged

solution. A trial and error approach was used to find the right combination of M∗
ks and

ρ to produce Mmax = 1.35 at all off-design points where the Mmax constraint is active at

the final optimized solution. Table 5.2 shows the value of Mmax for off-design point O1

at the converged solution obtained with different values of ρ while keeping M∗
ks constant.

Similarly, Table 5.3 shows the effect of varying M∗
ks while keeping ρ constant. As ρ is

decreased, the spread between Mks and Mmax becomes larger, so the effect of lowering

the value of ρ at a constant value of M∗
ks results in a lower value of Mmax. Conversely,

for a fixed value of ρ, the spread between Mks and Mmax remains roughly constant, so

the value of Mmax moves in lockstep with M∗
ks. Blank entries for Mmax indicate that the

optimization did not achieve a converged solution. It appears that for this case there are

lower limits onM∗
ks and ρ below which SNOPT cannot obtain a converged solution. These

results show that the combination of M∗
ks = 1.50 and ρ = 31 is appropriate for obtaining

Mmax = 1.35 at point O. It should be noted that the adaptive KS approach proposed by

Poon and Martins [16] may provide an alternative strategy to the trial and error method

presented in this section that eliminates the guess work involved in determining M∗
ks and

ρ. Further discussion of this approach is provided in Section 6.1.2

5.1.3 Constrained optimization setup for Case 4

For on-design points A-H, the design objective is lift-constrained drag minimization. For

each of these design points, the corresponding objective function is the drag coefficient

normalized by the drag coefficient evaluated using the initial airfoil geometry. A compos-

ite objective function is formed by a weighted sum of the individual on-design objective

functions with all weights equal to unity. The off-design constraints are defined as de-

1The Mmax constraints at all other off-design points are inactive at the converged solution.
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scribed in Section 4.3. A value of ρ = 31 is used in the KS function. The target value of

Mks used by SNOPT is 1.50. This produces Mmax ≤ 1.35 as desired.

5.2 Case 1 - Baseline 18 Point Optimization

The initial geometry used for the optimization in this case is the RAE 2822 airfoil. The

full set of 18 design points, A-R, described in Table 4.1 are used.

The results presented here were obtained after 33 weight update cycles. The optimiza-

tion was terminated at 33 weight update cycles when it was observed that the change in

on-design drag values from cycle to cycle was significantly less than the numerical error

in drag values expected from the coarse mesh used in this study. Figure 5.1 shows the

optimized airfoil from Case 1 compared to the initial RAE 2822 airfoil. Tables 5.4, 5.5,

and 5.6 provide a summary of the on-design and off-design performance values for the

initial RAE 2822 airfoil, the on-design-first airfoil, and the airfoil after 33 weight update

cycles. For the on-design-first airfoil and the optimized airfoil after 33 weight update

cycles, the tabulated performance results were obtained from regenerated meshes with

the same properties as the original mesh for greater accuracy2. Note that for the RAE

2822 airfoil the off-design constraints at points O, Q, and R, shown in red, are violated.

After the on-design-first optimization, the off-design constraints at points O, Q, and R,

are still violated. The final optimized airfoil for Case 1 has roughly maintained the drag

coefficient values at the eight on-design points compared to the initial RAE 2822 airfoil

while satisfying all off-design constraints. A comparison of the drag coefficients at the

on-design points for the final optimized airfoil versus the on-design-first airfoil shows that

there has been degradation in performance, but the severity of the degradation has been

mitigated by use of the automated weight update procedure. Pressure distributions for

2During the course of an optimization if the shape of the airfoil has changed significantly from the
initial geometry, degradation in the quality of the mesh is caused by inherent limitations of the algebraic
mesh movement algorithm. The degradation in mesh quality leads to increased error in the flow solution
and corresponding lift and drag values.
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Case 1 Optimized Airfoil
RAE 2822 Airfoil

Figure 5.1: Case 1 optimized airfoil versus initial RAE 2822 airfoil

Operating Point α Cl Cd Mmax Cl,max

A −0.71◦ 0.17 0.0090 - -

B −0.06◦ 0.28 0.0092 - -

C −0.12◦ 0.27 0.0101 - -

D +0.93◦ 0.45 0.0108 - -

E −0.36◦ 0.21 0.0090 - -

F +0.66◦ 0.36 0.0094 - -

G +0.53◦ 0.34 0.0104 - -

H +2.10◦ 0.57 0.0115 - -

I −0.17◦ 0.28 0.0100 1.20 -

J −0.85◦ 0.15 0.0092 1.10 -

K +0.87◦ 0.46 0.0136 1.30 -

L −0.33◦ 0.25 0.0097 1.17 -

M +0.77◦ 0.45 0.0141 1.30 -

N −0.39◦ 0.24 0.0105 1.16 -

O +3.46◦ 0.74 0.0383 1.40 -

P +0.48◦ 0.40 0.0128 1.26 -

Q +16.50◦ - - - 1.43

R +16.50◦ - - - 1.40

Table 5.4: Baseline airfoil performance (RAE 2822)

all on-design points A-H are shown in Figures 5.2 and 5.3. The solutions are shock free

at all eight on-design operating conditions.
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Operating Point α Cl Cd Mmax Cl,max

A −0.45◦ 0.17 0.0086 - -

B +0.20◦ 0.28 0.0088 - -

C +0.14◦ 0.27 0.0097 - -

D +1.19◦ 0.45 0.0105 - -

E −0.09◦ 0.21 0.0087 - -

F +0.94◦ 0.36 0.0092 - -

G +0.82◦ 0.34 0.0100 - -

H +2.40◦ 0.57 0.0112 - -

I +0.08◦ 0.28 0.0105 1.25 -

J −0.62◦ 0.15 0.0096 1.21 -

K +1.25◦ 0.46 0.0174 1.35 -

L −0.09◦ 0.25 0.0100 1.23 -

M +1.14◦ 0.45 0.0175 1.35 -

N −0.14◦ 0.24 0.0106 1.22 -

O +4.72◦ 0.74 0.0513 1.45 -

P +0.80◦ 0.40 0.0150 1.33 -

Q +11.40◦ - - - 1.27

R +10.80◦ - - - 1.23

Table 5.5: On-design-first airfoil performance (Case 1)

5.2.1 Off-design points

Figures 5.4 and 5.5 show the evolution of the constraint values for off-design points I-P

and Q-R, respectively, throughout the optimization procedure. Figure 5.6 shows corre-

sponding off-design weights. At the beginning of the main optimization procedure (after

the start-up on-design-first optimization but before the first weight update cycle), the

off-design aerodynamic constraints are violated at points O, Q, and R, while the remain-

ing off-design aerodynamic constraints are satisfied. Since some off-design aerodynamic
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Operating Point α Cl Cd Mmax Cl,max

A −1.61◦ 0.17 0.0092 - -

B −0.97◦ 0.28 0.0093 - -

C −1.02◦ 0.27 0.0102 - -

D +0.02◦ 0.45 0.0107 - -

E −1.36◦ 0.21 0.0092 - -

F −0.34◦ 0.36 0.0095 - -

G −0.46◦ 0.34 0.0104 - -

H +1.11◦ 0.57 0.0113 - -

I −1.02◦ 0.28 0.0106 1.21 -

J −1.66◦ 0.15 0.0120 1.32 -

K −0.04◦ 0.46 0.0129 1.28 -

L −1.17◦ 0.25 0.0107 1.24 -

M −0.09◦ 0.45 0.0135 1.28 -

N −1.21◦ 0.24 0.0115 1.25 -

O +1.46◦ 0.74 0.0201 1.35 -

P −0.37◦ 0.40 0.0125 1.25 -

Q +14.64◦ - - - 1.63

R +14.47◦ - - - 1.63

Table 5.6: Airfoil performance after 33 weight update cycles (Case 1)

constraints are not satisfied, we must proceed with the weight update cycles, which will

result in degradation in on-design performance. The off-design weights begin at their ini-

tial reference values of unity. Within the first several weight update cycles, two distinct

categories of off-design points emerge from these plots:

1. Active off-design points

2. Redundant off-design points



Chapter 5. Results 49

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

(a) Point A

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

(b) Point B

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

(c) Point C

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

(d) Point D

Figure 5.2: Surface pressure coefficient distributions for operating points A-D (Case 1)

Points O, Q, and R can be considered active. These points require non-zero weightings

to prevent violation of their target aerodynamic constraint values. It is clear from Figure

5.6 that the off-design constraint at point O is the most difficult to satisfy, as illustrated

by its high weight compared to the other active points Q, and R. Points I, J, K, L,

M, N, and P can be considered redundant. These points will have their aerodynamic

constraints satisfied regardless of the weight applied to them. Redundant points have
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Figure 5.3: Surface pressure coefficient distributions for operating points E-H (Case 1)

their aerodynamic constraints satisfied by virtue of their proximity to active points with

similar operating conditions. The weight update strategy recognizes this property of the

redundant off-design points and accordingly reduces their weights to zero, as shown in

Figure 5.6.

The behaviour of the active off-design points is characterized by an initial period of

growth followed by asymptotic convergence of their aerodynamic constraints to their re-



Chapter 5. Results 51

Weight Update Cycles

M
ax

im
um

S
ho

ck
M

ac
h

N
um

be
r,

M
m

ax

0 5 10 15 20 25 30

1.1

1.2

1.3

1.4

1.5

1.6
I
J
K
L
M
N
O
P

Figure 5.4: Evolution of off-design constraint values I - P

spective target values with corresponding constant weight values. The redundant points

attain constant over-satisfied aerodynamic constraint values with corresponding weight-

ings of zero. This behaviour is observed in Figures 5.4, 5.5, and 5.6.

It is likely that point Q is also redundant. Throughout the optimization procedure, the

off-design constraint value at point Q, Cl,max , follows slightly above the Cl,max constraint

value at point R, as shown in Figure 5.5. It appears that as long as the Cl,max constraint

at point R is satisfied, the Cl,max constraint at point Q will also be satisfied with a

slightly higher value. The claim of redundancy of point Q can be further justified by

noting that its weight is slowly approaching zero while the weight on point R remains

constant during the last 10 weight update cycles. It is reasonable to assume that if the

optimization were allowed to continue beyond 33 weight update cycles, the weight for

point Q would eventually reach zero.
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5.2.2 On-design points

Since the on-design optimization weights are held constant throughout the optimization

procedure, the on-design performance is evolving through the course of the optimization

solely due to the shift of emphasis characterized by the relative change in the off-design

weights. Figure 5.7 shows the evolution of the drag coefficients for the eight on-design

points. In the first 7 weight update cycles, significant on-design performance fluctua-

tion is clearly observable. With the introduction of the off-design points, the on-design

drag values immediately begin to rise. Figure 5.8 shows the sum of the on-design drag

coefficients superimposed against the sum of the off-design weights. It illustrates the

relationship between on-design performance and off-design weights.
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Figure 5.6: Evolution of off-design weights

5.3 Case 2 - Alternate Initial Airfoil

The initial geometry used for the optimization in this case is the NACA 0012 airfoil. The

full set of 18 design points, A-R, described in Table 4.1 are used.

The results shown were obtained after 36 weight update cycles. A comparison of

the optimized airfoil obtained in Case 2 versus the optimized airfoil obtained in Case

1 is shown in Figure 5.9. The initial NACA 0012 airfoil is also included in Figure 5.9

for reference. Table 5.7 shows a comparison of the performance values for the final

optimized airfoil for Case 2 versus the baseline NACA 0012 airfoil performance values.

The slight difference in optimized airfoil geometries can be attributed to the fixed leading

edges for the airfoils in each case. Another contributing factor is the differences in

the design spaces in each case resulting from the application of the mesh movement

algorithm starting from two different initial airfoil geometries. A comparison of the final
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off-design weights for both cases is shown in Table 5.8. The weight for off-design point

O is significantly different in both cases while the weights at points Q-R are similar.

The remaining redundant points are in agreement with all weights equal to zero for both

cases. Given enough weight update cycles, the off-design weight for point O for Case 2

may become closer to the value obtained in Case 1, although some difference in the final

point O weight for both cases should be expected because of the fixed leading edges. The

substantial improvement in performance for the final optimized airfoil compared to the

baseline NACA 0012 airfoil performance indicates that the NACA 0012 airfoil is poorly

suited to this particular design problem. In contrast, the RAE 2822 airfoil used in Case

1 is a more appropriate first guess as a solution to this design problem in terms of initial

on-design performance and violation of off-design constraints. These results show that

the final airfoil geometry and performance values for Case 2 are very similar to results

obtained for Case 1. This is significant because it confirms that the automated weight
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update procedure will produce the same final optimized results independent of the initial

geometry.

Case 1 Optimized Airfoil
Case 2 Optimized Airfoil
NACA 0012 Airfoil

Figure 5.9: Case 2 optimized airfoil versus Case 1 optimized airfoil

5.4 Case 3 - Reduced Set of Off-Design Points

The initial geometry used for the optimization in this case is the NACA 0012 airfoil. A

reduced set of design points is used for this case. On-design points A-H are included, but

only off-design points O and R are included for a total of 10 design points. Points O and

R are the only off-design points included because the results from Case 1 revealed that
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Op NACA 0012 Case 2

Point α Cl Cd Mmax Cl,max α Cl Cd Mmax Cl,max

A +1.01◦ 0.17 0.0092 - - −1.59◦ 0.17 0.0092 - -

B +1.67◦ 0.28 0.0105 - - −0.95◦ 0.28 0.0093 - -

C +1.61◦ 0.27 0.0111 - - −1.00◦ 0.27 0.0102 - -

D +2.82◦ 0.45 0.0188 - - +0.05◦ 0.45 0.0107 - -

E +1.45◦ 0.21 0.0093 - - −1.32◦ 0.21 0.0092 - -

F +2.48◦ 0.36 0.0100 - - −0.30◦ 0.36 0.0094 - -

G +2.35◦ 0.34 0.0108 - - −0.42◦ 0.34 0.0104 - -

H +3.95◦ 0.57 0.0136 - - +1.15◦ 0.57 0.0114 - -

I +1.57◦ 0.28 0.0160 1.34 - −0.99◦ 0.28 0.0108 1.24 -

J +0.81◦ 0.15 0.0110 1.27 - −1.67◦ 0.15 0.0100 1.22 -

K +3.06◦ 0.46 0.0337 1.47 - −0.04◦ 0.46 0.0143 1.31 -

L +1.38◦ 0.25 0.0146 1.32 - −1.15◦ 0.25 0.0105 1.22 -

M +2.92◦ 0.45 0.0326 1.46 - −0.09◦ 0.45 0.0149 1.29 -

N +1.33◦ 0.24 0.0149 1.32 - −1.21◦ 0.24 0.0112 1.21 -

O +15.50◦ 0.74 0.2545 1.68 - +1.46◦ 0.74 0.0207 1.33 -

P +2.42◦ 0.40 0.0261 1.42 - −0.37◦ 0.40 0.0137 1.29 -

Q +15.00◦ - - - 1.45 +14.61◦ - - - 1.64

R +15.00◦ - - - 1.44 +14.39◦ - - - 1.64

Table 5.7: Case 2 optimized airfoil performance versus baseline NACA 0012 airfoil per-

formance

the other off-design points are redundant.

Table 5.9 shows the performance values for the optimized airfoil obtained after 33

weight update cycles and a comparison of the optimized airfoil geometries from Case 3

versus Case 2 are shown in Figure 5.10. These results show that the final airfoil geometry

and performance values for Case 3 are very similar to results obtained for Case 2. In
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Operating Point Case 1 Off-Design Weight Case 2 Off-Design Weight

I 0.00 0.00

J 0.00 0.00

K 0.00 0.00

L 0.00 0.00

M 0.00 0.00

N 0.00 0.00

O 0.71 3.71

P 0.00 0.00

Q 0.23 0.26

R 0.32 0.54

Table 5.8: Comparison of final off-design weights for Case 1 and Case 2

Case 2 Optimized Airfoil
Case 3 Optimized Airfoil

Figure 5.10: Case 3 optimized airfoil versus Case 2 optimized airfoil

practice, the knowledge regarding the redundancy of the off-design points would not be

available prior to running the optimization. However it is instructive to show that the

same optimized results are obtained with significantly less computational effort. Both

cases required a similar number of design iterations and weight update cycles, but only

10 flow solves and adjoint calculations per design iteration were required for this case

compared to 18 for Case 2. A logical extension of this work would be to investigate

methods to predict redundancy of off-design points, although an experienced designer

may be able to do so successfully.
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Operating Point α Cl Cd Mmax Cl,max

A −1.55◦ 0.17 0.0092 - -

B −0.91◦ 0.28 0.0093 - -

C −0.96◦ 0.27 0.0102 - -

D +0.09◦ 0.45 0.0107 - -

E −1.29◦ 0.21 0.0092 - -

F −0.27◦ 0.36 0.0094 - -

G −0.39◦ 0.34 0.0104 - -

H +1.18◦ 0.57 0.0113 - -

I −0.95◦ 0.28 0.0108 1.22 -

J −1.60◦ 0.15 0.0123 1.33 -

K −0.03◦ 0.46 0.0130 1.28 -

L −1.10◦ 0.25 0.0108 1.25 -

M −0.02◦ 0.45 0.0136 1.28 -

N −1.14◦ 0.24 0.0117 1.26 -

O +1.51◦ 0.74 0.0198 1.34 -

P −0.30◦ 0.40 0.0125 1.25 -

Q +14.61◦ - - - 1.63

R +14.56◦ - - - 1.62

Table 5.9: Case 3 optimized airfoil performance

5.5 Case 4 - Full Set of Off-Design Points Using

SNOPT

Case 4 repeats Case 1 but using the constrained optimization method instead of the

off-design weight update method. The results for Case 4 were obtained after 44 SNOPT

major iterations. The optimized solution satisfies the first-order optimality conditions for

the constrained optimization problem. On-design performance has been optimized while
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Operating Point α Cl Cd Mmax Mks Cl,max

A −1.79◦ 0.17 0.0092 - - -

B −1.16◦ 0.28 0.0093 - - -

C −1.21◦ 0.27 0.0102 - - -

D −0.17◦ 0.45 0.0108 - - -

E −1.54◦ 0.21 0.0092 - - -

F −0.53◦ 0.36 0.0095 - - -

G −0.65◦ 0.34 0.0104 - - -

H +0.90◦ 0.57 0.0114 - - -

I −1.19◦ 0.28 0.0108 1.23 1.38 -

J −1.85◦ 0.15 0.0103 1.32 1.39 -

K −0.16◦ 0.46 0.0144 1.31 1.44 -

L −1.35◦ 0.25 0.0105 1.22 1.37 -

M −0.21◦ 0.45 0.0149 1.31 1.44 -

N −1.40◦ 0.24 0.0112 1.21 1.36 -

O +1.44◦ 0.74 0.0219 1.35 1.50 -

P −0.51◦ 0.40 0.0137 1.28 1.42 -

Q +14.35◦ - - - - 1.63

R +14.35◦ - - - - 1.63

Table 5.10: Case 4 optimized airfoil performance

all off-design constraints have been satisfied. As with Case 1, the performance results

shown in Table 5.10 were obtained from regenerated meshes with the same properties as

the original mesh for greater accuracy. It is important to note that at the final converged

solution (before mesh regeneration) the only active off-design constraints were at points

O and R whose constraint values were Mks = 1.500 and Cl,max = 1.600, respectively. This

observation supports the conclusions from Cases 1 and 3 regarding off-design constraint

activity. Table 5.11 shows a comparison of the the off-design weights, ω∗, at the final
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Case 1 Optimized Airfoil
Case 4 Optimized Airfoil

Figure 5.11: Case 4 - Optimized airfoil after 44 SNOPT major iterations

solution of Case 1, and the dual variables3, π∗, corresponding to the off-design constraints

at the final solution of Case 4. It can be seen that the KKT complementarity condition

given by equation 4.13 is satisfied since the dual variables are zero at all inactive off-

design constraints. The difference in sign of the dual variables at points O and R is

due to the fact that the constraint at point O is bounded from above and the constraint

at point R is bounded from below. A comparison of the performance results shown in

Table 5.10 versus the performance results for Case 1 shown in Table 5.6 reveals that the

on-design performance is very similar in both cases. However, there are differences in the

off-design performance values. Figure 5.11 shows that the optimized airfoil geometries for

Cases 1 and 4 are somewhat different. Further investigation is required to fully explain

why two somewhat different solutions were obtained for the same optimization problem.

Convergence of SNOPT is achieved with substantially less computational effort than that

required using the the off-design weight update method given that the final solution of

Case 4 was achieved in 501 minutes compared to approximately 6000 minutes for Case

1.

3In SNOPT, the dual variables are analogous to the Lagrange multipliers in a constrained optimization
problem.
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Operating Point Case 1 Off-Design Weights ω∗ Case 4 Dual Variables π∗

I 0.00 0.00

J 0.00 0.00

K 0.00 0.00

L 0.00 0.00

M 0.00 0.00

N 0.00 0.00

O 0.71 -0.34

P 0.00 0.00

Q 0.23 0.00

R 0.32 0.18

Table 5.11: Final off-design weights for Case 1 versus final dual variables for Case 4
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Conclusions

Two methods for solving practical aerodynamic design problems with competing design

objectives and aerodynamic constraints using multipoint optimization have been pre-

sented. Both methods address issues that arise in practical multipoint optimization due

to the co-existence of on-design and off-design points. The application of the off-design

weight update method to an eighteen-point airfoil optimization demonstrates that it is

able to adjust off-design weights iteratively based on the evolution of aerodynamic perfor-

mance so as to satisfy off-design aerodynamic constraints while minimizing the penalty

in on-design performance. The method allows designers to identify redundant and criti-

cal operating points. Furthermore, this technique is capable of preventing the off-design

constraints from being over-satisfied in order to minimize their negative influence on the

on-design performance. The resulting airfoil for the baseline case satisfies all off-design

aerodynamic constraints and has maintained overall on-design performance compared to

the RAE 2822 airfoil. The main features of the off-design weight update method sum-

marized above are described in detail in Case 1. Moreover, virtually the same optimized

airfoil can be obtained starting from the NACA 0012 airfoil as shown in Case 2. An

additional optimization executed using the weight update procedure with a reduced set

of off-design points confirms that the same optimized airfoil can be obtained with sig-

62
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nificantly less computational effort if redundant off-design constraints can be identified

prior to performing the optimization. These results were demonstrated in Case 3.

The second method using the constrained optimization algorithm SNOPT is capable

of producing the same results as the off-design weight update method but with signifi-

cantly less computational effort as shown in Case 4. A drawback to the SNOPT method

is the trial and error procedure required to obtain suitable values for the parameters

ρ and Mks associated with the KS function needed to achieve satisfaction of the Mmax

constraints. To solve a practical aerodynamic design problem using the SNOPT method,

3 or 4 trials using various combinations of ρ and Mks may be required to achieve sat-

isfaction of the Mmax constraints. Even when the trial and error procedure associated

with the SNOPT method is taken into consideration, it is still less costly in terms of time

compared to the off-design weight update procedure given that it can obtain a solution

(to 1 trial) more than 5 times as quickly. Although there remain some unanswered ques-

tions associated with the SNOPT method, the potential for large time savings makes a

compelling argument to pursue this method further.

6.1 Future Work

6.1.1 Representative sampling of flow field Mach numbers to

reduce KS function constraints

Generally speaking, as the number of constraints handled by the KS function decreases,

its conservative estimate of the maximum constraint value becomes closer to the actual

maximum constraint value. This property may be exploited by investigating strategies

to reduce the number of constraints, g (X), handled by the KS function, thus reducing

the guesswork associated with the assignment of ρ and M∗
ks parameters. An example of

such a strategy is to specify a localized region of nodes where Mmax is expected to occur
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instead of considering the Mach numbers at all nodes in the flow field as is currently

being done.

6.1.2 Adaptive KS approach

Another option to reduce the guesswork associated with the assignment of ρ and M∗
ks

parameters in the SNOPT method may be to use the adaptive KS approach developed

by Poon and Martins [16]. Their approach increases the value of ρ above a nominal value

at design iterations where the conservative estimate of Mmax, given by Mks, exceeds a

user-defined tolerance. By increasing the value of ρ at such locations in the design space,

the value of Mks approximates Mmax more accurately. This would allow the upper bound

on the maximum Mach number constraint function, M∗
ks, used by SNOPT to be set equal

to the actual upper bound, M∗
max. Using the adaptive KS approach, it is expected that

the value of Mmax for all active constraints at the converged solution would be within a

user-defined tolerance of M∗
ks.

6.1.3 Design under uncertainty

The concept of design under uncertainty recognizes that various uncertainties associated

with certain parameters involved in the optimization procedure can lead to significant

uncertainty in the optimal solution. For example, in Case 1, at the optimized solution,

the active Mmax constraint at point O is satisfied for an angle of attack α = +1.46◦.

In the event that an airplane experiences this dive operating condition, the pilot cannot

be expected to hold the airplane at the exact angle of attack prescribed by the optimal

solution. A more realistic expectation is that the angle attack is allowed some acceptable

range of variance about the ideal value, and within this range, the Mmax constraint at

point O remains satisfied. To achieve this goal, the optimization must consider the

uncertainty surrounding the angle of attack parameter. In order to further increase the

usefulness of the methods presented, it would be beneficial to incorporate a methodology
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for dealing with this type of uncertainty. For a comprehensive survey of the state-of-

the-art in uncertainty-based design of aerospace vehicles, see [23]. Specific applications

within the context of aerodynamic shape optimization can be found in [21, 14, 7].

6.1.4 Linearize pressure switch used in artificial dissipation cal-

culation

The use of second-order artificial dissipation is necessary to maintain flow solution sta-

bility for strongly non-linear cases, such as those with strong shocks [17]. The RAE 2822

and NACA 0012 airfoils used in the cases of Chapter 5 were chosen specifically because

the strength of shocks produced at the operating conditions considered were sufficiently

weak to allow the cases to be run without second-order artificial dissipation. However,

it is very difficult to obtain a converged flow solution at point O for the NACA 0015

airfoil, for example, without using second-order artificial dissipation. Currently, using

second-order artificial dissipation for optimization cases is not recommended because it

has been shown by Nemec [10] to reduce the accuracy of the adjoint gradient calculation.

The source of this inaccuracy can be attributed to the pressure switch that is used in

the calculation of the second-order artificial dissipation term. The pressure switch values

are incorrectly treated as constants during the differentiation of the residual equations

required for the adjoint gradient calculation. A hand coded analytic derivative of the

pressure switch would address this issue and restore accuracy to the adjoint gradient

calculation. It should be noted that the pressure switch is not actually differentiable due

to the presence of a maximum function in its definition, but a reasonable approximation

of its derivative is achievable. An accurate gradient with second-order artificial dissipa-

tion would allow for an expanded range of practical aerodynamic design problems to be

investigated.
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6.1.5 Automated design point generation

The design point definitions given for the 18-point optimization described in Section 4.1

were taken as a representative sample of the continuous range of operating conditions

for an airplane. It is assumed that by optimizing at these points, good performance will

be achieved everywhere. In some cases, this may not be true. To avoid poor perfor-

mance at operating conditions away from the design points, an automated procedure to

check performance at intermediate operating conditions between design points may be

employed. If an area of poor performance is identified, a design point could be added at

this location to improve performance.

6.1.6 Effect of the number of design variables on optimization

Considering that the computational cost of an airfoil optimization increases as the number

of design variables increases, it would be worthwhile to investigate the effect of the number

of design variables on the results of an optimization. More specifically, how does the

final optimized airfoil shape and performance compare for differing numbers of design

variables? For a given optimization problem, is there a practical limit on the number of

design variables beyond which the differences in shape and performance are negligible?

As part of this study, it would be interesting to investigate Drela’s theorem [4] regard-

ing the phenomenon of point optimization1. This theorem relates the number of design

variables to the number of design points. It states that a multipoint optimization needs

at least m + 1 design points to avoid point optimization where m is the number of free

design variables.

1Point optimization refers to optimal performance only in the local vicinity of a design point and
poor performance at locations away from the design point.
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6.1.7 Effect of mesh density on optimization

The computational cost of optimization is also related to the density of nodes in the mesh

used by the flow solver. As the number of nodes increases, the time taken to obtain a

flow solution increases. With large numbers of design points in a practical aerodynamic

design problem, the cost of calculating flow solutions is significant. It is known that the

predicted performance characteristics of an airfoil become more accurate as the mesh

density increases. However, the question we seek to answer is how will the geometries

of optimized airfoils obtained using different mesh densities compare? Ideally, the same

shape can be obtained using a range of different mesh densities. If this is the case,

then meshes at the low end of the density range should be favoured for optimization

problems to improve computational efficiency. A problem with coarse mesh optimization

has been identified regarding specifying an appropriate Cl,max target. From experience, it

is known that the value of Cl,max will increase significantly as the mesh density increases.

This makes it difficult to specify an appropriate Cl,max target for coarse mesh optimization

to achieve the desired grid-converged value of Cl,max.

6.1.8 Pareto front generation

Practical aerodynamic design problems involve competing objectives. Pareto fronts are

a useful tool for a designer to gain an understanding of the tradeoffs between competing

objectives by means of a graphical representation. A Pareto front defines a family of

optimal solutions obtained by varying the weights associated with each of the design

objectives. Nemec [10] provides a good example of a multi-objective airfoil design problem

with a corresponding set of Pareto-optimal solutions. A framework for defining objectives

of interest may be employed to automatically generate a Pareto-optimal set of solutions.

The difficulty with a large multipoint optimization lies in determining logical groupings

of design objectives to compare using Pareto fronts. Examples of such groupings are a
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comparison of cruise conditions to long-range cruise conditions or on-design performance

versus off-design constraint targets.

6.1.9 Extension of methods to three-dimensional optimization

problems

The two methods for solving practical aerodynamic design problems have been demon-

strated on two-dimensional airfoils. Although important insights can be gained from

two-dimensional analysis and optimization, three dimensions are required for a more ac-

curate portrayal of the physical reality experienced by airplanes. Given a reliable and

robust set of three-dimensional design evaluation tools, an extension of these methods to

three-dimensional optimization problems is reasonably straightforward. The main differ-

ence is that the number of critical design parameters increases by an order of magnitude,

such as design variables, mesh size and geometric constraints, to name a few. The com-

putational efficiency of the methods becomes significantly more important given the size

of the problems in terms of parallel processing, memory, and time requirements.
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Appendix A

Input Files

A.1 Case 1

MP-OPT

18

WEIGHT OFF_DES FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.0 FALSE 0.72 0.17 1.0 0.01 27.32e6 FALSE 0.04 8 TRUE TRUE TRUE

1.0 FALSE 0.72 0.28 1.0 0.01 27.32e6 FALSE 0.63 8 TRUE TRUE TRUE

1.0 FALSE 0.72 0.27 1.0 0.01 18.57e6 FALSE 0.59 8 TRUE TRUE TRUE

1.0 FALSE 0.72 0.45 1.0 0.01 18.57e6 FALSE 1.65 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.21 1.0 0.01 24.22e6 FALSE 1.5 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.36 1.0 0.01 24.22e6 FALSE 2.6 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.34 1.0 0.01 16.46e6 FALSE 2.5 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.57 1.0 0.01 16.46e6 FALSE 4.5 8 TRUE TRUE TRUE

0.730 FALSE 0.76 0.28 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

0.655 FALSE 0.76 0.15 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

1.005 FALSE 0.76 0.46 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

0.680 FALSE 0.76 0.25 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

0.996 FALSE 0.76 0.45 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

0.658 FALSE 0.76 0.24 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

1.324 FALSE 0.76 0.74 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

0.932 FALSE 0.76 0.40 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

2.555 FALSE 0.16 2.00 1.0 0.01 11.8e6 TRUE 11.40 6 FALSE FALSE FALSE

2.871 FALSE 0.20 2.00 1.0 0.01 15.0e6 TRUE 10.80 6 FALSE FALSE FALSE

&OPTIMA

OPT_METH = 3, OPT_ITER = 300, OPT_TOL = 1.d-5,

OPT_RESTART = FALSE, GRADIENT = 1, CDF = TRUE, FD_ETA = 1.d-6,

COEF_FRZ = FALSE, IFRZ_WHAT = 3, WFACTOR = 0.1, BSTEP = 0.1,

AUTO_RESTART = FALSE, NUM_RESTARTS = 5,GRID_HIS = TRUE,

SOL_HIS = FALSE, OBJ_RESTART = FALSE,

INORD = 2, IREORD = 2,

ILU_METH = 2, LFIL = 6, PDC = 3.0,

IM_GMRES = 85, EPS_GMRES = 1.d-8, ITER_GMRES = 500,

72
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NTCON=2, WFD=0.0, WTC=50.0,

CTX =0.95,0.99,

CTY_TAR =0.01,0.002,

WAC=0.0, AREAFAC=1.0

NRTCON = 1, crtxl = 0.10d0, crtxt = 0.90d0, crtxn = 15,

crthtar = 0.119d0

&END

&CYCLONE

JMAX=289, KMAX=65, JTAIL1=33, JTAIL2=257,

TRANSLO=0.01, TRANSUP=0.01,

CLINPUT= 0.17, CLTOL=1.0d-11,

RELAXCL=3.0, ICLFREQ=50, ICLSTRT=100,

RESTART=FALSE, JACDT=1, IREAD=2, BCAIRF=TRUE, CIRCUL=FALSE,

IORD=2, INTEG=2, CMESH=FALSE,

IDMODEL=1,

DIS2X = 0.0, DIS4X = 0.02, DIS2Y = 0.0, DIS4Y = 0.02,

VLXI = 0.25, VNXI = 0.25, VLETA = 0.25, VNETA = 0.25,

LIMITER = 1, EPZ = 1.d-3, EPV = 5.d0,

PREC = 0, PRXI = 0.0, PRPHI = 1.0,

TURBULNT = TRUE, ITMODEL = 2, ISPBC = 1, VISCEIG = 1.d0,

VISCOUS = TRUE, VISETA = TRUE, VISXI = FALSE, VISCROSS = FALSE,

NCP = 1000, NQ = 1000,

SNGVALTE = FALSE, GRDSEQ_REST = FALSE, SV_GRDSEQ = FALSE,

WRITERESID = FALSE, TIMING = FALSE, WRITETURB = FASLE,

FLBUD = FALSE, PCHORD = 0.32, SKNFRC = TRUE

&END

&PROBE

NK_ITS = 100, NK_ILU = 2, NK_LFIL = 2, NK_PFRZ = 1,

NK_PDC = 6.d0, NK_IMGMR = 40, NK_ITGMR = 40

&END

&EXTRA

grid_file_prefix = ’grid-new’,

output_file_prefix = ’rest00’,

restart_file_prefix = ’rest00’

&END

&GRAPH

graphout = false, graph_mode = 1, interval = 0,

num_graph= 0,

graph_pt= 0

&END

1.E-6 | AF Convergence criteria: AF_MINR

5.E-13 | Convergence criteria: MIN_RES

1.E-8 | Min. res. in turb. mod. : SPMIN_RES

ISEQUAL

1
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JMXI KMXI IENDS DTISEQ DTMIS DTOW

289 65 20000 5.0 0.0 1.d1
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A.2 Case 2

MP-OPT

18

WEIGHT OFF_DES FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.0 FALSE 0.72 0.17 1.0 0.01 27.32e6 FALSE 0.04 8 TRUE TRUE TRUE

1.0 FALSE 0.72 0.28 1.0 0.01 27.32e6 FALSE 0.63 8 TRUE TRUE TRUE

1.0 FALSE 0.72 0.27 1.0 0.01 18.57e6 FALSE 0.59 8 TRUE TRUE TRUE

1.0 FALSE 0.72 0.45 1.0 0.01 18.57e6 FALSE 1.65 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.21 1.0 0.01 24.22e6 FALSE 1.5 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.36 1.0 0.01 24.22e6 FALSE 2.6 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.34 1.0 0.01 16.46e6 FALSE 2.5 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.57 1.0 0.01 16.46e6 FALSE 4.5 8 TRUE TRUE TRUE

0.674 FALSE 0.76 0.28 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

0.626 FALSE 0.76 0.15 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

0.951 FALSE 0.76 0.46 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

0.623 FALSE 0.76 0.25 1.0 0.01 28.88e6 FALSE 1.0 8 TRUE TRUE TRUE

0.946 FALSE 0.76 0.45 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

0.601 FALSE 0.76 0.24 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

1.190 FALSE 0.76 0.74 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

0.906 FALSE 0.76 0.40 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

1.590 FALSE 0.16 2.00 1.0 0.01 11.8e6 TRUE 14.50 6 FALSE FALSE FALSE

1.710 FALSE 0.20 2.00 1.0 0.01 15.0e6 TRUE 13.50 6 FALSE FALSE FALSE

&OPTIMA

OPT_METH = 3, OPT_ITER = 300, OPT_TOL = 1.d-5,

OPT_RESTART = FALSE, GRADIENT = 1, CDF = TRUE, FD_ETA = 1.d-6,

COEF_FRZ = FALSE, IFRZ_WHAT = 3, WFACTOR = 0.1, BSTEP = 0.1,

AUTO_RESTART = FALSE, NUM_RESTARTS = 5,GRID_HIS = TRUE,

SOL_HIS = FALSE, OBJ_RESTART = FALSE,

INORD = 2, IREORD = 2,

ILU_METH = 2, LFIL = 6, PDC = 3.0,

IM_GMRES = 85, EPS_GMRES = 1.d-8, ITER_GMRES = 500,

NTCON=2, WFD=0.0, WTC=50.0,

CTX =0.95,0.99,

CTY_TAR =0.01,0.002,

WAC=0.0, AREAFAC=1.0

NRTCON = 1, crtxl = 0.10d0, crtxt = 0.90d0, crtxn = 15,

crthtar = 0.119d0

&END

&CYCLONE

JMAX=289, KMAX=65, JTAIL1=33, JTAIL2=257,

TRANSLO=0.01, TRANSUP=0.01,

CLINPUT= 0.17, CLTOL=1.0d-11,

RELAXCL=3.0, ICLFREQ=50, ICLSTRT=100,
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RESTART=FALSE, JACDT=1, IREAD=2, BCAIRF=TRUE, CIRCUL=FALSE,

IORD=2, INTEG=2, CMESH=FALSE,

IDMODEL=1,

DIS2X = 0.0, DIS4X = 0.02, DIS2Y = 0.0, DIS4Y = 0.02,

VLXI = 0.25, VNXI = 0.25, VLETA = 0.25, VNETA = 0.25,

LIMITER = 1, EPZ = 1.d-3, EPV = 5.d0,

PREC = 0, PRXI = 0.0, PRPHI = 1.0,

TURBULNT = TRUE, ITMODEL = 2, ISPBC = 1, VISCEIG = 1.d0,

VISCOUS = TRUE, VISETA = TRUE, VISXI = FALSE, VISCROSS = FALSE,

NCP = 1000, NQ = 1000,

SNGVALTE = FALSE, GRDSEQ_REST = FALSE, SV_GRDSEQ = FALSE,

WRITERESID = FALSE, TIMING = FALSE, WRITETURB = FASLE,

FLBUD = FALSE, PCHORD = 0.32, SKNFRC = TRUE

&END

&PROBE

NK_ITS = 100, NK_ILU = 2, NK_LFIL = 2, NK_PFRZ = 1,

NK_PDC = 6.d0, NK_IMGMR = 40, NK_ITGMR = 40

&END

&EXTRA

grid_file_prefix = ’grid-new’,

output_file_prefix = ’rest00’,

restart_file_prefix = ’rest00’

&END

&GRAPH

graphout = false, graph_mode = 1, interval = 0,

num_graph= 0,

graph_pt= 0

&END

1.E-6 | AF Convergence criteria: AF_MINR

5.E-13 | Convergence criteria: MIN_RES

1.E-8 | Min. res. in turb. mod. : SPMIN_RES

ISEQUAL

1

JMXI KMXI IENDS DTISEQ DTMIS DTOW

289 65 20000 5.0 0.0 1.d1
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A.3 Case 3

MP-OPT

10

WEIGHT OFF_DES FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.0 FALSE 0.72 0.17 1.0 0.01 27.32e6 FALSE 0.04 8 TRUE TRUE TRUE

1.0 FALSE 0.72 0.28 1.0 0.01 27.32e6 FALSE 0.63 8 TRUE TRUE TRUE

1.0 FALSE 0.72 0.27 1.0 0.01 18.57e6 FALSE 0.59 8 TRUE TRUE TRUE

1.0 FALSE 0.72 0.45 1.0 0.01 18.57e6 FALSE 1.65 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.21 1.0 0.01 24.22e6 FALSE 1.5 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.36 1.0 0.01 24.22e6 FALSE 2.6 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.34 1.0 0.01 16.46e6 FALSE 2.5 8 TRUE TRUE TRUE

1.0 FALSE 0.64 0.57 1.0 0.01 16.46e6 FALSE 4.5 8 TRUE TRUE TRUE

1.190 FALSE 0.76 0.74 1.0 0.01 19.62e6 FALSE 1.0 8 TRUE TRUE TRUE

1.710 FALSE 0.20 2.00 1.0 0.01 15.0e6 TRUE 13.50 6 FALSE FALSE FALSE

&OPTIMA

OPT_METH = 3, OPT_ITER = 300, OPT_TOL = 1.d-5,

OPT_RESTART = FALSE, GRADIENT = 1, CDF = TRUE, FD_ETA = 1.d-6,

COEF_FRZ = FALSE, IFRZ_WHAT = 3, WFACTOR = 0.1, BSTEP = 0.1,

AUTO_RESTART = FALSE, NUM_RESTARTS = 5,GRID_HIS = TRUE,

SOL_HIS = FALSE, OBJ_RESTART = FALSE,

INORD = 2, IREORD = 2,

ILU_METH = 2, LFIL = 6, PDC = 3.0,

IM_GMRES = 85, EPS_GMRES = 1.d-8, ITER_GMRES = 500,

NTCON=2, WFD=0.0, WTC=50.0,

CTX =0.95,0.99,

CTY_TAR =0.01,0.002,

WAC=0.0, AREAFAC=1.0

NRTCON = 1, crtxl = 0.10d0, crtxt = 0.90d0, crtxn = 15,

crthtar = 0.119d0

&END

&CYCLONE

JMAX=289, KMAX=65, JTAIL1=33, JTAIL2=257,

TRANSLO=0.01, TRANSUP=0.01,

CLINPUT= 0.17, CLTOL=1.0d-11,

RELAXCL=3.0, ICLFREQ=50, ICLSTRT=100,

RESTART=FALSE, JACDT=1, IREAD=2, BCAIRF=TRUE, CIRCUL=FALSE,

IORD=2, INTEG=2, CMESH=FALSE,

IDMODEL=1,

DIS2X = 0.0, DIS4X = 0.02, DIS2Y = 0.0, DIS4Y = 0.02,

VLXI = 0.25, VNXI = 0.25, VLETA = 0.25, VNETA = 0.25,

LIMITER = 1, EPZ = 1.d-3, EPV = 5.d0,

PREC = 0, PRXI = 0.0, PRPHI = 1.0,
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TURBULNT = TRUE, ITMODEL = 2, ISPBC = 1, VISCEIG = 1.d0,

VISCOUS = TRUE, VISETA = TRUE, VISXI = FALSE, VISCROSS = FALSE,

NCP = 1000, NQ = 1000,

SNGVALTE = FALSE, GRDSEQ_REST = FALSE, SV_GRDSEQ = FALSE,

WRITERESID = FALSE, TIMING = FALSE, WRITETURB = FASLE,

FLBUD = FALSE, PCHORD = 0.32, SKNFRC = TRUE

&END

&PROBE

NK_ITS = 100, NK_ILU = 2, NK_LFIL = 2, NK_PFRZ = 1,

NK_PDC = 6.d0, NK_IMGMR = 40, NK_ITGMR = 40

&END

&EXTRA

grid_file_prefix = ’grid-new’,

output_file_prefix = ’rest00’,

restart_file_prefix = ’rest00’

&END

&GRAPH

graphout = false, graph_mode = 1, interval = 0,

num_graph= 0,

graph_pt= 0

&END

1.E-6 | AF Convergence criteria: AF_MINR

5.E-13 | Convergence criteria: MIN_RES

1.E-8 | Min. res. in turb. mod. : SPMIN_RES

ISEQUAL

1

JMXI KMXI IENDS DTISEQ DTMIS DTOW

289 65 20000 5.0 0.0 1.d1
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A.4 Case 4

MP-OPT

18

WEIGHT OFF_DES C_UPP C_LOW FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA OBJ_FUNC CLALPHA CLALPHA2 CLOPT

1.0 FALSE 0.00 0.00 0.72 0.17 1.0 0.01 27.32e6 FALSE 0.04 8 TRUE TRUE TRUE

1.0 FALSE 0.00 0.00 0.72 0.28 1.0 0.01 27.32e6 FALSE 0.63 8 TRUE TRUE TRUE

1.0 FALSE 0.00 0.00 0.72 0.27 1.0 0.01 18.57e6 FALSE 0.59 8 TRUE TRUE TRUE

1.0 FALSE 0.00 0.00 0.72 0.45 1.0 0.01 18.57e6 FALSE 1.65 8 TRUE TRUE TRUE

1.0 FALSE 0.00 0.00 0.64 0.21 1.0 0.01 24.22e6 FALSE 1.5 8 TRUE TRUE TRUE

1.0 FALSE 0.00 0.00 0.64 0.36 1.0 0.01 24.22e6 FALSE 2.6 8 TRUE TRUE TRUE

1.0 FALSE 0.00 0.00 0.64 0.34 1.0 0.01 16.46e6 FALSE 2.5 8 TRUE TRUE TRUE

1.0 FALSE 0.00 0.00 0.64 0.57 1.0 0.01 16.46e6 FALSE 4.5 8 TRUE TRUE TRUE

0.0 TRUE 1.50 -1E+20 0.76 0.28 1.0 0.01 28.88e6 FALSE 1.0 12 TRUE TRUE TRUE

0.0 TRUE 1.50 -1E+20 0.76 0.15 1.0 0.01 28.88e6 FALSE 1.0 12 TRUE TRUE TRUE

0.0 TRUE 1.50 -1E+20 0.76 0.46 1.0 0.01 28.88e6 FALSE 1.0 12 TRUE TRUE TRUE

0.0 TRUE 1.50 -1E+20 0.76 0.25 1.0 0.01 28.88e6 FALSE 1.0 12 TRUE TRUE TRUE

0.0 TRUE 1.50 -1E+20 0.76 0.45 1.0 0.01 19.62e6 FALSE 1.0 12 TRUE TRUE TRUE

0.0 TRUE 1.50 -1E+20 0.76 0.24 1.0 0.01 19.62e6 FALSE 1.0 12 TRUE TRUE TRUE

0.0 TRUE 1.50 -1E+20 0.76 0.74 1.0 0.01 19.62e6 FALSE 1.0 12 TRUE TRUE TRUE

0.0 TRUE 1.50 -1E+20 0.76 0.40 1.0 0.01 19.62e6 FALSE 1.0 12 TRUE TRUE TRUE

0.0 TRUE 1E+20 1.60 0.16 2.00 1.0 0.01 11.8e6 TRUE 11.40 9 FALSE FALSE FALSE

0.0 TRUE 1E+20 1.60 0.20 2.00 1.0 0.01 15.0e6 TRUE 10.80 9 FALSE FALSE FALSE

&OPTIMA

OPT_METH = 7, OPT_ITER = 300, OPT_TOL = 1.d-5,

OPT_RESTART = FALSE, GRADIENT = 1, CDF = TRUE, FD_ETA = 1.d-6,

COEF_FRZ = FALSE, IFRZ_WHAT = 3, WFACTOR = 0.1, BSTEP = 0.1,

AUTO_RESTART = FALSE, NUM_RESTARTS = 5,GRID_HIS = TRUE,

SOL_HIS = FALSE, SC_METHOD = 2, USE_QUAD_PENALTY_METH = FALSE,

JMSTART = 1, JMEND = 289, JMINC = 1, KMSTART = 2, KMEND = 65,

KMINC = 1, RHO = 31,

INORD = 2, IREORD = 2,

ILU_METH = 2, LFIL = 6, PDC = 3.0,

IM_GMRES = 85, EPS_GMRES = 1.d-8, ITER_GMRES = 500,

NTCON=2, WFD=0.0, WTC=50.0,

CTX =0.95,0.99,

CTY_TAR =0.010000075,0.002,

WAC=0.0, AREAFAC=1.0

NRTCON = 1, crtxl = 0.10d0, crtxt = 0.90d0, crtxn = 15,

crthtar = 0.11844981

&END

&CYCLONE

JMAX=289, KMAX=65, JTAIL1=33, JTAIL2=257,

TRANSLO=0.01, TRANSUP=0.01,
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CLINPUT= 0.17, CLTOL=1.0d-11,

RELAXCL=3.0, ICLFREQ=50, ICLSTRT=100,

RESTART=FALSE, JACDT=1, IREAD=2, BCAIRF=TRUE, CIRCUL=FALSE,

IORD=2, INTEG=2, CMESH=FALSE,

IDMODEL=1,

DIS2X = 0.0, DIS4X = 0.02, DIS2Y = 0.0, DIS4Y = 0.02,

VLXI = 0.25, VNXI = 0.25, VLETA = 0.25, VNETA = 0.25,

LIMITER = 1, EPZ = 1.d-3, EPV = 5.d0,

PREC = 0, PRXI = 0.0, PRPHI = 1.0,

TURBULNT = TRUE, ITMODEL = 2, ISPBC = 1, VISCEIG = 1.d0,

VISCOUS = TRUE, VISETA = TRUE, VISXI = FALSE, VISCROSS = FALSE,

NCP = 1000, NQ = 1000,

SNGVALTE = FALSE, GRDSEQ_REST = FALSE, SV_GRDSEQ = FALSE,

WRITERESID = FALSE, TIMING = FALSE, WRITETURB = FASLE,

FLBUD = FALSE, PCHORD = 0.32, SKNFRC = TRUE

&END

&PROBE

NK_ITS = 100, NK_ILU = 2, NK_LFIL = 2, NK_PFRZ = 1,

NK_PDC = 6.d0, NK_IMGMR = 40, NK_ITGMR = 40

&END

&EXTRA

grid_file_prefix = ’grid-new’,

output_file_prefix = ’test’,

restart_file_prefix = ’rest01’

&END

&GRAPH

graphout = false, graph_mode = 1, interval = 0,

num_graph= 0,

graph_pt= 0

&END

1.E-6 | AF Convergence criteria: AF_MINR

5.E-13 | Convergence criteria: MIN_RES

1.E-8 | Min. res. in turb. mod. : SPMIN_RES

ISEQUAL

1

JMXI KMXI IENDS DTISEQ DTMIS DTOW

289 65 20000 5.0 0.0 1.d1
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