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Abstract

A Three-Dimensional Newton-Krylov Navier-Stokes
Flow Solver Using a One-Equation Turbulence Model

David C. W. Kam

Masters of Applied Science

Graduate Department of Aerospace Engineering

University of Toronto

2007

A three-dimensional Navier-Stokes flow solver for structured grids is developed using

a Newton-Krylov algorithm. Turbulence is modelled using the Spalart-Allmaras one-

equation model. Spatial derivatives are approximated using centered-differences with

second and fourth-difference dissipation. The equations are transformed into curvilinear

coordinates and linearized using Newton’s method. The reverse Cuthill-McKee method is

applied to reorder the equations, and a preconditioner is formed based on an incomplete

lower-upper factorization of a first-order approximate Jacobian. The linear system at

each Newton iteration is then solved using a generalized minimal residual method. An

approximate-Newton startup phase is followed by a Jacobian-free inexact-Newton phase.

Various aspects of the code are studied in this work. A parametric study attempting

to optimize the performance of the code was performed on the following variables: ILU

fill-levels, inexact-Newton convergence parameter, residual reduction tolerance parameter

for switching to the inexact-Newton phase, and a preconditioning parameter used in the

formation of the approximate Jacobian. The solver was validated by comparing with a

well-validated flow solver, OPTIMA2D, and a grid convergence study is presented for

laminar and turbulent flows about the ONERA M6 wing.
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Chapter 1

Introduction

1.1 Motivation

The rising cost of fossil fuels has been of increasing concern in the aviation industry over

the last decade. The desire to reduce costs, as well as to minimize environmental impact

has lead to the development of aerodynamically efficient aircraft. This is of particular

urgency in the commercial aircraft industry, where consumer demands are forecast to

increase in every sector into the foreseeable future [34] .

Since the early 1970’s, computational fluid dynamics has emerged as the third branch

in aerodynamics, complementing the experimental and theoretical fields [1]. Compu-

tational methods offer a cost-effective alternative to the experimental testing that has

traditionally been done in windtunnels. The rapid advances in the CFD field has been

made largely possible by increasing processor speeds throughout the last three decades.

However, the ability today to accurately and efficiently solve the Navier-Stokes equa-

tions on full wing-body geometries would also not have been possible without significant

improvements in algorithms.

1.2 Background

The backbone of all CFD algorithms is the set of Navier-Stokes equations which com-

pletely describes a Newtonian fluid flow. A set of nonlinear partial differential equations,

it can be linearized and discretized at a finite number of points in the computational

domain. The manner in which this discretization occurs leads to the two main groups

of CFD codes: unstructured and structured. The former uses cells that may vary in

1



2 Chapter 1. Introduction

geometry, while the latter can handle only quadrilateral (2D) or tetrahedrals (3D) cells.

Unstructured grids typically are used in conjunction with finite-volume schemes, while

structured grids can be solved with both finite-volume and finite-difference schemes. Un-

structured grids can be generated on much more complex geometries and refinement at

a given area in the flow field can be accomplished by splitting cells as required. Thus

unstructured grids are well-suited to mesh adaptation methods. Structured grids have

less freedom in refinement, although the use of node clustering, flaring, and multiblock

methods serve to mitigate some of these concerns. One drawback with unstructured grids

is the need to track the relative and absolute locations of each cell in a large indexing

system. In contrast, structured grids by nature have a linear ordering of nodes.

Time-stepping methods are typically used to march the nonlinear equations to a con-

verged solution. Two basic classes of such methods exist: implicit and explicit. Explicit

methods are easier to implement and cheaper to compute, but are prone to instability

problems which may either require impractically small time steps and many iterations,

or cause the solution to diverge altogether. Implicit methods on the other hand pay a

storage and computation penalty for solving a more difficult formulation, while allowing

for larger time steps and fewer iterations. This is due to their inherent stability. One

famous example of an implicit solver is the ARC2D algorithm developed by Pulliam and

Steger [29, 33] at the NASA Ames Research Center.

The ability to create fast and efficient Navier-Stokes flow solvers is generally limited

by the time it takes to solve the large linear system of equations that arises from Newton’s

method. Direct inversion of such matrices is prohibitively expensive. A very effective

method for two-dimensional flows is to approximately factor the matrix into two matrices,

each containing entries from one of the two coordinate directions [29]. This method was

superseded by current methods such as approximate-Newton and Jacobian-free inexact-

Newton schemes which use an iterative method to inexactly solve the linear system and

have been found to be much faster [27, 28]. The inexact method can drastically reduce the

amount of time the algorithm spends at each Newton iteration. The success of iterative

solvers depends on the properties of the matrix it is applied to. For non-symmetric

indefinite systems such as those arising from the application of an inexact Newton method

to the Navier-Stokes equations, a Krylov subspace method using a generalized minimal

residual (GMRES) method [30] is frequently used [36, 4, 23, 8, 26].

When compared to other iterative approaches, GMRES was shown to be faster than

the stabilized biconjugate gradient, and conjugate gradient squared methods [27, 28].
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Codes such as HURRICANE [37] and OPTIMA2D [22] both use the Newton-Krylov

algorithm. One reason for the popularity of the GMRES method is that it does not require

the storage of the Jacobian, but can instead function using only matrix-vector products.

Pueyo and Zingg showed that this Newton-Krylov method outperformed approximate-

factorization, approximate-factorization with multigrid, and also the Jacobian-present

formulation [27, 28].

A survey of other three-dimensional Navier-Stokes solvers reveals a wide variety of

solution methods and grid techniques.

NSU3D by Mavriplis [18, 13] uses a line/point Jacobi method, while Frink uses a

Gauss-Seidel-like method in USM3D [7]. Both NSU3D and USM3D are 3D Navier-Stokes

flow solvers that use a node-centered finite-volume formulation.

Another unstructured finite-volume flow solver is FUN3D. The solution to the linear

system of equations is obtained by using implicit point relaxation, implicit line relaxation,

or the Newton-Krylov algorithm [26].

OVERFLOW [12] is a Navier-Stokes flow solver that uses finite-differencing with

matrix dissipation on overset meshes. An approximate factorization or a lower-upper

symmetric Gauss-Seidel method can be used on the linear system [11]. In addition, grid

sequencing and multigrid are used to accelerate code convergence and preconditioning is

performed to improve performance at low Mach numbers.

Flo3xx, by May and Jameson, is a finite-volume code that uses a Gauss-Seidel method

to solve the linear system and multigrid to accelerate convergence. It can solve flows on

both structured and unstructured meshes and is designed to handle both cell-centered

and node-centered discretizations [19].

It is useful to note that all the Navier-Stokes algorithms described above are coupled

with the Spalart-Allmaras one-equation turbulence model. This model has become quite

popular in the computational aerodynamics community and has been shown to be a

robust and accurate alternative to two-equation models such as the k − ω and k − ǫ

techniques.

1.3 Objectives

Nichols and Zingg [25] successfully demonstrated the speed and accuracy with which the

Newton-Krylov algorithm can be applied to the Euler equations in three dimensions.

This multiblock solver is known as TYPHOON. An efficient and robust flow solver is



4 Chapter 1. Introduction

now desired for real-world aerodynamic optimizations at high Reynolds numbers. Thus,

the need to expand TYPHOON’s ability to handle viscous flows is established.

The focus of this thesis is to apply the full Navier-Stokes equations to the existing

algorithm, and to integrate the Spalart-Allmaras turbulence model into the flow equa-

tions.



Chapter 2

Governing Equations

This chapter presents a summary of the governing equations used in the numerical al-

gorithm. The first section details the mean flow equations; the second deal, with the

Spalart-Allmaras one-equation turbulence model.

2.1 Navier-Stokes Equations

The Navier-Stokes equations are a collection of conservation equations that together fully

describe fluid flow. This set of mathematical statements consists of the conservation of

mass, momentum, and energy. The conservative form of the compressible Navier-Stokes

equations is as follows:

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
=

1

Re

(∂Ev

∂x
+

∂Fv

∂y
+

∂Gv

∂z

)

(2.1)

where Re, the Reynolds number, is given by the following equation:

Re =
ρ∞ca∞

µ∞

(2.2)

The flow variables are contained in Q, while the inviscid fluxes are given in E,F and G:

Q =












ρ

ρu

ρv

ρw

e












, E =












ρu

ρu2 + p

ρuv

ρuw

u(e + p)












, F =












ρv

ρuv

ρv2 + p

ρvw

v(e + p)












, G =












ρw

ρuw

ρvw

ρw2 + p

w(e + p)












5



6 Chapter 2. Governing Equations

where ρ is the density, ρu, ρv and ρw are the components of momentum, and e is the

total energy. Pressure, p, is related to the energy e via the equation of state for a perfect

gas:

p = (γ − 1)

[

e − 1

2
ρ(u2 + v2 + w2)

]

(2.3)

The value of γ is 1.4. The viscous flux tensors Ev, Fv and Gv in Equation 2.1 are given

by:

Ev =












0

τxx

τxy

τxz

Ev,5












, Fv =












0

τyx

τyy

τyz

Fv,5












, Gv =












0

τzx

τzy

τzz

Gv,5












(2.4)

where the shear and normal stress terms are given by:

τxx = 2(µ + µt)ux − 2
3
µ (ux + vy + wz)

τxy = (µ + µt) (uy + vx)

τxz = (µ + µt) (uz + wx)

τyy = 2(µ + µt)vy − 2
3
µ (ux + vy + wz)

τyz = (µ + µt) (vz + wy)

τzz = 2(µ + µt)wz − 2
3
µ (ux + vy + wz)

Ev,5 = uτxx + vτxy + wτxz + (µPr−1 + µtPr−1
t )(γ − 1)−1∂x(a

2)

Fv,5 = uτyx + vτyy + wτyz + (µPr−1 + µtPr−1
t )(γ − 1)−1∂y(a

2)

Gv,5 = uτzx + vτzy + wτzz + (µPr−1 + µtPr−1
t )(γ − 1)−1∂z(a

2)

where µ and µt are the dynamic laminar and dynamic turbulent eddy viscosities respec-

tively. Pr and Prt are the laminar and turbulent Prandtl numbers, assumed as constants

0.72 and 0.90. The sound of speed, a, as calculated using the ideal gas assumption:

a =
√

γRT (2.5)

where R is the specific gas constant, and T is the temperature.

The above equations have been nondimensionalized using the following relations:

x =
x̄

c
, y =

ȳ

c
, z =

z̄

c
, u =

ū

a∞

, v =
v̄

a∞

, w =
w̄

a∞

, ρ =
ρ̄

ρ∞

, e =
ē

ρ∞a2
∞

, t =
t̄a∞

c

where c is the chord length. The subscript ∞ identifies freestream values, and the overbar,

dimensional values.



2.2. Turbulence Model 7

The dynamic laminar viscosity µ is found using Sutherland’s viscosity law [35] given

by:

µ =
µ̄

µ∞

=

(
T̄

T∞

)3/2
T∞ + S∗

T̄ + S∗
(2.6)

where S∗ is the Sutherland constant of 198.6◦ R for air, T∞ is the freestream temperature

of 460.0◦ R for air.

2.2 Turbulence Model

The effects of turbulence in the Navier-Stokes equations are captured using Spalart and

Allmaras’ one-equation model. An eddy viscosity-like term ν̃ is solved as the sixth flow

variable in the equations. The model has been shown to work well not only for two

dimensional flows [9], but also three dimensional ones [16]. The equation is as follows:

Dν̃

Dt
=

cb1

Re
[1 − ft2]S̃ν̃

︸ ︷︷ ︸

Production

+
1 + cb2

σ̃Re
∇ · [(ν + ν̃)∇ν̃] − cb2

σ̃Re
(ν + ν̃)∇2ν̃

︸ ︷︷ ︸

Advection and Diffusion

− 1

Re

[

cw1fw − cb1

κ2
ft2

]( ν̃

d

)2

︸ ︷︷ ︸

Destruction

+ Reft1∆U2

︸ ︷︷ ︸

Trip

(2.7)

where the first term is the production term, the second and third the combined advec-

tion/diffusion terms, the fourth the destruction term, and the last, a laminar/turbulent

transition trip term. For the purposes of this thesis, the trip functions ft1 and ft2 are set

to zero.

The kinematic eddy viscosity, νt=µt/ρ, is then calculated from the solution to this

equation through:

νt = ν̃fv1 (2.8)

where:

fv1 =
χ3

χ3 + c3
v1

(2.9)

and χ is the ratio of the kinematic eddy turbulent viscosity to the kinematic laminar

viscosity ν= µ/ρ:

χ =
ν̃

ν
(2.10)

A modified vorticity term, S̃ is used in the production and destruction terms, where:

S̃ = S +
ν̃

κ2d2
fv2 (2.11)
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and where d is the distance to the closest solid wall surface node. κ is the von Karman

constant equal to 0.41 and S is the magnitude of the vorticity, written as:

S =

[(
∂w

∂y
− ∂v

∂z

)2

+

(
∂u

∂z
− ∂w

∂x

)2

+

(
∂v

∂x
− ∂u

∂y

)2
] 1

2

(2.12)

fv2 is a viscous function described by:

fv2 = 1 − χ

1 + χfv1

(2.13)

The wall destruction term includes a function fw given as:

fw = g

(
1 + c3

w3

g6 + c6
w3

) 1

6

(2.14)

where

g = r + cw2(r
6 − r) (2.15)

with r, a nondimensional variable defined as:

r ≡ ν̃

S̃κ2d2
(2.16)

The remaining parameters in this turbulence model are as follows:

cb1 = 0.1355 cb2 = 0.622

cw1 = cb1/κ
2 + (1 + cb2)/σ̃ cw2 = 0.3

cw3 = 0.2 cv1 = 7.1

σ̃ = 2/3

Modifications to the vorticity-like term S̃ are made to ensure that it is non-negative [2]:

S̃ = Sfv3 +
ν̃

κ2d2
fv2 (2.17)

where

fv2 =

(

1 +
χ

cv2

)−3

(2.18)

fv3 =
(1 + χfv1) (1 − fv2)

χ
(2.19)

where cv2 is set at 5.0. This correction appears to improve the stability of the model.
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2.3 Curvilinear Coordinate Transformation

Discretization of the physical domain about an airfoil is done using structured grids.

The use of such grids allows for the direct mapping of physical boundaries to those

in computational space. In addition, uniform computational grid spacing equal to one

is obtained through the curvilinear transformation. The Navier-Stokes equations and

turbulence model can then be solved in this mathematical environment. The benefit of

using this type of grid includes the implicit indexing of the node locations since the grid

spacing is equal to one. In the computational domain, the four independent variables

x,y,z and t are mapped from the physical domain as follows:

τ = t

ξ = ξ(x, y, z, t)

η = η(x, y, z, t)

ζ = ζ(x, y, z, t)

(2.20)

The exact details of the transformation can be found in Appendix A, and were derived

following the procedure described in [17].

The Navier-Stokes equations can then be described in the transformed coordinate

system as:

∂Q̂

∂τ
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
=

1

Re

(

∂Êv

∂ξ
+

∂F̂v

∂η
+

∂Ĝv

∂ζ

)

(2.21)

where (̂·) = J−1(·), and J is the metric Jacobian resulting from the transformation found

to be:

J−1 = xξyηzζ + yξzηxζ + zξxηyζ − xξzηyζ − yξxηzζ − zξyηxζ (2.22)

The inviscid fluxes are:

E =












ρU

ρuU + ξxp

ρvU + ξyp

ρwU + ξzp

(e + p)U + ξtp












, F =












ρV

ρuV + ηxp

ρvV + ηyp

ρwV + ηzp

(e + p)V + ηtp












, G =












ρW

ρuW + ζxp

ρvW + ζyp

ρwW + ζzp

(e + p)W + ζtp












(2.23)

where the contravariant velocities are given as:

U = ξt + ξxu + ξyv + ξzw

V = ηt + ηxu + ηyv + ηzw

W = ζt + ζxu + ζyv + ζzw

(2.24)
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The viscous fluxes are:

Êv = J−1 (ξxEv + ξyFv + ξzGv)

F̂v = J−1 (ηxEv + ηyFv + ηzGv)

Ĝv = J−1 (ζxEv + ζyFv + ζzGv)

(2.25)

The shear stresses in the general curvilinear coordinate system are given by:

τxx = (µ + µt) [4 (ξxuξ + ηxuη + ζxuζ) − 2 (ξyvξ + ηyvη + ζyvζ + ξzwξ + ηzwη + ζzwζ)] /3

τxy = (µ + µt) (ξyuξ + ηyuη + ζyuζ + ξxvξ + ηxvη + ζxvζ)

τxz = (µ + µt) (ξzuξ + ηzuη + ζzuζ + ξxwξ + ηxwη + ζxwζ)

τyy = (µ + µt) [4 (ξyvξ + ηyvη + ζyvζ) − 2 (ξxuξ + ηxuη + ζxuζ + ξzwξ + ηzwη + ζzwζ)] /3

τyz = (µ + µt) (ξzvξ + ηzvη + ζzvζ + ξywξ + ηywη + ζywζ)

τzz = (µ + µt) [4 (ξzwξ + ηzwη + ζzwζ) − 2µ (ξxuξ + ηxuη + ζxuζ + ξyvξ + ηyvη + ζyvζ)] /3

2.4 Boundary Conditions

At each of the six sides of a grid block, a single boundary condition must be specified.

Four boundary types are possible: far-field, solid wall, symmetry and interior. The

selection of these boundary conditions must be done carefully not only to preserve the

physics but also to maintain the accuracy and stability of the problem.

2.4.1 Far-field Boundary

Inviscid Boundaries

Six equations need to be specified at the inviscid far-field boundaries. These boundaries

are far enough away from a solid surface as to be relatively unaffected by viscous consid-

erations. Depending on the nature of the flow, these values are either extrapolated from

an interior node, or are set to freestream values.

Riemann invariants are used to determine the appropriate conditions for the far-field.

The characteristic approach has the benefit of nonreflectivity, allowing the solution to

move freely through the boundary. The first three Riemann invariants are:

R1 = Vn − 2a
γ−1

R2 = Vn + 2a
γ−1

R3 = p
ργ

(2.26)
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subsonic supersonic

Inflow Freestream: R1,3,4,5,6 Freestream: all

Extrapolation: R2 Extrapolation: none

Outflow Freestream: R1 Freestream: none

Extrapolation: R2,3,4,5,6 Extrapolation: all

Table 2.1: Logic for far-field boundary conditions using Riemann invariants

where R1, R2 and R3 are obtained from locally one-dimensional characteristics corre-

sponding to λ1 = Vn − a, λ2 = Vn + a, and λ3 = Vn respectively and Vn is the outward

normal velocity component at the boundary. Note that R3 is an isentropic relation.

Three more equations are necessary:

R4 = Vt1

R5 = Vt2

R6 = ν̃

(2.27)

where Vt1 and Vt2 are tangential velocities, and ν̃ is the turbulent eddy viscosity variable.

Determination of the appropriate selection of extrapolation versus freestream values are

summarized in Table 2.1

Viscous Outflow

At a viscous outflow boundary downsteam of the wing, a simple zeroth-order extrapola-

tion of the flow variables provides a sufficient closure of the equations, as suggested by

Pueyo and Zingg [27].

2.4.2 Solid Wall

In contrast to the inviscid wall conditions which need to satisfy flow tangency, a viscous

flow about a solid surface needs to satisfy the no-slip condition:

u = 0, v = 0, w = 0 (2.28)

In addition to the no-slip boundary conditions, the pressure is determined from:

(
∂p

∂n

)

wall

= 0 (2.29)
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If an adiabatic wall condition is also assumed, then:

(
∂T

∂n

)

wall

= 0 (2.30)

Assuming a perfect gas, p = ρRT , and using Equation 2.29, one can then arrive at the

fifth wall boundary condition: (
∂ρ

∂n

)

wall

= 0 (2.31)

For the turbulence model, the turbulent eddy viscosity is zero at the surface:

ν̃ = 0 (2.32)



Chapter 3

Numerical Algorithm

This chapter details the spatial discretization, time-stepping method, and the efficient

method by which the system of linearized equations is solved.

3.1 Spatial Discretization

Finite differencing of the mean flow equations follows the procedure developed by Steger

[33] and Pulliam [29], and implemented in ARC2D. A scalar artificial dissipation scheme

by Jameson et al. [10] is also used.

3.1.1 Inviscid Fluxes

Inviscid fluxes in the Navier-Stokes equations involve first-order derivatives. Here, the

algorithm uses a three-point center-difference spatial discretization on the interior nodes.

In the computational domain, the spacing is uniform and equal to one. Therefore, the

finite difference approximation can be described as:
(

∂Ê

∂ξ

)

j,k,m

≈ Êj+1,k,m − Êj−1,k,m

2
− ADj,k,m

(3.1)

(

∂F̂

∂η

)

j,k,m

≈ F̂j,k+1,m − Êj,k−1,m

2
− ADj,k,m

(3.2)

(

∂Ĝ

∂ζ

)

j,k,m

≈ Ĝj,k,m+1 − Ĝj,k,m−1

2
− ADj,k,m

(3.3)

where AD is an artificial dissipation term.

13
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Artificial Dissipation

Numerical dissipation is implemented to damp out high frequency oscillations that arise

due to the use of the centered difference method. These oscillations are particularly

prevalent in regions of shocks where sharp pressure gradients are experienced, and need

to be eliminated in order for the code to converge.

The method through which this is accomplished is a second and fourth-difference scalar

dissipation scheme developed by Jameson et al. [10]:

ADj,k,m
= ∇ξ

(

D
(2ξ)

j+ 1

2
,k,m

+ D
(4ξ)

j+ 1

2
,k,m

)

(3.4)

where ∇ is the backward-difference operator. The second and fourth-difference dissipative

terms, D
(2ξ)

j+ 1

2
,k,m

and D
(4ξ)

j+ 1

2
,k,m

are given by:

D
(2ξ)

j+ 1

2
,k,m

= d
(2)

j+ 1

2
,k,m

∇ξ

(

Jj,k,mQ̂j,k,m

)

(3.5)

D
(4ξ)

j+ 1

2
,k,m

= d
(4)

j+ 1

2
,k,m

∇ξ∆ξ∇ξ

(

Jj,k,mQ̂j,k,m

)

(3.6)

The second-difference coefficient, d
(2)

j+ 1

2
,k,m

is defined as:

d
(2)

j+ 1

2
,k,m

= 2
(
ǫσ(ξ)J−1

)

j+ 1

2
,k,m

(3.7)

where σ(ξ), the spectral radius of the flux Jacobian ∂Ê
∂Q̂

is:

σ(ξ) = |U | + a
√

ξ2
x + ξ2

y + ξ2
z (3.8)

and ǫ is:

ǫj,k,m = κ2

[
0.5Υ∗

j,k,m + 0.25
(
Υ∗

j+1,k,m + Υ∗

j−1,k,m

)]
(3.9)

where

Υ∗

j,k,m = max (Υj+1,k,m, Υj,k,m, Υj−1,k,m) (3.10)

Υj,k,m =
|pj+1,k,m − 2pj,k,m + pj−1,k,m|
|pj+1,k,m + 2pj,k,m + pj−1,k,m|

(3.11)

Equation 3.11 acts as a switch that detects the presence of shocks while Equation 3.10

is a smoothing function for Υ.
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A fourth-difference dissipative term is used in smooth regions and is switched off in

regions near shocks where the term is found to cause oscillations. The fourth-difference

coefficient is given by:

d
(4)

j+ 1

2
,k,m

= max
[

0, 2κ4

(
σ(ξ)J−1

)

j+ 1

2
,k,m

− d
(2)

j+ 1

2
,k,m

]

(3.12)

Values for κ2 and κ4 are supplied by the user and are typically 1.0 and 0.02 respectively.

The construction of the dissipative terms in the η and ζ directions are done in a similar

way, except that Equation 3.11 is omitted in the ζ-direction following Nemec [22].

3.1.2 Viscous Fluxes

The discretization of the viscous fluxes requires a slightly different approach since they

involve second order derivatives of the form:

∂ξ (αj,k,m∂ξβj,k,m) (3.13)

It is desirable to maintain the three-point stencil for all interior nodes while preserving

the accuracy of the scheme. Thus, the following compact three-point stencil (developed

by Pulliam in [29]) is used:

∆ξ

(

αj+ 1

2
,k,m (∇ξβj,k,m)

)

= αj+ 1

2
,k,m (βj+1,k,m − βj,k,m) − αj− 1

2
,k,m (βj−1,k,m − βj,k,m)

(3.14)

where ∆ is the forward-difference operator and

αj− 1

2
,k,m =

αj−1,k,m + αj,k,m

2
and αj+ 1

2
,k,m =

αj,k,m + αj+1,k,m

2
(3.15)

are the values of α at the half points of the nodes in the ξ direction. The differencing in

the η and ζ directions are done in a similar manner.

Where the viscous terms take the form:

∂η (αj,k,m∂ξβj,k,m) (3.16)

the spatial discretization is performed as follows:

∂η (αj,k,m∂ξβj,k,m) ≈ 1

2
αj,k+1,m

(
βj+1,k+1,m − βj−1,k+1,m

2

)

− 1

2
αj,k−1,m

(
βj+1,k−1,m − βj−1,k−1,m

2

)

(3.17)

Similarly, the cross-derivatives in the other combinations of directions follow this proce-

dure. Note that these terms are dropped during the building of the approximate flow

Jacobian.



16 Chapter 3. Numerical Algorithm

3.1.3 Turbulence Model

The discretization of the Spalart-Allmaras turbulence model is done in much the same

way as the viscous and inviscid terms as described in the original paper [32] and by Godin

[9].

Convection

Each of the three convection terms can be discretized using a first-order upwinding

scheme:

U
∂ν̃

∂ξ
≈ U+

i,j,k (ν̃i,j,k − ν̃i−1,j,k) + U−

i,j,k (ν̃i+1,j,k − ν̃i,j,k) (3.18)

V
∂ν̃

∂η
≈ V +

i,j,k (ν̃i,j,k − ν̃i,j−1,k) + V −

i,j,k (ν̃i,j+1,k − ν̃i,j,k) (3.19)

W
∂ν̃

∂ζ
≈ W+

i,j,k (ν̃i,j,k − ν̃i,j,k−1) + W−

i,j,k (ν̃i,j,k+1 − ν̃i,j,k) (3.20)

where U , V , and W are the contravariant velocities, and the + and − superscripts

indicate forward and backwards differencing respectively, as given by:

U+
i,j,k =

1

2
(Ui,j,k + |Ui,j,k|) , U−

i,j,k =
1

2
(Ui,j,k − |Ui,j,k|)

V +
i,j,k =

1

2
(Vi,j,k + |Vi,j,k|) , V −

i,j,k =
1

2
(Vi,j,k − |Vi,j,k|)

W+
i,j,k =

1

2
(Wi,j,k + |Wi,j,k|) , W−

i,j,k =
1

2
(Wi,j,k − |Wi,j,k|) (3.21)

Diffusion

All cross derivative terms in the diffusion terms are dropped once they are transformed

into curvilinear coordinates. The diffusive terms are then approximated by the following:

∇ · [(ν + ν̃)∇ν̃] ≈ (ξx + ξy + ξz)∂ξ [(ν + ν̃)(ξx + ξy + ξz)∂ξ(ν̃)]

+ (ηx + ηy + ηz)∂η [(ν + ν̃)(ηx + ηy + ηz)∂η(ν̃)]

+ (ζx + ζy + ζz)∂ζ [(ν + ν̃)(ζx + ζy + ζz)∂ζ(ν̃)] (3.22)

∇2ν̃ ≈ (ξx + ξy + ξz)∂ξ [(ξx + ξy + ξz)∂ξ(ν̃)]

+ (ηx + ηy + ηz)∂η [(ηx + ηy + ηz)∂η(ν̃)]

+ (ζx + ζy + ζz)∂ζ [(ζx + ζy + ζz)∂ζ(ν̃)] (3.23)
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As one might expect, the diffusion terms above exhibit the same form as the viscous

terms in the Navier-Stokes equations. Equations 3.13 through 3.15 can then be used.

Production and Destruction

The vorticity components in the transformed coordinates of the production term can be

discretized using simple centered differencing:

S̃1 =
1

2
[ξy(wj+1,k,m − wj−1,k,m) + ηy(wj,k+1,m − wj,k−1,m)

+ζy(wj,k,m+1 − wj,k,m−1) − ξz(vj+1,k,m − vj−1,k,m) (3.24)

−ηz(vj,k+1,m − vj,k−1,m) − ζz(vj,k,m+1 − vj,k,m−1)]

S̃2 =
1

2
[ξz(uj+1,k,m − uj−1,k,m) + ηz(uj,k+1,m − uj,k−1,m)

+ζz(uj,k,m+1 − uj,k,m−1) − ξx(wj+1,k,m − wj−1,k,m) (3.25)

−ηx(wj,k+1,m − wj,k−1,m) − ζx(wj,k,m+1 − wj,k,m−1)]

S̃3 =
1

2
[ξx(vj+1,k,m − vj−1,k,m) + ηx(vj,k+1,m − vj,k−1,m)

+ζx(vj,k,m+1 − vj,k,m−1) − ξy(uj+1,k,m − uj−1,k,m) (3.26)

−ηy(uj,k+1,m − uj,k−1,m) − ζy(uj,k,m+1 − uj,k,m−1)]

3.1.4 Boundary Conditions

Solid Wall

The solid wall boundary conditions for an inviscid flow can be found in Nichols’ thesis

[24].

The boundary conditions for a viscous flow are explained in Section 2.4.2. Unscaled

values are used here and are discretized as:

ρj,k,mwall
− ρj,k,mwall±1 = 0 (3.27)

(ρu)j,k,mwall
= 0 (3.28)

(ρv)j,k,mwall
= 0 (3.29)

(ρw)j,k,mwall
= 0 (3.30)

pj,k,mwall
− pj,k,mwall±1 = 0 (3.31)

ν̃j,k,m = 0 (3.32)
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where the ±1 index modifier indicates that the solid surface occurs either at the top

(m − 1) or the bottom (m + 1) of a block.

Inviscid Far-field Boundary Condition

As discussed in Section 2.4.1, the selection of the inviscid far-field boundary conditions

is dependent on the inflow or outflow condition at that point. The first two Riemann

invariants can be discretized as follows:

(

Vn − 2

(γ − 1)

√
γp

ρ

)

j,k,mmax

−
(

Vn − 2

(γ − 1)

√
γp

ρ

)

∞

= 0 (3.33)

(

Vn +
2

(γ − 1)

√
γp

ρ

)

j,k,mmax

−
(

Vn +
2

(γ − 1)

√
γp

ρ

)

j,k,mmax−1

= 0 (3.34)

where Vn is the normal velocity at the block face. Riemann invariants R3, R4, R5 and R6

depend on whether the flow is entering or exiting the boundary. For an inflow boundary:

(
ργ

p

)

j,k,mmax

−
(

ργ

p

)

∞

= 0 (3.35)

(Vt1)j,k,mmax
− (Vt1)∞ = 0 (3.36)

(Vt2)j,k,mmax
− (Vt2)∞ = 0 (3.37)

ν̃j,k,mmax − ν̃∞ = 0 (3.38)

where Vt1 and Vt2 are the tangential velocities on the boundary. For an outflow boundary:

(
ργ

p

)

j,k,mmax

−
(

ργ

p

)

j,k,mmax−1

= 0 (3.39)

(Vt1)j,k,mmax
− (Vt1)j,k,mmax−1 = 0 (3.40)

(Vt2)j,k,mmax
− (Vt2)j,k,mmax−1 = 0 (3.41)

ν̃j,k,mmax − ν̃j,k,mmax−1 = 0 (3.42)

Viscous Far-field Boundary Condition

As discussed in Section 2.4.1, this boundary condition is called where the flow is known

to be outflowing, and subject to viscous effects (such as downstream of a wing). They
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are as follows:

(ρj,k,m)out − (ρj,k,m)out−1 = 0 (3.43)

((ρu)j,k,m)out − ((ρu)j,k,m)out−1 = 0 (3.44)

((ρv)j,k,m)out − ((ρv)j,k,m)out−1 = 0 (3.45)

((ρw)j,k,m)out − ((ρw)j,k,m)out−1 = 0 (3.46)

(pj,k,m)out − (pj,k,m)out−1 = 0 (3.47)

(ν̃j,k,m)out = 0 (3.48)

Symmetry

The amount of computational effort can be drastically reduced by imposing symmetry

boundaries where appropriate. This type of boundary is used for cases where the normal

velocity and normal derivatives in any one of the three directions on a given flat face

boundary are zero. Such cases include flows around infinite airfoils, and wing and wing-

body geometries where no yaw and roll angles are present. The symmetry condition

consists of zeroing all flow variable gradients across the plane to ensure the solution is

unchanged, and ensuring flow tangency by specifying Vn=0.

Block Interfaces

Block interfaces occur where two blocks are connected. Continuity of the solution at

this boundary is ensured through a series of “ghost” or “halo” nodes. These nodes share

the same physical space as interior nodes in a neighbouring block (see Figure 3.1). No

equations are solved at these nodes. Instead, the equations at the interior nodes in Block

2 are solved and then copied to the halo nodes in Block 1. The number of halo nodes

used is dependent on the size of the stencil required for the spatial discretization. The

nodes at the interface are solved independently on each block.

3.2 Linearization and Newton’s Method

After the transformation and discretization of the Navier-Stokes equations, the system

of equations takes the form:

dQ̂

dτ
+ R

(

Q̂
)

= 0 (3.49)
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BLOCK 1 BLOCK 2

Physical Boundary
Halo Planes
Block Interface
Interior Nodes
Halo Nodes

k

m

j

Figure 3.1: Halo nodes on a two-dimensional slice of two three-dimensional blocks for a

13-point stencil

where R is the set of discretized equations, and Q̂ is now the set of discretized flow

variables. Note that discretization of the spatial terms has turned the original PDEs into

a set of coupled ODEs.

If one is interested only in steady-state solutions, then the equations simplify to:

R
(

Q̂
)

= 0 (3.50)

In addition, if we are interested in turbulent flows, then Q̂ includes the turbulent eddy

term ν̃:

Q̂j,k,m =















ρ

ρu

ρv

ρw

e

ν̃















j,k,m

(3.51)

and the turbulence model equation is added to R(Q̂).

In order to solve the above equations using a quasi-Newton approach, this set of

nonlinear equations needs to be linearized. This is done by first performing a Taylor

series expansion of R about a solution state Q(n), and then dropping higher-order terms

in the expansion:

R
(

Q̂(n+1)
)

≈ R
(

Q̂(n)
)

+ A(n)∆Q̂(n) = 0 (3.52)

where

∆Q̂(n) = Q̂(n+1) − Q̂(n) (3.53)
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and the Jacobian matrix of R (also called the flow Jacobian) is given by:

A(n) =

(
∂R

∂Q̂

)(n)

(3.54)

Equation 3.52 can be rewritten as:

A(n)∆Q̂(n) = −R
(

Q̂(n)
)

(3.55)

The solution to the system yields ∆Q, which is used to update the flow variables at the

next step:

Q̂(n+1) = Q̂(n) + ∆Q̂(n) (3.56)

Newton’s method is desirable due to its quadratic rate of convergence. However, this

is rarely achieved during startup due to the fact that Newton’s method is only a good

approximation of R(n+1) for small ∆Q close to the final solution. It is much more practical

to use an implicit Euler time-stepping method, which combines stability and speed:
[

I

∆t
+ A

](n)

∆Q̂(n) = −R(n) (3.57)

where ∆t is the time-step and I is an identity matrix.

Note that a fixed time-step in an implicit Euler formulation yields only a linear con-

vergence rate. However, Newton’s method can be recovered as the time-step is iteratively

increased such that ∆t → ∞ near convergence.

In the above equations, A is an exact linearization of the fluxes and turbulence model.

A first-order approximate Jacobian, A1 can also be used to solve the same system of

equations. This is beneficial since instead of storing information from thirteen blocks

at each node, only the nearest neighbours will be saved (seven in total). Called the

approximate-Newton method, this approach can improve speed by being more diagonally

dominant and reduce memory requirements via a reduction in the size of the stencil. The

fourth and second-difference dissipation coefficients are combined using:

d(2)
p = d(2) + σd(4) (3.58)

where d
(2)
p is the combined dissipation term. The parameter σ will be determined through

a numerical study in Chapter 5.

3.2.1 Linearization of the Interior Scheme

Inviscid Flux Jacobian

For the linearization of the inviscid interior scheme, see Nichols [24].
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Viscous Flux Jacobian

The cross-derivative terms are removed when forming the Jacobian matrix. Without

these terms, the viscous Jacobian is given by:

∂Q̂ (β) = J−1












0 0 0 0 0

m21 α1∂ς(ρ
−1) α2∂ς(ρ

−1) α3∂ς(ρ
−1) 0

m31 α2∂ς(ρ
−1) α4∂ς(ρ

−1) α5∂ς(ρ
−1) 0

m41 α3∂ς(ρ
−1) α5∂ς(ρ

−1) α6∂ς(ρ
−1) 0

m51 m52 m53 m54 m55












J (3.59)

with

m21 = −α1∂ς(u/ρ) − α2∂ς(v/ρ) − α3∂ς(w/ρ)

m31 = −α2∂ς(u/ρ) − α4∂ς(v/ρ) − α5∂ς(w/ρ)

m41 = −α3∂ς(u/ρ) − α5∂ς(v/ρ) − α6∂ς(w/ρ)

m51 = α7∂ς [−(e/ρ2) + (u2 + v2 + w2)/ρ]

−α1∂ς(u
2/ρ) − α4∂ς(v

2/ρ) − α6∂ς(w
2/ρ)

−2α2∂ς(uv/ρ) − 2α3∂ς(uw/ρ) − 2α5∂ς(vw/ρ)

m52 = −α7∂ς(u/ρ) − m21

m53 = −α7∂ς(v/ρ) − m31

m54 = −α7∂ς(w/ρ) − m41

m55 = α7∂ς(ρ
−1)

α1 = (µ + µt)
[
(4/3)ς2

x + ς2
y + ς2

z

]

α2 =
1

3
(µ + µt)ςxςy

α3 =
1

3
(µ + µt)ςxςz

α4 = (µ + µt)
[
ς2
x + (4/3)ς2

y + ς2
z

]

α5 =
1

3
(µ + µt)ςyςz

α6 = (µ + µt)
[
ς2
x + ς2

y + (4/3)ς2
z

]

α7 = γ
(
µPr−1 + µtPr−1

t

) (
ς2
x + ς2

y + ς2
z

)

where β = Ev for ς = ξ, β = Fv for ς = η and β = Gv for ς = ζ .
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Linearization of the Turbulence Model

The turbulence model is included into the flow Jacobian in the following manner:

Aturbj,k,m
=
















a11 · · · · · · · · · · · · a16

...
. . . a26

...
. . . a36

...
. . . a46

...
. . . a56

a61 a62 a63 a64 a65 a66
















j,k,m

(3.60)

where the entries in the 5×5 block in the upper left corner of the matrix correspond to

contributions from the Navier-Stokes equations, and the sixth row and column are from

the turbulence model.

Note that entries a16 through a56 are zero, while the off-diagonal terms a61 through

a65 result from the vorticity terms in the Spalart-Allmaras equation.

The differentiation of the turbulence model can be done without much difficulty, with

all the terms corresponding to the model in two dimensions. The differentiation of the

vorticity term can be found in Appendix B.

3.2.2 Linearization of the Boundary Conditions

Boundary conditions are treated implicitly in order for the code to converge quadratically.

The linearization of the viscous boundary conditions in three dimensions is completely

analogous to those which are done in two dimensions by Pueyo [27]. The boundary

conditions from Section 3.1.4 can be presented in the following form:

B (R) = 0 (3.61)

where R is the set of flow variables:

R =















ρ

u

v

w

p

ν̃















(3.62)
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Newton’s method as applied to this set of equations yields:

P∆R = −B(n) (3.63)

where

P =

(
∂B
∂R

)(n)

(3.64)

The selection of the flow variables in R makes necessary a transformation of the

update ∆R back into the working flow variables Q̂. A transformation matrix M = ∂B
∂R

,

is thus defined:

∆Q̂ = M∆R (3.65)

where M is given as:

M =















1 0 0 0 0 0

u ρ 0 0 0 0

v 0 ρ 0 0 0

w 0 0 ρ 0 0
u2+v2+w2

2
ρu ρv ρw 1

γ−1
0

0 0 0 0 0 1















(3.66)

Equation3.64 can then be written as:

PM−1J∆Q̂
︸ ︷︷ ︸

∆R

= −B(n) (3.67)

where

M−1 =















1 0 0 0 0 0

−u
ρ

1
ρ

0 0 0 0

−v
ρ

0 1
ρ

0 0 0

−w
ρ

0 0 1
ρ

0 0

(γ − 1)u2+v2+w2

2
−(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1 0

0 0 0 0 0 1















(3.68)

Solid Boundary

For the linearization of the inviscid boundary conditions, see Nichols [24]. The lineariza-

tion at the solid-wall boundary condition for a viscous flow can be written as:

[

PM−1J∆Q̂
]

j,k,mmin/max

−
[

PM−1J∆Q̂
]

j,k,mmax±1

= −B(n) (3.69)
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The Jacobians at the surface of the body and one-off the surface for a no-slip condition

are:

(
∂B
∂R

)

j,k,mwall

=















1 0 0 0 0 0

u ρ 0 0 0 0

v 0 ρ 0 0 0

w 0 0 ρ 0 0

0 0 0 0 1 0

0 0 0 0 0 1















j,k,mwall

(3.70)

(
∂B
∂R

)

j,k,mwall±1

= −















1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0















j,k,mwall±1

(3.71)

Far-field Boundary

For the inviscid inflow far-field boundary conditions, refer to Nichols [24]. Linearization

of the viscous outflow far-field boundaries can be represented in the same general form

as that of the viscous solid boundary in Equation 3.69, where instead, the Jacobians are:

(
∂B
∂R

)

j,k,mmin/max

=















1 0 0 0 0 0

u ρ 0 0 0 0

v 0 ρ 0 0 0

w 0 0 ρ 0 0

0 0 0 0 1 0

0 0 0 0 0 1















j,k,mout

(3.72)

(
∂B
∂R

)

j,k,mmin+1/max−1

= −















1 0 0 0 0 0

u ρ 0 0 0 0

v 0 ρ 0 0 0

w 0 0 ρ 0 0

0 0 0 0 1 0

0 0 0 0 0 1















j,k,mout−1

(3.73)
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3.3 Solution to the Linear Problem

From the spatial discretization and the application of Newton’s method, there now arises

a linear system of equations. It is desirable to solve these equations in an efficient manner.

An obvious method would be to directly solve the system. But due to the size of

the linear system, this may be very expensive. A more cost-effective solution would be

to use an iterative solver such as Generalized Minimal Residual (GMRES), BiConjugate

Gradients or BiConjugate Gradient Stabilized. GMRES approximates the solution to

the linear system by building a solution in a Krylov subspace using a minimal residual.

3.3.1 Jacobian-free GMRES

A highly desirable property of GMRES is that it does not require the explicit formation

of the Jacobian matrix. Instead, only a matrix-vector product is used. The matrix-vector

product itself can be approximated using a first-order Fréchet derivative of the form:

A · v ≈ R(Q̂ + ǫv) − R(Q̂)

ǫ
(3.74)

where ǫ is a small scalar perturbation parameter tuned to provide an accurate approxi-

mation of the matrix-vector product. The size of this parameter is determined following

the work done by Nielsen et al. in [26] and is given by:

ǫ ≃
√

ǫm

v̄
(3.75)

where ǫm is the value of machine zero for the hardware used in the computation and v̄ is

the RMS value of v.

3.3.2 Inexact-Newton Method

The exact solution to the system is expensive to compute due to the size of the matrix.

The solution to the linear system at each Newton iteration can be solved up to a certain

accuracy, controlled by convergence parameter η, in the following manner:

‖R(n) + A(n)∆Q̂(n)‖ ≤ η(n)‖R(n)‖ (3.76)

Note that as η(n) → 0 for all n, Newton’s method is recovered, and the system is solved

exactly. A well chosen η value will maintain a good balance between under and over-

solving the system. This value is determined through a numerical study documented in

Chapter 5.
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3.3.3 Preconditioner

The flow matrix may become numerically stiff when a large spread in the eigenvalues is

encountered. This decreases the efficiency of the GMRES solver as the equations become

more difficult to solve. The purpose of a preconditioner is then to create a system where

the eigenvalue spectrum is clustered about one. The preconditioning matrix can be

applied to the left or the right of the flow matrix, but right preconditioning is chosen

since the residual is left unchanged. This is preferred since the residual is required for

checking the convergence criterion at each iteration.

Thus, the preconditioned system is written as follows:

[
I

∆t
+ A

]

M−1M∆Q̂ = −R (3.77)

where M is the preconditioning matrix. Note that the preconditioned system AM−1

should be much better conditioned than A, and M−1 should also closely approximate

A−1 while being much more efficient to compute. The preconditioner is formed using an

incomplete lower-upper factorization based on the approximate flow Jacobian A1.

3.3.4 Incomplete LU Factorization

The preconditioner is formed using an incomplete lower-upper factorization. This method

generates two sparse matrices: a lower triangular matrix L and an upper triangular

matrix U :

A1 = L · U ≈ L̃ · Ũ = M (3.78)

where L and U are the exact incomplete LU factorization of A1 while L̃ and Ũ are

approximate factorizations.

The fill factor k allows the user to select the accuracy of the M matrix relative to the

approximate flow Jacobian. The higher the integer value of k, the more representative

the matrix is of A1. This parameter will be determined experimentally in Chapter 5.

The construction of the approximate factors L̃ and Ũ must be done in such a way

that:

Ũ−1 · L̃−1 = M−1 ≈ A−1
1 (3.79)

while being much cheaper to compute than a direct inversion of A1.
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3.3.5 Reverse Cuthill-McKee Nodal Reordering

The natural ordering of the terms in the flow Jacobian produces a sparse matrix with

a large bandwidth. The goal of the Reverse Cuthill-McKee method [5] is to reorder

the equations in a way such that the matrix entries are clustered near the diagonal,

resulting in a reduction in the bandwidth. This is important for decreasing the storage

requirements and improving the effectiveness of the ILU factorization algorithm [27].

3.4 Algorithm Startup

Two methods are used to converge the solution in TYPHOON: an approximate-Newton

method which uses a first-order approximate Jacobian, and a Jacobian-free method. The

former is used during the startup phase of the convergence, while the latter is used to

converge the code to machine zero.

Startup is the most important phase of the flow solve. This is because the initial flow

field is far from the converged solution, and the Newton method works well only near the

region of the solution. A modified Newton method (Implicit Euler) is used to obtain an

intermediate solution from which the Jacobian-free inexact-Newton method can proceed.

The use of an approximate Jacobian along with the inexact solution of the linear sys-

tem of equations at each non-linear iteration results in the approximate-Newton method.

This is used as a startup for the flow solver. Although slower than the Jacobian-free

inexact-Newton method, it is far more stable during the initial phases of convergence.

The switch from the approximate-Newton method to the Jacobian-free inexact-Newton

method is determined through the parameter Rdtol
, which is found by conducting a nu-

merical study. The results of this study are shown in Chapter 5.

3.4.1 Local Time-Stepping

A local time-stepping method is used in TYPHOON. The time-step, ∆t as first shown in

Equation 3.57, is added to the preconditioner to strengthen its diagonal, and therefore,

stabilize and accelerate convergence.
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Mean Flow Time-step

The pseudo-time term for the mean flow equations during the approximate-Newton phase

is determined locally according to work done by Pulliam in [29], and is given by:

∆t
(n)
j,k,m =

∆t
(n)
ref

1 +
√

Jj,k,m

(3.80)

where Jj,k,m is the local metric Jacobian, and ∆tref is a global reference time-step that

is increased as the solution develops.

The reference time-step is based on a geometric formula used in HURRICANE [14, 15]

and is given as follows:

∆t
(0)
ref = A, ∆t

(n)
ref = B · ∆t

(n−1)
ref (3.81)

For the laminar grids used, A = 0.25 and B = 1.125 while the values for turbulent grids,

A = 1.00 and B = 1.300. For inviscid grids, which typically have smaller aspect ratios,

values as reported by Nichols are A = 1.00 and B = 1.7 [24].

Once an intermediate solution to the flow has been obtained, the Jacobian-free

inexact-Newton method is employed. The Switched Evolution Relaxation method de-

veloped by Mulder and van Leer [21] is used and is given by the following:

∆t
(n)
ref = max






α
(

R
(n)
d

)β
, ∆tmin




 (3.82)

where α and β are constants typically set to 1.0 and 1.3 repectively, and ∆tmin is the

minimum time-step allowed whose value is 50.

The parameter dictating which solution method to use is the relative residual defined

by:

R
(n)
d =

||R(n)||
||R(0)|| (3.83)

where R(n) is the residual at outer iteration n, and R(0) is the starting residual.

Turbulent Time-step

Following the work done in two-dimensions by Chisholm [3] and in three-dimensions by

Wong [37], the turbulent time step is determined by:

∆t
(n)
turb =







∆t
(n)
j,k,m if |δj,k,m| < δmaxj,k,m

|∆tlim| otherwise

(3.84)
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where the estimate of the local update variable δj,k,m is calculated using:

δj,k,m = −
[R(6)]j,k,m

[A1(6, 6)]j,k,m

(3.85)

and where R [(6)]j,k,m is the turbulent variable at each given node in the residual equation,

and [A1(6, 6)]j,k,m is the sixth diagonal component in the 6×6 block of the Jacobian matrix

A1 at node j,k,m.

The maximum update variable δmaxj,k,m
is calculated locally using:

δmaxj,k,m
= r · max(ν̃j,k,m, 1.0) (3.86)

where r is a limiting variable used to minimize the update. This value is typically 0.3.

The limiting time-step ∆tlim is determined by solving:

(
Jj,k,m

∆tlimj,k,m

+ [A1(6, 6)]j,k,m

)

δj,k,mmax
= − [R(6)]j,k,m (3.87)

At each Newton iteration, the turbulence variable is checked for negative values and

clipped in the following manner:

ν̃ =







1 × 10−14 if on a solid wall

ν̃∞ otherwise

(3.88)

where ν̃1 is the freestream eddy viscosity parameter, typically set at 0.001. This clipping

method has been found by Chisholm [3] and Wong [37] to improve the stability of the

solver.
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Grid Generation

The manner in which meshes are generated plays a critical role in the convergence of the

flow solution. The grid generation tool that was used was ANSYS Inc’s ICEM CFD v.11.

4.1 Blocking Strategy

The current blocking strategy is unchanged from that presented by Nichols in [24]. The

arrangement of the twelve blocks is shown in Figure 4.1. The surface mesh consists of

clustered edges and unsmoothed nodes (see Figure 4.2).

4.2 Problem Definition

The intersection of the eight blocks at the finely clustered nodes of the wingtips poses

a major challenge to the grid generator. The problem manifests itself as skewing or

wrinkling when fine clustering is needed (Figure 4.2), for example during laminar or

turbulent mesh generation. Skewing or wrinkling does not necessarily cause the metric

Jacobian to become inverted, although this is often the case. Only careful inspection of

the pre-mesh in the GUI can determine this.

The inability to finely cluster nodes at the wing tip results in greatly stretched cells

near the wingtip and leading edge intersection. This in turn affects the convergence of

the solver, in particular, during startup.

The determinant in ICEM is the main indicator of mesh quality. Although it is similar

to the metric Jacobian in TYPHOON, the values can differ greatly.
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Figure 4.1: TYPHOON’s 12-block configuration

The algorithm for calculation of the determinant in ICEM involves the computation

of all 27 metric Jacobians in a 27-node hexahedron at each cell volume. From this, the

maximum value is reported. In contrast, the metric Jacobian in TYPHOON is calculated

at each grid node. Thus, ICEM may report negative determinants indicating inverted

cells when the mesh may actually be usable. The reverse can also occur, where non-

negative determinants show up as inverted nodes in TYPHOON.

4.3 Smoothing

ICEM employs various grid smoothing mechanisms for structured grids. The multiblock

method performs elliptical smoothing and is specially optimized for use in blade config-

urations. Indeed, use of the smoother on a multiblock grid with a single element airfoil

produces pinching at the trailing edge which results in poor flow solutions (Figure 4.4).

Orthogonality smoothing in ICEM is another elliptical smoother and produces better
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Figure 4.2: Surface mesh on an ONERA M6 wing

results (see Figure 4.4). This method is generally desirable since the spatial discretization

is the most accurate on orthogonal grids, and the transformation of the equations into

curvilinear coordinates produces the fewest terms [6]. The surface grid must first be

frozen to aid the stability of the smoother. The stabilization factor should be chosen as

low as possible to improve orthogonality of the off-wall nodes. The number of iterations

should also be minimized since the algorithm will inevitably attempt to improve the mesh

near the wall surface at the expense of the viscous off-wall spacing.

Parameters for orthogonal smoothing are shown in Table 4.1. In addition, wing faces

should be frozen and the “define edges” option should be selected so that the node

distribution on the edges on the wing is also prevented from changing.
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Figure 4.3: Mesh inversion at the wingtip and leading edge intersection due to changes

in wingtip spacing

Parameter Surface Value Volume Value

Iterations 1 10

Grid Expansion 0.1 2

Stabilize Factor 1 2

Use Ortho. Dist. N/A N/A

Smooth Type Laplace Laplace

Table 4.1: Orthogonal smoothing parameters in ICEMCFD
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Figure 4.4: Mesh smoothed using multiblock method (a) and resulting flow solution (b);

Mesh smoothed using orthogonality method (c) and resulting flow solution (d).
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Chapter 5

Algorithm Optimization

A word of caution to begin this chapter: the convergence rates were found to be quite

dependent on the grid. The parameters that are optimized in this section were found to

be optimal for the grids that the author was able to generate. From experience, it has

been shown that grids with average aspect ratios closer to unity converge more rapidly.

The parameters here are optimized under the assumption that each is independent

of the others. This is an idealization - determination of a true optimal set will be an

expensive iterative process that has been forgone here.

5.1 Test Cases

A summary of the flow conditions used in the parametric study is shown in Table 5.1.

Flow conditions in test cases 1 and 2 are laminar while those in cases 3 and 4 are turbulent.

A different grid was used on each of the four flow solves. A multiblock configuration of

twelve blocks about an ONERA M6 wing is used with the parameters prescribed in Table

5.2.

Case Number Mach number Reynolds Number Angle of Attack (◦)

1 0.5 600 3.0

2 0.84 600 3.0

3 0.5 2.88×106 3.0

4 0.84 2.88×106 3.0

Table 5.1: ONERA M6 wing test cases
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Grid Grid Chords Off-wall LE TE Root Tip Nodes

Size to Far Spacing Cluster Cluster Cluster Cluster on Wing

Field 10−5c 10−3c 10−3c 10−3c 10−3c Surface

A 173,604 10 1 0.05 0.3 50 1.3 1568

B 173,604 10 1 0.5 0.1 2 1.3 1568

C 176,400 10 0.5 1.0 1.0 1 1.3 2310

D 236,716 10 0.5 2.5 10.0 2.5 1.3 3362

Table 5.2: Grids used in the ONERA M6 wing parametric study

Symbol Parameter

k ILU fill level

σ Preconditioning parameter

η Inexact Newton convergence parameter

Rdtol
Approximate-Newton convergence parameter

Table 5.3: List of parameters in the numerical study

5.2 Parametric Study

A numerical study of the four parameters shown in Table 5.3 was conducted.

5.2.1 ILU Fill Level (k)

The ILU fill level (k) determines the number of non-zero elements in the matrix to keep

during the factorization. The higher the level, the more accurate the representation of the

original matrix. Optimality for this parameter is defined as the value which minimizes

the convergence time to a given residual reduction factor (two orders for the approximate-

Newton phase and eight orders for the Jacobian-free phase).

The results for the laminar flows are shown in Figures 5.1 through 5.4. The optimal fill

level for both the approximate-Newton startup phase, and the Jacobian-free convergence

was found to be one. Although fill level zero may be faster in certain cases than fill level

one (Figure 5.3), it may have difficulty converging, or may require a reduction in time-

step. Note that the cases for ILU(0) and ILU(3) did not converge due to the development

of negative pressures at the trailing edge wingtip (see Figure 5.1).
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Figure 5.1: Laminar subsonic ILU fill level parameter (k) optimization; approximate-

Newton phase (M=0.5, α = 3.0◦, Re=600, grid A)

Figures 5.5 through 5.8 show that for turbulent flows, an ILU fill level of one provides

the optimal CPU time to convergence. Fill level zero has difficulty converging for the

transonic case. Note the effect of negative ν̃ clipping on the residual in Figures 5.6 and

5.8. The clipping performs well in stabilizing the turbulence model, preventing the flow

solution from diverging. Negative values typically occur at the points near the wing tip

and the trailing edge of the airfoil.

5.2.2 Preconditioning Parameter (σ)

The preconditioning parameter σ combines the second and fourth-difference dissipation

terms in the preconditioner, as discussed in Section 3.2. In the laminar regime, these

were are found to be optimal at values of 4.0 for transonic flows, and 6.0 for subsonic

flows (see Figures 5.9 and 5.10). Note that the flow solver had difficulty converging the

flow for values below six in the approximate-Newton phase of the subsonic flow solves.

The best turbulent values were found to be 3.0 for both subsonic and transonic flows (see

Figures 5.11 and 5.12).
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Figure 5.2: Laminar subsonic ILU fill level parameter (k) optimization; Jacobian-free

phase (M=0.5, α = 3.0◦, Re=600, grid A)
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Figure 5.3: Laminar transonic ILU fill level parameter (k) optimization; approximate-

Newton phase (M=0.84, α = 3.0◦, Re=600, grid B)
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Figure 5.4: Laminar transonic ILU fill level parameter (k) optimization; Jacobian-free

phase (M=0.84, α = 3.0◦, Re=600, grid B)

CPU time (s)

R
d

5000 10000 15000
10-2

10-1

100

ILU(0)
ILU(1)
ILU(2)
ILU(3)

Figure 5.5: Turbulent subsonic ILU fill level parameter (k) optimization; approximate-

Newton phase (M=0.5, α = 3.0◦, Re=2.88×106, grid C)
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Figure 5.6: Turbulent subsonic ILU fill level parameter (k) optimization; Jacobian-free

phase (M=0.5, α = 3.0◦, Re=2.88×106, grid D)
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Figure 5.7: Turbulent transonic ILU fill level parameter (k) optimization; approximate-

Newton phase (M=0.84, α = 3.0◦, Re=2.88×106, grid C)
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Figure 5.8: Turbulent transonic ILU fill level parameter (k) optimization; Jacobian-free

phase (M=0.84, α = 3.0◦, Re=2.88×106, grid D)
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Figure 5.9: Laminar subsonic preconditioning parameter (σ) optimization (M=0.5, α =

3.0◦, Re=600, grid A)
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Figure 5.10: Laminar transonic preconditioning parameter (σ) optimization (M=0.84, α

= 3.0◦, Re=600, grid B)
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Figure 5.11: Turbulent subsonic preconditioning parameter (σ) optimization (M=0.5, α

= 3.0◦, Re=2.88×106, grid C)
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Figure 5.12: Turbulent transonic preconditioning parameter (σ) optimization (M=0.84,

α = 3.0◦, Re=2.88×106, grid D)
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Figure 5.13: Laminar inexact-Newton parameter (ηAN) optimization; approximate-

Newton phase (grid A)

5.2.3 Inexact-Newton Parameter (η)

The inexact-Newton parameter dictates the accuracy to which the linear system is solved.

For laminar flows, the parameter was found to be the most robust for values of approxi-

mately 0.1 during the approximate-Newton startup phase. As seen in Figure 5.13, ηAN

values less than 0.1 may tend to lead to convergence difficulties. A value between 0.01 and

0.1 for ηJF was found to minimize the number of GMRES iterations (Figure 5.14). Tur-

bulent flows required values of 0.1 for both the approximate-Newton and Jacobian-free

phases. This was true for subsonic and transonic flows (Figures 5.15 and 5.16).

5.2.4 Approximate-Newton Convergence Parameter (Rdtol
)

This threshold parameter governs the transition from the approximate-Newton startup

method to the Jacobian-free method. The main indicator used is the relative residual

parameter defined in in Equation 3.83. A well-chosen reduction parameter will reduce

the amount of time the algorithm takes to converge while preventing divergence in the

solution.

For laminar flows, a relative residual reduction of two orders of magnitude is recom-
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Figure 5.14: Laminar inexact-Newton parameter (ηJF ) optimization; Jacobian-free phase

(grid A)

mended for subsonic flows and factor of thirty for transonic flows (see Figure 5.17). For

turbulent flows, the optimal values were found to be three orders for subsonic flows, and

two orders for transonic flows (see Figure 5.18).

5.3 Summary of Optimal Parameters

The optimal parameters in TYPHOON for laminar and turbulent flows are listed in Table

5.4.
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Figure 5.15: Turbulent inexact-Newton parameter (ηAN) optimization; approximate-

Newton phase (grid C)
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Figure 5.16: Turbulent inexact-Newton parameter (ηJF ) optimization; Jacobian-free

phase (grid D)
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Figure 5.17: Laminar approximate-Newton residual reduction tolerance parameter (Rdtol
)
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Parameter Laminar Turbulent

Approx-Newton Jacobian-free Approx-Newton Jacobian-free

ILU fill (k) 1 1 1 1

Inexact-Newton (η) 0.1 0.01 0.1 0.1

Preconditioner (σ) 4.0 6.0 3.0 3.0

Subsonic Transonic Subsonic Transonic

Residual Tol (Rdtol
) 100 30 1000 100

Table 5.4: Summary of results from parametric study



Chapter 6

Results and Validation

All results in this section were computed on the University of Toronto’s High Performance

Aerospace Computing Facility (HPACF), specifically, on the Hewlett-Packard ES45 Al-

phaServers and 1000MHz EV68CB Alpha Processors.

6.1 2D Validation

6.1.1 Blasius Solution

The Blasius equation is an exact solution of the boundary-layer equations for a steady

incompressible two-dimensional flow over a flat plate at zero degree angle of attack. It

was shown by Blasius that under these conditions, the boundary layer equations could be

reformulated into a single third-order ordinary differential equation simply by selecting an

appropriate coordinate transformation. The ODE can then be solved using a numerical

solution procedure, such as the Runge-Kutta method [35].

The velocity profile obtained from TYPHOON is compared against the velocity profile

obtained from the solution to the Blasius equation. The flow conditions are M=0.20 and

Re=1000. The mesh used contains 152,106 nodes and consists of a near-wall 101×201-

node block to more accurately capture the boundary layer (see Figure 6.1.1). Leading

edge, trailing edge, and off-wall spacings are all 1×10−5c. The results are plotted in

nondimensional form following [20] and are shown in Figure 6.1. TYPHOON exhibits

the basic shape closely with slight overshoot, but at most, the error between the Blasius

solution and TYPHOON is about 2%.
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Figure 6.1: Comparison of TYPHOON surface velocity profile against Blasius solution

Case Flow Mach Number Reynolds Angle of Attack

Condition Number (◦)

1 Subsonic 0.63 600 2.0

2 Subsonic 0.63 2.88 × 106 2.0

3 Transonic 0.8 600 1.25

4 Transonic 0.8 2.88 × 106 1.25

Table 6.1: Flow conditions for the 2D validation test cases

6.1.2 NACA0012 Airfoil

The airfoil selected for validating the code is the NACA0012. Table 6.1 shows the grids

and flow conditions on which the code was validated. The laminar results are compared

against results obtained from OPTIMA-MB, a well-tested two-dimensional flow solver.

The six-block H-grids for the cases in this section were generated using AMBER2D,

an in-house mesh generation program. The grids are extruded into six slices for use in

TYPHOON. Off-wall spacing for the laminar cases is 5×10−6c and for the turbulent cases

is 1×10−6c while the number of chords to the farfield is 20. Leading edge and trailing

edge clustering is 10−4c for all four grids. Clustering was performed on the upper surface
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Figure 6.2: The computational grid used in the Blasius solution comparison. Note that

every second node has been removed for the purposes of this graphic. Mesh lines are in

red, while block boundaries are in black

at 0.55c of the turbulent transonic airfoil in order to more accurately capture the shock.

The size of the grid is 11,280 nodes for the laminar cases, 15,390 nodes for the subsonic

turbulent case, and 24,888 for the transonic turbulent case. The results for the laminar

cases are shown in Figures 6.3 and 6.4, while those for the turbulent cases are shown in

Figures 6.5 and 6.6. The correlation between the two codes is quite good for all cases

with slight discrepancies in the transonic turbulent case likely attributed to the use of the

full Navier-Stokes equations in TYPHOON as opposed to the thin-layer Navier-Stokes

equations in OPTIMA-MB.

6.2 3D Validation

The validation for three-dimensional flows is performed on the ONERA M6 wing. It is

a benchmark validation geometry for turbulent flow solvers with a widely-compared set

of experimental data collected by Charpin and Schmitt [31]. The CPU temporal unit

of measure is the equivalent right-hand-side evaluation defined as the total CPU time

divided by the time for one right-hand-side evaluation. This normalizes the convergence
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Figure 6.3: TYPHOON laminar subsonic flow over a NACA0012 airfoil (case 1)
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Figure 6.5: TYPHOON turbulent subsonic flow over a NACA0012 airfoil (case 3)
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Grid Size Chords to Off-wall LE TE Root Tip Nodes on

Far Field Spacing Spacing Spacing Spacing Spacing Wing Surf

(10−3c) (10−3c) (10−3c) (10−3c) (10−3c)

105,042 10 0.02 0.63 0.31 2.3 3.0 882

261,000 10 0.01 0.25 0.13 0.85 1.3 1250

488,880 10 0.01 0.25 0.13 0.87 1.3 2450

859,360 10 0.01 0.25 0.13 0.87 1.3 4182

Table 6.2: Summary of grid characteristics used in the 3D laminar convergence study

Grid Size CL CD

100k 0.1538 0.0700

250k 0.1425 0.0816

500k 0.1281 0.0749

800k 0.1408 0.0712

Table 6.3: TYPHOON laminar lift and drag grid convergence results for the ONERA

M6 at M=0.5, Re=600, α=3.0◦

histories to produce data that is independent of the CPU and computer architecture

used.

6.2.1 Grid Convergence Studies

Laminar Flow

The flow conditions for the laminar study are M=0.5, Re=600, and α=3.0◦. The flows

were all converged to a residual of 10−15. A summary of the grid characteristics is shown

in Table 6.2. The coefficients of lift (CL) and drag (CD) for each of the grids is tabulated

in Table 6.3, while the convergence histories in equivalent right-hand-side evaluations are

shown in Figure 6.7.

Turbulent Flow

The flow conditions for the turbulent study are M=0.6998, Re=11.74×106, and α=0.04◦.

The TYPHOON results are compared against the experimental results obtained by
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Figure 6.7: TYPHOON convergence histories for laminar grid convergence study on the

ONERA M6 wing

Charpin and Schmitt in [31]. A summary of the grid characteristics is shown in Ta-

ble 6.4 and flow results at six spanwise locations are shown in Figure 6.9. Note that the

leading edge and tip clustering are virtually unchanged between the three grids tested,

resulting from the grid generation issues discussed in Chapter 4. The convergence his-

tories in equivalent RHS evaluations is shown in Figure 6.10. A pressure contour plot is

depicted in Figure 6.11 for the 500k node grid. Convergence histories for the three grids

are plotted as a function of equivalent right-hand-side evaluations in Figure 6.10. Note

the effect of the turbulence model clipping as seen in the convergence histories.

The results show that the grids used tended to cause TYPHOON to underpredict

the pressure coefficient at the leading edge, while over predicting it at the trailing edge.

Increasing grid points in the flow field seems to improve the solution slightly, but the

inability to refine spacing at the leading edge and wing tip has prevented further study

of the effects of grid refinement.
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Figure 6.8: Pressure contours of an ONERA M6 wing at M=0.5, Re=600, α=3.0◦ (800k-

node grid)

Grid Size Chords to Off-wall LE TE Root Tip Nodes on

Far Field Spacing Spacing Spacing Spacing Spacing Wing Surf

(10−3c) (10−3c) (10−3c) (10−3c) (10−3c)

133,152 10 0.02 0.5 0.25 2.5 2.5 3362

261,000 10 0.01 0.25 0.5 0.85 1.3 3362

488,880 10 0.03 0.25 1.0 1.0 1.3 2450

Table 6.4: Summary of grid characteristics used in 3D turbulent convergence study



6.2. 3D Validation 61

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Experimental
130K
250K
500K

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Experimental
130K
250K
500K

(a) 20% span (b) 44% span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Experimental
130K
250K
500K

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Experimental
130K
250K
500K

(c) 65% span (d) 80% span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Experimental
130K
250K
500K

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Experimental
130K
250K
500K

(e) 90% span (f) 96% span

Figure 6.9: ONERA M6 wing Cp distribution, M = 0.6998, α = 0.04◦, Re= 11.74×106
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Figure 6.10: TYPHOON convergence histories for the 3D turbulent grid convergence
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Figure 6.11: Pressure contours of an ONERA M6 wing at M=0.6998, Re=11.74×106,

α=0.04◦ (500k-node grid)



Chapter 7

Conclusions

7.1 Summary

A 3D Navier-Stokes flow solver known as TYPHOON has been developed. TYPHOON

uses structured grids and models turbulence through the one-equation Spalart-Allmaras

model. The flow domain is decomposed into multiple blocks, and then transformed into

the curvilinear domain. TYPHOON uses second-order finite-differencing and a second

and fourth-difference dissipation scheme first presented by Jameson et al [10]. The dis-

crete equations are solved using a quasi-Newton method. The linear system of equations

arising from each Newton iteration is efficiently solved using a Krylov subspace method

(GMRES). To improve the efficiency of the solver, the linear system is preconditioned

using an incomplete lower/upper factorization of an approximate Jacobian matrix, and

solved inexactly. A first-order approximation to the Jacobian is used at the initial startup

phase of the solution convergence, switching later to a faster Jacobian-free method. This

combination has been determined to provide stability and speed to the algorithm.

A numerical study has been conducted to optimize the parameters for the viscous

and turbulent terms in the code. A two-dimensional validation study was performed and

compared the current TYPHOON algorithm against the well-tested 2D OPTIMA flow

solver. On a NACA0012 airfoil at various flight conditions both laminar and turbulent,

the study shows that there is good correlation between the two.

A grid convergence study was also performed for an ONERA M6 airfoil at subsonic

flow conditions for both laminar and transonic cases. Turbulent TYPHOON results for

various grid sizes were compared against experimental results obtained by Charpin and
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Schmitt [31] but due to grid spacing issues, convergence was not noticed.

7.2 Recommendations

It is recommended that the grid generation problems be resolved first. The inability to

generate high resolution meshes affects both convergence and accuracy. One possible

solution is to implement multiple-boundary condition faces into TYPHOON. This will

open up new possibilities in blocking and meshing that may help to resolve tip clustering

issues. Once this is done, more complex geometries such as wing-body configurations can

then be attempted.

Grid sequencing has been shown by Chisholm and Zingg [4] to improve the stability

of the turbulence model and should be implemented into TYPHOON. The addition of

matrix dissipation will improve accuracy of the flow solution by reducing the amount of

dissipation needed. Further on, the addition of tripping terms should be considered for

solutions of mixed laminar and turbulent flows.
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Appendix A

3D Curvilinear Coordinate

Transformation

Cartesian coordinates can be described as a function of curvilinear coordinates ξ, η and

ζ .

τ = t

ξ = ξ(x, y, z, t)

η = η(x, y, z, t)

ζ = ζ(x, y, z, t)

Metric relations can be acquired by expanding the Cartesian partial derivative operators

in terms of the curvilinear coordinates using the chain rule.










∂t

∂x

∂y

∂z










=










1 ξt ηt ζt

0 ξx ξy ξz

0 ηx ηy ηz

0 ζx ζy ζz










︸ ︷︷ ︸

A










∂τ

∂ξ

∂η

∂ζ










Conversely, one can take the curvilinear partial derivative operators and perform a similar

expansion:









∂τ

∂ξ

∂η

∂ζ










=










1 tξ tη tζ

0 xξ yξ zξ

0 xη yη zη

0 xζ yζ zζ










︸ ︷︷ ︸

B










∂t

∂x

∂y

∂z









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








∂t

∂x

∂y

∂z










= J










b11 b12 b13 b14

0 b22 b23 b24

0 b32 b33 b34

0 b42 b43 b44










︸ ︷︷ ︸

B−1










∂τ

∂ξ

∂η

∂ζ










where J , the inverse determinant of A (also called the metric Jacobian), can be written

as:

J−1 = xξyηzζ + yξzηxζ + zξxηyζ − xξzηyζ − yξxηzζ − zξyηxζ

The components in B are given by:

b11 = xξyξzζ + yξzηxζ + zξxηyζ − xξzηyζ − yξxηzζ − zξyηxζ

b12 = xtzηyζ + ytxηzζ + ztyηxζ − xtyηzζ − ytzηxζ − ztxηyζ

b13 = xtyξzζ + ytzξxζ + ztxξyζ − xtzξyζ − ytxξzζ − ztyξxζ

b14 = xtzξyη + ytxξzη + ztyξxη − xtyξzη − ytzξxη − ztxξyη

b22 = yηzζ − zηyζ

b23 = zξyζ − yξzζ

b24 = yξzη − zξyη

b32 = zηxζ − xηzζ

b33 = xξzζ − zξxζ

b34 = zξxη − xξzη

b42 = xηyζ − yηxζ

b43 = yξxζ − xξyζ

b44 = xξyη − yξxη

By comparing the individual terms in A−1 with those in B, one can arrive at the met-

ric relations with which we can write the Cartesian derivatives in terms of curvilinear

derivatives.

∂x = J [(yηzζ − zηyζ)∂ξ + (zξyζ − yξzζ)∂η + (yξzη − zξyη)∂ζ ]

= J (ξx∂ξ + ηx∂η + ζx∂ζ) (A.1)
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∂y = J [(zηxζ − xηzζ)∂ξ + (xξzζ − zξxζ)∂η + (zξxη − xξzη)∂ζ ]

= J (ξy∂ξ + ηy∂η + ζy∂ζ) (A.2)

∂z = J [(xηyζ − yηxζ)∂ξ + (yξxζ − xξyζ)∂η + (xξyη − yξxη)∂ζ ]

= J (ξz∂ξ + ηz∂η + ζz∂ζ) (A.3)

Averaged values of the centered differences for the grid values (xξ, xη, xζ , etc.) are used

to calculate the metrics (ξx, ξy, ξx, etc.) such that metric invariants are satisfied and can

be found in Section 2.2.1 of Nichols’ thesis in [24].

A.1 3D Viscous Flux Terms in Curvilinear Coordi-

nates

Using the above metric relations, we can describe the viscous flux vectors by the following

expressions:

Ev =












0

τxx

τxy

τxz

τxxu + τxyv + τxzw + kTx












, Fv =












0

τyx

τyy

τyz

τyxu + τyyv + τyzw + kTy












,

Gv =












0

τzx

τzy

τzz

τzxu + τzyv + τzzw + kTz











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The shear and normal stresses are given by:

τxx = 2(µ + µt)ux −
2

3
(µ + µt) (ux + vy + wz)

τxy = (µ + µt) (uy + vx)

τxz = (µ + µt) (uz + wx)

τyx = τxy

τyy = 2(µ + µt)vy −
2

3
(µ + µt) (ux + vy + wz)

τyz = (µ + µt) (vz + wy)

τzx = τxz

τzy = τyz

τzz = 2(µ + µt)wz −
2

3
(µ + µt) (ux + vy + wz)

By applying curvilinear coordinate transformation, the viscous flux vectors become:

Êv = J−1 (ξxEv + ξyFv + ξzGv)

F̂v = J−1 (ηxEv + ηyFv + ηzGv)

Ĝv = J−1 (ζxEv + ζyFv + ζzGv)

where the shear stresses in general curvilinear coordintes are given by:

τxx = (µ + µt)

[
4

3
(ξxuξ + ηxuη + ζxuζ) −

2

3
(ξyvξ + ηyvη + ζyvζ + ξzwξ + ηzwη + ζzwζ)

]

τxy = (µ + µt) (ξyuξ + ηyuη + ζyuζ + ξxvξ + ηxvη + ζxvζ)

τxz = (µ + µt) (ξzuξ + ηzuη + ζzuζ + ξxwξ + ηxwη + ζxwζ)

τyy = (µ + µt)

[
4

3
(ξyvξ + ηyvη + ζyvζ) −

2

3
(ξxuξ + ηxuη + ζxuζ + ξzwξ + ηzwη + ζzwζ)

]

τyz = (µ + µt) (ξzvξ + ηzvη + ζzvζ + ξywξ + ηywη + ζywζ)

τzz = (µ + µt)

[
4

3
(ξzwξ + ηzwη + ζzwζ) −

2

3
(ξxuξ + ηxuη + ζxuζ + ξyvξ + ηyvη + ζyvζ)

]

Also, if Fourier’s law of heat conduction is used, the kTx, kTy and kTz terms in general

curvilinear coordinates become:

kTx = (µPr−1 + µtPr−1
t )(γ − 1)−1[ξx∂ξ(a

2) + ηx∂η(a
2) + ζx∂ζ(a

2)]

kTy = (µPr−1 + µtPr−1
t )(γ − 1)−1[ξy∂ξ(a

2) + ηy∂η(a
2) + ζy∂ζ(a

2)]

kTz = (µPr−1 + µtPr−1
t )(γ − 1)−1[ξz∂ξ(a

2) + ηz∂η(a
2) + ζz∂ζ(a

2)]
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Êv = J−1












0

ξxτxx + ξyτxy + ξzτxz

ξxτyx + ξyτyy + ξzτyz

ξxτzx + ξyτzy + ξzτzz

Ev,5












F̂v = J−1












0

ηxτxx + ηyτxy + ηzτxz

ηxτyx + ηyτyy + ηzτyz

ηxτzx + ηyτzy + ηzτzz

Fv,5












Ĝv = J−1












0

ζxτxx + ζyτxy + ζzτxz

ζxτyx + ζyτyy + ζzτyz

ζxτzx + ζyτzy + ζzτzz

Gv,5












Ev,5 = τxxu + τxyv + τxzw +

(
µPr−1 + µtPr−1

t

γ − 1

)

[ξz∂ξ(a
2) + ηz∂η(a

2) + ζz∂ζ(a
2)]

Fv,5 = τyxu + τyyv + τyzw +

(
µPr−1 + µtPr−1

t

γ − 1

)

[ξy∂ξ(a
2) + ηy∂η(a

2) + ζy∂ζ(a
2)]

Gv,5 = τzxu + τzyv + τzzw +

(
µPr−1 + µtPr−1

t

γ − 1

)

[ξz∂ξ(a
2) + ηz∂η(a

2) + ζz∂ζ(a
2)]

A.2 Turbulence Model in Curvilinear Coordinates

Recall the turbulence model from Equation 2.7. We now expand the substantial derivative

and drop the trip functions:

∂ν̃

∂t
+ u

∂ν̃

∂x
+ v

∂ν̃

∂y
+ w

∂ν̃

∂z
=

cb1

Re
S̃ν̃ +

1 + cb2

σ̃Re
∇ · [(ν + ν̃)∇ν̃] − cb2

σ̃Re
(ν + ν̃)∇2ν̃

− 1

Re
cw1fw

(
ν̃

d

)2

(A.4)

We ignore all time terms since we are only concerned with steady-state solutions and
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write the spatial derivatives in curvilinear coordinates using Equations A.1 through A.3:

u
∂ν̃

∂x
= Ju

(

ξx
∂ν̃

∂ξ
+ ηx

∂ν̃

∂η
+ ζx

∂ν̃

∂ζ

)

v
∂ν̃

∂y
= Jv

(

ξy
∂ν̃

∂ξ
+ ηy

∂ν̃

∂η
+ ζy

∂ν̃

∂ζ

)

w
∂ν̃

∂z
= Jw

(

ξz
∂ν̃

∂ξ
+ ηz

∂ν̃

∂η
+ ζz

∂ν̃

∂ζ

)

Now rewriting the left hand side of Equation A.4:

J (ξxu + ξyv + ξzw)
︸ ︷︷ ︸

U

∂ν̃

∂ξ
+ J (ηxu + ηyv + ηzw)

︸ ︷︷ ︸

V

∂ν̃

∂η
+ J (ζxu + ζyv + ζzw)

︸ ︷︷ ︸

W

∂ν̃

∂ζ

On the right hand side, we must deal with the spatial derivatives within ∇ and S̃. The

transformation of vorticity within S̃ is carried out in Appendix B. The derivatives in the

del operator can be transformed in a rather straight forward manner and yield:

∇ =
∂

∂x
+

∂

∂y
+

∂

∂z

= J (ξx∂ξ + ηx∂η + ζx∂ζ + ξy∂ξ + ηy∂η + ζy∂ζ + ξz∂ξ + ηz∂η + ζz∂ζ)

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

= J2
[
ξx∂ξ (ξx∂ξ + ηx∂η + ζx∂ζ) + ηx∂η (ξx∂ξ + ηx∂η + ζx∂ζ) + ζx∂ζ (ξx∂ξ + ηx∂η + ζx∂ζ)

+ ξy∂ξ (ξy∂ξ + ηy∂η + ζy∂ζ) + ηy∂η (ξy∂ξ + ηy∂η + ζy∂ζ) + ζy∂ζ (ξy∂ξ + ηy∂η + ζy∂ζ)

+ ξz∂ξ (ξz∂ξ + ηz∂η + ζz∂ζ) + ηz∂η (ξz∂ξ + ηz∂η + ζz∂ζ) + ζz∂ζ (ξz∂ξ + ηz∂η + ζz∂ζ)
]

By dropping cross-derivative terms in the above equation, we arrive at the Spalart-

Allmaras turbulence model in curvilinear coordinates:

J

(

U
∂ν̃

∂ξ
+ V

∂ν̃

∂η
+ W

∂ν̃

∂ζ

)

= cb1S̃ν̃ +
1 + cb2

σ̃
J2T1 −

cb2

σ̃
(ν + ν̃)J2T2 − cw1fw

(
ν̃

d

)2

where

T1 = ξx
∂

∂ξ

[

(ν + ν̃)ξx
∂ν̃

∂ξ

]

+ ηx
∂

∂η

[

(ν + ν̃)ηx
∂ν̃

∂η

]

+ ζx
∂

∂ζ

[

(ν + ν̃)ζx
∂ν̃

∂ζ

]

+ ξy
∂

∂ξ

[

(ν + ν̃)ξy
∂ν̃

∂ξ

]

+ ηy
∂

∂η

[

(ν + ν̃)ηy
∂ν̃

∂η

]

+ ζy
∂

∂ζ

[

(ν + ν̃)ζy
∂ν̃

∂ζ

]

+ ξz
∂

∂ξ

[

(ν + ν̃)ξz
∂ν̃

∂ξ

]

+ ηz
∂

∂η

[

(ν + ν̃)ηz
∂ν̃

∂η

]

+ ζz
∂

∂ζ

[

(ν + ν̃)ζz
∂ν̃

∂ζ

]



T2 = ξx
∂ν̃

∂ξ

(

ξx
∂ν̃

∂ξ

)

+ ηx
∂ν̃

∂η

(

ηx
∂ν̃

∂η

)

+ ζx
∂ν̃

∂ζ

(

ζx
∂ν̃

∂ζ

)

+ ξy
∂ν̃

∂ξ

(

ξy
∂ν̃

∂ξ

)

+ ηy
∂ν̃

∂η

(

ηy
∂ν̃

∂η

)

+ ζy
∂ν̃

∂ζ

(

ζy
∂ν̃

∂ζ

)

+ ξz
∂ν̃

∂ξ

(

ξz
∂ν̃

∂ξ

)

+ ηz
∂ν̃

∂η

(

ηz
∂ν̃

∂η

)

+ ζz
∂ν̃

∂ζ

(

ζz
∂ν̃

∂ζ

)





Appendix B

Vorticity Differentiation

Vorticity:

S =

[(
∂w

∂y
− ∂v

∂z

)

i +

(
∂u

∂z
− ∂w

∂x

)

j +

(
∂v

∂x
− ∂u

∂y

)

k

]

In curvilinear coordinates:

S = J [(ξy∂ξw + ηy∂ηw + ζy∂ζw) − (ξz∂ξv + ηz∂ηv + ζz∂ζv)] i

+ J [(ξz∂ξu + ηz∂ηu + ζz∂ζu) − (ξx∂ξw + ηx∂ηw + ζx∂ζw)] j

+ J [(ξx∂ξv + ηx∂ηv + ζx∂ζv) − (ξy∂ξu + ηy∂ηu + ζy∂ζu)]k

= J (S1i + S2j + S3k)

Discretized using second-order centered-difference method:

S1 =
1

2
[ξy(wj+1,k,m − wj−1,k,m) + ηy(wj,k+1,m − wj,k−1,m)

+ ζy(wj,k,m+1 − wj,k,m−1) − ξz(vj+1,k,m − vj−1,k,m)

− ηz(vj,k+1,m − vj,k−1,m) − ζz(vj,k,m+1 − vj,k,m−1)]

S2 =
1

2
[ξz(uj+1,k,m − uj−1,k,m) + ηz(uj,k+1,m − uj,k−1,m)

+ ζz(uj,k,m+1 − uj,k,m−1) − ξx(wj+1,k,m − wj−1,k,m)

− ηx(wj,k+1,m − wj,k−1,m) − ζx(wj,k,m+1 − wj,k,m−1)]

S3 =
1

2
[ξx(vj+1,k,m − vj−1,k,m) + ηx(vj,k+1,m − vj,k−1,m)

+ ζx(vj,k,m+1 − vj,k,m−1) − ξy(uj+1,k,m − uj−1,k,m)

− ηy(uj,k+1,m − uj,k−1,m) − ζy(uj,k,m+1 − uj,k,m−1)]
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The flow variables are given by the vector:

Qj,k,m =















ρ

ρu

ρv

ρw

ρe

ν̃















j,k,m

Write vorticity in terms of flow variables Q (note that Q̂1 = JQ1)

S1(Q) =
1

2
ξy[(Q4/Q̂1)j+1,k,m − (Q4/Q̂1)j−1,k,m]

+
1

2
ηy[(Q4/Q̂1)j,k+1,m − (Q4/Q̂1)j,k−1,m]

+
1

2
ζy[(Q4/Q̂1)j,k,m+1 − (Q4/Q̂1)j,k,m−1]

− 1

2
ξz[(Q3/Q̂1)j+1,k,m − (Q3/Q̂1)j−1,k,m]

− 1

2
ηz[(Q3/Q̂1)j,k+1,m − (Q3/Q̂1)j,k−1,m]

− 1

2
ζz[(Q3/Q̂1)j,k,m+1 − (Q3/Q̂1)j,k,m−1]

S2(Q) =
1

2
ξz[(Q2/Q̂1)j+1,k,m − (Q2/Q̂1)j−1,k,m]

+
1

2
ηz[(Q2/Q̂1)j,k+1,m − (Q2/Q̂1)j,k−1,m]

+
1

2
ζz[(Q2/Q̂1)j,k,m+1 − (Q2/Q̂1)j,k,m−1]

− 1

2
ξx[(Q4/Q̂1)j+1,k,m − (Q4/Q̂1)j−1,k,m]

− 1

2
ηx[(Q4/Q̂1)j,k+1,m − (Q4/Q̂1)j,k−1,m]

− 1

2
ζx[(Q4/Q̂1)j,k,m+1 − (Q4/Q̂1)j,k,m−1]
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S3(Q) =
1

2
ξx[(Q3/Q̂1)j+1,k,m − (Q3/Q̂1)j−1,k,m]

+
1

2
ηx[(Q3/Q̂1)j,k+1,m − (Q3/Q̂1)j,k−1,m]

+
1

2
ζx[(Q3/Q̂1)j,k,m+1 − (Q3/Q̂1)j,k,m−1]

− 1

2
ξy[(Q2/Q̂1)j+1,k,m − (Q2/Q̂1)j−1,k,m]

− 1

2
ηy[(Q2/Q̂1)j,k+1,m − (Q2/Q̂1)j,k−1,m]

− 1

2
ζy[(Q2/Q̂1)j,k,m+1 − (Q2/Q̂1)j,k,m−1]

Magnitude of the vorticity is written as: ‖S‖ =
√

S2

1
+ S2

2
+ S2

3

Next, we take a derivative of S:

(
∂‖S‖
∂Q

)

j,k,m

=
1

√

S2
1 + S2

2 + S2
3

(

S1
∂S1

∂Q
+ S2

∂S2

∂Q
+ S3

∂S3

∂Q

)

The derivatives of the three components will considered separately in the next three

sections.
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B.1 Vorticity Differention Terms for S1

(
∂S1

∂Q1

)

j+1,k,m

= −1

2



ξy

(

Q4

Q̂1
2

)

j+1,k,m

− ξz

(

Q3

Q̂1
2

)

j+1,k,m





(
∂S1

∂Q1

)

j,k+1,m

= −1

2



ηy

(

Q4

Q̂1
2

)

j,k+1,m

− ηz

(

Q3

Q̂1
2

)

j,k+1,m





(
∂S1

∂Q1

)

j,k,m+1

= −1

2



ζy

(

Q4

Q̂1
2

)

j,k,m+1

− ζz

(

Q3

Q̂1
2

)

j,k,m+1





(
∂S1

∂Q1

)

j−1,k,m

=
1

2



ξy

(

Q4

Q̂1
2

)

j−1,k,m

− ξz

(

Q3

Q̂1
2

)

j−1,k,m





(
∂S1

∂Q1

)

j,k−1,m

=
1

2



ηy

(

Q4

Q̂1
2

)

j,k−1,m

− ηz

(

Q3

Q̂1
2

)

j,k−1,m





(
∂S1

∂Q1

)

j,k,m−1

=
1

2



ζy

(

Q4

Q̂1

2

)

j,k,m−1

− ζz

(

Q3

Q̂1

2

)

j,k,m−1





(
∂S1

∂Q3

)

j+1,k,m

= −1

2
ξz

(
1

Q̂1

)

j+1,k,m

(
∂S1

∂Q3

)

j,k+1,m

= −1

2
ηz

(
1

Q̂1

)

j,k+1,m

(
∂S1

∂Q3

)

j,k,m+1

= −1

2
ζz

(
1

Q̂1

)

j,k,m+1

(
∂S1

∂Q3

)

j−1,k,m

=
1

2
ξz

(
1

Q̂1

)

j−1,k,m

(
∂S1

∂Q3

)

j,k−1,m

=
1

2
ηz

(
1

Q̂1

)

j,k−1,m

(
∂S1

∂Q3

)

j,k,m−1

=
1

2
ζz

(
1

Q̂1

)

j,k,m−1

(
∂S1

∂Q4

)

j+1,k,m

=
1

2
ξy

(
1

Q̂1

)

j+1,k,m
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(
∂S1

∂Q4

)

j,k+1,m

=
1

2
ηy

(
1

Q̂1

)

j,k+1,m

(
∂S1

∂Q4

)

j,k,m+1

=
1

2
ζy

(
1

Q̂1

)

j,k,m+1

(
∂S1

∂Q4

)

j−1,k,m

= −1

2
ξy

(
1

Q̂1

)

j−1,k,m

(
∂S1

∂Q4

)

j,k−1,m

= −1

2
ηy

(
1

Q̂1

)

j,k−1,m

(
∂S1

∂Q4

)

j,k,m−1

= −1

2
ζy

(
1

Q̂1

)

j,k,m−1

∂S1

∂Q
=
[

∂S1

∂Q1

∂S1

∂Q2

∂S1

∂Q3

∂S1

∂Q4

∂S1

∂Q5

∂S1

∂Q6

]

∂S1

∂Q
=
[

∂S1

∂Q1
0 ∂S1

∂Q3

∂S1

∂Q4
0 0

]
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B.2 Vorticity Differention Terms for S2

(
∂S1

∂Q1

)

j+1,k,m

= −1

2



ξz

(

Q2

Q̂1
2

)

j+1,k,m

− ξx

(

Q4

Q̂1
2

)

j+1,k,m





(
∂S1

∂Q1

)

j,k+1,m

= −1

2



ηz

(

Q2

Q̂1
2

)

j,k+1,m

− ηx

(

Q4

Q̂1
2

)

j,k+1,m





(
∂S1

∂Q1

)

j,k,m+1

= −1

2



ζz

(

Q2

Q̂1
2

)

j,k,m+1

− ζx

(

Q4

Q̂1
2

)

j,k,m+1





(
∂S1

∂Q1

)

j−1,k,m

=
1

2



ξz

(

Q2

Q̂1
2

)

j−1,k,m

− ξx

(

Q4

Q̂1
2

)

j−1,k,m





(
∂S1

∂Q1

)

j,k−1,m

=
1

2



ηz

(

Q2

Q̂1
2

)

j,k−1,m

− ηx

(

Q4

Q̂1
2

)

j,k−1,m





(
∂S1

∂Q1

)

j,k,m−1

=
1

2



ζz

(

Q2

Q̂1

2

)

j,k,m−1

− ζx

(

Q4

Q̂1

2

)

j,k,m−1





(
∂S2

∂Q2

)

j+1,k,m

=
1

2
ξz

(
1

Q̂1

)

j+1,k,m

(
∂S2

∂Q2

)

j,k+1,m

=
1

2
ηz

(
1

Q̂1

)

j,k+1,m

(
∂S2

∂Q2

)

j,k,m+1

=
1

2
ζz

(
1

Q̂1

)

j,k,m+1

(
∂S2

∂Q2

)

j−1,k,m

= −1

2
ξz

(
1

Q̂1

)

j−1,k,m

(
∂S2

∂Q2

)

j,k−1,m

= −1

2
ηz

(
1

Q̂1

)

j,k−1,m

(
∂S2

∂Q2

)

j,k,m−1

= −1

2
ζz

(
1

Q̂1

)

j,k,m−1

(
∂S2

∂Q4

)

j+1,k,m

= −1

2
ξx

(
1

Q̂1

)

j+1,k,m
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(
∂S2

∂Q4

)

j,k+1,m

= −1

2
ηx

(
1

Q̂1

)

j,k+1,m

(
∂S2

∂Q4

)

j,k,m+1

= −1

2
ζx

(
1

Q̂1

)

j,k,m+1

(
∂S2

∂Q4

)

j−1,k,m

=
1

2
ξx

(
1

Q̂1

)

j−1,k,m

(
∂S2

∂Q4

)

j,k−1,m

=
1

2
ηx

(
1

Q̂1

)

j,k−1,m

(
∂S2

∂Q4

)

j,k,m−1

=
1

2
ζx

(
1

Q̂1

)

j,k,m−1

∂S2

∂Q
=
[

∂S2

∂Q1

∂S2

∂Q2

∂S2

∂Q3

∂S2

∂Q4

∂S2

∂Q5

∂S2

∂Q6

]

∂S2

∂Q
=
[

∂S2

∂Q1

∂S2

∂Q2
0 ∂S2

∂Q4
0 0

]
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B.3 Vorticity Differention Terms for S3

(
∂S3

∂Q1

)

j+1,k,m

= −1

2



ξx

(

Q3

Q̂1
2

)

j+1,k,m

− ξy

(

Q2

Q̂1
2

)

j+1,k,m





(
∂S3

∂Q1

)

j,k+1,m

= −1

2



ηx

(

Q3

Q̂1
2

)

j,k+1,m

− ηy

(

Q2

Q̂1
2

)

j,k+1,m





(
∂S3

∂Q1

)

j,k,m+1

= −1

2



ζx

(

Q3

Q̂1
2

)

j,k,m+1

− ζy

(

Q2

Q̂1
2

)

j,k,m+1





(
∂S3

∂Q1

)

j−1,k,m

=
1

2



ξx

(

Q3

Q̂1
2

)

j−1,k,m

− ξy

(

Q2

Q̂1
2

)

j−1,k,m





(
∂S3

∂Q1

)

j,k−1,m

=
1

2



ηx

(

Q3

Q̂1
2

)

j,k−1,m

− ηy

(

Q2

Q̂1
2

)

j,k−1,m





(
∂S3

∂Q1

)

j,k,m−1

=
1

2



ζx

(

Q3

Q̂1

2

)

j,k,m−1

− ζy

(

Q2

Q̂1

2

)

j,k,m−1





(
∂S3

∂Q2

)

j+1,k,m

= −1

2
ξy

(
1

Q̂1

)

j+1,k,m

(
∂S3

∂Q2

)

j,k+1,m

= −1

2
ηy

(
1

Q̂1

)

j,k+1,m

(
∂S3

∂Q2

)

j,k,m+1

= −1

2
ζy

(
1

Q̂1

)

j,k,m+1

(
∂S3

∂Q2

)

j−1,k,m

=
1

2
ξy

(
1

Q̂1

)

j−1,k,m

(
∂S3

∂Q2

)

j,k−1,m

=
1

2
ηy

(
1

Q̂1

)

j,k−1,m

(
∂S3

∂Q2

)

j,k,m−1

=
1

2
ζy

(
1

Q̂1

)

j,k,m−1

(
∂S3

∂Q3

)

j+1,k,m

=
1

2
ξx

(
1

Q̂1

)

j+1,k,m



(
∂S3

∂Q3

)

j,k+1,m

=
1

2
ηx

(
1

Q̂1

)

j,k+1,m

(
∂S3

∂Q3

)

j,k,m+1

=
1

2
ζx

(
1

Q̂1

)

j,k,m+1

(
∂S3

∂Q4

)

j−1,k,m

= −1

2
ξx

(
1

Q̂1

)

j−1,k,m

(
∂S3

∂Q4

)

j,k−1,m

= −1

2
ηx

(
1

Q̂1

)

j,k−1,m

(
∂S3

∂Q4

)

j,k,m−1

= −1

2
ζx

(
1

Q̂1

)

j,k,m−1

∂S3

∂Q
=
[

∂S3

∂Q1

∂S3

∂Q2

∂S3

∂Q3

∂S3

∂Q4

∂S3

∂Q5

∂S3

∂Q6

]

∂S3

∂Q
=
[

∂S3

∂Q1

∂S3

∂Q2

∂S3

∂Q3
0 0 0

]





Appendix C

TYPHOON Input Files

C.1 Subsonic Turbulent Flow

The following input file is used in the turbulent grid convergence study in Section 6.2.1:

MP-OPT

1

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA

1.0 0.6998 0.25 1.0 0.023 11.74e6 FALSE 0.04d0

&OPTIMA

OPT_METH=1

&END

&TYPHOON

MIN_RES = 1E-15,

VISCOUS = true, VISXI = true, VISETA = true,

VISZETA = true, VISJAC = true, VISCROSS = false,

TURBULNT = true, WRITETURB=true,

FRECHET = false, ASHFORD = false,

RESTART = false, BODYBC = true, FARBC = true,

INORD = 2, IREORD = 2, IREAD=2, NHALO = 2,

TURBDELAY = 1,

IDMODEL=1,

89
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DIS2X = 0.00, DIS4X = 0.02,

DIS2Y = 0.00, DIS4Y = 0.02,

DIS2Z = 0.00, DIS4Z = 0.02,

ISTREAM = 1, IGROUND = 3,

NK_ITS = 1000, BLUNT = FALSE, NK_LFIL = 1, NK_PFRZ = 300,

NK_PDC = 5.d0, NK_IMGMR = 40, NK_ITGMR = 100, GMR_TOL = 1d-2,

NK_TIME = 4, ISTARTUP = 2, RD_TOL = 10.0, STRTIT = 1,

RETINF = 0.001,

&END

&EXTRA

grid_file_prefix = ’grid’,

output_file_prefix = ’results’,

restart_file_prefix = ’results’

&END

C.2 Transonic Turbulent Flow

The following grid file was used for the transonic turbulent flows in the parametric opti-

mization study in Section 5.2:

MP-OPT

1

WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA

1.0 0.84 0.25 1.0 0.023 2.88e6 FALSE 3.0d0

&OPTIMA

OPT_METH=1

&END

&TYPHOON

MIN_RES = 1E-15,

VISCOUS = true, VISXI = true, VISETA = true,

VISZETA = true, VISJAC = true, VISCROSS = false,

TURBULNT = true, WRITETURB=true,

FRECHET = false, ASHFORD = false,
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RESTART = false, BODYBC = true, FARBC = true,

INORD = 2, IREORD = 2, IREAD=2, NHALO = 2,

TURBDELAY = 1,

IDMODEL=1,

DIS2X = 1.00, DIS4X = 0.02,

DIS2Y = 1.00, DIS4Y = 0.02,

DIS2Z = 1.00, DIS4Z = 0.02,

ISTREAM = 1, IGROUND = 3,

NK_ITS = 1000, BLUNT = FALSE, NK_LFIL = 1, NK_PFRZ = 300,

NK_PDC = 3.d0, NK_IMGMR = 40, NK_ITGMR = 100, GMR_TOL = 1d-2,

NK_TIME = 3, ISTARTUP = 2, RD_TOL = 1000, STRTIT = 1,

RETINF = 0.001,

&END

&EXTRA

grid_file_prefix = ’grid’,

output_file_prefix = ’results’,

restart_file_prefix = ’results’

&END




