A THREE-DIMENSIONAL NEWTON-KRYLOV
NAVIER-STOKES FLOW SOLVER USING A
ONE-EQUATION TURBULENCE MODEL

David C. W. Kam

A thesis submitted in conformity with the requirements
for the degree of Masters of Applied Science
Graduate Department of Aerospace Engineering
University of Toronto

Copyright (©) 2007 by David C. W. Kam

Abstract

A Three-Dimensional Newton-Krylov Navier-Stokes
Flow Solver Using a One-Equation Turbulence Model

David C. W. Kam
Masters of Applied Science
Graduate Department of Aerospace Engineering

University of Toronto
2007

A three-dimensional Navier-Stokes flow solver for structured grids is developed using
a Newton-Krylov algorithm. Turbulence is modelled using the Spalart-Allmaras one-
equation model. Spatial derivatives are approximated using centered-differences with
second and fourth-difference dissipation. The equations are transformed into curvilinear
coordinates and linearized using Newton’s method. The reverse Cuthill-McKee method is
applied to reorder the equations, and a preconditioner is formed based on an incomplete
lower-upper factorization of a first-order approximate Jacobian. The linear system at
each Newton iteration is then solved using a generalized minimal residual method. An
approximate-Newton startup phase is followed by a Jacobian-free inexact-Newton phase.

Various aspects of the code are studied in this work. A parametric study attempting
to optimize the performance of the code was performed on the following variables: ILU
fill-levels, inexact-Newton convergence parameter, residual reduction tolerance parameter
for switching to the inexact-Newton phase, and a preconditioning parameter used in the
formation of the approximate Jacobian. The solver was validated by comparing with a
well-validated flow solver, OPTIMA2D, and a grid convergence study is presented for

laminar and turbulent flows about the ONERA M6 wing.

11

Acknowledgements

I would like to begin by thanking Professor David W. Zingg for his patience, encourage-
ment and expertise throughout these last two years. It has been a great privilege and

honour to have studied and worked under his tutelage.

Some of my most memorable moments at UTIAS have been in the company of the varied
and eclectic group of characters with whom I shared the small confines of the lab. In
particular, I have benefited greatly from the friendship of John Gatsis and Mo Tabesh,
both of whom made the lab such a fun and colourful place. The computer expertise of
Scott Northrup, and the help of Jason Hicken in learning to use TYPHOON, ICEMCFD,
and Tecplot were also much appreciated. For this, and to everyone else in the lab, I would

like to say thank you.

A special thanks goes out to my parents for their encouragement and support in this

endeavour and all others. Their sacrifices made possible everything I have today.

Finally, I would like to thank Tessa Yeung for her friendship throughout these two years.
She has always been there, with an encouraging word when I was disheartened, a sym-
pathetic ear when I needed to talk, and a hot meal when I had an empty stomach. This

thesis would not have been possible without her.
Davib C. W. KAM

University of Toronto Institute for Aerospace Studies
October 5, 2007

Contents

Abstract
Acknowledgment’s

1 Introduction

1.1 Motivation .
1.2 Background
1.3 Objectives .

2 Governing Equations

2.1 Navier-Stokes Equations
2.2 Turbulence Model
2.3 Curvilinear Coordinate Transformation
2.4 Boundary Conditions
2.4.1 Far-field Boundary L.
2.4.2 Solid Wall

3 Numerical Algorithm

3.1 Spatial Discretization oo L
3.1.1 Inviscid Fluxes
3.1.2 Viscous Fluxes
3.1.3 Turbulence Model
3.1.4 Boundary Conditions,

3.2 Linearization and Newton’s Method
3.2.1 Linearization of the Interior Scheme
3.2.2 Linearization of the Boundary Conditions

3.3 Solution to the Linear Problem

Vil

iii

W = =

© g ot O«

3.3.1 Jacobian-free GMRES
3.3.2 Imexact-Newton Method
3.3.3 Preconditioner
3.3.4 Incomplete LU Factorization
3.3.5 Reverse Cuthill-McKee Nodal Reordering
3.4 Algorithm Startup
3.4.1 Local Time-Stepping

4 Grid Generation

4.1 Blocking Strategy
4.2 Problem Definition L
4.3 Smoothing

5 Algorithm Optimization

5.1 Test Cases o
5.2 Parametric Study
5.2.1 ILU Fill Level (k) o oo
5.2.2 Preconditioning Parameter (o)
5.2.3 Inexact-Newton Parameter (n)
5.2.4 Approximate-Newton Convergence Parameter (Rq,,)
5.3 Summary of Optimal Parameters

6 Results and Validation

6.1 2D Validation
6.1.1 Blasius Solution oo
6.1.2 NACAO0012 Airfoil

6.2 3D Validation
6.2.1 Grid Convergence Studies

7 Conclusions

7.1 Summary . .o oL
7.2 Recommendations
Appendices

viil

31
31
31
32

37
37
38
38
39
46
46
47

51
o1
o1
52
53
o8

63
63
64

69

A 3D Curvilinear Coordinate Transformation
A.1 3D Viscous Flux Terms in Curvilinear Coordinates

A.2 Turbulence Model in Curvilinear Coordinates

B Vorticity Differentiation
B.1 Vorticity Differention Terms for S
B.2 Vorticity Differention Terms for So
B.3 Vorticity Differention Terms for S5

C TYPHOON Input Files
C.1 Subsonic Turbulent Flow

C.2 Transonic Turbulent Flow

List of Tables

2.1

4.1

5.1
5.2
5.3
5.4

6.1
6.2
6.3

6.4

Logic for far-field boundary conditions using Riemann invariants 11
Orthogonal smoothing parameters in ICEMCFD 34
ONERA M6 wing test cases 37
Grids used in the ONERA M6 wing parametric study 38
List of parameters in the numerical study 38
Summary of results from parametric study 50
Flow conditions for the 2D validation test cases 52

Summary of grid characteristics used in the 3D laminar convergence study 58
TYPHOON laminar lift and drag grid convergence results for the ONERA
M6 at M=0.5, Re=600, «=3.0° 58

Summary of grid characteristics used in 3D turbulent convergence study . 60

X1

List of Figures

3.1

4.1
4.2
4.3

4.4

5.1

5.2

9.3

5.4

9.5

0.6

5.7

0.8

Halo nodes on a two-dimensional slice of two three-dimensional blocks for

a 13-point stencil

TYPHOON’s 12-block configuration
Surface mesh on an ONERA M6 wing
Mesh inversion at the wingtip and leading edge intersection due to changes
in wingtip spacingo L
Mesh smoothed using multiblock method (a) and resulting flow solution
(b); Mesh smoothed using orthogonality method (c) and resulting flow
solution (d). oL

Laminar subsonic ILU fill level parameter (k) optimization; approximate-
Newton phase (M=0.5, « = 3.0°, Re=600, grid A)
Laminar subsonic ILU fill level parameter (k) optimization; Jacobian-free
phase (M=0.5, a = 3.0°, Re=600, grid A)
Laminar transonic ILU fill level parameter (k) optimization; approximate-
Newton phase (M=0.84, a = 3.0°, Re=600, grid B)
Laminar transonic ILU fill level parameter (k) optimization; Jacobian-free
phase (M=0.84, a = 3.0°, Re=600, grid B)
Turbulent subsonic ILU fill level parameter (k) optimization; approximate-
Newton phase (M=0.5, a = 3.0°, Re=2.88x10% grid C)
Turbulent subsonic ILU fill level parameter (k) optimization; Jacobian-free
phase (M=0.5, a = 3.0°, Re=2.88x10% grid D)
Turbulent transonic ILU fill level parameter (k) optimization; approximate-
Newton phase (M=0.84, a = 3.0°, Re=2.88x10%, grid C)
Turbulent transonic ILU fill level parameter (k) optimization; Jacobian-
free phase (M=0.84, a = 3.0°, Re=2.88x10° grid D)

xiil

20

32
33

34

35

39

40

40

41

41

42

42

5.9 Laminar subsonic preconditioning parameter (¢) optimization (M=0.5, «

=3.0°, Re=600, grid A) 43
5.10 Laminar transonic preconditioning parameter (o) optimization (M=0.84,
a=3.0° Re=600, grid B) 44
5.11 Turbulent subsonic preconditioning parameter (o) optimization (M=0.5,
a=3.0°, Re=2.88x10°% grid C) 44
5.12 Turbulent transonic preconditioning parameter (o) optimization (M=0.84,
a=3.0° Re=2.88x10° grid D) 45
5.13 Laminar inexact-Newton parameter (14y) optimization; approximate-Newton
phase (grid A) L 46
5.14 Laminar inexact-Newton parameter (1,r) optimization; Jacobian-free phase
(grid A) . . . 47
5.15 Turbulent inexact-Newton parameter (n4y) optimization; approximate-
Newton phase (grid C) 48
5.16 Turbulent inexact-Newton parameter (7;r) optimization; Jacobian-free
phase (grid D) 48
5.17 Laminar approximate-Newton residual reduction tolerance parameter (Ry,,,)
-grids Aand B 49
5.18 Turbulent approximate-Newton residual reduction tolerance parameter (Ry,,,)
-grids Cand D . o 0 000 49

6.1 Comparison of TYPHOON surface velocity profile against Blasius solution 52
6.2 The computational grid used in the Blasius solution comparison. Note

that every second node has been removed for the purposes of this graphic.

Mesh lines are in red, while block boundaries are in black 53
6.3 TYPHOON laminar subsonic flow over a NACA(0012 airfoil (case 1) . . . 54
6.4 TYPHOON laminar transonic flow over a NACA0012 airfoil (case 2) . . 55
6.5 TYPHOON turbulent subsonic flow over a NACAQ012 airfoil (case 3) . . 56
6.6 TYPHOON turbulent transonic flow over a NACA(0012 airfoil (case 4). . 57
6.7 TYPHOON convergence histories for laminar grid convergence study on

the ONERA M6 wing 59
6.8 Pressure contours of an ONERA M6 wing at M=0.5, Re=600, a=3.0°

(800k-node grid) 60

6.9 ONERA M6 wing C, distribution, M = 0.6998, « = 0.04°, Re= 11.74x10° 61

Xiv

6.10 TYPHOON convergence histories for the 3D turbulent grid convergence

6.11 Pressure contours of an ONERA M6 wing at M=0.6998, Re=11.74x105,
a=0.04° (500k-node grid)

Chapter 1

Introduction

1.1 Motivation

The rising cost of fossil fuels has been of increasing concern in the aviation industry over
the last decade. The desire to reduce costs, as well as to minimize environmental impact
has lead to the development of aerodynamically efficient aircraft. This is of particular
urgency in the commercial aircraft industry, where consumer demands are forecast to
increase in every sector into the foreseeable future [34] .

Since the early 1970’s, computational fluid dynamics has emerged as the third branch
in aerodynamics, complementing the experimental and theoretical fields [1]. Compu-
tational methods offer a cost-effective alternative to the experimental testing that has
traditionally been done in windtunnels. The rapid advances in the CFD field has been
made largely possible by increasing processor speeds throughout the last three decades.
However, the ability today to accurately and efficiently solve the Navier-Stokes equa-
tions on full wing-body geometries would also not have been possible without significant

improvements in algorithms.

1.2 Background

The backbone of all CFD algorithms is the set of Navier-Stokes equations which com-
pletely describes a Newtonian fluid flow. A set of nonlinear partial differential equations,
it can be linearized and discretized at a finite number of points in the computational
domain. The manner in which this discretization occurs leads to the two main groups

of CFD codes: unstructured and structured. The former uses cells that may vary in

2 CHAPTER 1. INTRODUCTION

geometry, while the latter can handle only quadrilateral (2D) or tetrahedrals (3D) cells.
Unstructured grids typically are used in conjunction with finite-volume schemes, while
structured grids can be solved with both finite-volume and finite-difference schemes. Un-
structured grids can be generated on much more complex geometries and refinement at
a given area in the flow field can be accomplished by splitting cells as required. Thus
unstructured grids are well-suited to mesh adaptation methods. Structured grids have
less freedom in refinement, although the use of node clustering, flaring, and multiblock
methods serve to mitigate some of these concerns. One drawback with unstructured grids
is the need to track the relative and absolute locations of each cell in a large indexing
system. In contrast, structured grids by nature have a linear ordering of nodes.

Time-stepping methods are typically used to march the nonlinear equations to a con-
verged solution. Two basic classes of such methods exist: implicit and explicit. Explicit
methods are easier to implement and cheaper to compute, but are prone to instability
problems which may either require impractically small time steps and many iterations,
or cause the solution to diverge altogether. Implicit methods on the other hand pay a
storage and computation penalty for solving a more difficult formulation, while allowing
for larger time steps and fewer iterations. This is due to their inherent stability. One
famous example of an implicit solver is the ARC2D algorithm developed by Pulliam and
Steger [29, 33] at the NASA Ames Research Center.

The ability to create fast and efficient Navier-Stokes flow solvers is generally limited
by the time it takes to solve the large linear system of equations that arises from Newton’s
method. Direct inversion of such matrices is prohibitively expensive. A very effective
method for two-dimensional flows is to approximately factor the matrix into two matrices,
each containing entries from one of the two coordinate directions [29]. This method was
superseded by current methods such as approximate-Newton and Jacobian-free inexact-
Newton schemes which use an iterative method to inexactly solve the linear system and
have been found to be much faster [27, 28]. The inexact method can drastically reduce the
amount of time the algorithm spends at each Newton iteration. The success of iterative
solvers depends on the properties of the matrix it is applied to. For non-symmetric
indefinite systems such as those arising from the application of an inexact Newton method
to the Navier-Stokes equations, a Krylov subspace method using a generalized minimal
residual (GMRES) method [30] is frequently used [36, 4, 23, 8, 26].

When compared to other iterative approaches, GMRES was shown to be faster than
the stabilized biconjugate gradient, and conjugate gradient squared methods [27, 28].

1.3. OBJECTIVES 3

Codes such as HURRICANE [37] and OPTIMA2D [22] both use the Newton-Krylov
algorithm. One reason for the popularity of the GMRES method is that it does not require
the storage of the Jacobian, but can instead function using only matrix-vector products.
Pueyo and Zingg showed that this Newton-Krylov method outperformed approximate-
factorization, approximate-factorization with multigrid, and also the Jacobian-present
formulation [27, 28].

A survey of other three-dimensional Navier-Stokes solvers reveals a wide variety of
solution methods and grid techniques.

NSU3D by Mavriplis [18, 13] uses a line/point Jacobi method, while Frink uses a
Gauss-Seidel-like method in USM3D [7]. Both NSU3D and USM3D are 3D Navier-Stokes
flow solvers that use a node-centered finite-volume formulation.

Another unstructured finite-volume flow solver is FUN3D. The solution to the linear
system of equations is obtained by using implicit point relaxation, implicit line relaxation,
or the Newton-Krylov algorithm [26].

OVERFLOW [12] is a Navier-Stokes flow solver that uses finite-differencing with
matrix dissipation on overset meshes. An approximate factorization or a lower-upper
symmetric Gauss-Seidel method can be used on the linear system [11]. In addition, grid
sequencing and multigrid are used to accelerate code convergence and preconditioning is
performed to improve performance at low Mach numbers.

Flo3xx, by May and Jameson, is a finite-volume code that uses a Gauss-Seidel method
to solve the linear system and multigrid to accelerate convergence. It can solve flows on
both structured and unstructured meshes and is designed to handle both cell-centered
and node-centered discretizations [19].

It is useful to note that all the Navier-Stokes algorithms described above are coupled
with the Spalart-Allmaras one-equation turbulence model. This model has become quite
popular in the computational aerodynamics community and has been shown to be a
robust and accurate alternative to two-equation models such as the k. — w and k£ — €

techniques.

1.3 Objectives

Nichols and Zingg [25] successfully demonstrated the speed and accuracy with which the
Newton-Krylov algorithm can be applied to the Euler equations in three dimensions.

This multiblock solver is known as TYPHOON. An efficient and robust flow solver is

4 CHAPTER 1. INTRODUCTION

now desired for real-world aerodynamic optimizations at high Reynolds numbers. Thus,
the need to expand TYPHOON’s ability to handle viscous flows is established.

The focus of this thesis is to apply the full Navier-Stokes equations to the existing
algorithm, and to integrate the Spalart-Allmaras turbulence model into the flow equa-

tions.

Chapter 2
Governing Equations

This chapter presents a summary of the governing equations used in the numerical al-
gorithm. The first section details the mean flow equations; the second deal, with the

Spalart-Allmaras one-equation turbulence model.

2.1 Navier-Stokes Equations

The Navier-Stokes equations are a collection of conservation equations that together fully
describe fluid flow. This set of mathematical statements consists of the conservation of
mass, momentum, and energy. The conservative form of the compressible Navier-Stokes

equations is as follows:

@+8—E+8—F+%:i(8E”+8Fi’+8G”) (2.1)
ot Odxr 0Oy 0z Re\ Ox Ay 0z
where Re, the Reynolds number, is given by the following equation:
Re = Lot (2.2)
Hoo
The flow variables are contained in), while the inviscid fluxes are given in £ F and G:
[p | [pu] [pY] [pw |
ou pu® +p puv puw
Q=1 pv |, E= pUv . F=| p?+p |, G= pUW
pw puw pUW pw? +p
| e | | u(e+p) | | v(e+p) | | w(e+p) |

6 CHAPTER 2. GOVERNING EQUATIONS

where p is the density, pu, pv and pw are the components of momentum, and e is the
total energy. Pressure, p, is related to the energy e via the equation of state for a perfect
gas:

p=(—-1)|e— %p(u2 + v + w?) (2.3)

The value of ~ is 1.4. The viscous flux tensors F,, F, and G, in Equation 2.1 are given
by:

0 0 0
T Tyx Tz
Ev = Ty) Fv = Tyy) Gv = Tzy (2 4)
Taz Tyz T2z
| Ev,5 | L Fv,5 | | Gv,5 |

where the shear and normal stress terms are given by:

= 2(p + p)ug — 2 (ugp + vy + w,)
= (14) (uy + vg)
= (1 +) (uz + wy)
=21+ pe)vy — F (uz + vy + ;)
= (1 +) (vz + wy)
oo = 2(p + p)ws — 20 (ugp + vy + w,)
Ey5 = UTpe + 0Ty + w7y + (uPr~ + 1 Pry M) (v — 1) 710, (a?)
Fos = utyy + vTyy + w7y, + (NPT_I + Utprt_l)(’y - 1)_1831(“2)
Gop = UTsy + 0Toy + wToy + (Pr~ + 1 Pry) (v — 1)720,(a?)

where p and y; are the dynamic laminar and dynamic turbulent eddy viscosities respec-
tively. Pr and Pr; are the laminar and turbulent Prandtl numbers, assumed as constants

0.72 and 0.90. The sound of speed, a, as calculated using the ideal gas assumption:

_ JART (2.5)

where R is the specific gas constant, and T is the temperature.

The above equations have been nondimensionalized using the following relations:

w p e Lo
Y P=— =5, L= ——
oo Poo Pool, c

ol

U v
y U=—, V= —, W=
a Qa

where c is the chord length. The subscript oo identifies freestream values, and the overbar,

dimensional values.

2.2. TURBULENCE MODEL 7

The dynamic laminar viscosity p is found using Sutherland’s viscosity law [35] given
by:

LB (LIPS (2.6)
M_,uoo_ T T + S* '

where S* is the Sutherland constant of 198.6° R for air, T}, is the freestream temperature

of 460.0° R for air.

2.2 Turbulence Model

The effects of turbulence in the Navier-Stokes equations are captured using Spalart and
Allmaras’ one-equation model. An eddy viscosity-like term 7 is solved as the sixth flow
variable in the equations. The model has been shown to work well not only for two

dimensional flows [9], but also three dimensional ones [16]. The equation is as follows:

Dv Cp1 ~ 14 cpo N Cp2 N
= _[1 = S . - =

Dt Re[fe)Sv + =T V- [(v+v)VD] 5’R6(V+V)v v

A - ~ J
Production Advection and Diffusion

1 c 7\
— E [Cwlfw — %fm] (8) -+ RefﬂAU2 (27)
~~ - Trip

Destruction

where the first term is the production term, the second and third the combined advec-
tion/diffusion terms, the fourth the destruction term, and the last, a laminar/turbulent
transition trip term. For the purposes of this thesis, the trip functions f;; and f;» are set
to zero.

The kinematic eddy viscosity, v;=p,/p, is then calculated from the solution to this

equation through:

Vi =Ufn (2.8)
where: ,
X

vl = ———— 2.9

Ju X3+ (29)

and x is the ratio of the kinematic eddy turbulent viscosity to the kinematic laminar
viscosity v= p/p:

X = (2.10)

R

A modified vorticity term, S is used in the production and destruction terms, where:

~ 14

8 CHAPTER 2. GOVERNING EQUATIONS

and where d is the distance to the closest solid wall surface node. k is the von Karman
constant equal to 0.41 and S is the magnitude of the vorticity, written as:

ow ov\? ou ow\? ov 8u2%
S—[(a—y‘&) (5 a) *(%‘a—y)] 212

fu2 is a viscous function described by:

X
fu2 :1_TXfl (2.13)

The wall destruction term includes a function f,, given as:

1
1+c3,\°
fo—g (3) (2.14)
9%+ o
where
G =71+ Cua(r® — 1) (2.15)

with r, a nondimensional variable defined as:

v
= Sop (2.16)

The remaining parameters in this turbulence model are as follows:

cp1 = 0.1355 Cpo = 0.622
Co1 = Cp1 /K2 + (1 + c2) /0 Cw2 = 0.3
Cwz = 0.2 Cp1 = 7.1
5=2/3

Modifications to the vorticity-like term S are made to ensure that it is non-negative [2]:

v
S=Sfs+ vag (2.17)
where
X -3
9= <1 + _> (2.18)
Cy2

(1 + val) (1 - fv2)
X

where c,5 is set at 5.0. This correction appears to improve the stability of the model.

fus = (2.19)

2.3. CURVILINEAR COORDINATE TRANSFORMATION 9

2.3 Curvilinear Coordinate Transformation

Discretization of the physical domain about an airfoil is done using structured grids.
The use of such grids allows for the direct mapping of physical boundaries to those
in computational space. In addition, uniform computational grid spacing equal to one
is obtained through the curvilinear transformation. The Navier-Stokes equations and
turbulence model can then be solved in this mathematical environment. The benefit of
using this type of grid includes the implicit indexing of the node locations since the grid
spacing is equal to one. In the computational domain, the four independent variables

x,y,z and t are mapped from the physical domain as follows:

T=1
52 f(x,y,z,t) (220>
n=n(zy,z21)
C: <($7y727t)

The exact details of the transformation can be found in Appendix A, and were derived
following the procedure described in [17].
The Navier-Stokes equations can then be described in the transformed coordinate

system as:

(2.21)

0Q 0B oF 0G _ 1 (OE, OF, 0G,
or 0¢ Oy OC Re\ 0¢ on oC

where (-) = J7!(+), and J is the metric Jacobian resulting from the transformation found

to be:
T = weyyac + YeraTe + 2eTgYc — TezgYc — YeTne — ZeYnTe (2.22)

The inviscid fluxes are:

pU pV pW
pulU + &.p puV +1np puW + Gop
E=| pwU+&p | F=| poV4np |, G=| pWHgp
pwU + &:p pwV +n.p pwW +(.p
| (e+p)U+&p | | (e+p)V +mp | | (e+p)W +Gp |

(2.23)
where the contravariant velocities are given as:
U=&+&u+tEu+&w
V= + npu A+ myv + npw (2.24)
W =G+ Gu+ Gu+ Guw

10 CHAPTER 2. GOVERNING EQUATIONS

The viscous fluxes are:

E, = J (& B, + & F, + £.G,)
Fy =J! (anv + nva + 77va> (2'25)
Gy = J (G By + F, + .G

The shear stresses in the general curvilinear coordinate system are given by:

Toe = (10 + i) [4 (§atte + nutty + Gue) — 2 (§yve + nyvy + (e + Ewe + nawy + Gwe)] /3
Tay = (104 pe) (gt + nyuy + Cuue + Eave + Novy + G

Too = (1 +) (Exue + M2ty + Gue + Eowe + Newy + Guw)

Tyy = (1 pie) [4 (Eve + myvy + Guue) — 2 (ot + Matiy + G + Ewe + nawy + Gwe)] /3
Ty = (B +) (Eove + n2vy + Goe + §ue + mywy + Gwe)

Toe = (0 +) [4 (Sowe + nawy + Gwe) — 20 (§aue + nauy + Gue + Eyve + myvy + Gue)] /3

2.4 Boundary Conditions

At each of the six sides of a grid block, a single boundary condition must be specified.
Four boundary types are possible: far-field, solid wall, symmetry and interior. The
selection of these boundary conditions must be done carefully not only to preserve the

physics but also to maintain the accuracy and stability of the problem.

2.4.1 Far-field Boundary

Inviscid Boundaries

Six equations need to be specified at the inviscid far-field boundaries. These boundaries
are far enough away from a solid surface as to be relatively unaffected by viscous consid-
erations. Depending on the nature of the flow, these values are either extrapolated from
an interior node, or are set to freestream values.

Riemann invariants are used to determine the appropriate conditions for the far-field.
The characteristic approach has the benefit of nonreflectivity, allowing the solution to

move freely through the boundary. The first three Riemann invariants are:

Ry =V, — 2Tal
Y
Ry =V, + 24 (2.26)
Ry=2

pY

2.4. BOUNDARY CONDITIONS 11

subsonic supersonic
Inflow | Freestream: Ry 3456 Freestream: all
Extrapolation: R, Extrapolation: none
Outflow | Freestream: R; Freestream: none
Extrapolation: Ry345¢ | Extrapolation: all

Table 2.1: Logic for far-field boundary conditions using Riemann invariants

where R;, R, and R3 are obtained from locally one-dimensional characteristics corre-
sponding to \y = V,, —a, Ay = V,, + a, and A3 =V, respectively and V,, is the outward
normal velocity component at the boundary. Note that Rj is an isentropic relation.

Three more equations are necessary:

Ry =Vq
Rs = Vi (2.27)
Re =v

where V;; and Vs are tangential velocities, and © is the turbulent eddy viscosity variable.
Determination of the appropriate selection of extrapolation versus freestream values are
summarized in Table 2.1

Viscous Outflow

At a viscous outflow boundary downsteam of the wing, a simple zeroth-order extrapola-
tion of the flow variables provides a sufficient closure of the equations, as suggested by

Pueyo and Zingg [27].

2.4.2 Solid Wall

In contrast to the inviscid wall conditions which need to satisfy flow tangency, a viscous

flow about a solid surface needs to satisfy the no-slip condition:
u=0, v=0, w=0 (2.28)

In addition to the no-slip boundary conditions, the pressure is determined from:

op B
<a_n)wall - (2:29)

12 CHAPTER 2. GOVERNING EQUATIONS

If an adiabatic wall condition is also assumed, then:

oT
<%)wall =0 (230)

Assuming a perfect gas, p = pRT, and using Equation 2.29, one can then arrive at the

dp B
<%)wall - (231)

For the turbulence model, the turbulent eddy viscosity is zero at the surface:

fiftth wall boundary condition:

7=0 (2.32)

Chapter 3
Numerical Algorithm

This chapter details the spatial discretization, time-stepping method, and the efficient

method by which the system of linearized equations is solved.

3.1 Spatial Discretization

Finite differencing of the mean flow equations follows the procedure developed by Steger
[33] and Pulliam [29], and implemented in ARC2D. A scalar artificial dissipation scheme

by Jameson et al. [10] is also used.

3.1.1 Inviscid Fluxes

Inviscid fluxes in the Navier-Stokes equations involve first-order derivatives. Here, the
algorithm uses a three-point center-difference spatial discretization on the interior nodes.
In the computational domain, the spacing is uniform and equal to one. Therefore, the

finite difference approximation can be described as:

8E Ej—i—lkm_ Ej—lkm
— =~ = —— — Ap. 3.1
(ag) ' 2 Dy,k,m ()
Jikym
aF ij—i—lm_Ejk—lm
— R —— ——— — Ap. 3.2
<an> . 2 D],k,m ()
J.k,m
aé ijm+1 - éjk‘m—l
— ~ 0 = — Ap. 3.3
<8C> " 2 Dy,k,m ()
j? 7m

where Ap is an artificial dissipation term.

13

14 CHAPTER 3. NUMERICAL ALGORITHM

Artificial Dissipation

Numerical dissipation is implemented to damp out high frequency oscillations that arise
due to the use of the centered difference method. These oscillations are particularly
prevalent in regions of shocks where sharp pressure gradients are experienced, and need
to be eliminated in order for the code to converge.

The method through which this is accomplished is a second and fourth-difference scalar
dissipation scheme developed by Jameson et al. [10]:

Ap,y = Ve (D2, + D) (3.4)

1]+%7k7m J+%7k7m

where V is the backward-difference operator. The second and fourth-difference dissipative

terms, D*) and D) are given by:

j+35.km L km
(2¢) _ 42 A
D) =, Ve (S5 @sim) (3.5)
4 4 A
D =, VA (S5 @sim) (3.6)
The second-difference coefficient, dﬁzl 1. 18 defined as:
27)
2) _ -1
s =20 9T 0 (3.7)
where 0© the spectral radius of the flux Jacobian % is:

o® = U]+ a\/2+ € + & (3.8)

and e is:
€k = K2 0505, 0 +0.25 (T i + Lo)] (3.9)
where
e = MAX (Vi1 kms Vjkms Tjo1,km) (3.10)
T, = [Pt 1,km = 2Djkm + Dj—1km] (3.11)
-]7 7m - .

Dj1,km T 2P km + Dj—1km]
Equation 3.11 acts as a switch that detects the presence of shocks while Equation 3.10

is a smoothing function for T.

3.1. SPATIAL DISCRETIZATION 15

A fourth-difference dissipative term is used in smooth regions and is switched off in
regions near shocks where the term is found to cause oscillations. The fourth-difference

coefficient is given by:

d;.i)l b, = Max [O, 2K4 (J(OJ_I)
297

d®] (3.12)

jtskm Uit km
Values for k9 and k4 are supplied by the user and are typically 1.0 and 0.02 respectively.
The construction of the dissipative terms in the 1 and (directions are done in a similar

way, except that Equation 3.11 is omitted in the (-direction following Nemec [22].

3.1.2 Viscous Fluxes

The discretization of the viscous fluxes requires a slightly different approach since they

involve second order derivatives of the form:

e (@t k;mOeBj k,m) (3.13)

It is desirable to maintain the three-point stencil for all interior nodes while preserving
the accuracy of the scheme. Thus, the following compact three-point stencil (developed
by Pulliam in [29]) is used:

Ag (aj—i—%,k,m (Vg/@j,k,m)> = aj—l—%,k,m (ﬁj-i—l,k,m - ﬁj,k,m) - O‘j—%,k,m (ﬁj—Lk,m - ﬁj,k,m)

(3.14)
where A is the forward-difference operator and
Q1 km T Qjkm Qjkm T Qjt1km
aj—%,k,m — J 2 J al’ld ay+%,k,m — J 2 J (315)

are the values of « at the half points of the nodes in the ¢ direction. The differencing in
the n and (directions are done in a similar manner.

Where the viscous terms take the form:

O (0 kmOe B k,m) (3.16)
the spatial discretization is performed as follows:
1 . = B .
Oy (0 kmOeBjkm) =~ §aj7k‘+l,m (5J+1,k+1, - Bi—1k+1,)
1 j —1m — Mj—1,k—1m
— 5%k-1m (ﬁﬁl’k - 5 LBESE) (3.17)

Similarly, the cross-derivatives in the other combinations of directions follow this proce-
dure. Note that these terms are dropped during the building of the approximate flow

Jacobian.

16 CHAPTER 3. NUMERICAL ALGORITHM

3.1.3 Turbulence Model

The discretization of the Spalart-Allmaras turbulence model is done in much the same

way as the viscous and inviscid terms as described in the original paper [32] and by Godin

[9]-

Convection

Each of the three convection terms can be discretized using a first-order upwinding

scheme:
ov 4 /- -
Ua_g ~ Uly Uigr — Vicgr) Ul g (D — Digir) (3.18)
ov . -
Va—n ~ Vi Wige = Vijoak) + Vi Pijrik — Vi) (3.19)
o7 L
Wﬁ_C ~ Wi Wik — Vige—1) + Wi (Figaer — Vijk) (3.20)

where U, V, and W are the contravariant velocities, and the 4+ and — superscripts

indicate forward and backwards differencing respectively, as given by:

1 _ 1
Ui = 5 Wige +1Uijel) s Ui = 5 Wik = [Uijal)
1 _ 1
‘/;—i]—k = 5(‘/;;7j7k+|‘/;7j7k|)’ Vz]k 2(i,5,k |Vwk|)
1 _ 1
Wihe = 5 Wige + 1Wisal) s Wiz =5 Wige — [Wijl) (3.21)

Diffusion

All cross derivative terms in the diffusion terms are dropped once they are transformed

into curvilinear coordinates. The diffusive terms are then approximated by the following:

Ve v+0)Vi] ~ (§&+E&+E)0: [(v+)(& + & + §.)0: ()]
+ (e + 1y +12)0y (v + 7) (0 + 1y + 12)0,(D)]
+ (G + G+ GO (v + D) (G + Gy + C)O:(7))] (3.22)

<
i
2

(Co + &y +&)06 [(§o + &y +£2)0:(D)]
+ (e + 1y +12)0 (02 + 1y + 12)0,(7)]
+ (G + G+) (G + Gy +)0 (D)) (3.23)

3.1. SPATIAL DISCRETIZATION 17

As one might expect, the diffusion terms above exhibit the same form as the viscous
terms in the Navier-Stokes equations. Equations 3.13 through 3.15 can then be used.
Production and Destruction

The vorticity components in the transformed coordinates of the production term can be

discretized using simple centered differencing;:

Sy = %[fy(wjﬂ,k,m —Wj—1km) T Ny(Wjkt1,m — Wjk—1,m)
+Cy (Wi kme1 — Wikm—1) — E(Vjr1km — Vim1km) (3.24)
Nz (Vjprtm — Vjp—tm) — C(Vjkmr1 — Vjpm—1)]
~ 1
Sy = §[§z(uj+1,k,m —Uj 1 km) T N(Uikgrm — Uik—1,m)
FC(UWkme1 = Wikm—1) — Ea(Wjt1km — Wj-1m) (3.25)
_nw(wj,k—l—l,m - wj,k—l,m) - Cﬂc(wj,k,m—‘rl - wj,k,m—1)]
Sy = %[ﬁw(ijrLk,m —Vj—tkm) T Ne(Vjk+im = Vjk—1,m)
+Ce(Vj kmt1 — Vikom—1) — E(Ujr1m — Uj—1km) (3.26)
=1y (W ke 1m — Ujk—1m) — Cy(Ujkme1 — Wjkm—1)]

3.1.4 Boundary Conditions
Solid Wall

The solid wall boundary conditions for an inviscid flow can be found in Nichols’ thesis
[24].
The boundary conditions for a viscous flow are explained in Section 2.4.2. Unscaled

values are used here and are discretized as:

Pjkmwan — Pikmpanz1l = 0 (3.27)
(Pw)jkampa = 0 (3.28)

(PV)j ke = 0 (3.29)
(PW)j e as = 0 (3.30)

Pikmuan — Pikmuanl = 0 (3.31)
Vikm =0 (3.32)

18 CHAPTER 3. NUMERICAL ALGORITHM

where the £1 index modifier indicates that the solid surface occurs either at the top

(m — 1) or the bottom (m + 1) of a block.

Inviscid Far-field Boundary Condition

As discussed in Section 2.4.1, the selection of the inviscid far-field boundary conditions
is dependent on the inflow or outflow condition at that point. The first two Riemann

invariants can be discretized as follows:

T P Ot o 11 Ml 55
(V”(vil)\/?)m - (V”wil)\/?)j,kvmm_fo (334)

where V,, is the normal velocity at the block face. Riemann invariants R3, R4, R5 and Rg

depend on whether the flow is entering or exiting the boundary. For an inflow boundary:

3 Y
<p—) - (p—) =0 (3.35)
p J.kmmaz p (o)
(V) kmpmae = (Vit)oo = 0 (3.36)
(‘/;2)j7k7mmax - (‘/tQ)oo = 0 (337)
Vjosmmas — Voo = 0 (3.38)

where V;; and Vs are the tangential velocities on the boundary. For an outflow boundary:

Y Y
), (0), -
p jykymma:v p j,k,mmaz—l
(%1)j7k7mmaz - (th)j,k,m7nw_1 =0 (3.40)
(‘/t2)j,k7mmax - (‘/;2)]'7]677”7””_1 =0 (341)
I;jyk,mma:v - I;jyk,mma:v_l - 0 (342)

Viscous Far-field Boundary Condition

As discussed in Section 2.4.1, this boundary condition is called where the flow is known

to be outflowing, and subject to viscous effects (such as downstream of a wing). They

3.2. LINEARIZATION AND NEWTON’S METHOD 19

are as follows:

(Pika) our = (Pidesm) g1 = ()

((pw)j km) e = ((PU)j k) e —1 = (3.44)

((p0)ikem) e = ((PV) gk) g1 = (3.45)

((0w)jikm) g = ((PW) ki) g1 = (3.46)
(Pjkm) gt — Pikm) gug—1 =0 (3.47)

(3.48)

(ﬁj,kvm)out =0

Symmetry

The amount of computational effort can be drastically reduced by imposing symmetry
boundaries where appropriate. This type of boundary is used for cases where the normal
velocity and normal derivatives in any one of the three directions on a given flat face
boundary are zero. Such cases include flows around infinite airfoils, and wing and wing-
body geometries where no yaw and roll angles are present. The symmetry condition
consists of zeroing all flow variable gradients across the plane to ensure the solution is

unchanged, and ensuring flow tangency by specifying V,,=0.

Block Interfaces

Block interfaces occur where two blocks are connected. Continuity of the solution at
this boundary is ensured through a series of “ghost” or “halo” nodes. These nodes share
the same physical space as interior nodes in a neighbouring block (see Figure 3.1). No
equations are solved at these nodes. Instead, the equations at the interior nodes in Block
2 are solved and then copied to the halo nodes in Block 1. The number of halo nodes
used is dependent on the size of the stencil required for the spatial discretization. The

nodes at the interface are solved independently on each block.

3.2 Linearization and Newton’s Method

After the transformation and discretization of the Navier-Stokes equations, the system

of equations takes the form:

. n(e) = o

20 CHAPTER 3. NUMERICAL ALGORITHM

—— Physical Boundary
. Halo Planes

BLOCK 2 —— Block Interface

[J Interior Nodes

O Halo Nodes

BLOCK 1

Figure 3.1: Halo nodes on a two-dimensional slice of two three-dimensional blocks for a

13-point stencil

where R is the set of discretized equations, and Q is now the set of discretized flow
variables. Note that discretization of the spatial terms has turned the original PDEs into
a set of coupled ODEs.

If one is interested only in steady-state solutions, then the equations simplify to:

R (Q) —0 (3.50)

In addition, if we are interested in turbulent flows, then @ includes the turbulent eddy

term v:

Qb = (3.51)

L djkm
and the turbulence model equation is added to R(Q).

In order to solve the above equations using a quasi-Newton approach, this set of
nonlinear equations needs to be linearized. This is done by first performing a Taylor
series expansion of R about a solution state Q™ and then dropping higher-order terms

in the expansion:

N

R <Q<n+1>> ~R (Qm)) +AMAOM — (3.52)

where

AQM = QD) — Q) (3.53)

3.2. LINEARIZATION AND NEWTON’S METHOD 21

and the Jacobian matrix of R (also called the flow Jacobian) is given by:

(n)
A = (8—]?) (3.54)
oQ

Equation 3.52 can be rewritten as:
AMAOM — _R <Q<n>) (3.55)

The solution to the system yields AQ), which is used to update the flow variables at the
next step:

QU = QM + AQ™ (3.56)

Newton’s method is desirable due to its quadratic rate of convergence. However, this
is rarely achieved during startup due to the fact that Newton’s method is only a good

n+1

approximation of RV for small AQ close to the final solution. It is much more practical

to use an implicit Euler time-stepping method, which combines stability and speed:

At

where At is the time-step and [is an identity matrix.

n
[L + A} AQ™ = —R™ (3.57)

Note that a fixed time-step in an implicit Euler formulation yields only a linear con-
vergence rate. However, Newton’s method can be recovered as the time-step is iteratively
increased such that At — oo near convergence.

In the above equations, A is an exact linearization of the fluxes and turbulence model.
A first-order approximate Jacobian, 4; can also be used to solve the same system of
equations. This is beneficial since instead of storing information from thirteen blocks
at each node, only the nearest neighbours will be saved (seven in total). Called the
approximate-Newton method, this approach can improve speed by being more diagonally
dominant and reduce memory requirements via a reduction in the size of the stencil. The

fourth and second-difference dissipation coefficients are combined using;:
2) _ (2 4
dY = d® + od® (3.58)

where d}()z) is the combined dissipation term. The parameter o will be determined through

a numerical study in Chapter 5.

3.2.1 Linearization of the Interior Scheme
Inviscid Flux Jacobian

For the linearization of the inviscid interior scheme, see Nichols [24].

22 CHAPTER 3. NUMERICAL ALGORITHM

Viscous Flux Jacobian

The cross-derivative terms are removed when forming the Jacobian matrix. Without

these terms, the viscous Jacobian is given by:

[0 0 0 0 0 |
mor 10:(p~") 20 (p~") azd(p”') O
dp (8) = J N ma asd(p) aud(pt) asd(pt) 0 | J (3.59)
ma a30(p™') az0(p™!) asdi(p™t) 0
| 51 M52 ms3 Mg M55 |

with
mar = —0(u/p) — 20 (v/p) — a0 (w/p)
mz = —a0(u/p) — aud(v/p) — as0.(w/p)
ma = —a30(u/p) — as0.(v/p) — a0 (w/p)

ms1 = ard[=(e/p*) + (u” + 0" + w?)/p]
—0,(u?/p) = a0, (v*/ p) — a6 (w?/ p)
—2a50.(uv/p) — 2030, (vw/p) — 2a50.(vw/ p)

msz = —az0(u/p) —ma
ms3 = —a70.(v/p) —msz
mse = —ar0(w/p) — ma
mss = a70.(p7t)

o = (nt) [(4/3)] + ¢ + <]

1
Qg = g(ﬂ+ﬂt)§x§y
ag = (u+ut)<m§z
ay = M+Mt) [2+ (4/3)s2 + 2]
a; = (u+ut)<y<z
ag = u+ut [+ o) 4 (4/3)s7]

ar = v (uPr~ + wPrit) (o 4+ +<7)

where = E, for¢ =&, 8= F, for¢ =nand g = G, for ¢ = (.

3.2. LINEARIZATION AND NEWTON’S METHOD 23

Linearization of the Turbulence Model

The turbulence model is included into the flow Jacobian in the following manner:

a/]__l “ .. “ .. “ .. o« .. a/16
Q26
A = | C (136 (3.60)

j,k,m
Q46

Q56

Qg1 Qg2 Ag3 Qg4 Aes Aee | .
L d j,km

where the entries in the 5x5 block in the upper left corner of the matrix correspond to
contributions from the Navier-Stokes equations, and the sixth row and column are from
the turbulence model.

Note that entries a4 through asg are zero, while the off-diagonal terms ag; through
ags result from the vorticity terms in the Spalart-Allmaras equation.

The differentiation of the turbulence model can be done without much difficulty, with
all the terms corresponding to the model in two dimensions. The differentiation of the

vorticity term can be found in Appendix B.

3.2.2 Linearization of the Boundary Conditions

Boundary conditions are treated implicitly in order for the code to converge quadratically.
The linearization of the viscous boundary conditions in three dimensions is completely
analogous to those which are done in two dimensions by Pueyo [27]. The boundary

conditions from Section 3.1.4 can be presented in the following form:

B(R)=0 (3.61)
where R is the set of flow variables:
P
R=|" (3.62)
w
p
v

24 CHAPTER 3. NUMERICAL ALGORITHM

Newton’s method as applied to this set of equations yields:

PAR = —B™ (3.63)
where o
oB\"
P=|(— 3.64
(5) (3.64)
The selection of the flow variables in 'R makes necessary a transformation of the
update AR back into the working flow variables Q A transformation matrix M = g—g,
is thus defined:
AQ = MAR (3.65)
where M is given as:
1 0 0 0 0 0]
u p 0 0 0 0
0 0 0 0
M= ! P (3.66)
w 0O 0 p 0 O
w?+v?+w? 1
SRS puopvopw 0
I 0 o0 0 0 1
Equation3.64 can then be written as:
PM~YJAQ = —B™ (3.67)
——
AR
where
[1 0 0 0 0 0]
-4 1 0 0 0 0
P P
-2 0 1 0 0 0
Mt = p p (3.68)
" 0 0 % 0 0
(y =D —(y=Du —(y =1 —(y=Dw y—=1 0
I 0 0 0 0 0 1]

Solid Boundary

For the linearization of the inviscid boundary conditions, see Nichols [24]. The lineariza-

tion at the solid-wall boundary condition for a viscous flow can be written as:

[PM‘UAQ] . [PM‘UAQ] — _B™ (3.69)

jvkvmmin/max Ik Mmaz+1

3.2. LINEARIZATION AND NEWTON’S METHOD

25

The Jacobians at the surface of the body and one-off the surface for a no-slip condition

are:

<8_3) _
R JsksmMaant

(o%)
IR JsksMaati+1

Far-field Boundary

1 0
u p
v 0
w 0
0 0
0 0
(10
0 0
0 0
0 0
0 0
0 0

o O o o o

o O O O o O

o O o o O

o O O O o O

oS = O O O O

S = O O O O

_ o O O O O

o O O O o O

Jsksmaant

Jykmuwati+1

(3.70)

(3.71)

For the inviscid inflow far-field boundary conditions, refer to Nichols [24]. Linearization

of the viscous outflow far-field boundaries can be represented in the same general form

as that of the viscous solid boundary in Equation 3.69, where instead, the Jacobians are:

(%)
aR jvkvmmin/max

(%)
8R jvkvmmin+l/maw71

IS

o o &

IS

o o &

o O O O T O

o O o o O

o O O O T O

o O o o o

o O o o o

o o o o o

S = O O O O

S = O O O O

_ o O O O O

= jvkvmout

- o O O O O

4 3kmout—1

(3.72)

(3.73)

26 CHAPTER 3. NUMERICAL ALGORITHM

3.3 Solution to the Linear Problem

From the spatial discretization and the application of Newton’s method, there now arises
a linear system of equations. It is desirable to solve these equations in an efficient manner.

An obvious method would be to directly solve the system. But due to the size of
the linear system, this may be very expensive. A more cost-effective solution would be
to use an iterative solver such as Generalized Minimal Residual (GMRES), BiConjugate
Gradients or BiConjugate Gradient Stabilized. GMRES approximates the solution to

the linear system by building a solution in a Krylov subspace using a minimal residual.

3.3.1 Jacobian-free GMRES

A highly desirable property of GMRES is that it does not require the explicit formation
of the Jacobian matrix. Instead, only a matrix-vector product is used. The matrix-vector

product itself can be approximated using a first-order Fréchet derivative of the form:

R(Q + ev) — R(Q)
€
where € is a small scalar perturbation parameter tuned to provide an accurate approxi-

A-v (3.74)

mation of the matrix-vector product. The size of this parameter is determined following

the work done by Nielsen et al. in [26] and is given by:

¢~ Vem (3.75)

v

where ¢, is the value of machine zero for the hardware used in the computation and v is
the RMS value of v.

3.3.2 Inexact-Newton Method

The exact solution to the system is expensive to compute due to the size of the matrix.
The solution to the linear system at each Newton iteration can be solved up to a certain

accuracy, controlled by convergence parameter 7, in the following manner:
IR™ + AW AQ™|| < ™| RM| (3.76)

Note that as 7™ — 0 for all n, Newton’s method is recovered, and the system is solved
exactly. A well chosen 7 value will maintain a good balance between under and over-
solving the system. This value is determined through a numerical study documented in
Chapter 5.

3.3. SOLUTION TO THE LINEAR PROBLEM 27

3.3.3 Preconditioner

The flow matrix may become numerically stiff when a large spread in the eigenvalues is
encountered. This decreases the efficiency of the GMRES solver as the equations become
more difficult to solve. The purpose of a preconditioner is then to create a system where
the eigenvalue spectrum is clustered about one. The preconditioning matrix can be
applied to the left or the right of the flow matrix, but right preconditioning is chosen
since the residual is left unchanged. This is preferred since the residual is required for
checking the convergence criterion at each iteration.

Thus, the preconditioned system is written as follows:

I A
[E + A] MTIMAQ = —R (3.77)
where M is the preconditioning matrix. Note that the preconditioned system AM ™1
should be much better conditioned than A4, and M~! should also closely approximate
A~! while being much more efficient to compute. The preconditioner is formed using an

incomplete lower-upper factorization based on the approximate flow Jacobian A;.

3.3.4 Incomplete LU Factorization

The preconditioner is formed using an incomplete lower-upper factorization. This method
generates two sparse matrices: a lower triangular matrix £ and an upper triangular

matrix U:

Ai=L UL -U=M (3.78)

where £ and U are the exact incomplete LU factorization of A; while £ and U are

approximate factorizations.

The fill factor k& allows the user to select the accuracy of the M matrix relative to the

approximate flow Jacobian. The higher the integer value of k, the more representative

the matrix is of A;. This parameter will be determined experimentally in Chapter 5.
The construction of the approximate factors £ and U must be done in such a way

that:

U LTP=MT = A! (3.79)

while being much cheaper to compute than a direct inversion of Aj.

28 CHAPTER 3. NUMERICAL ALGORITHM

3.3.5 Reverse Cuthill-McKee Nodal Reordering

The natural ordering of the terms in the flow Jacobian produces a sparse matrix with
a large bandwidth. The goal of the Reverse Cuthill-McKee method [5] is to reorder
the equations in a way such that the matrix entries are clustered near the diagonal,
resulting in a reduction in the bandwidth. This is important for decreasing the storage

requirements and improving the effectiveness of the ILU factorization algorithm [27].

3.4 Algorithm Startup

Two methods are used to converge the solution in TYPHOON: an approximate-Newton
method which uses a first-order approximate Jacobian, and a Jacobian-free method. The
former is used during the startup phase of the convergence, while the latter is used to

converge the code to machine zero.

Startup is the most important phase of the flow solve. This is because the initial flow
field is far from the converged solution, and the Newton method works well only near the
region of the solution. A modified Newton method (Implicit Euler) is used to obtain an

intermediate solution from which the Jacobian-free inexact-Newton method can proceed.

The use of an approximate Jacobian along with the inexact solution of the linear sys-
tem of equations at each non-linear iteration results in the approximate-Newton method.
This is used as a startup for the flow solver. Although slower than the Jacobian-free

inexact-Newton method, it is far more stable during the initial phases of convergence.

The switch from the approximate-Newton method to the Jacobian-free inexact-Newton
method is determined through the parameter Rg, ,, which is found by conducting a nu-

merical study. The results of this study are shown in Chapter 5.

3.4.1 Local Time-Stepping

A local time-stepping method is used in TYPHOON. The time-step, At as first shown in
Equation 3.57, is added to the preconditioner to strengthen its diagonal, and therefore,

stabilize and accelerate convergence.

3.4. ALGORITHM STARTUP 29

Mean Flow Time-step

The pseudo-time term for the mean flow equations during the approximate-Newton phase

is determined locally according to work done by Pulliam in [29], and is given by:

(m) Aty
JAN 3 A S— 3.80
N .
where J; i, is the local metric Jacobian, and At,.s is a global reference time-step that
is increased as the solution develops.

The reference time-step is based on a geometric formula used in HURRICANE [14, 15]

and is given as follows:
At = A, A =B ALY (3.81)

For the laminar grids used, A = 0.25 and B = 1.125 while the values for turbulent grids,
A =1.00 and B = 1.300. For inviscid grids, which typically have smaller aspect ratios,
values as reported by Nichols are A = 1.00 and B = 1.7 [24].

Once an intermediate solution to the flow has been obtained, the Jacobian-free
inexact-Newton method is employed. The Switched Evolution Relaxation method de-

veloped by Mulder and van Leer [21] is used and is given by the following:

Atfz; = max Lﬁ,
(7")

where o and (8 are constants typically set to 1.0 and 1.3 repectively, and At,,;, is the

Atyin (3.82)

minimum time-step allowed whose value is 50.
The parameter dictating which solution method to use is the relative residual defined

by:
1R™]]
[|RO]

where R™ is the residual at outer iteration n, and R® is the starting residual.

R = (3.83)

Turbulent Time-step
Following the work done in two-dimensions by Chisholm [3] and in three-dimensions by
Wong [37], the turbulent time step is determined by:

M il <
Atgng _ (3.84)

| Atim| otherwise

30 CHAPTER 3. NUMERICAL ALGORITHM

where the estimate of the local update variable 6; 1 ,,, is calculated using:

__ _EO)pm
Ojikum = 46,6 (3.85)

Jkm

and where R [(6)],, ,,, is the turbulent variable at each given node in the residual equation,
and [A4,(6,6)];
A; at node j,km.

is the sixth diagonal component in the 6 x6 block of the Jacobian matrix

The maximum update variable 04z, ,, is calculated locally using:
6maxj»k,m = maX(Dijﬂm 10) (386)

where r is a limiting variable used to minimize the update. This value is typically 0.3.
The limiting time-step Aty;,, is determined by solving:

Jj km
(r%kv - [A1(6,6)]j,k7m) Ok = = [R(6)]jjm (3.87)
limj i.m

At each Newton iteration, the turbulence variable is checked for negative values and

clipped in the following manner:

1x 107 if on a solid wall
5= (3.88)

Uso otherwise

where 7 is the freestream eddy viscosity parameter, typically set at 0.001. This clipping
method has been found by Chisholm [3] and Wong [37] to improve the stability of the

solver.

Chapter 4
Grid Generation

The manner in which meshes are generated plays a critical role in the convergence of the
flow solution. The grid generation tool that was used was ANSYS Inc’s ICEM CFD v.11.

4.1 Blocking Strategy

The current blocking strategy is unchanged from that presented by Nichols in [24]. The
arrangement of the twelve blocks is shown in Figure 4.1. The surface mesh consists of

clustered edges and unsmoothed nodes (see Figure 4.2).

4.2 Problem Definition

The intersection of the eight blocks at the finely clustered nodes of the wingtips poses
a major challenge to the grid generator. The problem manifests itself as skewing or
wrinkling when fine clustering is needed (Figure 4.2), for example during laminar or
turbulent mesh generation. Skewing or wrinkling does not necessarily cause the metric
Jacobian to become inverted, although this is often the case. Only careful inspection of
the pre-mesh in the GUI can determine this.

The inability to finely cluster nodes at the wing tip results in greatly stretched cells
near the wingtip and leading edge intersection. This in turn affects the convergence of
the solver, in particular, during startup.

The determinant in ICEM is the main indicator of mesh quality. Although it is similar
to the metric Jacobian in TYPHOON;, the values can differ greatly.

31

32 CHAPTER 4. GRID GENERATION

Figure 4.1: TYPHOON’s 12-block configuration

The algorithm for calculation of the determinant in ICEM involves the computation
of all 27 metric Jacobians in a 27-node hexahedron at each cell volume. From this, the
maximum value is reported. In contrast, the metric Jacobian in TYPHOON is calculated
at each grid node. Thus, ICEM may report negative determinants indicating inverted
cells when the mesh may actually be usable. The reverse can also occur, where non-

negative determinants show up as inverted nodes in TYPHOON.

4.3 Smoothing

ICEM employs various grid smoothing mechanisms for structured grids. The multiblock
method performs elliptical smoothing and is specially optimized for use in blade config-
urations. Indeed, use of the smoother on a multiblock grid with a single element airfoil
produces pinching at the trailing edge which results in poor flow solutions (Figure 4.4).

Orthogonality smoothing in ICEM is another elliptical smoother and produces better

4.3. SMOOTHING 33

15
i / / /Z 777
- ///I
I /%//"”];;;;cf,fm
1
> B
05

!
////////IIIII

0
0)//////17] / /
/////I/II;;II /77777777 /777177
/1) /77 17777777

Figure 4.2: Surface mesh on an ONERA M6 wing

results (see Figure 4.4). This method is generally desirable since the spatial discretization
is the most accurate on orthogonal grids, and the transformation of the equations into
curvilinear coordinates produces the fewest terms [6]. The surface grid must first be
frozen to aid the stability of the smoother. The stabilization factor should be chosen as
low as possible to improve orthogonality of the off-wall nodes. The number of iterations
should also be minimized since the algorithm will inevitably attempt to improve the mesh
near the wall surface at the expense of the viscous off-wall spacing.

Parameters for orthogonal smoothing are shown in Table 4.1. In addition, wing faces
should be frozen and the “define edges” option should be selected so that the node

distribution on the edges on the wing is also prevented from changing.

34

5

CHAPTER 4. GRID GENERATION

(a) uninverted - 1.3x1073¢

(b) inverted - 1.0x10~3¢

Figure 4.3: Mesh inversion at the wingtip and leading edge intersection due to changes

in wingtip spacing

Parameter Surface Value | Volume Value
Iterations 1 10
Grid Expansion 0.1 2
Stabilize Factor 1 2
Use Ortho. Dist. N/A N/A
Smooth Type Laplace Laplace

Table 4.1: Orthogonal smoothing parameters in [ICEMCFD

4.3. SMOOTHING

il

SN\l / E
— |
’ b — =
ZAG I
77 /’/’ /lllllllll”,',',',',l'l'l,nmnnﬂ'\\\\\\\\\\\§
NN
7) AN

A

(b) Mach contours

7777

/117

Y

/

ﬁwy

N il
Savay ///

i
/)7

cooooooooo000
chbNNReREO G =
OO NNNW® RO
ZEIGIRIREHR

) \" '...n !
B it |

(c) Grid 2 (d) Mach contours

Figure 4.4: Mesh smoothed using multiblock method (a) and resulting flow solution (b);
Mesh smoothed using orthogonality method (c) and resulting flow solution (d).

35

36

CHAPTER 4. GRID GENERATION

Chapter 5
Algorithm Optimization

A word of caution to begin this chapter: the convergence rates were found to be quite
dependent on the grid. The parameters that are optimized in this section were found to
be optimal for the grids that the author was able to generate. From experience, it has
been shown that grids with average aspect ratios closer to unity converge more rapidly.

The parameters here are optimized under the assumption that each is independent
of the others. This is an idealization - determination of a true optimal set will be an

expensive iterative process that has been forgone here.

5.1 Test Cases

A summary of the flow conditions used in the parametric study is shown in Table 5.1.
Flow conditions in test cases 1 and 2 are laminar while those in cases 3 and 4 are turbulent.
A different grid was used on each of the four flow solves. A multiblock configuration of
twelve blocks about an ONERA M6 wing is used with the parameters prescribed in Table
5.2.

Case Number | Mach number | Reynolds Number | Angle of Attack (°)
1 0.5 600 3.0
2 0.84 600 3.0
3 0.5 2.88x 108 3.0
4 0.84 2.88x10° 3.0

Table 5.1: ONERA M6 wing test cases

37

38 CHAPTER 5. ALGORITHM OPTIMIZATION
Grid | Grid | Chords | Off-wall LE TE Root Tip Nodes
Size to Far | Spacing | Cluster | Cluster | Cluster | Cluster | on Wing
Field 10~%¢ 1073¢ | 1073¢ | 1073¢ | 1073¢ | Surface
A | 173,604 10 1 0.05 0.3 50 1.3 1568
B | 173,604 10 1 0.5 0.1 2 1.3 1568
C | 176,400 10 0.5 1.0 1.0 1 1.3 2310
D | 236,716 10 0.5 2.5 10.0 2.5 1.3 3362

Table 5.2: Grids used in the ONERA M6 wing parametric study

Symbol Parameter
k ILU fill level
o Preconditioning parameter
i Inexact Newton convergence parameter
Ry, Approximate-Newton convergence parameter

Table 5.3: List of parameters in the numerical study

5.2 Parametric Study

A numerical study of the four parameters shown in Table 5.3 was conducted.

5.2.1 ILU Fill Level (k)

The ILU fill level (k) determines the number of non-zero elements in the matrix to keep
during the factorization. The higher the level, the more accurate the representation of the
original matrix. Optimality for this parameter is defined as the value which minimizes
the convergence time to a given residual reduction factor (two orders for the approximate-
Newton phase and eight orders for the Jacobian-free phase).

The results for the laminar flows are shown in Figures 5.1 through 5.4. The optimal fill
level for both the approximate-Newton startup phase, and the Jacobian-free convergence
was found to be one. Although fill level zero may be faster in certain cases than fill level
one (Figure 5.3), it may have difficulty converging, or may require a reduction in time-
step. Note that the cases for ILU(0) and ILU(3) did not converge due to the development

of negative pressures at the trailing edge wingtip (see Figure 5.1).

5.2. PARAMETRIC STUDY 39

——=—— ILU(0)
—— ILU(1)
< ILU(2)

——o—— ILU(3)

1 <><>\ | - TR
4000 6000 8000
CPU time (s)

Figure 5.1: Laminar subsonic ILU fill level parameter (k) optimization; approximate-
Newton phase (M=0.5, a = 3.0°, Re=600, grid A)

Figures 5.5 through 5.8 show that for turbulent flows, an ILU fill level of one provides
the optimal CPU time to convergence. Fill level zero has difficulty converging for the
transonic case. Note the effect of negative v clipping on the residual in Figures 5.6 and
5.8. The clipping performs well in stabilizing the turbulence model, preventing the flow
solution from diverging. Negative values typically occur at the points near the wing tip

and the trailing edge of the airfoil.

5.2.2 Preconditioning Parameter (o)

The preconditioning parameter ¢ combines the second and fourth-difference dissipation
terms in the preconditioner, as discussed in Section 3.2. In the laminar regime, these
were are found to be optimal at values of 4.0 for transonic flows, and 6.0 for subsonic
flows (see Figures 5.9 and 5.10). Note that the flow solver had difficulty converging the
flow for values below six in the approximate-Newton phase of the subsonic flow solves.
The best turbulent values were found to be 3.0 for both subsonic and transonic flows (see
Figures 5.11 and 5.12).

40 CHAPTER 5. ALGORITHM OPTIMIZATION

10° oy
——=—— 1LU(0)
———— 1LUQ)
102 ILU(2)
———o—— ILU(3)
10
&
10°
10° -
\\\‘\
-10 1 1
10 1000 2000 3000
CPU time (s)

Figure 5.2: Laminar subsonic ILU fill level parameter (k) optimization; Jacobian-free
phase (M=0.5, « = 3.0°, Re=600, grid A)

o ——=—— ILU(0)
—— 1LU(1)
ILU(2)
——o—— ILU3)

5000] 10000
CPU Time (s)

Figure 5.3: Laminar transonic ILU fill level parameter (k) optimization; approximate-
Newton phase (M=0.84, a = 3.0°, Re=600, grid B)

5.2. PARAMETRIC STUDY 41

100
———=—— 1LU(0)
— s 1LUQ)
» ILU(2)
107 ILU(3)
10"
&
10°
10%
10-10\ [[[4\\\\
0 1000 2000 3000 4000

CPU Time (s)

Figure 5.4: Laminar transonic ILU fill level parameter (k) optimization; Jacobian-free
phase (M=0.84, « = 3.0°, Re=600, grid B)

——=—— ILU(0)
—— 1LU(1)
ILU(2)
——e—— ILU(3)

D:'c 10

-2 L 1 VRN I 1
10 10000

CPU time (s)

Figure 5.5: Turbulent subsonic ILU fill level parameter (k) optimization; approximate-
Newton phase (M=0.5, a = 3.0°, Re=2.88x10%, grid C)

42

CHAPTER 5. ALGORITHM OPTIMIZATION

——=—— ILU(0)
e 1LU(1)
ILU(2)
——e—— ILU3)

0 10000
CPU time (s)

Figure 5.6: Turbulent subsonic ILU fill level parameter (k) optimization; Jacobian-free
phase (M=0.5, a = 3.0°, Re=2.88x10°, grid D)

10° -
a = ILU(0)
B ‘ \ ——a— ILU@1)
i e 1LU(R)
whk ||| ——— ILU@d)
E L
C |
i \
\
nc“lo"\@U
2 [
Y | o
0 L
T7
F \
- 1
10'2\\|l\\|\\|\\|\\|\
0 2000 4000 6000 8000 10000
CPU time (s)

Figure 5.7: Turbulent transonic ILU fill level parameter (k) optimization; approximate-

Newton phase (M=0.84, a = 3.0°, Re=2.88x10%, grid C)

5.2. PARAMETRIC STUDY 43

ILU(0)
ILU(1)
10°f ILU(2)
ILU(3)
10°
7\
o 10* /\
/'
A
10° ” |
/\ |
a
10 / ‘\\
-
-10 1 Ll
10 2000 4000 6000 8000

CPU time (s)

Figure 5.8: Turbulent transonic ILU fill level parameter (k) optimization; Jacobian-free

phase (M=0.84, a = 3.0°, Re=2.88x10°, grid D)

450 Approximate-Newton
i ——=—— Jacobian-Free

400 [-
2 | f\ o
L350 a
5350 5 P /
L T A
= y
0 N
L300 / A
0: — q
0250 - m

200 A

150 £ L 1

10

o
(4]

Figure 5.9: Laminar subsonic preconditioning parameter (o) optimization (M=0.5, o =

3.0°, Re=600, grid A)

44

CHAPTER 5. ALGORITHM OPTIMIZATION

|
|
i Approximate-Newton |
——=—— Jacobian-Free |
600 "r'
|
’/
= /
2 "
o r/
=} | |
o /
[J] |
= 5 |
" |
1N} A
x 400 |~
=
Q B
200 1 1 1 1 1 i |
0 2 4 6 8 10 12
o

Figure 5.10: Laminar transonic preconditioning parameter (o) optimization (M=0.84, «

= 3.0°, Re=600, grid B)

i Approximate-Newton
1000 ——=—— Jacobian-Free
0800 |-
C - i
Ke)
- = .
g =
] i R
=600 |- N -
n | e
wo[N .
@
s B
(400 |-
200 |~
- 1 1 1 1 1 i |
0 2 4 6 8 10 12
o

Figure 5.11: Turbulent subsonic preconditioning parameter (o) optimization (M=0.5, «

= 3.0°, Re=2.88%10%, grid C)

5.2. PARAMETRIC STUDY 45

! Approximate-Newton

1000 - ——=—— Jacobian-Free

»n800 |- N =

c

2 i &

E - \

o B

—600 |-

(%) | .

Lu =

[0

s B

(H400 |~

200 |- D\EJ,,E,_E/&,,?,H},,,,,\
- [[1 1 Ly L
0 2 4 5 3 15 4
(¢}

Figure 5.12: Turbulent transonic preconditioning parameter (o) optimization (M=0.84,

a = 3.0°, Re=2.88x105, grid D)

46 CHAPTER 5. ALGORITHM OPTIMIZATION

1400
i ——=—— subsonic
1200 - ——=—— transonic
21000
i) i
= |
o i
£ 800
) [
L
@ |
s 600 -
] B
E |
O 400 -
= B AP
| v w
200 |~
i Ll T | I | Ll
%07 10° 10° 10" 10°

r]AN

Figure 5.13: Laminar inexact-Newton parameter (n4y) optimization; approximate-

Newton phase (grid A)

5.2.3 Inexact-Newton Parameter (7))

The inexact-Newton parameter dictates the accuracy to which the linear system is solved.
For laminar flows, the parameter was found to be the most robust for values of approxi-
mately 0.1 during the approximate-Newton startup phase. As seen in Figure 5.13, nay
values less than 0.1 may tend to lead to convergence difficulties. A value between 0.01 and
0.1 for n;r was found to minimize the number of GMRES iterations (Figure 5.14). Tur-
bulent flows required values of 0.1 for both the approximate-Newton and Jacobian-free

phases. This was true for subsonic and transonic flows (Figures 5.15 and 5.16).

5.2.4 Approximate-Newton Convergence Parameter (Ry,,)

This threshold parameter governs the transition from the approximate-Newton startup
method to the Jacobian-free method. The main indicator used is the relative residual
parameter defined in in Equation 3.83. A well-chosen reduction parameter will reduce
the amount of time the algorithm takes to converge while preventing divergence in the
solution.

For laminar flows, a relative residual reduction of two orders of magnitude is recom-

5.3. SUMMARY OF OPTIMAL PARAMETERS 47

700
n ——=—— subsonic
600 [———=—— transonic
* B
2 i
8500
g [
g [
" i
{1400 (-
o N
= | \\\\
o | —
5300 - ~ —
=) B —
T E\s\f“/x///}ffﬂ
200 -
| IR | IR | IR |
1095+ 10 10” 10"
Nae

Figure 5.14: Laminar inexact-Newton parameter (1,r) optimization; Jacobian-free phase
(grid A)

mended for subsonic flows and factor of thirty for transonic flows (see Figure 5.17). For
turbulent flows, the optimal values were found to be three orders for subsonic flows, and

two orders for transonic flows (see Figure 5.18).

5.3 Summary of Optimal Parameters

The optimal parameters in TYPHOON for laminar and turbulent flows are listed in Table
5.4.

48

CHAPTER 5. ALGORITHM OPTIMIZATION

500
i ——=—— subsonic
B ——=—— transonic
400 -
) K
c
kel i
E |
9300 B
(%) B “m
Ll L
[0 =
=200 (-
O] 5 s
] - a
o |
[| — s
100 | e
| Ll A | R | RN |
%07 10° 10 10" 10°
rIAN

Figure 5.15: Turbulent inexact-Newton parameter (n4y) optimization;

Newton phase (grid C)

1400
1200
1000

800

Total GMRES lterations

600

409

Figure 5.16: Turbulent inexact-Newton parameter (n;r) optimization;

phase (grid D)

———=—— subsonic
transonic

I

=
Ll

10!

10°

Ll
10°
Nae

10°

10"

<
&

approximate-

Jacobian-free

5.3. SUMMARY OF OPTIMAL PARAMETERS 49

800 -
[°
i ——s—— Subsonic
750 ——=—— Transonic
i -
® - \
.9700 -
‘@’ B
o B
0650 - =
wl =
[a'd =
= B b
o n
600
i .
550 |- .
| Ll Ll |
10 10° 10° 10*
Rdtol

Figure 5.17: Laminar approximate-Newton residual reduction tolerance parameter (Ry,,,)

- grids A and B

850 - V

——=—— Subsonic
——=—— Transonic

©
o
o

G\‘M RES lterations
(o]
o

700
10*

Figure 5.18: Turbulent approximate-Newton residual reduction tolerance parameter

(Rg,,) - grids C and D

50 CHAPTER 5. ALGORITHM OPTIMIZATION
Parameter Laminar Turbulent
Approx-Newton | Jacobian-free | Approx-Newton | Jacobian-free
ILU fill (k) 1 1 1 1
Inexact-Newton (7) 0.1 0.01 0.1 0.1
Preconditioner (o) 4.0 6.0 3.0 3.0
Subsonic Transonic Subsonic Transonic
Residual Tol (Ry,,,) 100 30 1000 100

Table 5.4: Summary of results from parametric study

Chapter 6

Results and Validation

All results in this section were computed on the University of Toronto’s High Performance
Aerospace Computing Facility (HPACF), specifically, on the Hewlett-Packard ES45 Al-
phaServers and 1000MHz EV68CB Alpha Processors.

6.1 2D Validation

6.1.1 Blasius Solution

The Blasius equation is an exact solution of the boundary-layer equations for a steady
incompressible two-dimensional flow over a flat plate at zero degree angle of attack. It
was shown by Blasius that under these conditions, the boundary layer equations could be
reformulated into a single third-order ordinary differential equation simply by selecting an
appropriate coordinate transformation. The ODE can then be solved using a numerical

solution procedure, such as the Runge-Kutta method [35].
The velocity profile obtained from TYPHOON is compared against the velocity profile

obtained from the solution to the Blasius equation. The flow conditions are M=0.20 and
Re=1000. The mesh used contains 152,106 nodes and consists of a near-wall 101x201-
node block to more accurately capture the boundary layer (see Figure 6.1.1). Leading
edge, trailing edge, and off-wall spacings are all 1x107%c. The results are plotted in
nondimensional form following [20] and are shown in Figure 6.1. TYPHOON exhibits
the basic shape closely with slight overshoot, but at most, the error between the Blasius
solution and TYPHOON is about 2%.

51

52 CHAPTER 6. RESULTS AND VALIDATION

10~

Blasius
TYPHOON

0000000

o]

Figure 6.1: Comparison of TYPHOON surface velocity profile against Blasius solution

Case Flow Mach Number | Reynolds | Angle of Attack
Condition Number (°)
1 Subsonic 0.63 600 2.0
2 Subsonic 0.63 2.88 x 106 2.0
3 Transonic 0.8 600 1.25
4 | Transonic 0.8 2.88 x 106 1.25

Table 6.1: Flow conditions for the 2D validation test cases

6.1.2 NACAO0012 Airfoil

The airfoil selected for validating the code is the NACA0012. Table 6.1 shows the grids
and flow conditions on which the code was validated. The laminar results are compared
against results obtained from OPTIMA-MB, a well-tested two-dimensional flow solver.
The six-block H-grids for the cases in this section were generated using AMBER2D,
an in-house mesh generation program. The grids are extruded into six slices for use in
TYPHOON. Off-wall spacing for the laminar cases is 5x10~%c and for the turbulent cases
is 1x107% while the number of chords to the farfield is 20. Leading edge and trailing

edge clustering is 10~*c for all four grids. Clustering was performed on the upper surface

6.2. 3D VALIDATION 53

|

i L L L AR |

9.4 9.6 9.8 10 10.2 10.4 10.6
X

(a) complete grid (b) inner blocks

Figure 6.2: The computational grid used in the Blasius solution comparison. Note that
every second node has been removed for the purposes of this graphic. Mesh lines are in

red, while block boundaries are in black

at 0.55¢ of the turbulent transonic airfoil in order to more accurately capture the shock.
The size of the grid is 11,280 nodes for the laminar cases, 15,390 nodes for the subsonic
turbulent case, and 24,888 for the transonic turbulent case. The results for the laminar
cases are shown in Figures 6.3 and 6.4, while those for the turbulent cases are shown in
Figures 6.5 and 6.6. The correlation between the two codes is quite good for all cases
with slight discrepancies in the transonic turbulent case likely attributed to the use of the
full Navier-Stokes equations in TYPHOON as opposed to the thin-layer Navier-Stokes
equations in OPTIMA-MB.

6.2 3D Validation

The validation for three-dimensional flows is performed on the ONERA M6 wing. It is
a benchmark validation geometry for turbulent flow solvers with a widely-compared set
of experimental data collected by Charpin and Schmitt [31]. The CPU temporal unit
of measure is the equivalent right-hand-side evaluation defined as the total CPU time

divided by the time for one right-hand-side evaluation. This normalizes the convergence

54 CHAPTER 6. RESULTS AND VALIDATION

0.2

OPTIMA
0.4 a TYPHOON

o 2
Q06
0.8

[uny

=
)

poop
o »
o\ r]rm-rr\ U D Rl

(a) Cp distribution

(b) Mach contours

Figure 6.3: TYPHOON laminar subsonic flow over a NACA(0012 airfoil (case 1)

6.2. 3D VALIDATION

A
y

U ———— OPTIMA
0.4 a TYPHOON

O 06

o
b
T

I
N

PR
o N
o\l‘\‘rvlr\"‘fl""\\rlvw

(b) Mach contours

Figure 6.4: TYPHOON laminar transonic flow over a NACA0012 airfoil (case 2)

o6

CHAPTER 6. RESULTS AND VALIDATION

OPTIMA
TYPHOON

(b) Mach contours

Figure 6.5: TYPHOON turbulent subsonic flow over a NACA0012 airfoil (case 3)

6.2. 3D VALIDATION 57

OPTIMA
2 TYPHOON

-0.5

05

(b) Mach contours

Figure 6.6: TYPHOON turbulent transonic flow over a NACA0012 airfoil (case 4)

58 CHAPTER 6. RESULTS AND VALIDATION

Grid Size | Chords to | Off-wall LE TE Root Tip Nodes on
Far Field | Spacing | Spacing | Spacing | Spacing | Spacing | Wing Surf
(1073¢) | (1073¢) | (1073¢) | (1073¢) | (1073¢)

105,042 10 0.02 0.63 0.31 2.3 3.0 882
261,000 10 0.01 0.25 0.13 0.85 1.3 1250
488,880 10 0.01 0.25 0.13 0.87 1.3 2450
859,360 10 0.01 0.25 0.13 0.87 1.3 4182

Table 6.2: Summary of grid characteristics used in the 3D laminar convergence study

Grid Size Cy Ch
100k 0.1538 | 0.0700
250k 0.1425 | 0.0816
500k 0.1281 | 0.0749
800k 0.1408 | 0.0712

Table 6.3: TYPHOON laminar lift and drag grid convergence results for the ONERA
M6 at M=0.5, Re=600, a=3.0°

histories to produce data that is independent of the CPU and computer architecture

used.

6.2.1 Grid Convergence Studies
Laminar Flow

The flow conditions for the laminar study are M=0.5, Re=600, and a=3.0°. The flows
were all converged to a residual of 10715, A summary of the grid characteristics is shown
in Table 6.2. The coefficients of lift (C) and drag (Cp) for each of the grids is tabulated
in Table 6.3, while the convergence histories in equivalent right-hand-side evaluations are

shown in Figure 6.7.

Turbulent Flow

The flow conditions for the turbulent study are M=0.6998, Re=11.74x10°, and a=0.04°.
The TYPHOON results are compared against the experimental results obtained by

6.2. 3D VALIDATION 59

——=—— 100K
= 250K
———e—— 500K
800K
| \ \
10 PR IR WHN NN A - P -
2000 4000 6000 8000

CPU Time (RHS evaluations)

Figure 6.7: TYPHOON convergence histories for laminar grid convergence study on the
ONERA M6 wing

Charpin and Schmitt in [31]. A summary of the grid characteristics is shown in Ta-
ble 6.4 and flow results at six spanwise locations are shown in Figure 6.9. Note that the
leading edge and tip clustering are virtually unchanged between the three grids tested,
resulting from the grid generation issues discussed in Chapter 4. The convergence his-
tories in equivalent RHS evaluations is shown in Figure 6.10. A pressure contour plot is
depicted in Figure 6.11 for the 500k node grid. Convergence histories for the three grids
are plotted as a function of equivalent right-hand-side evaluations in Figure 6.10. Note
the effect of the turbulence model clipping as seen in the convergence histories.

The results show that the grids used tended to cause TYPHOON to underpredict
the pressure coefficient at the leading edge, while over predicting it at the trailing edge.
Increasing grid points in the flow field seems to improve the solution slightly, but the
inability to refine spacing at the leading edge and wing tip has prevented further study

of the effects of grid refinement.

60

CHAPTER 6. RESULTS AND VALIDATION

Figure 6.8: Pressure contours of an ONERA M6 wing at M=0.5, Re=600, a=3.0° (800k-

node grid)
Grid Size | Chords to | Off-wall LE TE Root Tip Nodes on
Far Field | Spacing | Spacing | Spacing | Spacing | Spacing | Wing Surf
(1073¢) | (1073¢) | (1073¢) | (1073¢) | (1073¢)
133,152 10 0.02 0.5 0.25 2.5 2.5 3362
261,000 10 0.01 0.25 0.5 0.85 1.3 3362
488,880 10 0.03 0.25 1.0 1.0 1.3 2450

Table 6.4: Summary of grid characteristics used in 3D turbulent convergence study

6.2. 3D VALIDATION

Experimental
0.4 130K
—-—-—-— 250K
— — — - 500K
0.6
081
L. T - L1 T - L1
0 0.2 0.4 0.6 0.8
xlc
(a) 20% span

Experimental
130K
—-—-—-— 250K
— — — — 500K
0.6 |-
osl
L T T T It T
0 0.2 0.4 0.6 0.8

Experimental
130K
—-—-—-— 250K
— — — - 500K

08 - -

(e) 90% span

0.6

0.8

0.6

0.8

-0.6

-0.4

Experimental
130K
———-— 250K
- — — - 500K

o1

0.2 0.4 0.6 0.8 1

Experimental
130K
—-—-—-— 250K
— — — — 500K

T

(d) 80% span

-0.2
0
o
6]
02 Experimental
130K
—-—-—-— 250K
04 — — — — 500K
0.6
0.8k TR IR TR TAN R]
0 0.2 0.4 0.6 0.8

(f) 96% span

61

Figure 6.9: ONERA M6 wing C,, distribution, M = 0.6998, o = 0.04°, Re= 11.74x10°

62 CHAPTER 6. RESULTS AND VALIDATION

10-11

10"

10-15

I I I T A\ W |
0 2000 4000 6000 8000 10000
CPU Time (RHS evaluations)

Figure 6.10: TYPHOON convergence histories for the 3D turbulent grid convergence
study

Figure 6.11: Pressure contours of an ONERA M6 wing at M=0.6998, Re=11.74x105,
a=0.04° (500k-node grid)

Chapter 7

Conclusions

7.1 Summary

A 3D Navier-Stokes flow solver known as TYPHOON has been developed. TYPHOON
uses structured grids and models turbulence through the one-equation Spalart-Allmaras
model. The flow domain is decomposed into multiple blocks, and then transformed into
the curvilinear domain. TYPHOON uses second-order finite-differencing and a second
and fourth-difference dissipation scheme first presented by Jameson et al [10]. The dis-
crete equations are solved using a quasi-Newton method. The linear system of equations
arising from each Newton iteration is efficiently solved using a Krylov subspace method
(GMRES). To improve the efficiency of the solver, the linear system is preconditioned
using an incomplete lower/upper factorization of an approximate Jacobian matrix, and
solved inexactly. A first-order approximation to the Jacobian is used at the initial startup
phase of the solution convergence, switching later to a faster Jacobian-free method. This

combination has been determined to provide stability and speed to the algorithm.

A numerical study has been conducted to optimize the parameters for the viscous
and turbulent terms in the code. A two-dimensional validation study was performed and
compared the current TYPHOON algorithm against the well-tested 2D OPTIMA flow
solver. On a NACAO0012 airfoil at various flight conditions both laminar and turbulent,

the study shows that there is good correlation between the two.

A grid convergence study was also performed for an ONERA M6 airfoil at subsonic
flow conditions for both laminar and transonic cases. Turbulent TYPHOON results for

various grid sizes were compared against experimental results obtained by Charpin and

63

64 CHAPTER 7. CONCLUSIONS

Schmitt [31] but due to grid spacing issues, convergence was not noticed.

7.2 Recommendations

It is recommended that the grid generation problems be resolved first. The inability to
generate high resolution meshes affects both convergence and accuracy. One possible
solution is to implement multiple-boundary condition faces into TYPHOON. This will
open up new possibilities in blocking and meshing that may help to resolve tip clustering
issues. Once this is done, more complex geometries such as wing-body configurations can
then be attempted.

Grid sequencing has been shown by Chisholm and Zingg [4] to improve the stability
of the turbulence model and should be implemented into TYPHOON. The addition of
matrix dissipation will improve accuracy of the flow solution by reducing the amount of
dissipation needed. Further on, the addition of tripping terms should be considered for

solutions of mixed laminar and turbulent flows.

References

1]

2]

J. D. Anderson, Fundamentals of Aerodynamics, 3rd Ed., McGraw-Hill, Boston,
2001.

G. A. Ashford, An Unstructured Grid Generation and Adaptive Solution Technique
for High Reynolds Number Compressible Flows, PhD thesis, University of Michigan,
1996.

T. T. Chisholm, A Fully Coupled Newton-Krylov Solver with a One-Equation Tur-
bulence Model, PhD thesis, University of Toronto, 2007.

T. T. Chisholm and D. W. Zingg, A Fully-Coupled Newton-Krylov Solver for Tur-
bulent Aerodynamic Flows, Paper 333, ICAS 2002 Congress, Sept. 2002.

E. Cuthill and J. McKee, Reducing the Bandwidth of Sparse Symmetric Matricies,
Proceedings of the 1969 24th Association for Computing Machinery National Con-
ference, New York, pp. 157-172, 1969.

L. Ega, Orthogonal Generation Systems, in J. F. Thompson, B. K. Soni and N. P.
Weatherill (Eds.), Handbook of Grid Generation (pp. 7-1 to 7-25), CRC Press LLC,
Baca Raton (FL), 1999.

N.T. Frink, Tetrahedral Unstructured Navier-Stokes Method for Turbulent Flows,
ATAA Journal, 36 (1998), pp. 1975-1982.

P. Geuzaine, Newton-Krylov Strategy for Compressible Turbulent Flows on Unstruc-
tured Meshes, ATAA Journal, 39 (2001), pp. 528-531.

P. Godin, Turbulence Modeling for High-Lift Multi-Element Airfoil Configurations,
PhD thesis, University of Toronto, 2004.

65

66

[10]

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

REFERENCES

A. Jameson, W. Schmidt and E. Turkel, Numerical Solutions of the Euler Equations
by Finite Volume Methods Using Runge-Kutta Time Stepping, AIAA Paper 81-1259,
June 1981.

D. C. Jespersen, Parallelism and OVERFLOW, NAS Technical Report NAS-98-013,
October 1998.

D. C. Jespersen, T. Pulliam and P. Buning, Recent Enhancements to OVERFLOW
(Navier-Stokes code), AIAA Paper 97-0644, January 1997.

E.M. Lee-Rausch, Transonic Drag Prediction on a DLR-F6 Transport Configuration
Using Unstructured Grid Solvers, ATAA Paper 2004-0554, Reno, NV, Jan. 2004.

J. Lassaline, A Navier-Stokes Equation Solver Using Agglomerated Multigrid Fea-
turing Directional Coarsening and Line-Implicit Smoothing, PhD Thesis, University
of Toronto, 2003.

T. Leung, Parallel Implementation of a Newton-Krylov Flow Solver on Unstructured
Grids, Master’s Thesis, University of Toronto, 2004.

D. W. Levy, et al., Summary of Data from the First AIAA CFD Drag Prediction
Workshop, ATAA Paper 2002-0841, Reno, NV, Jan. 2002.

H. Lomax, T. H. Pulliam and D. W. Zingg, Fundamentals of Computational Fluid
Dynamics, Springer-Verlag, Berlin, 2001.

D. J. Mavriplis, Grid Resolution of a Drag Prediction Workship Using the NSU3D
Unstructured Mesh Solver, ATAA Paper 2005-4729, Toronto, Canada, June 2005.

G. May and A. Jameson, Unstructured Algorithms for Inviscid and Viscous Flows
Embedded in a Unified Solver Architecture: Flo3zz, AIAA Paper 2005-0318, Reno,
NV, Jan. 2005.

G. May, E. Van der Weide, A. Jameson and L. Martinelli, Drag Prediction of the
DLR-F6 Configuration, AIAA Paper 2004-0396, Reno, NV, Jan. 2004.

W. Mulder and B. Van Leer, Ezperiments With an Implicit Upwind Method for the
FEuler Equations, Journal of Computational Physics, 59 (1985), pp. 232-246.

REFERENCES 67

[22]

23]

[24]

[31]

M. Nemec, Optimal Shape Design of Aerodynamic Configurations: A Newton-Krylov
Approach, PhD thesis, University of Toronto, 2003.

M. Nemec and D. W. Zingg, A Newton-Krylov Algorithm for Aerodynamic Design
Using the Navier-Stokes Equations, ATAA Journal, 40 (2002), pp. 1146-1154.

J. Nichols, A Three-Dimensional Multi-Block Newton-Krylov Flow Solver for the
Fuler Equations, MASc thesis, University of Toronto, 2004.

J. Nichols and D. W. Zingg A Three-Dimensional Multi-Block Newton-Krylov Flow
Solver for the Fuler Equations, ATAA Paper 2005-5231, 2005.

E. Nielsen, K. Anderson, R. Walters and D. Keyes, Application of Newton-Krylov
Methodology to a Three-Dimensional Unstructured Euler Code, AIAA Paper 95-1733,
1995.

A. Pueyo, An Efficient Newton-Krylov Method for the FEuler and Navier-Stokes
Equations, PhD thesis, University of Toronto, 1998.

A. Pueyo and D. W. Zingg, Efficient Newton-Krylov Solver for Aerodynamic Com-
putations, ATAA Journal, 36 (1998), pp. 1991-1997.

T. H. Pulliam, Efficient Solution Methods for the Navier-Stokes Equations, Lecture
Notes For The Von Karman Institute For Fluid Dynamics Lecture Series: Numeri-
cal Techniques For Viscous Flow Computation In Turbomachinery Bladings, NASA
Ames Research Center, January 1986.

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Problems, STAM Journal on Scientific and Statistical
Computing, Vol. 7 (1986), pp.856-869.

V. Schmitt and F. Charpin, Pressure Distributions on the ONERA-M6 wing at Tran-
sonic Mach Numbers, paper, Office National D’Etudes et de Recherches Aerospa-
tiales, 1979.

P. Spalart and S. Allmaras, A One-FEquation Turbulence Model for Aerodynamic
Flows, ATAA Paper 92-0439, January 1992.

J. Steger, Implicit Finite Difference Simulation of Flow About Arbitrary Geometries
With Application to Airfoils, AIAA Paper 77-665, June 1977.

68 REFERENCES

[34] Transport Canada: Economic Analysis Directorate, Transportation Canada Aviation

Forecasts: 2003-2017, Government Printing House, Ottawa, 2004.
[35] F. M. White, Viscous Fluid Flow, McGraw-Hill Book Company, New York, 1974.

[36] P. Wong, D. W. Zingg, Three-Dimensional Aerodynamic Computations on Unstruc-
tured Grids Using a Newton-Krylov Approach, AIAA Paper 2005-5231, Toronto, ON,
June 2005.

[37] P. Wong, A Compressible Navier-Stokes Flow Solver Using the Newton-Krylov
Method on Unstructured Grids, PhD thesis, University of Toronto, 2006.

Appendices

69

Appendix A

3D Curvilinear Coordinate

Transformation

Cartesian coordinates can be described as a function of curvilinear coordinates &, n and

C.

T=1
{=E(z,y,21)
n=n(zy,z1)
(=C(z,y,2,1)

Metric relations can be acquired by expanding the Cartesian partial derivative operators

in terms of the curvilinear coordinates using the chain rule.

Oy 1 & m G 0,
| _ |0 & & & Ok
0y 0 n: ny 7 Oy
0] [0 G G GO
J .)

Conversely, one can take the curvilinear partial derivative operators and perform a similar

expansion:
_8T- _1 te tC-_ﬁt-
| |0 x ye z || O
Oy 1o Ty Yn 2y Oy
¢ 0 ¢ yo 2z | | 0
y >

71

72 APPENDIX A. 3D CURVILINEAR COORDINATE TRANSFORMATION

O bir bz bz bu Oy
Oy —J 0 b boz by 0%
Oy 0 bsx b3z b3y Oy
i 0. | i 0 bag baz buy 1L O¢ |
B-1 !

where J, the inverse determinant of A (also called the metric Jacobian), can be written

as:

~1
J70 = Teypac + YezgTe + ZeTnle — TeZnle — YeTpic — ZeYnTe

The components in B are given by:

bit = Teyezc + YernTc + 2eTnYc — TeZnYo — YelnZe — Zenc
bio = e 2nY¢ + YpTn2e + 2YnTe — TeYn2e — Ye2nTe — ZTnlc
big = T Ye2e + Ye2eTe + 2Ty — Te2elYe — Yelee — ZYeke
bia = X 2eYy + Yre 2y + 2Ye Ty — TelYe2y — Ye2eTy — 2 Teln
bas = Yn2c — ZnYc

bas = Zeye — Yezc

bas = Y2y — 2eYy

bz = 2pT¢ — Tp2¢

bsg = xeze — 2ex¢

bag = 2ey — Tezy

baz = Tyyc — Yn¢

bz = Yec — Teyc

b44 = TeYn — Yely

By comparing the individual terms in A~ with those in B, one can arrive at the met-
ric relations with which we can write the Cartesian derivatives in terms of curvilinear

derivatives.

e = J[(Ynzc — 29Yc)0s + (2¢Yc — Yezc) Oy + (Yezn — 2eyn)Oc]
= J (Sxﬁg + nxﬁn + Cxag) (Al)

A.1. 3D Viscous FLux TERMS IN CURVILINEAR COORDINATES

Oy = J(zgr¢ — 2y2¢)0e + (2 — 26w)0y + (267 — Te2y) O]
= J(&0¢ + 1,0, + (,0¢)
9. = J[(@gyc — Yprc)0e + (Yere — weyc) Oy + (Teyn — Yery) O]

73

(A.2)

(A.3)

Averaged values of the centered differences for the grid values (x¢, x,, x¢, etc.) are used

to calculate the metrics (&, &, &, etc.) such that metric invariants are satisfied and can

be found in Section 2.2.1 of Nichols’ thesis in [24].

A.1 3D Viscous Flux Terms in Curvilinear Coordi-

nates

Using the above metric relations, we can describe the viscous flux vectors by the following

expressions:

TZ‘Z

| TuoU + TayU + Toow + KT,

7_ZZ

Togl + ToyU + Toow + KT,

| Tyat + Tyyv + 1w + kT, |

74 APPENDIX A. 3D CURVILINEAR COORDINATE TRANSFORMATION

The shear and normal stresses are given by:

2
Tow = 2(f0 + fhe) Uy — g(,u + pe) (ug + Uy + w,)

Tay = (10 +) (uy + 02)
Taz = (0 pe) (uz + ws)

Tyz = Tay

9
Tyy = 2(p =+ 1) vy — g(u + 1) (g + vy + W)

Ty = (0 +) (v2 + wy)
Tze = Tzz
Ty = Tyz
2
Tor = 2(p+ pe)w, — = (p +) (uy + vy + w,)

3
By applying curvilinear coordinate transformation, the viscous flux vectors become:

E, = JY&E, +&,F, +E£G)
F, = J! (anv + 77va + 77va)
Gy, = JGE,+(F, +(G,)

where the shear stresses in general curvilinear coordintes are given by:
4 2
Tax = (:u + /~Lt> g (gmuﬁ + nxun + CﬂcuC> - g (gyvﬁ + van + gyUC + gzwﬁ + nzwn + Czwg‘)

Tmy = (:u + /J’t> (gyuﬁ + Wy“n + gyuC + gacvﬁ + nmvn + gmvc)
Toe = (U +) (§ue + Ny + CU¢ + Epwe + npwy, + Cewe)

4 2 1
Tyy = (/J’ + ,ut) g (gy’Ug + TyUn + CyUC) - g (gﬂcuﬁ + Tz Uy + gmug‘ + gzwﬁ + 1 Wy + gsz)

Tyz = (oo peg) (fzvﬁ + 20y + e + Ewe + nywy + <yw<)

4 2]
Tz = (,u + /~Lt> 3 (gzwi + nzwy + Csz> 3 (gmuﬁ + Nty + CGue + &ve + vy + CyUC)

Also, if Fourier’é law of heat conduction is used, the kT, kT, and kT, terms in general
curvilinear coordinates become:

KT = (uPr" + pPry) (v — 1) 7 [&0c(a”) + 1.0, (a”) + G0 (a”)]

KTy = (wPr=t + wPry) (v — 1) [&,0¢(a®) + 0,0y (a®) + ¢, 0¢ (a?)]

KT, = (uPr=" + pPr) (v = 1) [6:0¢(a”) + 120, (a”) + ¢.0c (a”)]

A.2. TURBULENCE MODEL IN CURVILINEAR COORDINATES 75

0
EoTuw + §yTuy + EaTuz
Ey=J7" | &y + &y + &7y
§oTea + §yTay + 2Tz
E,5

0
NeTex + Ny Tey + N2Taz
F,=J" NaTyx + NyTyy + N=Tyz
NaTex + MyTay + N2Taz
Fos

0
CxTxx + CyTxy + ngxz
GU = J_l CxTyx + CyTyy + CZTyz
Cxsz + Cysz + <z7—zz
GU,5

wPr=t + pPrit

Eys = Tugl + Ty + Tpow + () [5285(a2) + nzﬁn(a2) + Czag(cf)]

v—1
Pr—t + u,Pr;t
Fos = Tyoti+ Tyt + 7w + (“ _’it !) [€,0¢(a®) + 0,0y (a®) + ¢, (a?)]
73 —1 P —1
Gus = Teal+ Toy¥ + T + <M : tlf n) [€:0¢(a®) + 1.9, (a%) + (.0 (a?)]

A.2 Turbulence Model in Curvilinear Coordinates

Recall the turbulence model from Equation 2.7. We now expand the substantial derivative

and drop the trip functions:

817 817 8& 8& . Cp1 = 1—|— Cp2 - - Cp2 - 9~
ot * Ox dy 0z Re dRe V-l +2)vil G'JR’e(VjLV)V v

1 7\° A
- Ecwlfw (8) ()

We ignore all time terms since we are only concerned with steady-state solutions and

76 APPENDIX A. 3D CURVILINEAR COORDINATE TRANSFORMATION

write the spatial derivatives in curvilinear coordinates using Equations A.1 through A.3:

ugg = <£x 5-%nx + G C)
G = (o gy o)
w% = <€z ot aﬂ+<’z C)
Now rewriting the left hand side of Equation A.4:
JEutgut @wgg—z +J (et + nzwgg—f] I (Gu A Gut czwgg—g
U % W

On the right hand side, we must deal with the spatial derivatives within V and S. The
transformation of vorticity within S is carried out in Appendix B. The derivatives in the

del operator can be transformed in a rather straight forward manner and yield:

0 0 0
V = 5+ o + 5
= J (&0t + 10y + CuO¢ + €40 + 10,0 + Cy0c + E.0¢ + 1.0, + (.O¢)
0? 0? 0?
2 P [[[
v 0x? + oy? + 0722

§y85 (§y85 + nyan + Cyaé‘) + 77y817 (§y85 + nyan + Cy8C) + Cy8C (fyaﬁ + ny&v + Cyﬁc)
Szaf (gzaf + 772877 + CzaC) + 7720?7 (5285 + 772077 + CzaC) + CzaC (gzaf + 772877 + CZaC)}

-+

By dropping cross-derivative terms in the above equation, we arrive at the Spalart-
Allmaras turbulence model in curvilinear coordinates:

ov ov ov s 14y 4 Cyo 9 7\?
J<U8§ V Wag)_cblsy+ = JT, 5_(V+V)JT2 Cot fuw y

where

817_ 0 . O] 0

st foeoct]
L PPl ov]| 8 %
gyﬁg (v +7 £y8£_ g, (V+V)ny%_ +Cy8C {(V+V)Cyag]

a— +c,f’C [<u+u><z C]

o€ |

[Sxaf (gxaf + nxan + CxaC) + 77:0877 (Sxaﬁ + 77:(:877 + C:caC) + <:caC (Sxaﬁ + nxan + C:caC)

15

+ &

o
%
i
&y 9
o
9%

€

Appendix B

Vorticity Differentiation

Vorticity:

G [(0u o0\, (0u_ow\,, (%0 0w,
[\oy 0z 0z Ox J Jxr Oy

In curvilinear coordinates:

S = J[(§0:w + NyOqw + GyOcw) — (§.0:v + 1:0pv + C:0v)]i
+ J [(£.0:u + 1.0,u + (0 u) — (£,0:w + 0, 05w + (O0cw)] j
+ J [(£:0cv + N2:0nv + CeOcv) — (§y0¢u + MyOnu + GyOcu)] k

= J (511 + Soj + S3k)

Discretized using second-order centered-difference method:

1
)

+ Cy(wj,k,m—i-l - wj,k,m—l) - gz(vj-‘rl,k,m - Uj—l,k,m)

S [fy(wjﬂ,k,m - wj—Lk,m) + Uy(wj,k+1,m - 'wj,k—Lm)

- ﬁz(vj,k+1,m - Uj,k—Lm) - Cz(vj,k,m+1 - Uj,k,m—l)]

1
Sy = §[fz(uj+1,k,m = Ujmtem) (Ut m = Ujk-1m)
+ ettt = Uganot) — Ex(Wyt o — Wy 1m)
— Ne(Wj ket 1,m — Wjk—1,m) — Co(Wjkm+1 — W) km—1)]
1
Ss = §[fm(vj+1,k,m = Vj-tkm) + e (Vjs1m = Vjk-1,m)

+ G (Vjkme1r = Vikm—1) = &y (Uit km — Uj—1k,m)

— My (U ket 1m — Ujk—1,m) — Cy(Wjkmt1 — Ujkm—1)]

79

80 APPENDIX B. VORTICITY DIFFERENTIATION

The flow variables are given by the vector:

pu
pv
pw
pe

Qj,k,m -

= j7k7m
Write vorticity in terms of flow variables @) (note that Ql =J@Q1)

$1(Q) = 36[(Qu/@)1km — (Qu/ Q)1
+ %ny[(Q4/Q1>j,k+l,m — (Q4/Q1)j,k—1,m]

+ %Cy[(Q4/Ql)j,k,m+l —(Q4/Q1)j 1]
1

= E(Qs/Q)s+10m = (Qs/ Q1) 1m)
— QD) — (@5 @01
— SGQ/D)skmir — (Qa/Dr)im]
$5(Q) = SE1Q2/ @) s1km — (Q2/ @)1
+ %nz[(Q2/ Q)jkrrm = (Q2/ Q1) jk-1m)
+ 561Q2/ Q)i = (Q2/ Q1)1

1
— SElQu @) 1km — (@4/ @)1
— @4/ @)1~ (Qa/)51
1
P

— ~Gl(Q1/ Q1) jpmer — (Q1/ Q1) k1]

81

Q) = 5E(Qu/O)ss1km — (@s/Qr)s1nd
+ %nm[(Q3/Ql)j,k+l,m - (Q3/Q1)j,k—1,m]

+ %Cz[(@i%/@l)j,k,mﬂ — (QS/Ql)j,k,m—l]

1

— igy[(QQ/Ql)j—l—l,k,m - (Q2/Q1)j—17’f’m]

— @2/ @)k — (Q2/ @)]

1 - N
— 50l(@2/Qu)jrmrr = (Q2/Q1)jkim—1]
Magnitude of the vorticity is written as: ||S|| = /S? + S2 + S2

Next, we take a derivative of S:

<8||S||) _ 1 (s 05, , g 05 +53853)
7,k,m

0Q JSEr e+ s2\oQ T TToQ T TP oQ

The derivatives of the three components will considered separately in the next three

sections.

82 APPENDIX B. VORTICITY DIFFERENTIATION

B.1 Vorticity Differention Terms for 5;

(), o (8), .. <@>
an j+1l.km 2 i ! le j+1,km le Jj+L,km |
>yk+1m

E— (@)
= y | =
an Jk+1m 2 L Ql J,k+1,m
= vy | = - 2
o Jikym1 2 Ql jkm1 @ jokymA1 |

() 3)
0Q3) ;11 1m N/ ik

Q
Q
3| &
wW —_
~~ ~
. .
S
t
3

|

|
N =

3

0
VR
<©> —_
iy
~~
o
Bl
+
—
3

(5:), ... 75 ()
an j—1,km 2 ’ Ql ji—1,km
(&), ()
aQS jk—1m 2" Ql Jj.k—1,m
(), k()
9 3/ jkm—1 2 ’ Ql 7, k,m—1
(5),...-)
a 4 Jj+1.km 2 ! Ql j+1.km

B.1. VortTIiCcITY DIFFERENTION TERMS FOR S;

() L (L)
8Q4 j,k+1,m 2 ! Ql J,k+1m
05, 1 (1
90:) s 27\G
Q4 5. km+1 1 4. k,m+1
(), %)
8Q4 ji—1,km 2 ! Ql i—1Lkm
(),
0Q4 jk—1,m 2 ! Ql Jk—1,m

(),)
0Q4 J,k,m—1 2 ! Ql J,k,m—1

@:[ai S, 0Sy 88 9S. 05y

8Q 0Q1 0Q2 0Q3 0Qs 0Qs 0Qs
_851:[@ 0 25 851 0}
aQ 0Q1 0Q3 0Qa4

83

84 APPENDIX B. VORTICITY DIFFERENTIATION

B.2 Vorticity Differention Terms for S,

() ale(e) e
8Q1 j+1,km 2 Q12 j+1,km Q12 J+1km |

()3 0 (3) (&)
- z ~ 2 z ~ 2
a@l 1k+1,m 2 Ql G k+1,m Ql jk+1m

jk+1m

VR
Dl
3| &
%) [\
~ ~ ~
. .
ES
+ £
I_‘ -
3
Il
DN | =
33
183
N
<p> —_
~ ~ ~

(%) (2
0622 G k,mA+1 2" Q1

GokymA-1
(&),)
9Q2 j—1,k,m 2> Ql j—1,km
(),h ()
a 2 J,k—1m 2 ’ Ql jk—1,m
(i),h 5 (3)
9 2/ jkm—1 2 ’ Ql j.k,m—1
(3),... (@)
0Q4 J+1km 2> (1 j+1km

B.2. VorTIiCITY DIFFERENTION TERMS FOR S5 85

(38, (@

8Q4 j.k+1,m 2 ’ Ql 7,k+1m
(), 0)

0Q4 G k,m+1 2™ L7 jkm+1
(Gar), (@)
8Q4 j—1,km 2 ! Q j—Lkm
(i) 2 ()
0Q4 jk—1m 2™ Q

(), ()

8Q4 Jk,m—1 2 : Ql jk,m—1

95y [89Sy 8Sa 9Ss 9S2 9Ss 852]

0Q Lo

0Q1 0Q2 0Q3 0Q4 0Qs 0Qs
852 _|:

30 =

—_

O,

—_

—_

1
1

j?k_lvm

—_

0Sz 98y 98y
0Q1 0Q2 0 0Q4 0 0}

86 APPENDIX B. VORTICITY DIFFERENTIATION

B.3 Vorticity Differention Terms for S5

()03 () ()
an j4+1,k,m 2 Ql2 j+1,km ' le J+1km |

)j,k—i—l,m_

053 _ 1 QZ’: QZ
a— = _5 C:c ~ 2 - Cy ~ 2
L/ jkm+1 Q@1 jkm1 @ jokymA1 |

() ()
0Q: jk+1lm 2 QlZ jk+1,m ’

Q2
o)

VR
Dl
3| &
o | e
~_ ~_ ~~

. .
S
t t
g :

|

|
DN | =

3

<
N
N
by
~_
o,
ES
+
I—‘
3

()40 3)
0Q2 J.k,m+1 2 Ql J.k,m4+1

(58), 00 (3
Qs J.k+1,m 2" Ql
(58,023
8Q3 g k,mA+1 2> Q1
(501), =2 (00)
8Q4 j—Lkm 2 ’ Al j—1,km
(501), =2 (31)
___TIZB =
0Q4/ jr-1m 2 1/ jk—1m

5, ()
8Q4 7,k,;m—1 2 ’ Ql j.k,m—1

o~ |
9Q

=
0Q

)j,k-l-Lm

Jik,m+1

9S3 083 0S3 0S3 0S3 09S3

0Q1 9Q: 08Qs 0Qs4 09Qs Qs

9535 053 053
Q1 0Q2 0Qs3 00 0:|

Appendix C

TYPHOON Input Files

C.1 Subsonic Turbulent Flow

The following input file is used in the turbulent grid convergence study in Section 6.2.1:

MP-OPT
1
WEIGHT FSMACH CL_TAR WFL CD_TAR RE DVALFA ALPHA
1.0 0.6998 0.25 1.0 0.023 11.74e6 FALSE 0.044d0
&0PTIMA
OPT_METH=1
&END
&TYPHOON
MIN_RES = 1E-15,
VISCOUS = true, VISXI = true, VISETA = true,
VISZETA = true, VISJAC = true, VISCROSS = false,

TURBULNT = true, WRITETURB=true,
FRECHET = false, ASHFORD = false,

RESTART = false, BODYBC = true, FARBC = true,

INORD = 2, IREORD = 2, IREAD=2, NHALO

I
N

TURBDELAY = 1,

IDMODEL=1,

89

90
DIS2X = 0.00, DIS4X = 0.02,
DIS2Y = 0.00, DIS4Y = 0.02,
DIS2Z = 0.00, DIS4Z = 0.02,
ISTREAM = 1, IGROUND = 3,
NK_ITS = 1000, BLUNT = FALSE,
NK_PDC = 5.d0, NK_IMGMR = 40, NK_

AprPENDIX C. TYPHOON InpPUT FILES

NK_LFIL = 1, NK_PFRZ = 300,
ITGMR = 100, GMR_TOL = 1d-2,

NK_TIME = 4, ISTARTUP = 2, RD_TOL = 10.0, STRTIT = 1,

RETINF = 0.001,
&END

&EXTRA
grid_file_prefix = ’grid’,

output_file_prefix = ’results’,
restart_file_prefix = ’results’

&END

C.2 Transonic Turbulent Flow

The following grid file was used for the transonic turbulent flows in the parametric opti-

mization study in Section 5.2:

MP-0PT
1
WEIGHT FSMACH CL_TAR WFL CD_TAR

1.0 0.84 0.25 1.0 0.023
&0PTIMA

OPT_METH=1
&END
&TYPHOON

MIN_RES

1E-15,

VISCOUS
VISZETA

true, VISXI
true, VISJAC = true,

true,

TURBULNT = true, WRITETURB=true,
FRECHET = false, ASHFORD = false,

RE
2.88e6

DVALFA
FALSE

ALPHA
3.0d0

VISETA = true,
VISCROSS = false,

C.2. TRANSONIC TURBULENT FLOwW

RESTART = false, BODYBC = true, FARBC

true,

INORD = 2, IREORD = 2, IREAD=2, NHALO

I
N

TURBDELAY = 1,

IDMODEL=1,

DIS2X = 1.00, DIS4X = 0.02,
DIS2Y = 1.00, DIS4Y = 0.02,
DIS2Z = 1.00, DIS4Z = 0.02,
ISTREAM = 1, IGROUND = 3,

NK_ITS = 1000, BLUNT = FALSE, NK_LFIL = 1, NK_PFRZ = 300,
NK_PDC = 3.d0, NK_IMGMR = 40, NK_ITGMR = 100, GMR_TOL = 1d-2,
NK_TIME = 3, ISTARTUP = 2, RD_TOL = 1000, STRTIT = 1,
RETINF = 0.001,

&END

&EXTRA
grid_file_prefix = ’grid’,
output_file_prefix = ’results’,
restart_file_prefix = ’results’

&END

91

