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A multipoint optimization approach is used to solve aerodynamic de-

sign problems encompassing a broad range of operating conditions in the

objective function and constraints. The designer must specify the range

of on-design operating conditions, the objective function to be minimized,

a weighting function based on the mission or fleet requirements, and a

set of performance and geometric constraints. Based on this designer in-

put, a weighted integral objective function is developed. The numerical

optimization problem is then formulated as a constrained multipoint prob-

lem with the weight assigned to each operating condition determined by a

quadrature rule. The approach is illustrated with several design problems

for transonic civil transport aircraft, and is extended to the formulation of

aircraft range and endurance objective functions for use in the design of

an unmanned aerial vehicle. The results demonstrate that the approach

enables the designer to design an airfoil that is precisely tailored to the

problem specification. Pareto fronts are presented as a means of providing

the designer with information on trade-offs that can be used to guide the

problem specification.
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C∗l,max lower bound on maximum lift coefficient constraint
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J objective function

Z designer priority weighting function

T quadrature rule weights for integral approximation

M Mach number

Mks estimate of maximum Mach number in the flow field given by the KS function

Mmax maximum Mach number in the flow field

M∗
max upper bound on maximum Mach number constraint

W aircraft weight

h altitude

R range

E endurance

R range factor

E endurance factor

R′ range factor, inverted integrand

E ′ endurance factor, inverted integrand

s sound speed

I. Introduction

Design of an aerospace vehicle is a complex multidisciplinary problem. There are an

enormous number of different operating conditions that must be accounted for. With expe-

rience the required number of operating conditions can be reduced, but it remains extremely

large. Some of these operating conditions contribute to the overall objectives of the design,

while others primarily impose constraints. The design problem is further complicated by the

fact that the aircraft will fly a variety of missions, and the fleet profile cannot be precisely

known. There are many other uncertainties, for example in the analyses, that necessitate

a robust design and an understanding of trade-offs. An additional challenge is due to the

fact that many of the operating conditions in the full flight envelope are expensive and time

consuming to simulate accurately.

Based on the preceding description, it is clear that powerful tools will be needed to tackle

such design problems and that we do not have such tools at present. Some of the desired

properties of a design system include the following:

1. Must efficiently find an optimal solution and be robust enough to allow a thorough

exploration of the design space.

2. Should be automated when designer intervention is not required and easy to interact
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with when designer input is needed.

3. Should provide the designer with feedback regarding trade-offs and the implications of

choices.

4. Must produce robust designs such that performance is insensitive to expected variance

from optimal geometry and operating conditions.

5. Must be capable of incorporating the designer’s priorities into the design.

We do not expect the design process based on such tools to proceed linearly from a

well defined problem specification to a final design. Rather we expect the feedback from

the design process to influence the problem formulation such that several iterations may be

required. A brute force approach is unlikely to be feasible, and considerable ingenuity and

expertise will be required to formulate the problem such that it is tractable.

In this paper, we take a step toward the development of an approach to optimization

problems in which the objective function and constraints involve a wide range of operating

conditions. We consider only one discipline, aerodynamics, and restrict our interest to two

dimensions, i.e. airfoil design. Moreover, we consider only a small subset of operating condi-

tions in the flight envelope and only a single configuration, a clean geometry. For a practical

design there are numerous further considerations, including high lift, aerostructural trade-

offs, aeroelasticity, and three-dimensional effects. Our objective is to apply our approach

to sample problems of sufficient complexity to demonstrate its suitability for more complex

problems.

Multipoint aerodynamic shape optimization can be used for a variety of purposes.1–7 For

example, Huyse et al.4–6 have written a series of papers addressing robust design and design

under uncertainty using a weighted integral approach based on probability density func-

tions. However, there has been little research on the formulation of optimization problems

that address a comprehensive set of design requirements, constraints, and operating condi-

tions, which is the focus of this paper. Elias and Zingg3 presented an automated technique

for selecting sampling points and weights to achieve specified performance over a range of

Mach numbers. Buckley et al.7 took this a step further, solving an eighteen-point optimiza-

tion problem including eight on-design operating conditions and ten off-design operating

conditions. Here we present a significant improvement over our previous approach using

a weighted integral to handle a broad range of on-design operating conditions in combina-

tion with several constraints based on off-design operating conditions. We apply the new

approach to three design problems in order to demonstrate its effectiveness. Finally, we

demonstrate how Pareto fronts can be used to provide the type of feedback the designer

needs to reformulate the design problem if necessary.
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II. Overview of Optima2D

Optima2D is a code for aerodynamic shape optimization developed by Nemec and Zingg8,9

that employs a two-dimensional turbulent flow solver. The compressible Reynolds-averaged

Navier-Stokes equations are solved at each design iteration with a Newton-Krylov method

in which the linear system arising at each Newton iteration is solved using the generalized

minimal residual method (GMRES) preconditioned with an incomplete lower-upper (ILU)

factorization with limited fill. Spatial derivatives in the governing equations are discretized

using second-order centered finite differences with added scalar numerical dissipation. Eddy

viscosity is computed using the one-equation Spalart-Allmaras turbulence model.

The airfoil geometry is parametrized using B-spline control points. The vertical coordi-

nates of these control points are design variables, thus allowing alterations to the baseline

shape. For lift-constrained drag minimization problems, the design variables are B-spline

control points, and the angle of attack is computed as part of the flow solution in order

to meet the lift constraint. For lift maximization problems, the angle of attack is a design

variable in addition to the B-spline control points.

Gradients of objective and constraint functions that are dependent on the flow solu-

tion are calculated using the discrete-adjoint method; the adjoint equation is solved using

preconditioned GMRES. Function and gradient evaluations are passed to the optimization

algorithm, which determines how to modify the design variables in order to solve the op-

timization problem. At each design iteration, the grid around the updated airfoil shape is

perturbed using a simple algebraic grid movement technique. The constrained optimization

algorithm SNOPT developed by Gill, Murray, and Saunders10 uses a sequential quadratic

programming method that obtains search directions from a sequence of quadratic program-

ming (QP) subproblems. Each QP subproblem minimizes a quadratic model of a Lagrangian

function which is used to represent the objective function subject to linearized constraints.

III. Description of Aircraft Design Problems

A. Design Problem 1

1. Objective Function at On-Design Operating Conditions

A design problem considered previously by Buckley et al.7 was based on a design specification

for a hypothetical aircraft intended to be used as a transonic civil transport vehicle. In

this work, we revisit this design problem and use the weighted integral approach to obtain

optimal solutions for several test cases. Regions of the flight envelope considered for this

design problem include cruise, dive, and low-speed conditions. These flight envelope regions

span a range of values for Mach number, aircraft weight, and altitude. The performance
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Design Reynolds Mach Lift Operating Off-Design

Point Number Number Coefficient Condition Constraint

1 28.88× 106 0.76 0.20 dive Mmax ≤ 1.35

2 28.88× 106 0.76 0.11 dive Mmax ≤ 1.35

3 28.88× 106 0.76 0.33 dive Mmax ≤ 1.35

4 28.88× 106 0.76 0.18 dive Mmax ≤ 1.35

5 19.62× 106 0.76 0.32 dive Mmax ≤ 1.35

6 19.62× 106 0.76 0.17 dive Mmax ≤ 1.35

7 19.62× 106 0.76 0.52 dive Mmax ≤ 1.35

8 19.62× 106 0.76 0.28 dive Mmax ≤ 1.35

9 11.8× 106 0.16 - low-speed Cl,max ≥ 1.60

10 15.0× 106 0.20 - low-speed Cl,max ≥ 1.60

Table 1. Off-design constraints and operating conditions for Design Problem 1

goal for the optimization is to minimize mean fuel consumption for the aircraft over the

cruise flight envelope. It is achieved by minimizing an objective function defined as the

integral of Cd over the range of specified cruise operating conditions. The aircraft weight

ranges from 60,000 to 100,000 lbs, its cruise Mach number ranges from 0.78 to 0.88, and its

cruise altitude ranges from 29,000 to 39,000 feet. Cl values corresponding to these operating

conditions range from 0.27 to 0.58. The wings of the aircraft are swept at 35 degrees and

have an area of 1000 square feet. Due to the wing sweep angle, the effective Mach number

range is from 0.64 to 0.72.

2. Constraints at Off-Design Operating Conditions

In addition to optimizing performance over a range of cruise conditions, a set of constraints at

dive and low-speed operating conditions is specified. Table 1 summarizes this set of off-design

operating conditions and corresponding constraints. Off-design points 1-8 are associated with

a safety requirement for maneuverability under dive conditions. The dive condition Mach

number is 0.93, making the effective Mach number 0.76 accounting for the sweep angle. The

endpoints of the range of aircraft weights and altitudes are considered together with two

load factors, 0.7 and 1.3 at each combination of aircraft weight and altitude for a total of

eight dive conditions. At each extreme of the aircraft weight range the load factors produce

two lift requirements. In turn these lift requirements taken at each extreme of the altitude

range are used to compute corresponding lift coefficients for the dive conditions. Similarly,

the dive condition Reynolds Numbers correspond to the two extremes of the altitude range.

The dive maneuverability requirement is achieved by keeping shock strengths modest under

these conditions. This is imposed by requiring that the Mach numbers upstream of shocks

are less than or equal to 1.35.

The final two operating points reflect a requirement to be able to achieve an adequate

5 of 26



Design Reynolds Mach Lift Operating Off-Design

Point Number Number Coefficient Condition Constraint

1 30.45× 106 0.80 0.30 dive Mmax ≤ 1.35

2 30.45× 106 0.80 0.16 dive Mmax ≤ 1.35

3 30.45× 106 0.80 0.47 dive Mmax ≤ 1.35

4 30.45× 106 0.80 0.26 dive Mmax ≤ 1.35

5 21.39× 106 0.80 0.48 dive Mmax ≤ 1.35

6 21.39× 106 0.80 0.26 dive Mmax ≤ 1.35

7 21.39× 106 0.80 0.76 dive Mmax ≤ 1.35

8 21.39× 106 0.80 0.41 dive Mmax ≤ 1.35

9 11.8× 106 0.16 - low-speed Cl,max ≥ 1.60

10 15.0× 106 0.20 - low-speed Cl,max ≥ 1.60

Table 2. Off-design constraints and operating conditions for Design Problem 2

maximum lift coefficient at low speed conditions. For operating condition 9, the altitude

is sea level, the weight is 60,000 lbs, and the effective Mach number is 0.16. For operating

point 10 the weight is 100,000 lbs, and the effective Mach number is 0.20. The low-speed

requirement specifies that the maximum attainable lift coefficient under these conditions is

at least 1.778a.

B. Design Problem 2

A second design problem is considered for a faster, heavier aircraft. For Design Problem

2, the aircraft weight ranges from 100,000 to 160,000 lbs, its cruise Mach number ranges

from 0.88 to 0.94, and its cruise altitude ranges from 29,000 to 39,000 feet. Cl values

corresponding to these operating conditions range from 0.40 to 0.72. The aircraft wings are

swept at 35 degrees and have an area of 1000 square feet. Taking into account the wing

sweep, the effective Mach number range is from 0.72 to 0.77. As with Design Problem 1, the

performance goal is to minimize average fuel consumption for the aircraft. This is achieved

by minimizing the integral of Cd over the range of specified cruise operating conditions.

While the two off-design constraints at low-speed operating conditions are the same as for

Design Problem 1, the eight off-design constraints at dive operating conditions correspond to

the increased aircraft weight, a higher dive condition Mach number of 0.98, and load factors

of 0.7 and 1.3. The effective dive condition Mach number is 0.80 accounting for the sweep

angle. Table 2 summarizes the off-design constraints and operating conditions for Design

Problem 2.

aThe optimization procedures applied to the test cases in this work are demonstrated on a mesh of
moderate density. Using a lower target lift coefficient of 1.60 on this mesh yields a lift coefficient of at least
1.778 on a fine mesh used for accurate performance evaluation. See the appendix for further explanation of
the off-design constraint values used with moderate grid densities suitable for optimization problems.
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C. Design Problem 3

Design problem 3 is a departure from the first two design problems. Here we consider the

design of an unmanned aerial vehicle (UAV). The design specifications are based on a UAV

intended for high-altitude-long-endurance missions. The aircraft weight ranges from 13,349

to 26,751 lbs. The aircraft has an unswept wing spanning 115 feet, and a wing area of 1000

square feet. It is expected to fly over a range of subsonic speeds from Mach 0.35 to 0.50

at an altitude of 60,000 feet. Reynolds numbers at these operating conditions range from

four to six million. Design objectives for this type of aircraft differ significantly from those

applicable to a transonic civil transport aircraft exemplified by design problems 1 and 2.

For this aircraft, endurance is a significant design consideration as well as range. The two

competing goals of maximizing range and endurance performance will be considered. Given

that aircraft range and endurance are defined as integrals of aerodynamic quantities over a

range of aircraft weights, the integral approach used to quantify these performance attributes

as objective functions described in Section IV below is well suited to this design problem.

IV. Integral Formulation of Objective Functions

A. Minimizing Fuel Consumption at Prescribed Cruise Conditions

Given the design objective of reducing fuel burn over a range of cruise operating conditions,

an objective function may be defined as the integral of Cd over the range of interest. Huyse

and Lewis4 proposed a weighted integral approach for the purpose of solving robust opti-

mization problems where the design objective is to desensitize aerodynamic performance of

a shape to variability about some operating condition. In their approach to robust opti-

mization, a weighting function represents the statistical variance of the prescribed operating

condition. We apply the concept of a weighted integral to design problems in which a range

of Mach numbers M , aircraft weights W , and cruise altitudes h are considered. A weighting

function is utilized that allows the designer to prioritize the importance of operating condi-

tions, e.g. based on mission requirements of the aircraft. The weighted integral is defined

as
h2∫

h1

W2∫
W1

M2∫
M1

Cd (M,W, h)Z (M,W, h) dMdWdh (1)

where Cd is a function of M , W , and h, and Z is a weighting function based on the priorities

of the designer that may also be a function of M , W , and h. In order to demonstrate the

use and impact of Z, test cases presented in this work use two different weighting functions.

The first is simply Z1 = 1, i.e. all conditions are equally weighted. The second weighting
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function is a function of M only, given by

Z2(M) = ea(M−M1) with a =
ln (20)

M2 −M1

(2)

This function is defined such that Z2 (M1) = 1 and Z2 (M2) = 20 with M1 < M2, which

places twenty times more weight on the high end of the Mach range than the low end. This

weighting function is an example of one that would be suitable for the design of an aircraft

or fleet of aircraft that will fly predominantly at M = M2. We wish to emphasize that the

choice of weighting function Z is dictated by the intended mission of the aircraft.

The objective function to be minimized is an approximation of the weighted integral (1)

given by

J =
NM∑
i=1

NW∑
j=1

Nh∑
k=1

Ti,j,k Cd (Mi,Wj, hk)Z (Mi,Wj, hk) ∆M∆W∆h (3)

where NM , NW , and Nh are the numbers of quadrature points used in M , W , and h respec-

tively, and ∆M , ∆W , and ∆h are the corresponding spacings between quadrature points.

The Ti,j,k are the weights used to approximate the integral using a quadrature rule. At

each quadrature point, drag minimization is subject to a lift constraint [Cl = C∗l ]i,j,k. The

accuracy of the integral approximation is dependent on the number of quadrature points

used in its evaluation and the quadrature rule used. The trapezoidal rule is used in the

present examples. To clarify the definition of T , the trapezoidal quadrature weights used to

approximate the integral of a single-variable function are T = [1
2
, 1, ..., 1, 1

2
]. For functions

of more than one variable, as in our case, the trapezoidal quadrature weights have a similar

form corresponding to the number of function variables.

B. Maximizing Aircraft Range and Endurance

Aircraft range is the maximum distance that can be traversed for a given payload weight.

Similarly, aircraft endurance refers to the maximum amount of time that an aircraft can

remain aloft carrying a specified payload. Considerations such as labour costs and passenger

comfort associated with flight time place importance on faster operating speeds for civil

transport aircraft whereas time available for data collection and area coverage, often without

regard for operating speed, can be typical considerations when designing a UAV. In the

absence of constraints on operating speed, the designer is free to choose an operating speed

that best achieves the goal of maximizing either range or endurance. It should be noted

that for a given aircraft, maximum range and endurance occur at different speeds. It follows

that in addition to geometric design variables which enable manipulation of an aerodynamic

shape, the Mach number must also be treated as a design variable when either aircraft range

or endurance are to be optimized.
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The equations for range and endurance, respectively, of an aircraft with jet propulsion

can be expressed in integral form as

R =
∫ W2

W1

(sM)

TSFC

Cl

Cd

dW

W
(4)

E =
∫ W2

W1

1

TSFC

Cl

Cd

dW

W
(5)

where TSFC is the thrust-specific fuel consumption of the jet engines, s is the speed of

sound, W2 is the aircraft maximum takeoff weight, and W1 is the maximum takeoff weight

minus fuel weight. The evaluation of these integrals to obtain analytic expressions for range

and endurance is dependent on which quantities inside the integral vary with aircraft weight

W . For example, the Breguet range equation can be derived from (4) if one assumes that

M , TSFC, and Cl

Cd
are constant over the duration of the flight. In practice, for this set of

assumptions to hold, an aircraft must employ a cruise-climb flight schedule such that the

plane gains altitude as its fuel weight decreases over the duration of the flight to maintain

constant Cl

Cd
. By assuming that the UAV flies at a constant altitude and speed, and TSFC

is constant, simplified integrals that are proportional to range and endurance are obtained:

R =
∫ W2

W1

MCl

Cd

dW (6)

E =
∫ W2

W1

Cl

Cd

dW (7)

R and E are referred to as range and endurance factors respectively. This requires that Cl

Cd

remain inside the integral since at constant speed and altitude, Cl and Cd vary with W . In

order to maximize range or endurance, we wish to minimize modified versions of R or E with

inverted integrands given by

R′ =
∫ W2

W1

Cd

MCl

dW (8)

E ′ =
∫ W2

W1

Cd

Cl

dW (9)

For a range optimization problem, the objective function is defined as an approximation of

the integral R′ given by

J =
∆W

M

NW∑
j=1

Tj
[
Cd

Cl

]
j

(10)

where ∆W is the spacing between quadrature points over the range of aircraft weights

W2 −W1. Note that while M is assumed to be constant in the calculation of range, it is

treated as a design variable in the formulation of the range- and endurance-maximization

optimization problems. The objective function for an endurance optimization problem is
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derived in a similar fashion.

Integral formulations of the range and endurance objective functions are special cases of

the more general weighted integral objective function described in the previous section. In

particular, the assumptions of constant speed and altitude required for evaluation of integrals

6 and 7 leave only a range of aircraft weights to consider in the objective function. Also, the

use of a designer-priority weighting function is not applicable under these circumstances as

preference should not be given to any specific aircraft weight.

V. Multipoint Optimization Problem Setup

This description of optimization setup parameters applies to the cases presented in sub-

sequent sections. The airfoil geometry is parametrized using 15 B-spline control points. One

control point is frozen at the leading edge and two at the trailing edge. The remaining 12

control points are designated as design variables and are split evenly between the top and

bottom airfoil surfaces. Thickness constraints of 1% chord and 0.2% chord are imposed at

95% chord and 99% chord respectively to prevent trailing edge crossover. The latter is typi-

cally inactive once convergence is achieved. The area of the optimal geometry is constrained

to be at least the area of the initial geometry. For Design Problems 1 and 3, the RAE 2822

airfoil is used as the initial geometry. For Design Problem 2, an airfoil with a thickness

to chord ratio of 10.5% is used as the initial geometry. In all cases, the base grid has a C

topology with 289 nodes in the streamwise direction and 65 nodes in the normal direction;

the off-wall spacing is 2× 10−6 chord. It was created using the RAE 2822 airfoil geometry.

See the appendix for details on the impact of the number of design variables and grid size.

For Design Problems 1 and 2, off-design points described in Tables 1 and 2 representing

dive conditions are subject to the constraint that the maximum Mach number in the flow

field not exceed 1.35. The maximum Mach number function is not continuous with respect

to the design variables and therefore cannot be handled directly by SNOPT. To address this

issue we use the Kreisselmeier-Steinhauser (KS) function11 as a means to aggregate Mach

number constraints evaluated at all nodes in the flow field into a single composite function

that is continuously differentiable. Mks represents a conservative estimate of the maximum

Mach number in the flow field based on the KS function. Therefore, Mmax constraints defined

as M∗
max −Mmax > 0, where the upper bound on the constraint is M∗

max = 1.35, translate

to M∗
ks −Mks > 0, where the upper bound on the constraint is M∗

ks = 1.50. This value of

M∗
ks produces Mmax < 1.35 at the optimal solution. An explanation of the determination

of M∗
ks is provided in the appendix. Off-design points 9 and 10 in Tables 1 and 2 represent

constraints at low-speed operating conditions such that Cl,max−C∗l,max > 0, where the lower

bound on the constraint is C∗l,max = 1.60. The optimization procedures applied to the test
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cases in this work are demonstrated on a mesh of moderate density. Using a lower target lift

coefficient of 1.60 on this mesh yields a lift coefficient of at least 1.778 on a fine mesh used for

accurate performance evaluation. See the appendix for further explanation of the off-design

constraint values used with moderate grid densities suitable for optimization problems.

The flow solver described in Section II is used to evaluate airfoil performance in all cases.

Given studies of the flow solver’s accuracy performed by Zingg et al.,12,13 the grids used can

be expected to predict lift coefficients accurate to within 1% and drag coefficients to within

5% for attached and mildly separated flows, including both numerical and physical model

error.

VI. Results

A. Comparison of Weighting Functions

The weighted integral approach described in Section IV-A is applied to Design Problems

1 and 2 described in Sections III-A and III-B. Optimizations are performed with the two

weighting functions described in Section IV-A to illustrate their influence on the design

problem solution. The first assigns equal weight to all operating conditions, the second

prioritizes operating conditions such that weight increases exponentially with Mach number.

For each design problem two additional optimizations are performed using the weighting

functions described above but excluding the off-design constraints summarized in Tables 1

and 2. This demonstrates the extent to which on-design performance is penalized as a result

of the need to satisfy the off-design constraints. In order to simplify the test cases and reduce

computational expense, a constant cruise altitude of 39,000 feet is used for Design Problems

1 and 2; however a range of altitudes can be easily accommodated by the weighted integral

approach. For each case the integral is approximated using the trapezoidal rule with 25

integration points evenly spaced over the range of cruise Mach numbers and aircraft weights.

The solutions to Design Problems 1 and 2 satisfy the Karush-Kuhn-Tucker14 optimality

conditions for a constrained optimization problem to within a tolerance of 1×10−6. Measures

of optimization convergence versus SNOPT major iterations for the equal weighting case

are shown in Figure 1. The SNOPT merit function is an augmented Lagrangian of the

constrained optimization problem. In Figure 1 it is normalized by its initial value. Figure

2 gives a comparison of aerodynamic performance between the optimal solutions obtained

with each weighting function. It shows the average Cd over the range of aircraft weights

as a function of Mach number, where each data point represents the integral of Cd over

the range of aircraft weights divided by (W2 −W1), i.e. the average value of Cd over the

associated range of lift coefficients at a fixed Mach number. A comparison of the optimal

airfoil geometries obtained in each case is shown in Figure 3.
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Figure 1. Optimization convergence histories for the equal weighting case
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Figure 2. Comparison of average Cd over the range of aircraft weights versus Mach number
obtained using different designer-priority weighting functions

For Design Problem 1, independent of the presence of off-design constraints, prioritizing

the on-design operating conditions with a Mach-number-dependent weighting function has

a negligible impact on the optimal solution. As seen in Figure 2(a), the performance of

the optimal solutions obtained with each weighting function are almost identical for cases

with and without off-design constraints. For this design problem with a Mach number range

peaking at the low end of the transonic regime, the optimizer obtains shock-free solutions
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Figure 3. A comparison of optimal airfoil geometries obtained using different designer-priority
weighting functions

over the entire range of cruise operating conditions represented by Figure 2(a). Once the

shocks are eliminated, the optimal shape is driven by considerations of viscous drag, which is

not sensitive to Mach number. This explains why the weighting function that is dependent

on Mach number has little effect on the optimal solution in this case. Moreover, for this

design case, the off-design constraints have only a small impact on on-design performance,

on average less than one count of drag.

In contrast, the Mach-number-dependent weighting function has an impact on the perfor-

mance of the optimal solution to Design Problem 2. For this design problem Mach numbers

and lift coefficients are higher, and shocks cannot be completely eliminated for the operating

conditions associated with cruise. Under these circumstances, placing more weight on higher

Mach numbers does have a significant impact on the optimal solution. The cost of better

performance at high Mach numbers is inferior performance over the low to mid-range Mach

numbers compared to the equal weighting result. For this design problem, the weighting

function gives the designer precise control over the performance of the airfoil. This enables

the designer to prioritize based on the intended use of the aircraft, e.g. the proportion of

time flown at specific Mach numbers. Furthermore, the weighted integral objective function,

which represents performance over a range of expected operating conditions, inherently pro-

duces robust designs. As shown in Figure 2, the average Cd performance over the range of

Mach numbers varies smoothly, i.e. there is no evidence of point optimization for all cases.

For this design problem a substantial performance penalty is paid to satisfy the off-design

constraints. It is also evident that the impact of the weighting function is reduced when the
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Figure 4. A comparison of UAV airfoil geometries for optimal range and endurance perfor-
mance

off-design constraints are included. In this case the optimization is predominantly driven by

the requirement to satisfy these constraints, thus reducing the design flexibility available to

alter on-design performance.

An examination of optimized drag values over the range of on-design operating conditions

shows that the maximum change in friction drag for all cases does not exceed 1.2% compared

to performance for the initial airfoil geometry. Relatively small changes to friction drag

are expected for airfoil optimization problems with transonic operating conditions and an

assumption of fully turbulent flow. In contrast, changes to pressure drag over the course of

an optimization for these cases are generally higher, with the maximum change in pressure

drag exceeding 21%.

B. Range and Endurance Optimization

A series of test cases are executed to optimize the range and endurance performance of the

UAV described in Section III-C and to demonstrate the advantage of using Mach number

as a design variable when considering these particular performance goals. For both range

and endurance objective functions, the corresponding integrals given by (6) and (7) are

approximated using five quadrature points equally spaced over the range of aircraft weights.

For each objective, three test cases are executed. The first is an optimization performed using

only Mach number as a design variable. The optimal Mach number from the first test case is

specified as a fixed value for the second test case where only geometric design variables are

used. Finally an optimization is performed where both Mach number and geometric design

variables are used. A comparison of airfoil geometries optimized for range and endurance
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performance using both Mach number and geometric design variables is shown in Figure 4.

The RAE 2822 airfoil shown on this figure is used for the test cases with only Mach number

as a design variable.

Figure 5 shows a comparison of the optimized range performance obtained using the

progression of design variable test cases described above. The range factor integrand is shown

on the vertical axis versus the aircraft weight on the horizontal axis. The area underneath

a curve in this figure represents the total range factor integral given in (6). Table 3 gives a

comparison of the optimal values of the range factor integral in each case. With respect to

the case where only Mach number is used as a design variable, aircraft range is improved by

1.9% for the test case where only geometric design variables are used and 2.1% for the case

where both Mach number and geometric design variables are used. When using only Mach

number as a design variable, the optimal Mach number, M∗, is 0.460 compared to 0.435

for the case where both Mach number and geometric design variables are used. For this

design problem, the majority of improvement in aircraft range is achieved via the geometric

design variables. In this case, optimizing with only geometric design variables achieves a

significant improvement in range performance provided that the fixed value of Mach number

used is near its optimal value. A very small additional improvement in range performance

is realized by matching an optimal Mach number with an optimal shape. For this case the

average changes in pressure and friction drag when comparing performance at the optimal

solution to that of the initial airfoil geometry are -11.8% and -1.7% respectively.

In a similar fashion to the range optimization cases, Figure 6 shows a comparison of

the optimized endurance performance obtained from the design variable test cases. Table

3 gives a comparison of the optimal values of the endurance factor integral in each case.

With respect to the case where only Mach number is used as a design variable, a dramatic

improvement in endurance performance of 17% is achieved by optimizing with both Mach

number and geometric design variables whereas a relatively modest improvement of 5%

is achieved using only geometric design variables. For the endurance optimization cases,

the difference between optimal Mach numbers in each case is larger than for the range

optimization cases. The fixed Mach number of 0.425 used for the case with only geometric

design variables limits the improvement in endurance. For this case the average changes in

pressure and friction drag when comparing performance at the optimal solution to that of

the initial airfoil geometry are +14.1% and -33.7% respectively.

For both range and endurance optimizations, using Mach number and geometric design

variables together produces the greatest performance improvement. Using Mach number as

a design variable eliminates the need to guess an appropriate fixed value for Mach number.
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Figure 5. A comparison of UAV range performance optimized with and without Mach number
as a design variable. GDV’s: geometric design variables, MDV: Mach number design variable,
M*: optimal Mach number
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Figure 6. A comparison of UAV endurance performance optimized with and without Mach
number as a design variable. GDV’s: geometric design variables, MDV: Mach number design
variable, M*: optimal Mach number

C. Pareto Fronts

Design via aerodynamic shape optimization can be considered an iterative process. The

optimization process is capable of producing more information than simply the optimal

shape. It can also provide the designer with information on various trade-offs which can be

used to reformulate the objectives and constraints. The problem specification may evolve

over several iterations until the final solution is a suitable compromise between all design
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Design Optimal Range Factor Endurance Factor

Variables Mach Number Integral (lbs) Integral (lbs)

Mach number only 0.460 291323 -

geometric only 0.460 (fixed) 296978 -

geometric + Mach number 0.435 297520 -

Mach number only 0.425 - 667267

geometric only 0.425 (fixed) - 699346

geometric + Mach number 0.347 - 778219

Table 3. Optimal UAV range and endurance integral values for test cases with and without
Mach number as a design variable

objectives and constraints. In certain cases, for example Design Problem 2, experimenting

with different weighting functions not only allows the designer to tailor the solution to suit

mission requirements but also provides knowledge of performance trade-offs associated with

prioritizing on-design operating conditions. Similarly, Pareto fronts can be used to probe

the design space to yield information on any competing objectives that are of interest.

1. On-Design Performance Versus Off-Design Constraints

When considering Design Problems 1 and 2 given in Section III, a designer may be inter-

ested in the trade-off between on-design performance and off-design constraints. For Design

Problem 2, the off-design constraint associated with dive conditions shown in Table 2 is

Mmax ≤ 1.35. Setting the upper bound on Mks = 1.52 will achieve satisfaction of this con-

straint at all dive operating conditions (Mks is described in Section V). The Pareto front

shown in Figure 7 consists of a set of optimal solutions generated by incrementally relaxing

the upper bound on the Mks constraint from 1.52 to 1.56. The measure of performance shown

in Figure 7 is the average value of the drag coefficient over the range of Mach numbers and

lift constraints for Design Problem 2 described in Section III-B. A large degradation in on-

design performance is observed as the constraint upper bound becomes more restrictive. This

provides the designer with precise information with respect to the impact of the off-design

constraint that can be helpful if there exist alternative means of achieving the requirement

addressed by the constraint. For Design Problem 1 the off-design constraint associated with

low-speed conditions requires that the aircraft be capable of achieving Cl,max ≥ 1.60, as

shown in Table 1. The Pareto front given in Figure 8 shows the trade-off between per-

formance at cruise conditions and the lower bound on the Cl,max constraint at low-speed

conditions. The measure of performance in this case is the average value of the drag coeffi-

cient over the range of Mach numbers and lift constraints for Design Problem 1 described in

Section III-A. It can be seen that cruise performance is significantly penalized as the Cl,max

constraint is increased. The maximum drag coefficient at each point on the Pareto front
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Figure 8. Trade-off between performance at cruise conditions and Cl,max constraint at low-
speed conditions for Design Problem 1

shown in Figure 8 occurs at the highest Cl and Mach number combination and varies in a

manner consistent with the average Cd. Again, such quantitative information can be helpful

in formulating the optimization problem.

2. Range Versus Endurance

Range and endurance are competing objectives. The range and endurance objectives are

represented by two separate integrals given in (6) and (7) taken over the same range of
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Figure 9. Trade-off between UAV range and endurance performance

aircraft weights. Two Mach number design variables are required; one for each objective.

The point identified as ω = 1.0 on the Pareto front shown in Figure 9 represents a design

optimized for range performance. The furthest right point identified as ω = 0.0 represents

a design optimized for endurance performance. The intermediate designs are obtained by

varying the relative weightings on the range and endurance integrals. This figure shows the

trade-off in performance between range and endurance.

VII. Conclusions

Optimization performed using an objective function based on a weighted integral is an

effective technique for design over a range of operating conditions. The weighted integral

approach affords the designer a formal way of prioritizing based on mission requirements

and leads to robust designs. Design considerations for a UAV such as aircraft range and

endurance require objective functions formulated as integrals of aerodynamic quantities over

a range of aircraft weights. When performing range and endurance optimizations in the

absence of constraints on speed, using Mach number as a design variable in addition to

geometric design variables is demonstrated to produce optimal performance. Examples of

Pareto fronts are given that provide the designer with helpful information that can be used

in understanding and formulating the optimization problem.

19 of 26



Acknowledgements

The funding of both authors by Bombardier Aerospace and the Natural Sciences and

Engineering Research Council of Canada and funding of the second author by the Canada

Research Chairs program is gratefully acknowledged.

Computations were performed on the GPC supercomputer at the SciNet HPC Consor-

tium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of

Compute Canada; the Government of Ontario; Ontario Research Fund - Research Excel-

lence; and the University of Toronto.

References

1Epstein, B., Jameson, A., Peigin, S., Roman, D., Harrison, N., and Vassberg, J., “Comparative Study

of Three-Dimensional Wing Drag Minimization by Different Optimization Techniques,” Journal of Aircraft ,

Vol. 46, No. 2, March-April 2009, pp. 526–541, DOI:10.2514/1.38216.

2Cliff, S. E., Reuther, J. J., Saunders, D. A., and Hicks, R. M., “Single-Point and Multipoint Aerody-

namic Shape Optimization of High Speed Civil Transport,” Journal of Aircraft , Vol. 38, No. 6, November-

December 2001, pp. 997–1005.

3Zingg, D. W. and Elias, S., “Aerodynamic Optimization Under a Range of Operating Conditions,”

AIAA Journal , Vol. 44, No. 11, November 2006, pp. 2787–2792, DOI: 10.2514/1.23658.

4Huyse, L. and Lewis, R. M., “Aerodynamic Shape Optimization of Two-Dimensional Airfoilis Under

Uncertain Operating Conditions,” TM CR-2001-210648, NASA, 2001.

5Huyse, L., Padula, S. L., Lewis, R. M., and Li, W., “Probabilistic Approach to Free-Form Airfoil Shape

Optimization Under Uncertainty,” AIAA Journal , Vol. 40, No. 9, September 2002, DOI: 10.2514/2.1881.

6Li, W., Huyse, L., and Padula, S., “Robust Airfoil Optimization to Achieve Consistent Drag Reduction

Over a Mach Range,” Structural and Multidisciplinary Optimization, Vol. 24, No. 1, 2002, pp. 38–50.

7Buckley, H., Zhou, B., and Zingg, D. W., “Airfoil Optimization Using Practical Aerodynamic De-

sign Requirements,” Journal of Aircraft , Vol. 47, No. 5, September-October 2010, pp. 1707–1719, DOI:

10.2514/1.C000256.

8Nemec, M. and Zingg, D. W., “Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-

Stokes Equations,” AIAA Journal , Vol. 40, No. 6, June 2002, pp. 1146–1154.

9Nemec, M., Zingg, D. W., and Pulliam, T. H., “Multipoint and Multi-Objective Aerodynamic Shape

Optimization,” AIAA Journal , Vol. 42, No. 6, June 2004, pp. 1057–1065.

10Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for Large-Scale Con-

strained Optimization,” SIAM Review , Vol. 47, No. 1, February 2005, pp. 99–131.

11Kreisselmeier, G. and Steinhauser, R., “Systematic Control Design by Optimizing a Vector Perfor-

mance Index,” International Federation of Active Controls Symposium on Computer-Aided Design of Control

Systems, Zurich, Switzerland, August 29-31 1979.

12Zingg, D. W., “Grid Studies for Thin-Layer-Navier-Stokes Computations of Airfoil Flowfields,” AIAA

Journal , Vol. 30, No. 10, 1992, pp. 2561–2564.

13Zingg, D. W., DeRango, S., Nemec, M., and Pulliam, T. H., “Comparison of Several Spatial Dis-

20 of 26



cretizations for the Navier-Stokes Equations,” Journal of Computational Physics, Vol. 160, No. 2, May 2000,

pp. 683–704.

14Nocedal, J. and Wright, S., Numerical Optimization, Springer, 2nd ed., 2006, pp. 320-321.

21 of 26



Number of Design Variables

S
u
m

O
n
­D

e
s
ig
n
C

d
15 20 25 30

0
.0

7
9
6

0
.0

7
9
7

0
.0

7
9
8

0
.0

7
9
9

0
.0

8

Figure 10. Sum of on-design Cd’s versus number of design variables

Appendix: Selection of Parameters For Practical Aerodynamic

Design Problems

A preliminary study of a design problem similar to the one described in Section III-A

used an airfoil geometry parametrized by 15 B-spline control points, 12 of which were used as

geometric design variables, and a grid size of 18785 nodes. These values have been revisited

to study their effect on the optimal solution to the design problem. Given that computational

effort increases with grid size and number of design variables, a study of these parameters

aims to determine values that minimize computational effort while attaining a satisfactory

solution to the design problem.

A. Design Variable Study

Optimizations were performed with number of design variables ranging from 12 to 30. Figure

10 shows a slight trend toward on-design performance improvement as the number of design

variables are increased. The difference between the best and worst on-design performance, at

30 design variables and 12 design variables respectively, is approximately 0.6%. A comparison

of the optimized airfoil geometries obtained with 30 design variables and 12 design variables

is shown in Figure 11. The main differences in airfoil geometry are observed at the trailing

edge as shown in Figure 12. The trailing edge at 30 design variables presents manufacturing

and structural difficulties because it is extremely thin. The additional design variables create

a requirement for some additional thickness constraints, which will reduce the already small

benefit of increasing the number of design variables. Table 4 shows the number of function

evaluations (where a function evaluation requires one computation of a flow solution) required

as the number of design variables increases. It can be seen that the computational effort
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Figure 11. Comparison of optimized airfoil geometries with 12 and 30 design variables

Number of Number of

Design Variables Function Evaluations

12 47

14 41

20 141

22 133

24 134

26 152

28 164

30 232

Table 4. Number of function evaluations versus number of design variables
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Figure 12. Comparison of optimized airfoil trailing edges with 12 and 30 design variables

increases significantly with the number of design variables. When weighing the benefit of

modest performance improvements achieved with greater number of design variables against

increased computational effort and infeasible airfoil geometry with respect to manufacturing

and structural concerns, using 12-14 design variables is recommended, as values in this range

provide a sufficiently optimal solution to this design problem and will likely be suitable for

design problems with similar operating conditions.

B. Grid Density Study

To investigate the effect of grid size on the optimal solution, optimizations are performed

using the coarse and fine grids described in Table 5. Performance of the optimal solution at

each grid size is evaluated using the evaluation grid, which is extremely fine and produces

very accurate lift and drag coefficients. Design problem 1 described in Section III-A is used
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as the test case.

An iterative optimization procedure is required to ensure that active off-design con-

straints are comparably satisfied at optimal solutions for each grid size when evaluated on

the evaluation grid. This is because the values of the constraint bounds at each grid that

will satisfy the constraints when evaluated on the evaluation grid are not known beforehand.

Design Problem 1 described in Section III-A specifies that the maximum Mach number at

dive conditions 1 - 8 must not exceed 1.35 and that Cl,max ≥ 1.778 at high-lift conditions 9 -

10. It is known that our flow solver will under-predict these constraint values in proportion

to the grid size. To address this issue, an initial guess for the constraints is used at each

grid size. The initial guess is based on evaluation of the constraints at the initial geometry

using both the coarse grid and the evaluation grid. A converged optimal solution is obtained

using the initial guess for the constraint bounds. The constraints are evaluated using the

optimal solution on the evaluation grid. The constraint bounds are updated according to

the following formulas and used for the next optimization iteration:

(
C∗l,max

)n+1

(C)
=
(
C∗l,max

)
(E)
−
[
(Cl,max)n(E) − (Cl,max)n(C)

]
(11)

(M∗
max)n+1

(C) = (M∗
max)(E) −

[
(Mmax)n(E) − (Mmax)n(C)

]
(12)

Subscripts C and E denote constraint evaluations on coarse grids and the evaluation grid

respectively and the superscript is the index of optimization iterations. (C∗l,max)n(C) is the

lower bound on the high lift constraint used on the coarse grid at optimization iteration

n. (C∗l,max)(E) is the lower bound on the high lift constraint used on the evaluation grid.

This is the constraint value we are trying to achieve, i.e. Cl,max ≥ 1.778. (Cl,max)n(E) is the

value of the high lift constraint evaluated on the evaluation grid at optimization iteration n.

(Cl,max)n(C) is the value of the high lift constraint evaluated on the coarse grid at optimization

iteration n. An analogous naming convention is used in the Mmax constraint bound update

formula.

After three optimization iterations the constraints for optimal solutions at each grid are

satisfied to within a tolerance of±0.005 when evaluated on the evaluation grid. Table 6 shows

a comparison of the sum of drag coefficients at on-design operating conditions evaluated using

the evaluation grid with the optimal solution at each grid size. A comparison of the active

off-design constraints evaluated using the evaluation grid with the optimal solution at each

grid size is also given in Table 6. Figure 13 shows a comparison of the optimal geometries

at each grid size. A 1% performance improvement in the optimal solution has been achieved

using the fine grid versus the coarse grid. A slight difference in the optimal geometries is

visible.
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Grid Name Size Off-wall Spacing (chord)

coarse 289× 65 2.0× 10−6

fine 401× 89 2.0× 10−6

evaluation 917× 193 7.5× 10−7

Table 5. Grids used to study the effect of grid density on the optimal solution

Grid Name Sum of On-Design Cd (Cl,max)(E) (C∗l,max)(C) (Mmax)(E) (M∗max)(C)

coarse 0.06632 1.778 1.5706 1.355 1.281

fine 0.06566 1.779 1.628 1.352 1.301

Table 6. Comparison of on-design performance and active off-design constraints computed on
the evaluation grid for optimal solutions obtained with three different grid sizes
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Figure 13. Comparison of optimal airfoil geometries obtained using different grid densities

C. Determination of Maximum Mach Number Constraint Bound M∗
ks

As described by Buckley et. al7 and reviewed in Section V, the KS function provides a

conservative estimate of the maximum Mach number in the flow field that is used as the

basis for the maximum Mach number constraint associated with dive conditions. At dive

conditions, Mmax ≤ M∗
max. M∗

ks is defined as the bound on the conservative estimate of

maximum Mach number based on the KS function. M∗
max is the actual bound on maximum

Mach number in the flow field. Mmax is the maximum Mach number evaluated at the optimal

solution. At an optimal solution, SNOPT ensures that Mks at all dive conditions does not

exceed M∗
ks. It is not known beforehand what value of M∗

ks will produce Mmax ≤ M∗
max.

The iterative procedure described below is used to obtain the appropriate value of M∗
ks for

a given design problem:

1. Start with an initial guess for M∗
ks: M∗

ks = M0
ks
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2. Run the optimization until a converged solution is obtained

3. Calculate the discrepancy in Mmax : ∆Mmax = M∗
max −Mmax

4. Update guess for M∗
ks: M∗

ks = M1
ks = M0

ks + ∆Mmax

5. Restart the optimization using updated value for M∗
ks

6. Repeat steps 2 - 5 until Mmax ' M∗
max at the converged solution to within some

specified tolerance

The maximum Mach number constraint can be satisfied to within ±1× 10−4 in 5 iterations.
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