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MOTIVATION



Application to Wing Design
Lift-constrained induced-drag minimization



Twist Optimization

Validation: recover elliptical 
lift distribution using twist

6 sections free to move
rectangular wing
constrained lift



High-Fidelity Aerodynamic 
Shape Optimization

•  a component within high-fidelity multi-disciplinary 
optimization (MDO)

•  high-fidelity physics, e.g. Euler or Reynolds-averaged 
Navier-Stokes equations

•  incremental optimization is preceded by conceptual 
and preliminary design using lower fidelity tools

•  exploratory optimization permits large shape changes 
and could be used to uncover new concepts



The Split Tip Wing
•  down-up configuration: span efficiency = 1.159

• up-down configuration: span efficiency = 1.167

• Hicken, J.E., and Zingg, D.W., Induced Drag Minimization of Nonplanar Geometries 
Based on the Euler Equations, AIAA Journal, Vol. 48, No. 11, 2010



Topics
•  Computational fluid dynamics

★ higher order?

★ finite-difference methods? structured grids?

★ summation by parts, dual consistency, and 
superconvergence

★ parallel Newton-Krylov-Schur algorithm

•  Geometry parameterization, mesh movement, adjoint method

•  Problem formulation: range of operating conditions, multiple 
constraints

•  Choice of optimization algorithm: multimodality in aerodynamic 
shape optimization



CFD: 2nd or higher order?

•  conventional wisdom: higher order is advantageous for 
applications like LES, DNS, CAA, which are very 
demanding in terms of mesh resolution

•  actually can be advantageous in any context where low 
error is required

•  higher order shown to be more efficient than second 
order for steady RANS computations by De Rango and 
Zingg, AIAA J., Vol. 39, 2001

•  DPWs show that computing drag on a 3D configuration 
is very demanding in terms of mesh resolution



Error vs mesh spacing
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Error vs computational cost
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Higher order methods

•  higher order generally not achieved in practical 
problems due to shocks, singularities, discontinuities, 
etc.

•  numerical error can nevertheless be lower on a given 
mesh

•  current interest is concentrated on discontinuous 
Galerkin methods



Structured or unstructured 
meshes?

•  conventional wisdom: unstructured meshes are easier 
to generate and superior for adaptation; hence pursue 
higher-order DG schemes

•  however, higher-order finite difference methods on 
structured meshes are much more efficient than higher-
order methods for unstructured meshes

•  is the former advantage sufficient to outweigh the latter 
disadvantage?



Summation-by-Parts (SBP) Operators

•  Satisfy a discrete summation-by parts property that mimics the 
continuous operator

•  Used in combination with simultaneous approximation terms (SATs) 
at boundaries

•  Rigorous development of time-stable boundary schemes for higher-
order methods 

•   Superconvergent functional estimates if scheme is dual consistent

➡ For example, the fourth-order scheme produces sixth-order 
convergence in functionals

➡   Hicken, J.E., and Zingg, D.W., Superconvergent Functional 
Estimates from Summation-by-Parts Finite-Difference Discretizations, 
SIAM Journal on Scientific Computing, Vol. 33, 2011



Dual Consistency

•  A scheme is dual consistent if the associated discrete dual (or 
adjoint) problem is a consistent discretization of the continuous 
adjoint problem

➡ Dual consistency requires suitable boundary conditions and 
a particular numerical integration method for the functional 

➡ Can lead to superconvergence of functionals

➡ Can lead to much better error estimates based on adjoint-
weighted residuals (than dual inconsistent schemes)

➡   Hicken, J.E., and Zingg, D.W., The Role of Dual Consistency in 
Functional Accuracy: Error Estimation and Superconvergence, 
20th AIAA CFD Conference, June 2011.



Dual Consistency
Example: adjoint field shows oscillations in dual 
inconsistent case



Results for inviscid vortex flow

Functional errorSolution error



Results for ONERA M6 wing



FLOW SOLVER

•  Structured multi-block grids

•  High-order finite-difference method with summation-by-
parts operators and simultaneous approximation terms

•  Parallel Newton-Krylov-Schur solver

•  Jacobian-free Newton-Krylov algorithm with approximate 
Schur parallel preconditioning

•  Promising dissipation-based continuation method for 
globalization

➡   Hicken, J.E., and Zingg, D.W., A parallel Newton-Krylov solver for the Euler 
equations discretized using simultaneous approximation terms, AIAA 
Journal, Vol. 46, No. 11, 2008



Turbulent Flow Solver
ONERA M6 wing: M=0.8395, alpha=3.06 degrees
Re=11.72 million, 1.88 million mesh nodes, 16 processors
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Parallel Scalability (Euler)

•  mesh with 38 million nodes

•  9-order residual reduction in 15 minutes on 
1024 processors
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INTEGRATED GEOMETRY PARAMETERIZATION 
AND MESH MOVEMENT

•  Must provide flexibility for large shape changes with a modest number of 
design variables

‣ B-spline patches represent surfaces

‣ B-spline control points are design variables

•  Mesh movement must maintain quality through large shape changes

‣ through tensor products, B-spline volumes map a cube to an arbitrary volume with the 
appropriate topology

‣ can be arbitrarily discretized in the cube domain to create a mesh

‣ B-spline volume control points can be manipulated to move the mesh in response to 
changes in the surface control points

‣ efficiently generates a high quality mesh

➡   Hicken, J.E., and Zingg, D.W., Aerodynamic Optimization Algorithm with Integrated Geometry 
Parameterization and Mesh Movement, AIAA Journal, Vol. 48, No. 2, 2010



Mesh Movement Example
flat plate to blended-wing body: ≈ 1 million nodes



DISCRETE-ADJOINT GRADIENT COMPUTATION

•  Cost independent of the number of design variables

•  Efficient if the number of design variables exceeds the number of 
constraints

•  Hand linearization complemented by judicious use of the complex 
step method for difficult terms

• Adjoint equation solved by parallel Schur-preconditioned modified 
Krylov method GCROT(m,k)

➡   Hicken, J.E., and Zingg, D.W., A Simplified and Flexible Variant of GCROT for 
Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific Computing, Vol. 
32, No. 3, March 2010



Design Problem Definition
Aerodynamic design specification for a hypothetical 
aircraft:

Cruise Mach number range: 0.78 - 0.88 
Cruise weight range: 60,000 - 100,000 lbs
Cruise altitude range: 29,000 - 39,000 ft
Target airfoil thickness to chord ratio: 11.8%
On-design operating conditions: cruise and long-
range cruise
Off-design operating conditions: dive conditions, low-
speed conditions
Wing area: 1000 sq.ft. 
Wing sweep angle: 35 degrees



Weighted Integral Objective Function

Design objective: maximize L/D over a range of cruise 
operating conditions
Optimal solution minimizes the integral of D/L over a 
range of Mach numbers, aircraft weights, and altitudes
A weighting function ! is used to prioritize operating 
conditions
The weighted integral is defined as:



Designer Priority Weighting Function
A sample weighting function is applied to test cases to 
illustrate the weighted integral approach

represented by a 2D integral:

!(M1) = 1, !(M2) = 20 for M1 < M2
Compare with cases where equal priority is given to all of 
the operating conditions; i.e. ! = 1



Integral Approximation
Objective function is defined as an 
approximation of the weighted integral

NM x NW is the number of quadrature points 
used in M, W
!i,j are the weights used to approximate the 
integral using the trapezoidal quadrature rule



Optimization Setup Parameters For Test Cases
Initial airfoil geometry: RAE 2822
Geometry parameterization: 

15 B-spline control points
12 design variables

Mesh parameters: 
C topology 
18785 nodes 
Off-wall spacing = 2 x 10e-6

Off-design constraints:
At dive conditions:
At low-speed conditions: 

Geometric constraints:
2 thickness constraints at 95% and 99% chord
Area constraint
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Comparison of Equal Weighting vs. 
Mach-Number-Dependent Weighting



Trade offs



Problem formulation

•  demonstrated an effective approach to formulating design 
problems as optimization problems

•  however, an aircraft has an enormous number of 
configurations, maneuvers, and cases that must be 
included

•  some thought must be given to determining the minimum 
number of operating conditions that need to be 
considered



Genetic algorithm or 
gradient-based adjoint method?

•  Global optimization algorithms, e.g. genetic algorithms, 
are generally slow

•  Gradient-based algorithms converge to a local minimum

•  Preference depends on multimodality, among other 
considerations

•  Yet there are virtually no studies of multimodality in 
aerodynamic shape optimization

➡   Chernukhin, O., and Zingg, D.W., An Investigation of Multi-Modality in Aerodynamic 
Shape Optimization, 20th AIAA Computational Fluid Dynamics Conf, June 2011



Multimodality questions

•  Are our design spaces multimodal?

•  If so, are they highly multimodal, moderately multimodal, 
somewhat multimodal, or unimodal?

•  For each category, what is the best optimization algorithm 
for finding the global minimum?



Four Optimization Algorithms

•  Gradient-based algorithm (GB)

•  Multi-start Sobol (GB-MS): initial guesses based on Sobol 
sequences cover the design space in a deterministic 
manner (sampling in linear feasible region)

•  Hybrid method (HM): combination of genetic algorithm, 
Sobol sampling, and gradient-based algorithm (SNOPT is 
run on each chromosome)

•  Genetic algorithm (GA)



Multimodality in 2D (RANS)
Multistart procedure for 2D airfoil optimization 
(transonic lift-constrained drag minimization, 6 DVs)



Multimodality?
A unique global optimum in 2D - no local optima!



Multimodality in 3D (Euler)
•  transonic lift-constrained drag minimization, 129 DVs

•  3 local minima found - somewhat multimodal
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Convergence to global minimum

Gradient-based algorithm All algorithms



Hybrid wing-body optimization

•  16 initial geometries ... 5 local optima ...
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What can we conclude?

• 2D RANS airfoil optimization appears to be unimodal

‣ gradient-based algorithm is suitable

• 3D Euler wing optimization somewhat multimodal depending on 
degree of geometric flexibility

‣ gradient-based multi-start algorithm is preferred

• Hybrid wing-body optimization has a higher degree of multimodality 
presumably because of its high degree of geometric flexibility

‣ global optimization algorithm (but not a GA) preferred for 
exploratory optimization

‣ multi-start gradient-based algorithm based on Sobol sequence a 
good place to start



Future Work

• higher-order dual consistent SBP operators for viscous terms

• laminar-turbulent transition in optimization

• aerostructural optimization

• strategies for improving efficiency

• strategies for improving automation

• applications

‣ unconventional configurations: development and evaluation

‣ both incremental and exploratory - what can we discover?

‣ flow control design through optimization (unsteady)


