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Abstract.
This article extends the theory of classical finite-difference summation-by-parts (FD-SBP) time-

marching methods to the generalized summation-by-parts (GSBP) framework. Dual-consistent
GSBP time-marching methods are shown to retain: A and L-stability, as well as superconvergence
of integral functionals when integrated with the quadrature associated with the discretization. This
also implies that the solution approximated at the end of each time step is superconvergent. In
addition GSBP time-marching methods constructed with a diagonal norm are BN-stable. This ar-
ticle also formalizes the connection between FD-SBP/GSBP time-marching methods and implicit
Runge-Kutta methods. Through this connection, the minimum accuracy of the solution approxi-
mated at the end of a time step is extended for nonlinear problems. It is also exploited to derive
conditions under which nonlinearly stable GSBP time-marching methods can be constructed. The
GSBP approach to time marching can simplify the construction of high-order fully-implicit Runge-
Kutta methods with a particular set of properties favourable for stiff initial value problems, such as
L-stability. It can facilitate the analysis of fully discrete approximations to PDEs and is amenable to
to multi-dimensional spcae-time discretizations, in which case the explicit connection to Runge-Kutta
methods is often lost. A few examples of known and novel Runge-Kutta methods associated with
GSBP operators are presented. The novel methods, all of which are L-stable and BN-stable, include a
four-stage seventh-order fully-implicit method, a three-stage third-order diagonally-implicit method,
and a fourth-order four-stage diagonally-implicit method. The relative efficiency of the schemes is
investigated and compared with a few popular non-GSBP Runge-Kutta methods.
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1. Introduction. Recently, it was shown that finite-difference summation-by-
parts (FD-SBP) operators [32, 40] and simultaneous approximation terms (SATs)
[8, 9, 16, 17] can be used to construct high-order fully-implicit time-marching meth-
ods [36, 37]. An important motivation for the classical SBP-SAT approach is the
ability to construct energy estimates of discrete approximations to ordinary and par-
tial differential equations (ODEs and PDEs) [37]. Provided the continuous problem
is well-posed, these estimates can be used to prove the stability of the numerical solu-
tion. By definition, classical SBP time-marching methods are L-stable [36] and lead
to superconvergence of integral functionals [27, 29]. Furthermore, those associated
with diagonal norm matrices are BN-stable and energy stable [36].

Classical SBP time-marching methods can be implemented with multiple time
steps using a multiblock approach. Dual-consistency enables each time step (block)
to be solved sequentially in time; however, the solution points within each time step
are fully coupled [36]. This is analogous to a fully-implicit Runge-Kutta method.
The classical FD-SBP time-marching methods considered in [36, 37] are constructed
from a repeating centered FD stencil with boundary closures. They are defined on
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a uniform distribution of solution points which includes both boundary points of the
time step. As a consequence, these schemes require a significant number of solution
points within each time step to achieve a prescribed order of accuracy.

An extension of the SBP property for initial boundary value problems (IBVPs)
was proposed in [14], called generalized summation-by-parts (GSBP). GSBP operators
require significantly fewer solution points than classical FD-SBP operators to achieve
a prescribed order of accuracy [14]. This is accomplished by removing the need for
a connection to a centered FD stencil, and requiring only that the solution points
be unique. By doing so, the GSBP framework also describes several continuous and
discontinuous collocated spectral-element operators. However, GSBP operators also
do not require the existence of basis functions and hence have increased flexibility
relative to spectral-element approaches. For example, this flexibility can be used to
simplify the construction of multidimensional operators: we only require the existence
of a positive cubature, as opposed to a full set of basis functions [26].

The objective of this paper is to extend the theory of classical FD-SBP time-
marching methods [36, 37] to the GSBP framework [14]. The generalized framework
was specifically designed to mimic many of the characteristics of the classical ap-
proach. Therefore, the primary challenge in extending the time-marching theory is
to account for operators which do not include one or both boundary points of the
time step. In this article we show that GSBP time-marching methods retain: A and
L-stability, as well as superconvergence of integral functionals. Moreover, those based
on diagonal norms are shown to retain BN-stability and energy stability. This paper
also presents the connection between SBP/GSBP time-marching methods and implicit
Runge-Kutta methods. This connection is used to extend parts of the superconver-
gence theory to nonlinear problems. It is also used to derive conditions under which
BN-stable dense-norm GSBP time-marching methods can be constructed. While
SBP/GSBP time-marching method form a subset of implicit Runge-Kutta meth-
ods, the SBP/GSBP characterization remains important. The approach facilitates
the analysis of fully-discrete approximations of ODEs and PDEs using high-order
schemes which are unconditionally stable by definition. This can even lead to some
novel Runge-Kutta schemes, as shown in the article. Furthermore, it is amenable
to multi-dimensional space-time discretizations of PDEs, in which case the explicit
connection to Runge-Kutta methods is often lost.

The paper is organized as follows: Section 2 gives a brief review of the GSBP-
SAT approach presented in [14] within the context of IVPs. The classical SBP-
SAT accuracy and stability theory is extended for GSBP time-marching methods
in Sections 3 and 4. The connection to Runge-Kutta methods is then presented
in Section 5, along with some additional theoretical results. Sample GSBP time-
marching methods are given in Section 6 and numerical examples are presented in
Section 7. A summary concludes the paper in Section 8.

2. The GSBP-SAT Approach. This section presents a brief review of the
GSBP-SAT framework presented in [14] within the context of IVPs.

2.1. Generalized Summation-By-Parts Operators. An important objec-
tive of the SBP/GSBP approach is to prove the numerical stability of a discretization
by mimicking the continuous stability analysis. Consider the nonlinear IVP:

(2.1) Y ′ = F(Y, t), Y(t0) = Y0, with t0 ≤ t ≤ tf ,

where Y ∈ C, Y ′ = dY
dt , F(Y, t) : {C,R} → C, and Y0 is the initial data. The stability

of the continuous IVP (2.1) can be shown through the use of the energy method in
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which a bound on the norm of the solution, called an energy estimate, is derived with
respect to the initial condition [19, 20, 31]. This is accomplished by taking the inner
product of the solution and the IVP and relating the integrals to the initial data
through the use integration-by-parts (IBP):

(2.2)

(
U , ∂V

∂t

)
+

(
∂U
∂t

,V
)

= ŪV
∣∣tf
t0
,

where (U ,V) defines the L2 inner product
∫ tf
t0

ŪVdt, and Ū is the complex conjugate.
In the discrete case, a first-derivative GSBP operator is defined as follows:

Definition 2.1. Generalized summation-by-parts operator [14]: A linear
operator D = H−1Θ is a GSBP approximation to the first derivative of order q ≥ 1 on
the distribution of solution points t = [t1, . . . , tn] with all ti are unique, if D satisfies:

(2.3) Dtj = jtj−1, j ∈ [0, q],

where tj = [tj1, . . . , t
j
n]

T , H is a symmetric positive definite (SPD) matrix called the
norm, and (Θ+ΘT ) = Ẽ is a symmetric matrix which defines a boundary operator:

(2.4) (ti)T Ẽtj = ti+j
f − ti+j

0 , i, j,∈ [0, r],

with r ≥ q.

With this definition one can easily show that a GSBP operator satisfies the fol-
lowing:

(2.5) u∗HDv + u∗DTHv = u∗Ẽv,

where u is the projection of the continuous function U(t) onto a distribution of solution
points t = [t1, . . . , tn], and u∗ is the conjugate transpose of u. Each term is a discrete
approximation to the corresponding term in (2.2). Hence the GSBP operator satisfies
a discrete analogue of IBP.

The existence of GSBP operators and their relationship to a quadrature rule
of order τ is presented in [2, 14]. The classical SBP definition is recovered when

Ẽ = diag(−1, 0, . . . , 0, 1) and therefore u∗Ẽv is strictly equal to ŪV
∣∣tf
t0
. In this article

we make a distinction between diagonal and nondiagonal norm matrices H. The
latter will be referred to as dense norms following [14], but include all nondiagonal
norms whether they are strictly dense matrices or not. For example, classical FD-SBP
operators with a full, or restricted-full norm are referred to as dense-norm operators.

2.2. Simultaneous Approximation Terms for GSBP Operators. Apply-
ing a GSBP operator to the nonlinear IVP (2.1) requires a means to impose the initial
condition, and to couple the solution in adjacent time steps. A common approach is
to use simultaneous-approximation-terms (SATs), which weakly impose these condi-
tions via penalty terms. An important motivation for the SBP/GSBP-SAT approach
is compatibility with the energy method to prove numerical stability. In order for
the use of SATs to be compatible with GSBP operators and the energy method, the
following additional condition is imposed:

Condition 2.2. A GSBP operator D = H−1Θ must satisfy the relationship:

(2.6) Θ+ΘT = Ẽ = χtfχ
T
tf − χt0χ

T
t0 ,
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such that

(2.7) χT
t0t

j = t0
j and χT

tf t
j = tf

j for j ∈ [0, r ≥ q],

Applying the GSBP-SAT approach to the IVP (2.1): Y ′ = F(Y, t) and Y(t0) = Y0

for t0 ≤ t ≤ tf , with two time steps (step 1: t ∈ [t0, δ]; and step 2: t ∈ [δ, tf ]) yields:

(2.8)
[

D[1] 0
0 D[2]

] [
y[1]
d

y[2]
d

]
=

[
f [1]d

f [2]d

]
+

⎡

⎣ σ
(
H [1]

)−1
χ[1]
t0

((
χ[1]
t0

)T
y[1]
d − Y0

)

0

⎤

⎦

︸ ︷︷ ︸
initial condition SAT

+

[ (
H [1]

)−1
χ[1]
δ 0

0
(
H [2]

)−1
χ[2]
δ

] [
σ[1] −σ[1]

−σ[2] σ[2]

]
⎡

⎢⎣

(
χ[1]
δ

)T
y[1]
d(

χ[2]
δ

)T
y[2]
d

⎤

⎥⎦

︸ ︷︷ ︸
time step coupling SAT

,

where σ, σ[1] and σ[2] are the SAT penalty parameters, and f [m]
d = F(y[m]

d , t[m]) for
time step m. Conservation requires that the interface SAT penalty parameters satisfy
σ[1] = σ[2] + 1 [9]. With the choice of σ[2] = −1, the solution in the first time step
becomes independent of the solution in the second time step, and the time steps can
be solved sequentially in time. If in addition σ = −1, each time step becomes dual
consistent (See Section 3.2) and we will refer to the discretization of each time step
as a GSBP time-marching method.

Finally, in order to guarantee a unique solution to linear scalar ODEs, we impose
an extension of Assumption 1 from [37]:

Condition 2.3. For a GSBP operator D = H−1Θ that satisfies Condition 2.2,
all eigenvalues of

(
Θ− σχt0χ

T
t0

)
must have strictly positive eigenvalues for σ < − 1

2 .

Corollary 2.4. For a GSBP operator D = H−1Θ that satisfies Condition 2.2,
the matrix

(
Θ− σχt0χ

T
t0

)
is invertible for σ < − 1

2 .

A proof of this condition for classical second-order FD-SBP operators is presented
in [37], along with numerical demonstration for higher-order diagonal-norm FD-SBP
operators. Using a multiblock approach in which all operators are identical and of
fixed size, this can easily be verified numerically. This property has been verified for
all GSBP operators considered in [14], as well as the those considered in this article.

3. Accuracy. In many numerical simulations, integral functionals of the solu-
tion, J (Y) = (K,Y) + αY

∣∣
tf
, are of more interest than the solution itself. Hicken

and Zingg [27, 29] showed that integral functionals of the solution to dual-consistent
classical FD-SBP-SAT discretizations are superconvergent. Specifically, functionals
integrated with the quadrature associated with the SBP operator converge with the
order of the quadrature τ , rather than the lower order of the operator q. For example,
using a dual-consistent diagonal-norm FD-SBP-SAT discretization, the rate of super-
convergence is twice the order of the underlying discretization. This was shown for
linear IBVPs and assumes that the continuous solution is sufficiently smooth.



TIME-MARCHING METHODS BASED ON GSBP OPERATORS 5

Lundquist and Nordström [36] observed that this property extends to IVPs and
implies that the numerical solution at the end of each time step yd,n is also supercon-
vergent. Therefore, we can recover high-order approximations of the solution using a
lower-order discretization. This is analogous to Runge-Kutta methods, which make
use of low-order stage approximations to construct a higher-order solution update. In
addition, it is the order of this update which is referred to when discussing the order
of traditional time-marching methods. This further highlights the importance of the
superconvergence theory for IVPs.

The primary focus of this section is to extend the classical SBP convergence
theory of integral functionals to the GSBP framework. The specific challenges are
to account for the fact that χT

t0y is not in general equal to Y0 and to define the
accuracy of a GSBP norm matrix. To complete the extension of the theory, a number
of intermediate results are presented first.

3.1. The Primal Problem. The classical SBP-SAT convergence theory for
integral functionals is defined for IVPs which are linear with respect to the solution.
The truncation error of the discrete IVP plays an important role in bounding the rate
of superconvergence. In this section, the GSBP-SAT discretization of the relevant
linear IVP is defined along with its truncation error.

To begin, consider the scalar IVP which is linear with respect to the solution:

(3.1) Y ′ = λY + G(t), Y(t0) = Y0, with t0 ≤ t ≤ tf ,

where Y(t) ∈ C and G(t) : R → C is a nonlinear forcing function. This will be referred
to as the primal problem in subsequent sections when discussing dual-consistency. The
GSBP-SAT discretization of (3.1) is:

(3.2) Dyd = λyd + g + σH−1χt0

(
χT
t0yd − Y0

)
.

The truncation error is obtained by substituting the projection of the continuous
solution y into (3.2):

(3.3) Te = Dy − λy − g − σH−1χt0(χ
T
t0y − Y0).

This can be rearranged in terms of the difference between the projection of the con-
tinuous solution and the solution to the discrete equations:

(3.4) Te = H−1(Θ− σχt0χ
T
t0 − λH)(y − yd).

Alternatively, it can be written with respect to the projection of the continuous solu-
tion and time derivative:

(3.5) Te = Dy − y′ − σH−1χt0(χ
T
t0y − Y0).

In the classical SBP-SAT approach the truncation error Te = Dy − y′ is of order q
[36], as χT

t0y = Y0. In the generalized case, Condition 2.2 ensures that the projection
operator χt0 is of order greater than or equal to the GSBP operator itself, r ≥ q.
Thus, the lowest-order entry in Te is also of order q in the generalized case.

3.2. The Dual Problem. Our goal is to derive the convergence rate of integral
functionals:

(3.6) J (Y) = (K,Y) + αY
∣∣
tf
,
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of the primal problem (3.1). A key tool required to accomplish this task is the
Lagrangian dual problem. The derivation of the continuous dual problem

(3.7) −Φ′ = λ̄Φ+K(t), Φ(tf ) = ᾱ, with t0 ≤ t ≤ tf .

and dual functional

(3.8) J (Φ) = J (Y) = (Φ,G) + Φ̄Y
∣∣
t0
.

can be found in several references (e.g. [27]). This section presents a brief derivation
of the discrete GSBP-SAT dual problem, along with the dual truncation error.

To begin, consider the discrete form of the primal functional (3.6):

(3.9) JH(yd) = (k,yd)H + αχT
tfyd.

Subtracting the inner product of a vector φd and the discrete primal problem (3.2)
gives the discrete primal Lagrangian:

(3.10)
Lp = (k,yd)H + αχT

tfyd−
(φd, Dyd − λyd − g −H−1σχt0(χ

T
t0yd − Y0))H .

Rearranging, making use of Condition 2.2: Ẽ = Θ + ΘT = χtfχ
T
tf − χt0χ

T
t0 , and

simplifying yields:

(3.11)
Lp = (φd,g)H − σφ∗

dχt0Y0 +
(
Dφd + λ̄φd + k−H−1χtf (χ

T
tfφd − ᾱ) + (σ + 1)H−1χt0χ

T
t0φd,yd

)
H
.

The first two terms are an approximation of the dual functional (3.8). The final
term is an approximation of the inner product of the dual problem (3.7) and primal
solution.

A discretization which produces consistent approximations of both the primal and
dual problems is called dual-consistent [35]. As with the classical SBP-SAT approach,
this occurs in the generalized case when σ = −1. For reference, the dual-consistent
GSBP-SAT approximations of the dual problem and dual functional are:

(3.12) −Dφd = λ̄φd + k−H−1χtf (χ
T
tfφd − ᾱ),

and

(3.13) JH(φd) = JH(yd) = (φd,g)H + φ∗
dχt0Y0.

Using the same arguments made for the primal problem in Section 3.1, the trun-
cation error of the dual-consistent dual problem:

(3.14)
T̃e = −Dφ− λ̄φ− k+H−1χtf (χ

T
tfφ− ᾱ)

= −Dφ+ φ′ +H−1χtf (χ
T
tfφ− ᾱ),

is of order q.
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3.3. The Accuracy of the Norm. The final piece required to prove the super-
convergence of integral functionals is the accuracy with which a norm H associated
with GSBP operator D = H−1Θ approximates the continuous L2-inner product. This
is characterized by the following definition:

Definition 3.1. Accuracy of a GSBP norm: A norm H associated with a
GSBP operator D = H−1Θ is of order ρ, if:

(3.15) (u,v)H = uTHv =

∫ tf

t0

UVdt, UV ∈ Pρ,

and

(3.16) φTH
(
Dy +H−1χt0(χ

T
t0y − Y0)

)
=

∫ tf

t0

ΦY ′dt, ΦY ′ ∈ Pρ,

where Pi is the polynomial space of degree i, Y is the solution to the continuous primal
problem (3.1) with initial condition Y0, and Φ is the solution to the dual problem (3.7)
with homogeneous initial condition α = 0.

For diagonal-norm GSBP operators we have ρ = min(2q+1, τ), where q is the order of
the operator and τ ≥ 2q is the order of the associated quadrature rule [14]. For dense-
norms GSBP operators we have ρ = min(2q + 1, s), where 2⌈q/2⌉ ≤ s ≤ τ [2, 14]. A
more precise definition of s is given in [2]. Observe that ρ is always greater than or
equal to the order q of the GSBP operator itself. However, in contrast to the classical
approach, ρ is not necessarily equal to the order τ of the associated quadrature.

3.4. Superconvergence. We now extend the classical SBP-SAT theory for the
superconvergence of integral functionals [27, 29] to the GSBP-SAT approach. Clas-
sically, the theory implies that functionals constructed from the numerical solution,
as well as the solution approximated at the end of each time step, will converge with
the order of the associated quadrature rule τ , rather than the order of the underlying
discretization q. For diagonal-norm FD-SBP time-marching methods these differ by a
factor of two, τ = 2q. In this section, it is shown that GSBP time-marching methods
retain the superconvergence property. In the generalized case it is the order of the
GSBP norm matrix, rather than the associated quadrature rule, which dictates the
rate of superconvergence. The extension of the theory is presented in a sequence of
three theorems to simplify the proofs and to highlight some important intermediate
results.

To begin, we consider the functional (k,yd)H ≈ (K(t),Y) associated with a dual
problem that has a homogeneous initial condition, α = 0. This restriction coincides
with the requirement imposed in Definition 3.1 for the order of a GSBP norm matrix
ρ. The following theorem is an extension of the work presented in [27, 29] for dual-
consistent classical FD-SBP-SAT discretizations of IBVPs. The use of Definition 3.1
is the primary tool required to extend the proof. Therefore, the theorem is presented
without proof:

Theorem 3.2. If yd is the numerical solution of the primal problem (3.1) with
Re(λ) ≤ 0 computed using a GSBP time-marching method of order q and associated
with a norm of order ρ, then the discrete functional JH(yd) = (k,yd)H approximates
J (Y) = (K(t),Y) for KY ∈ Cρ with order ρ.
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For SBP and GSBP operators, the order of diagonal norm matrices ρ must be at least
twice the order of the operator itself q [14]. Therefore, integral functionals will also
converge with at least twice the order of the underlying time-marching method. In
contrast, dense norm matrices are not required to be significantly more accurate than
the GSBP operator; however, the operators themselves can often be more accurate for
a fixed number of solution points. Therefore, given a distribution of solution points,
the convergence of integral functionals is often similar. While the underlying solution
computed using a dense-norm GSBP time-marching method can be more accurate, it
will in general forfeit nonlinear stability (See Section 4).

To extend these results to the general integral functional (k,yd)H + αχT
tfyd ≈

(K(t),Y) + αYf , we must first prove that the solution approximated at the end of
each time step ỹtf = χT

tfyd is superconvergent. Independent of the functionals, the
result itself is significant as it implies that we can recover a high-order approximation
of the solution from a lower-order discretization. The classical theory presented in
[36] does not extend naturally to the generalized case. Here, we present an alternate
proof, which makes use of the following lemma proven in [2]:

Lemma 3.3. A GSBP operator which satisfies Condition 2.2, also satisfies the
identity: χT

tf (Θ+ χt0χ
T
t0)

−1 = 1T .

The proof of superconvergence for the solution approximated at the end of each time
step χT

tfyd is presented in the following theorem:

Theorem 3.4. If yd is the numerical solution of the primal problem (3.1) with
Re(λ) ≤ 0 computed using a GSBP time-marching method of order q and associated
with a norm of order ρ, then the solution projected to the end of the time step ỹtf =
χT
tfyd approximates Y(tf ) with order ρ.

Proof. Consider a GSBP time-marching method applied to the primal problem
(3.1):

(3.17) Dyd = λyd + g −H−1χt0

(
χT
t0yd − Y0

)
.

Rearranging, and left-multiplying by χT
tf gives

(3.18) ỹtf = χT
tfyd = χT

tf (Θ+ χt0χ
T
t0)

−1H(λyd +G+H−1χt0Y0).

Simplifying using Lemma 3.3: χT
tf (Θ− σχt0χ

T
t0)

−1 = 1T , gives:

(3.19) ỹtf = (1,λyd)H + (1, G)H + 1Tχt0Y0.

Simplifying again using Condition 2.2: χT
t0t

i = ti0 for i ∈ [0, r ≥ q ≥ 1], Theorem 3.2:
(K,Y) = (k,yd)H +O(∆tρn), and Definition 3.1, yields:

(3.20)
ỹtf = (1,λY) + (1,G) + Y0 +O(∆tρn)

=
∫ tf
t0
(λY + G)dt+ Y0 +O(∆tρn).

Substituting using the continuous primal problem (3.1): Y ′ = λY + G, gives

(3.21)
ỹtf =

∫ tf
t0

Y ′dt+ Y0 +O(∆tρn)

= Y(tf ) +O(∆tρn),
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thus completing the proof.

Thus, we can construct high-order approximations of the solution at the end of each
time step ỹtf = χT

tfyd from a lower-order discretization. With this result, the su-
perconvergence of the general integral functional J (Y) = (K(t),Y) + αYf follows
immediately by combining Theorems 3.2 and 3.4:

Theorem 3.5. If yd is the numerical solution of the primal problem (3.1) with
Re(λ) ≤ 0 computed using a GSBP time-marching method of order q and associated
with a norm of order ρ, then the discrete functional JH(yd) = (k,yd)H + αχT

tfyd

approximates J (Y) = (K(t),Y) + αY(T ) for K(t) ∈ Cρ with order ρ.

In summary, we have shown that both integral functionals of the solution and ap-
proximations of the solution itself at the end of each time step are superconvergent,
provided the solution is sufficiently smooth and the discretization is dual-consistent.
The rate of superconvergence is related to the accuracy with which the norm matrix
can approximate the continuous L2 inner product, in particular inner products of the
primal and dual problems. For diagonal-norm GSBP time-marching methods the rate
of superconvergence is at least twice the order of the operator itself. For dense-norm
GSBP time-marching methods, superconvergence is often less notable; however, the
methods can be of higher-order to begin with [2, 14, 40]. One potential drawback of
dense-norm discretizations is the loss of nonlinear stability (See Section 4).

Relative to classical FD-SBP time-marching methods, GSBP schemes can be
constructed of higher order for a given number of solution points [14]. This includes
both the order of the operator itself as well as the norm matrix. Therefore, the
extended superconvergence theory implies that GSBP time-marching methods not
only have the potential to be more efficient for computing the pointwise solution, but
the computation of integral functionals as well.

4. Stability. Thus far it has been shown that GBSP time-marching methods
retain the superconvergence of the classical SBP approach. However, these methods
are only desirable for stiff IVPs if they also maintain the same stability properties. In
this section, several linear and nonlinear stability criteria are considered. The analysis
of these criteria for classical FD-SBP time-marching methods was presented in [36].
The primary challenge to extend the theory for GSBP time-marching methods is to
account for the fact that χT

t0y is not in general equal to Y0.

4.1. Linear Stability. While many problems of interest are nonlinear, a locally
linear assumption is often a reasonable approximation. An example is the solution to
the compressible Navier-Stokes equations. As a result, linear stability is of significant
interest. To begin the discussion of linear stability, consider the scalar linear IVP,

(4.1) Y ′ = λY, Y(t0) = Y0, with t0 ≤ t ≤ tf ,

where Y ∈ C, and λ is a complex constant. It is well known that (4.1) is inherently
stable for Re(λ) ≤ 0 (e.g. [12, 34, 36]). A numerical method applied to (4.1) is called
A-stable if Re(λ) ≤ 0 implies that

(4.2) |ỹtf | ≤ |Y0|,

where ỹtf ≈ Y(tf ) is an approximation of the solution at tf . Classical SBP time-
marching methods were shown to be A-stable in [36], where ỹtf is obtained from yd,n.
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The proof extends naturally taking ỹtf = χT
tfyd. Thus, we present the following the-

orem without proof:

Theorem 4.1. All GSBP time-marching methods are A-stable.

A-stability guarantees that all modes are stable; however those associated with large
eigenvalues may be damped very slowly. Hence, a stronger condition known as L-
stability [15] is often preferred. A numerical method applied to (4.1) is called L-stable
if it is A-stable, and furthermore Re(λ) ≤ 0 implies that

(4.3) |ỹtf | → 0 as |λ| → ∞.

Classical SBP time-marching methods were also shown in [36] to have this property;
however, the proof does not extended to the generalized case. Hence, we present an
alternate approach inspired by Proposition 3.8 in [24]. The proof is simplified by first
introducing the following lemma proven in [2]:

Lemma 4.2. A GSBP operator which satisfies Condition 2.3, also satisfies the
identity: (Θ+ χt0χ

T
t0)

−1χt0 = 1.

The L-stability of GSBP time-marching methods is now proven:

Theorem 4.3. All GSBP time-marching methods which satisfy Condition 2.3
are L-stable.

Proof. A-stability follows from Theorem 4.1. What remains is to prove is |ỹtf | →
0 as |λ| → ∞. Applying a GSBP time-marching method to the linear IVP (4.1) gives:

(4.4) Dyd = λyd −H−1χt0

(
χT
t0yd − Y0

)
.

Rearranging using Condition 2.3: (Θ + χt0χ
T
t0) has strictly positive eigenvalues and

is therefore invertible, and Lemma 4.2: (Θ+ χt0χ
T
t0)

−1χt0 = 1, yields:

(4.5) yd = [I − λ(Θ+ χt0χ
T
t0)

−1H]−11Y0.

In a similar fashion, an expression for ỹtf can be constructed:

(4.6) ỹtf = χT
tfyd = χT

tf (Θ+ χt0χ
T
t0)

−1Hλyd + χT
tf1Y0.

Inserting (4.5) into (4.6) and applying Condition 2.2: χT
tf t

i = tif for i ∈ [0, r ≥ q ≥ 1],
yields:

(4.7) ỹtf = (1 + λχT
tf (Θ+ χt0χ

T
t0)

−1H[I − λ(Θ+ χt0χ
T
t0)

−1H]−11)Y0.

Taking the limit as |λ| → ∞:

(4.8) ỹtf = (1− χT
tf (Θ+ χt0χ

T
t0)

−1H[(Θ+ χt0χ
T
t0)

−1H]−11)Y0.

and simplifying using Condition 2.2: χT
tf t

i = tif for i ∈ [0, r ≥ q ≥ 1], yields:

(4.9) ỹtf = (1− χT
tf1)Y0 = 0,

completing the proof.

In summary, all GSBP time-marching methods are unconditionally stable for lin-
ear problems, and furthermore provide damping of stiff parasitic modes. These con-
ditions are derived for linear problems, but are often sufficient for nonlinear problems
as well.
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4.2. Nonlinear Stability and Contractivity. While linear stability is often
sufficient, there are cases in which nonlinear stability is required. In this section,
we show that GSBP time-marching methods associated with a diagonal norm matrix
retain BN-stability and energy stability.

To begin, consider a subset of the general IVP (2.1) which satisfy the one-sided
Lipschitz condition [13]:

(4.10) Re[(F(Y, t)− F(Z, t) , Y − Z)P ] ≤ ν||Y − Z||2, ∀Y,Z ∈ CM , and t ∈ R

where ν ∈ R is the one-sided Lipschitz constant, and P is an SPD matrix defining a
discrete inner product and norm over CM :

(4.11) (Y,Z)P = Y∗PZ, ||Y||2P = Y∗PY.

An IVP (2.1) is said to be contractive if it satisfies the one-sided Lipschitz condition
with ν ≤ 0. The significance of this condition is that the distance between any two
solutions, ||Y(t)−Z(t)||, does not increase with time [24]. A numerical method applied
to the IVP (2.1) is called BN-stable1 if the one-sided Lipschitz condition (4.10) with
ν ≤ 0 implies that

(4.12) ||ỹtf − z̃tf ||P ≤ ||Y0 − Z0||P ,

where ỹtf and z̃tf are approximations of the solutions at time tf given initial data Y0

and Z0 respectively.
A similar nonlinear stability definition was presented in [3] for autonomous IVPs

with monotonic functions. An extension of this idea for non-autonomous IVPs was
introduced in [36], called energy stability. A numerical method is called energy stable
if

(4.13) Re[(Y(t),F(Y, t))P ] ≤ 0, ∀Y ∈ CM , and t ∈ R

implies that

(4.14) ||ỹtf ||P ≤ ||Y0||P .

Classical diagonal-norm FD-SBP time-marching methods have been shown to be
both BN-stable and energy stable, where ỹtf = yd,n [36]. The proofs extend immedi-
ately for GSBP time-marching methods taking ỹtf = χT

tfyd. Therefore, the following
Theorem is presented without proof:

Theorem 4.4. All diagonal-norm GSBP time-marching methods are BN-stable,
energy stable, and hence monotonic.

As with the classical SBP time-marching methods, nonlinear stability does not
extend in general to dense-norm GSBP time-marching methods. However, in Section 5
conditions are derived under which nonlinearly stable dense-norm GBP time-marching
methods can be constructed.

1BN-stability is sometimes referred to as B-stability when the distinction between autonomous
and non-autonomous ODEs is not made (Compare Definitions 2.9.2 and 2.9.3 of [30] and Definition
12.2 in[24]).
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5. The Connection to Runge-Kutta Methods. In this section it is shown
that SBP/GSBP time-marching methods can be rewritten as n-stage implicit Runge-
Kutta methods. The Runge-Kutta connection is then applied to derive some addi-
tional accuracy and stability results for nonlinear IVPs. Specifically, diagonal-norm
GSBP time-marching methods are shown by definition to be of order p ≥ min(2q+1, τ)
for nonlinear problems. For dense-norm schemes this is reduced to p ≥ min(q+ 1, τ).
However, these are only guaranteed minimums; the Runge-Kutta order conditions
can also be used to supersede these results, as shown in Section 6. Finally, conditions
are derived in this section under which BN-stable dense-norm GSBP time-marching
methods can be constructed.

While SBP/GSBP time-marching method form a subset of implicit Runge-Kutta
methods, the SBP/GSBP characterization remains important. Firstly, it greatly sim-
plifies the construction of high order fully-implicit time-marching methods with a
particular set of characteristics (See [14] and Section 6). All that is required is a
distribution of solution points or a quadrature rule. The resulting scheme is by def-
inition L-stable and yields superconvergence of integral functionals. Furthermore, if
the quadrature rule is positive, a diagonal-norm scheme exists and is BN-stable. The
SBP/GSBP characterization can also facilitate the analysis of fully-discrete approx-
imations of PDEs. Finally, the generalization to multi-dimensional GSBP operators
proposed in [26] may enable space-time discretizations of PDEs with the aforemen-
tioned properties. In this case, the explicit connection to Runge-Kutta methods is
often lost.

To show the connection to Runge-Kutta methods, consider the mth application
of a GSBP time-marching method to the nonlinear IVP (2.1): Y ′ = F(Y, t):

(5.1) Dy[m]
d = H−1Θy[m]

d = f [m]
d −H−1χt0

(
χT
t0y

[m]
d − χT

tfy
[m−1]
d

)
.

Rearranging (5.1) for the solution values using Condition 2.3: (Θ+χt0χ
T
t0) has strictly

positive eigenvalues and is therefore invertible, and Lemma 4.2: (Θ+ χt0χ
T
t0)

−1χt0 =
1, gives

(5.2) y[m]
d = 1ỹ[m−1] +

(
Θ+ χt0χ

T
t0

)−1
Hf [m]

d ,

where ỹ[m−1] = χT
tfy

[m−1]
d . Projecting (5.2) to the end of the time step and simplifying

using Condition 2.2: χT
tf t

i = tif for i ∈ [0, r ≥ q ≥ 1], and Lemma 3.3: χT
tf (Θ +

χt0χ
T
t0)

−1 = 1T , yields:

(5.3) ỹ[m] = ỹ[m−1] + 1THf [m]
d .

These equations describe a set of intermediate values y[m]
d , constructed from a single

initial value ỹ[m−1]. In turn, these values are used to generate a solution one step
forward in time ỹ[m]. This is equivalent to a Runge-Kutta scheme written in the form

(5.4) ỹ[m] = ỹ[m−1] + h
n∑

j=1

bjF(yd,j , t
[m−1] + cjh),

with internal stage approximations:

(5.5) yk = ỹ[m−1] + h
n∑

j=1

AkjF(yd,j , t
[m−1] + cjh) for k = 1, . . . , n,



TIME-MARCHING METHODS BASED ON GSBP OPERATORS 13

where Akj and bj are the coefficients of the method with abscissa c, and h = t[m]
f −t[m]

0

is the step size. Comparing the two sets of equations, the Runge-Kutta coefficient
matrices associated with a SBP/GSBP time-marching method are:

(5.6)
A = 1

h

(
Θ+ χt0χ

T
t0

)−1
H,

bT = χT
tfA = 1

h1
TH.

The factor of 1/h in (5.6) stems from the fact that for SBP/GSBP time-marching, the
step size is implicitly defined in the norm. Similarly, the abscissa of the Runge-Kutta

characterization must be rescaled and translated from [t[m]
0 , t[m]

f ] to [0, 1]:

(5.7) c =
t− 1t[m]

0

h
.

The application of GSBP and projection operators applied to (5.7) is discussed in
Appendix A. These relationships greatly simplify the analysis in the subsequent sec-
tions.

5.1. Accuracy for Nonlinear Initial Value Problems. In Section 3 we have
shown that the solution at the end of each time step approximated from the numerical
solution from a GSBP time-marching method is superconvergent. However, the theory
of superconvergence is limited to IVPs which are linear with respect to the solution.
In this section, we use the connection to Runge-Kutta methods to generate general
accuracy results for fully nonlinear problems. This is accomplished by comparing
the conditions imposed on GSBP time-marching methods and the simplifying order
conditions derived for Runge-Kutta methods.

A brief discussion of the full nonlinear order conditions for Runge-Kutta meth-
ods is also presented, which can be used to supersede the aforementioned minimum
guaranteed order results.

5.1.1. Simplifying assumptions. This section presents a brief introduction
to the simplifying order conditions derived for Runge-Kutta methods. The Runge-
Kutta characterization of GSBP time-marching methods is then substituted into these
conditions to derive some general accuracy results.

The full Runge-Kutta order conditions for general nonlinear IVPs become increas-
ingly difficult to solve as the order increases. To ease the construction of higher-order
Runge-Kutta schemes, a simpler set of sufficient conditions were derived in [4]. This
simplified set of equations are referred to as simplifying order conditions and are sum-
marized with the following theorem presented without proof (See Theorem 7 in [4]):

Theorem 5.1. If the coefficients A, bT , and c of a Runge-Kutta method satisfy
the following conditions:

(5.8) B(p) : bT cj−1 =
1

j
, j ∈ [1, p]

(5.9) C(q̂) : Acj−1 =
cj

j
, j ∈ [1, q̂]

(5.10) D(ξ) : ATBdc
j−1 =

1

j
Bd(1− cj), j ∈ [1, ξ]
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with p ≤ 2q̂+2 and p ≤ q̂+ξ+1, where Bd is a diagonal matrix formed by the entries
of b, then the Runge-Kutta method will be of order p.

The first simplifying condition B(p) (5.8) is the requirement that bT be a quadra-
ture rule of order p. The relationship between SBP/GSBP operators and quadrature
rules was examined in [14, 28]. The following lemma shows that GSBP time-marching
methods satisfy the first simplifying order condition B(p) for p = τ , where τ is the
order of the associated quadrature rule:

Lemma 5.2. SBP and GSBP time-marching methods with a norm matrix asso-
ciated with a quadrature rule w = H1 of order τ , satisfy condition B(p) for p = τ .

Proof. Beginning with first simplifying condition B(p) (5.8) and substituting

(A.3): cp = 1
hp

∑p
i=0

(p
i

)
(t[m])p−i(−t[m]

0 )i, gives:

(5.11) bT cj−1 =
1

h
wT cj−1 =

1

hj

j−1∑

i=0

(
j − 1

i

)
wT (t[m])j−1−i(−t[m]

0 )i, j ∈ [1, p].

Integrating the distribution of solution points t[m] using the quadrature w yields:

(5.12) bT cj−1 =
1

hj

j−1∑

i=0

(
j − 1

i

)
1

j − i
((t[m]

f )j−i − (t[m]
0 )j−i)(−t[m]

0 )i, j ∈ [1, p ≤ τ ].

Using the identity
(j−1

i

)
=

(j
i

) j−i
j and simplifying gives:

(5.13) bT cj−1 =
1

jhj

j−1∑

i=0

(
j

i

)(
(t[m]

f )j−i(−t[m]
0 )i − (t[m]

0 )j(−1)i
)
, j ∈ [1, p ≤ τ ].

Next, we raise the upper bound on the summation by adding and subtracting the
argument of the summation with index i = j:

bT cj−1 =
1

jhj

j∑

i=0

(
j

i

)(
(t[m]

f )j−i(−t[m]
0 )i − (t[m]

0 )j(−1)i
)

(5.14)

−
(
(t[m]

f )j−i(−t[m]
0 )i − (t[m]

0 )j(−1)i
) ∣∣∣∣

i=j

, j ∈ [1, p ≤ τ ].

The summation can be simplified using the identity
∑j

i=0

(j
i

)
(−1)i = 0:

(5.15)
j∑

i=0

(
j

i

)
(t[m]

f )j−i(−t[m]
0 )i − (t[m]

0 )j
j∑

i=0

(
j

i

)
(−1)i =

j∑

i=0

(
j

i

)
(t[m]

f )j−i(−t[m]
0 )i,

which is equivalent to hj = (t[m]
f − t[m]

0 )j . Therefore, the first term in (5.14) simplifies

to hj

jhj = 1/j. The second term in (5.14) simplifies to zero:

(5.16) −
(
(t[m]

f )0(−t[m]
0 )j − (t[m]

0 )j(−1)j
)
= −

(
(t[m]

0 )j(−1)j − (t[m]
0 )j(−1)j

)
= 0.

Thus, bT cj−1 = 1/j for j ∈ [1, p ≤ τ ], completing the proof.
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The simplifying conditions C(q̂) (5.9) are known as the stage-order conditions. It
describes the order to which the intermediate stage values (5.5) approximate Y(t0+ci).
This property influences the convergence of problems with stiff source terms [36, 39] as
well as singular perturbation problems (e.g. [22]). For SBP and GSBP time-marching
methods these are the solution values yd. The following lemma states that the second
simplifying condition C(q̂) is satisfied with q̂ ≥ q, where q is the order of the GSBP
operator:

Lemma 5.3. SBP and GSBP time-marching methods of order q, satisfy the stage
order condition C(q̂) for q̂ ≥ q.

Proof. Consider the stage order conditions (5.9):

(5.17) Acj−1 =
1

h
(Θ+ χt0χ

T
t0)

−1Hcj−1 =
1

j
cj , for j ∈ [1, q̂].

Multiplying through by hH−1(Θ+ χt0χ
T
t0) and simplifying yields

(5.18) cj−1 =
1

j
hDcj +

1

j
hH−1χt0χ

T
t0c

j , for j ∈ [1, q̂].

If q̂ ≤ q, then by Lemma A.1: Dcj = 1
hjc

j−1 for j ∈ [0, q], the first term on the
right-hand side becomes cj−1, and by Lemma A.2: χT

t0c
j = 0 for j ∈ [0, r ≥ q], the

second term becomes 0. Thus, an identity is recovered, proving the theorem.

The final simplifying condition D(ξ) (5.10) defines a relationship between certain
order conditions based on their form. The following lemma states that diagonal-norm
GSBP time-marching methods satisfy this condition with ξ ≥ q:

Lemma 5.4. Diagonal-norm SBP and GSBP time-marching methods of order q,
satisfy condition D(ξ) for ξ ≥ q.

Proof. Consider the third simplifying condition D(ξ):

(5.19) ATBdc
j−1 =

(
1

h

(
Θ+ χt0χ

T
t0

)−1
H

)T

Bdc
j−1 =

1

j
Bd(1− cj), j ∈ [1, ξ].

For diagonal-norm GSBP time-marching methods, Bd is equivalent to the norm H.

Making this substitution, multiplying through by H−1
(
Θ+ χt0χ

T
t0

)T
H−1, and sim-

plifying yields:

(5.20)
1

h
cj−1 =

1

j
H−1

(
ΘT + χt0χ

T
t0

)
(1− cj), j ∈ [1, ξ].

Using Condition 2.2: Θ+ΘT = χtfχ
T
tf − χt0χ

T
t0 , and expanding gives:

(5.21)
1

h
cj−1 =

1

j

(
−H−1Θ(1− cj) +H−1χtfχ

T
tf (1− cj)

)
, j ∈ [1, ξ].

If ξ ≤ q, then by Lemma A.1: Dcj = 1
hjc

j−1 for j ∈ [0, q], the first term on the
left-hand side reduces to 1

hc
j−1, and by Lemma A.3: χT

tf c
j = 1 for j ∈ [0, r ≥ q], the
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second term simplifies to zero. Thus we recover an identity for ξ ≤ q, proving the
lemma.

Combining this result with Lemmas 5.2 and 5.3, the order of diagonal-norm SBP
and GSBP time-marching methods follows immediately, summarized by the following
theorem:

Theorem 5.5. Diagonal-norm SBP and GSBP time-marching methods of order
p ≥ min(τ, 2q + 1).

Proof. The result follows from Theorem 5.1, as well as Lemmas 5.2, 5.3, and 5.4.

Therefore, the superconvergence theory derived for diagonal-norm SBP and GSBP
time-marching methods in Theorem 3.4, also holds in the nonlinear case, p = min(τ, 2q+
1).

In contrast, dense-norm SBP and GSBP time-marching methods do not in gen-
eral satisfy the third simplifying order condition D(ξ) (5.10) with ξ > 0. Therefore
without the support of the third condition D(ξ > 0), the maximum guaranteed order
of dense-norm SBP and GSBP time-marching methods is min(τ, q + 1), summarized
in the following theorem:

Theorem 5.6. Dense-norm SBP and GSBP time-marching methods are of order
p ≥ min(τ, q + 1).

Proof. The result follows from Theorem 5.1, as well as Lemmas 5.2 and 5.3.

This is not in general as high as the superconvergence shown in Theorem 3.4; however
the third simplifying condition can be used to guide the construction of higher-order
dense-norm GSBP time-marching methods.

In summary, we have applied the connection to Runge-Kutta methods to extend
the superconvergence theory of the solution approximated at the end of each time
step to fully nonlinear problems. For diagonal-norm GSBP time-marching methods,
the rate of superconvergence is identical to what is shown in Section 3.4 for problems
linear with respect to the solution. For dense-norm GSBP time-marching methods,
the bounds are more restrictive than the previous result. Finally, the simplifying
order conditions can be used to guide the construction of GSBP time-marching meth-
ods which supersede these minimum guaranteed results. An example is discussed in
Section 6.

5.1.2. Full order conditions. The full order conditions for a Runge-Kutta
scheme can be found in several references, for example [6, 23]. For reference, the
conditions for orders one through four, assuming stage consistency: A1 = c, are:

(5.22)

bT1 = 1 bT c3 = 1
4

bT c = 1
2 bTAc2 = 1

8

bT c2 = 1
3 bTCAc = 1

12

bTAc = 1
6 bTAAc = 1

24

where C = diag(c). Given the relationship between GSBP time-marching methods
and the Runge-Kutta coefficient matrices derived above, one can simply insert these
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relationships into the algebraic order conditions and solve for the coefficients. These
systems of equations are not necessarily easy to solve, but can be exploited in the con-
struction of GSBP time-marching methods. For example, diagonally-implicit schemes
are limited to stage-order q̂ = 1 due to their form. Using the GSBP approach, the
maximum guaranteed order of the resulting time-marching method is p = 2q+1 = 3.
There is no theoretical way to determine if the scheme is of higher order, or to guide
the construction of a higher-order scheme if it is not. The Runge-Kutta order con-
ditions fill this role. In Section 6 the full order conditions are applied to guide the
construction of a diagonally implicit GSBP time-marching method with stage order
1 and global order 4.

5.2. Nonlinear Stability of Dense-Norm GSBP Time-Marching Meth-
ods. Dense-norm SBP and GSBP time-marching methods are not in general BN-
stable or energy stable (See Section 4). In this section, however, we show that it
is possible to construct BN-stable dense-norm GSBP time-marching methods. This
is accomplished by considering the algebraic conditions for BN-stability derived in
[5, 11]:

Theorem 5.7. A Runge-Kutta method is BN-stable if:

i) bi ≥ 0 for i = 1, . . . , s;
ii) A is invertible; and

iii) M̂ = BdA−1 + (A−1)TBd − (A−1)T bbTA−1 is non-negative definite,

where Bd is a diagonal matrix formed by the elements of b.

By substituting the Runge-Kutta characterization of GSBP time-marching methods
into this theorem, we obtain the conditions under which dense-norm GSBP time-
marching methods can be constructed:

Theorem 5.8. A GSBP time-marching method which satisfies Condition 2.3
is BN-stable if it associated with a non-negative quadrature rule w = H1, and the
coefficient matrices satisfy:

(5.23) WdH
−1

(
Θ+ χt0χ

T
t0

)
+
(
Θ+ χt0χ

T
t0

)T
H−1Wd − χtfχ

T
tf ,

non-negative definite, where Wd is a diagonal matrix formed by the elements of w =
H1.

Proof. Condition i): The b coefficient matrix is equal to 1
hw. Therefore, if the

weights of the associated quadrature rule are non-negative: wi ≥ 0, so will the entries
of the b coefficient matrix. This is immediately satisfied for diagonal-norm GSBP
time-marching methods by Definition 2.1: H must be a SPD matrix.

Condition ii): The A coefficient matrix is equal to 1
h (Θ+χt0χ

T
t0)

−1H. The matrix
(Θ+χt0χ

T
t0) is invertible by Condition 2.3, and the norm H is SPD by Definition 2.1.

Therefore the A coefficient matrix of a GSBP time-marching method is invertible by
construction.

Condition iii): To begin, substitute the relationship bT = χT
tfA into M̂ :

(5.24) M̂ = BdA
−1 + (A−1)TBd − (A−1)TATχtfχ

T
tfAA−1.
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Next, consider that the b coefficient matrix is equal to 1
hw, and therefore Bd is equal

to 1
h diag(w) or 1

hWd. Substituting this relationship into (5.24), as well as the char-
acterization of the A coefficient matrix 1

h (Θ + χt0χ
T
t0)

−1H, and simplifying yields:

(5.25) M̂ = WdH
−1

(
Θ+ χt0χ

T
t0

)
+
(
Θ+ χt0χ

T
t0

)T
H−1Wd − χtfχ

T
tf .

Therefore, if (5.23) is non-negative definite, so will M̂ . For diagonal-norm GSBP time-
marching methods the matrix Wd is equal to the norm H. In this case (5.25) simplifies

to M̂ = χt0χ
T
t0 , which is always non-negative definite and satisfies the condition.

Thus, using the connection to Runge-Kutta methods, we have derived the condi-
tions under which dense-norm GSBP time-marching methods can be constructed. In
the proof, we have shown that all diagonal norm GSBP time-marching methods are
BN-stable, which is consistent with Theorem 4.4.

We can take these results one step further. It is well known that for non-confluent
Runge-Kutta schemes (schemes with unique ci) the criteria for algebraic-stability, BN-
stability, B-stability, and AN-stability are all equivalent [24]. Since all dual-consistent
SBP and GSBP time-marching methods are non-confluent by Definition 2.1, those
which satisfy Theorem 5.8 will also have these additional stability properties.

6. Examples of GSBP Time-Marching Methods. This section applies the
theory developed in this article to construct some known and novel Runge-Kutta
schemes which are based on GSBP operators.

6.1. Lobatto IIIC discontinuous-collocation Runge-Kutta methods. A
set of diagonal-norm GSBP operators which lead to a known class of Runge-Kutta
methods, are those based on Gauss-Lobatto points. These operators are also spectral-
element operators and where considered with the use of SATs in [18]. As an example,
consider the four-node Gauss-Lobatto points in the domain [−1, 1]:

(6.1) t =
[
−1 − 1

5

√
5 1

5

√
5 1

]T
.

The corresponding GSBP norm, whose entries are the Gauss-Lobatto quadrature
weights, and GSBP operator are:

(6.2) H =

⎡

⎢⎢⎢⎢⎣

1
6

5
6

5
6

1
6

⎤

⎥⎥⎥⎥⎦
, D =

⎡

⎢⎢⎢⎢⎢⎣

−3 − 5
√
5√

5−5
− 5

√
5√

5+5
1
2

√
5√

5−5
0

√
5
2 − 5

√
5√

5+5√
5√

5+5
−
√
5

2 0 − 5
√
5√

5−5

− 1
2

5
√
5√

5+5
5
√
5√

5−5
3

⎤

⎥⎥⎥⎥⎥⎦
.

This operator is associated with the exact projection operators χ−1 = [1, 0, . . . , 0]T

and χ1 = [0, . . . , 0, 1]T . Applying the Runge-Kutta characterization derived in Section
5, the coefficients of the equivalent Runge-Kutta scheme are

(6.3) A =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
12 −−

√
5

12
−
√
5

12 − 1
12

1
12

1
4

10−7
√
5

60

√
5

60

1
12

10+7
√
5

60
1
4 −

√
5

60

1
12

5
12

5
12

1
12

⎤

⎥⎥⎥⎥⎥⎥⎦
,
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and

(6.4) b =
[

1
12

5
12

5
12

1
12

]
,

with abscissa:

(6.5) c =
[
0 1

2 − 1
10

√
5 1

2 + 1
10

√
5 1

]T
.

This is the four-point Lobatto IIIC discontinuous-collocation Runge-Kutta scheme
[1, 10, 15, 25]. A similar approach can be applied on Radau quadrature points,
leading to the Radau IA and IIA discontinuous-collocation Runge-Kutta schemes.
These scheme are all L-stable, BN-stable, and energy stable. Interestingly, the Radau
IIA scheme also satisfies the stage-order conditions q̂ = q + 1, one order greater than
guaranteed by the GSBP theory (Lemma 5.3).

6.2. Gauss GSBP time-marching methods. The generalized framework can-
not be used in the same way to construct the well-known order 2n Gauss collocation
Runge-Kutta methods of Butcher [4] and Kuntzmann [33]. The reason is that these
schemes are not L-stable, which all GSBP time-marching methods are. However, us-
ing the GSBP approach we can construct a class of time-marching methods of order
2n− 1 on the Gauss points which are L-stable. Consider the four-node Gauss points
in the interval [−1, 1], shown here to sixteen decimal places:

(6.6) t = [ −0.8611363115940526 −0.3399810435848563 0.3399810435848563 0.8611363115940526 ]T .

The corresponding norm, whose entries are the Gauss quadrature weights, and result-
ing GSBP operator are:

(6.7) H =

[
0.3478548451374539

0.6521451548625461

0.6521451548625461

0.3478548451374539

]
,

(6.8)

D =

[
−3.3320002363522817 4.8601544156851962 −2.1087823484951789 0.5806281691622644

−0.7575576147992339 −0.3844143922232086 1.4706702312807167 −0.3286982242582743

0.3286982242582743 −1.4706702312807167 0.3844143922232086 0.7575576147992339

−0.5806281691622644 2.1087823484951789 −4.8601544156851962 3.3320002363522817

]
,

with projection operators

(6.9) χ−1 = [ 1.5267881254572668 −0.8136324494869273 0.4007615203116504 −0.1139171962819899 ]T

and

(6.10) χ1 = [ −0.1139171962819899 0.4007615203116504 −0.8136324494869273 1.5267881254572668 ]T

These operators can also be derived using the spectral-element approach. Apply-
ing the Runge-Kutta characterization, the coefficients of the equivalent Runge-Kutta
scheme are

(6.11) A =

[
0.0950400941860569 −0.0470608105772507 0.0330840931816566 −0.0116315325874891

0.1772065313616314 0.1906741915282288 −0.0555183314150631 0.0176470867327749

0.1781035081124255 0.3263151032211517 0.1906741915282288 −0.0251022810693778

0.1694061893528291 0.3339017452341202 0.3322201270240200 0.0950400941860569

]
,

and

(6.12) b = [ 0.0869637112843635 0.1630362887156365 0.1630362887156365 0.0869637112843635 ] ,
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with abscissa:

(6.13) c = [ 0.0694318442029737 0.3300094782075719 0.6699905217924281 0.9305681557970263 ]T .

The abscissa and solution update vector b are equivalent to the eighth order method
of Butcher and Kuntzmann; only the A coefficient matrix differs. The GSBP time-
marching method is seventh-order, one order lower than the method of Butcher and
Kuntzmann, but is L-stable. Using the GSBP approach, other methods in this class
are very straight forward to derive.

6.3. Diagonally-implicit GSBP methods. In this section, diagonally-im-
plicit Runge-Kutta schemes are constructed which are based on GSBP operators.
Diagonally-implicit methods are often more efficient than fully-implicit schemes, es-
pecially in terms of memory usage, and are therefore of particular interest. For these
examples, coefficients of the GSBP operator are first constrained such that the result-
ing Runge-Kutta scheme is diagonally-implicit and satisfies the minimal requirements
of Definition 2.1. The former is done by using the fact that the inverse of a lower
triangular matrix is also lower triangular. Therefore, decomposing Θ into symmet-
ric ΘS = 1

2 Ẽ and anti-symmetric components ΘA (See e.g. [14]), the coefficients of
ΘA are chosen such that H−1(Θ+ χt0χ

T
t0), the inverse of the coefficient matrix A, is

lower triangular. The remaining coefficients in the GSBP operator and corresponding
Runge-Kutta scheme, including the distribution of solution points and weights of the
associated quadrature, are solved for using the full Runge-Kutta order conditions.

The first example is a novel three-stage third-order diagonal-norm GSBP scheme.
Several coefficients are determined by solving the order conditions (5.22). The remain-
ing free coefficients are chosen to minimize the L2-norm of the fourth-order conditions
[38]. The abscissa of the GSBP operator to sixteen decimal places is:

(6.14) t = [ 0.0585104413419415 0.8064574322792799 0.2834542075672883 ]T ,

which is already chosen to be for the domain [0, 1]. Likewise, the norm is determined
to be:

(6.15) H =

[
0.1008717264855379

0.4574278841698629

0.4417003893445992

]
,

which are the weights of the associated quadrature rule, and the GSBP derivative
operator is:

(6.16) D1 =

[
−12.3737796851209214 −3.4099304182988046 15.7837101034197260

−1.6186577488308495 1.2158491567586837 0.4028085920721658

−0.9626808228023090 1.4979849320764039 −0.5353041092740949

]
,

with projection operators:

(6.17) χ0 = [ 1.7239953104443755 0.1995165337199744 −0.9235118441643498 ]T ,

and

(6.18) χ1 = [ −0.6898048930346554 1.0733748002069487 0.6164300928277068 ]T .

It is interesting to note that the distribution of solution points is not ordered, ti ≯ ti−1.
This is not uncommon for time-marching methods, however, this restriction is often
imposed on GSBP operators for spatial applications (see e.g. [14]). Furthermore,
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unlike the schemes considered in Sections 6.1 and 6.2 which are constructed from col-
located spectral-element operators, these were derived without any connection to basis
functions. The additional flexibility enables a third-order method that is diagonally-
implicit to be constructed with only three points. The equivalent diagonally-implicit
Runge-Kutta scheme has the following coefficient matrices:

(6.19) A =

[
0.0585104413426586

0.0389225469556698 0.7675348853239251

0.1613387070350185 −0.5944302919004032 0.7165457925008468

]
,

and

(6.20) b = [ 0.1008717264855379 0.4574278841698629 0.4417003893445992 ] ,

with c = t. Even though the GSBP derivative operator is dense, the resulting Runge-
Kutta scheme is diagonally-implicit. In addition, since the norm associated with
the GSBP operator is diagonal, the scheme is by definition L-stable, BN-stable, and
energy-stable.

As a second example, a four-stage fourth-order diagonally-implicit GSBP scheme
is constructed. This goes beyond the order guaranteed by the GSBP theory alone. The
full Runge-Kutta order conditions are used to derive all of the coefficients of the GSBP
operators and hence the equivalent Runge-Kutta scheme. The nodal distribution of
the scheme determined by solving the full Runge-Kutta order conditions (5.22) is to
sixteen decimal places:

(6.21) t = [ 0.5975501145870646 0.1236947892666459 0.9813648784844768 0.2188347157850838 ] ,

already chosen to be for the domain [0, 1]. Likewise, the corresponding norm is:

(6.22) H =

[
0.5263633266867775

0.3002573924935185
0.1447678514141155

0.0286114294055885

]
,

which defines the weights of the associated quadrature rule, and the GSBP derivative
operator is:

(6.23) D =

[
0.1993658318073258 −1.654157580888287 1.006020084619771 0.4487716644611903

−1.648792506689303 −1.212963928918776 1.978966716941006 0.8827897186670728

3.217338082860363 −1.615712813301921 −0.4880781006041668 −1.113547168954275

1.271022350640990 −0.6382938457303877 0.6005231745715582 −1.233251679482160

]
,

with projection operators:

(6.24) χ0 = [ 0.8808689243587871 0.9884420520048577 −0.6011474168414327 −0.2681635595222120 ] ,

and

(6.25) χ1 = [ 0.9928785357819795 −0.4986129934126102 0.4691078563418350 0.03662660128879568 ] .

Applying the Runge-Kutta characterization of these operators yields the Runge-Kutta
coefficient matrices:

(6.26) A =

[
0.5975501145870646

−0.3662683378362842 0.4899631271029300

−0.9122346095222909 1.395636663278596 0.4979628247281717

4.870201094711127 −3.007233691002447 −2.425297972138512 0.7811652842149162

]
,

and

(6.27) bT = [ 0.5263633266867775 0.3002573924935185 0.1447678514141155 0.02861142940558849 ] ,
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with abscissa c = t. Since this Runge-Kutta scheme is constructed from a diagonal-
norm GSBP operator, it is L-stable, linearly-stable, algebraically-stable and energy-
stable. It is also interesting to note that fourth-order is the highest order possible for
diagonally-implicit Runge-Kutta schemes which are algebraically-stable [21]. There-
fore, to construct a diagonally-implicit GSBP scheme of order greater than four, it
must not be algebraically stable, and therefore cannot be based on a diagonal-norm
GSBP operator.

7. Numerical Examples. This section examines the efficiency of various fully-
implicit time-marching methods based on classical SBP and GSBP operators. We
solve the linear convection equation with unit wave speed and periodic boundary
conditions:

∂U
∂t

= −∂U
∂x

, x ∈ [0, 2],

U(t = 0, x) = sin(2πx),

U(t, x = 0) = U(t, x = 2),

(7.1)

The spatial derivative is discretized with a 100-block GSBP-SAT discretization, where
each block is a 5-node operator associated with Legendre-Gauss quadrature [14]. This
leads to an IVP of the form:

(7.2)
dY
dt

= AY, Y0 = sin(2πx),

where A is a 500 × 500 matrix associated with the spatial discretization. The exact
solution of this IVP is Y = eAtY0. Applying a Runge-Kutta time-marching method
leads to a linear system of equations, which is stored in Matlab’s sparse format.
Reverse Cuthill-McKee reordering is applied to the linear system and solved using
the backslash operator. The solutions were computed using MATLAB 2013a on a
6-core intel Core i7-3930K processor at 3.2GHz with 32GB of RAM.

A summary of the GSBP and non-GSBP time-marching methods investigated is
presented in Table 1 along with their associated properties and abbreviations used
hereafter. Note that the Radau IIA schemes have stage order n, one higher than the
associated GSBP operator, which is limited to n− 1. All methods were implemented
as Runge-Kutta schemes.

7.1. Efficiency Comparisons. For the study of efficiency, the temporal domain
is chosen to be t ∈ [0, 2] and the SAT penalty values are chosen such that both the
temporal and spatial discretizations are dual-consistent. Two error measures are used.
The first is the stage error:

(7.3) estage =
∣∣∣∣e

∣∣∣∣
B
,

where B is a block diagonal matrix. For SBP and GSBP time-marching methods, the
blocks are formed by the norm associated with method. For non-SBP Runge-Kutta
methods, the diagonal of each block is populated with the entries of the b coefficient
matrix. The vector e contains the error in the numerical solution at the abscissa
locations, integrated in space using the norm of the spatial discretization Hs:

(7.4) e(j−1)n+k = ||yd,(j−1)n+k − Y((j + ck)h)||Hs ,
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Classical SBP Methods

Quadrature Norm Label q̂ p L/BN-stable

Gregory type Diag. [32, 36, 37] FD n
4

n
2 Y / Y

Block [36, 37, 40] FDB n
2 − 1 n

2 Y / N

GSBP Methods

Quadrature Norm Label q̂ p L/BN-stable

Newton-Cotes Diag. [14] NC ⌈n
2 ⌉ 2⌈n

2 ⌉ Y / Y

Dense [7] NCD n− 1 2⌈n
2 ⌉ Y / N

Lobatto Diag.∗† [1, 10, 15, 18] LGL n− 1 2n− 2 Y / Y

Dense [7] LGLD n− 1 2n− 2 Y / N

Radau IA Diag.∗† [1, 14, 15] LGRI n− 1 2n− 1 Y / Y

Radau IIA Diag.∗† [1, 2, 15] LGRII n 2n− 1 Y / Y

Gauss Diag.† [14] LG n− 1 2n− 1 Y / Y

non-SBP Methods

Quadrature Norm Label q̂ p L/BN-stable

Gauss ∗ [4, 33] GRK n 2n N / Y

ESDIRK5 ∗ [2] ESDIRK5 2 5 Y / N
Table 1

Summary of SBP operators, their associated abbreviations and general properties. Notes: 1)
the general properties of diagonal-norm NC operators only hold for the case of positive quadrature
weights; 2) FD and FDB methods were implemented with their minimum number of stages; 3) the
value for q given for FD applies only to q ≥ 2. The ∗ denotes existing methods in the Runge-Kutta
literature, and the † denotes a method discussed in Section 6

where the subscripts j = 1, . . . , N and k = 1, . . . , n are the step and stage indices,
respectively. By comparing with the exact solution of the IVP, we isolate the temporal
error from the spatial error. The second error measure used is the solution error at
the end of the final time step, integrated in space:

(7.5) estep =
∣∣∣∣ỹd,N − Y(T )

∣∣∣∣
Hs

.

Figure 1 shows the convergence of the stage and solution error with respect to
CPU time in seconds for constant stage order, q̂ = 3. The stage error, estage, converges
at the same rate for the various methods, as expected. Furthermore, the hierarchy in
efficiency with respect to stage error negatively correlates with the number of stages
in each method. Thus, the classical SBP time-marching methods, FD and FDB,
are the least efficient due the their relatively large number of stages. Of those with
four stages, the novel GSBP time-marching method LG is the most efficient method
with respect to stage error. This scheme is more efficient than the well-known LGRI
scheme, which has the same properties; however, it is not as efficient as the three-stage
GRK or LGRII methods.

Considering the solution error, estep, the hierarchy of efficiency remains negatively
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a) estage (q̂ = 3) b) estep (q̂ = 3)

Fig. 1. Linear Convection Equation: Convergence of the stage and solution error, estage
and estep respectively, with respect to CPU time (s) for constant stage order. The numerical suffix
in the legend indicates the number of stages in each time step n and the order p.

correlated with the number of stages in each method of a given order p. The higher
than expected convergence rate for the dense-norm LGL time-marching method (p =
ρ+1) is only seen for linear problems. As expected, the GSBP time-marching methods
are more efficient than those based on classical SBP operators. This is especially true
for those with a nonuniform abscissa or an abscissa which does not include 0 or 1.
The most efficient method overall is GRK. It is one order lower than the GSBP time-
marching methods LG and LGRI, but also has one less stage. This method is not
L-stable. Eventually, the LG and LGRI methods become more efficient than the GRK
method below an error of about 10−7.

Another perspective can be obtained by comparing methods of constant order
p. Figure 2 shows the convergence of the solution error with respect to step size
h = tf − t0 and CPU time in seconds for constant order, p = 6. This also includes
the exclusively odd order GSBP time-marching methods based on Gauss quadrature
of orders p = 5 and p = 7, as well as the fifth-order ESDIRK5 reference scheme.
The error of classical SBP time-marching methods relative to time step size h is
significantly smaller than the GSBP time-marching methods. This however does not
account for the higher number of stages. Therefore, the GSBP time-marching methods
are nevertheless more efficient, as shown in Figure 2 b). Apart from LGLD, which
achieves higher than expected convergence, the well-known GRK scheme is the most
efficient sixth-order scheme. As discussed above, the LG scheme of one order higher
eventually becomes more efficient. It is also L-stable, which the GRK scheme is not.

7.2. Diagonally-implicit methods. While diagonally-implicit time-marching
methods generally require a greater number of stages than fully-implicit schemes to
achieve a prescribed order of accuracy, each stage can be solved sequentially. This
replaces a single large system of equations for each time step with a smaller system
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Fig. 2. Linear Convection Equation: Convergence of the solution error, estep, with respect
to step size h and CPU time (s). The numerical suffix in the legend indicates the number of stages
in each time step n and the order p.

of equations for each stage within a time step. The motivation for diagonally-implicit
schemes comes from the nonlinear scaling of computational work with respect to the
number of equations in a system.

For lower orders this effect is minimized as fully-implicit time-marching methods
only require a few coupled stages. For example, the three-stage diagonally-implicit
GSBP time-marching method developed in Section 6 requires approximately the same
computational effort as the two-stage LG, LGRI, and LGRII schemes of the same
order. The fully-implicit schemes, however, have a much lower truncation error coef-
ficient and are therefore more efficient.

As the order increases, so does the number of stages required by fully-implicit
schemes. This is when diagonally-implicit scheme have the potential to be more
efficient. As an example, consider the non-SBP ESDIRK5 scheme presented in Figure
2. It has the largest error as a function of step size h, but is the most efficient scheme
considered above an error of about 10−7. This highlights the potential advantage
of considering higher-order diagonally-implicit GSBP time-marching methods in the
future.

8. Conclusions. This article combines the generalized summation-by-parts frame-
work originally presented in [14] and the work of [36, 37] on the construction of time-
marching methods based on FD-SBP operators. GSBP time-marching methods are
shown to maintain the same stability and accuracy properties as those based on clas-
sical FD-SBP operators. Specifically, all GSBP time-marching methods are shown to
be L-stable: unconditional stability for linear IVPs along with damping of stiff modes.
Those constructed with a diagonal norm are shown in addition to be BN-stable: un-
conditionally stable for contractive problems. The theory of superconvergent integral
functionals, as well as the solution approximated at the end of a time step, is also
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extended to the generalized framework. The rate of superconvergence is shown to be
connected to the accuracy with which the norm of the discretization approximates
inner products of the primal and dual problem. This specifically includes the SAT
term.

This article also shows the connection between SBP/GSBP time-marching meth-
ods and implicit Runge-Kutta methods. The connection to Runge-Kutta methods is
used to derive minimum guarantee global order results for nonlinear problems. It is
also used to derive the conditions under which BN-stable dense-norm GSBP time-
marching methods can be constructed. While SBP/GSBP time-marching method
form a subset of implicit Runge-Kutta methods, the SBP/GSBP characterization re-
mains important. The approach simplifies the construction of high-order fully-implicit
time-marching methods with a particular set of properties favourable for stiff IVPs.
This can even lead to some novel Runge-Kutta schemes, as shown in the article. It
also facilitates the analysis of fully-discrete approximations of PDEs and is amenable
to multi-dimensional space-time discretizations. In the latter case, the explicit con-
nection to Runge-Kutta methods is often lost.

A few examples of known and novel Runge-Kutta time-marching methods are
presented which are associated with GSBP operators. This includes the known
four-stage Lobatto IIIC method, a novel four-stage seventh-order Gauss-based fully-
implicit scheme, and two novel diagonally-implicit schemes. The first is a three-
stage third-order diagonally-implicit method, the second a fourth-order four-stage
diagonally-implicit method. These methods are all L-stable and BN-stable. Numeri-
cal simulation of the linear convection equation is also presented to demonstrate the
theory and to evaluate the relative efficiency of GSBP time-marching methods. In
comparison with classical SBP time-marching methods, the GSBP based schemes con-
sidered are more efficient. Between GSBP time-marching methods, the novel Gauss
based GSBP time-marching method retains the properties of the Radau IA scheme,
and is slightly more efficient with respect to stage error. The global error however
is comparable. Comparison with the non-SBP Gauss collocation methods is difficult
as their orders do not match. For the same number of stages, the non-SBP method
is one order higher and more efficient; however, it is not L-stable. When the SBP
method is one order higher, the efficiency is comparable. Inclusion of a fifth-order
ESDIRK scheme highlights the potential benefit of constructing higher-order GSBP
time-marching methods in the future which are diagonally-implicit.
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Appendix A. The Runge-Kutta Abscissa of a GSBP Operator.
This appendix examines the the application of SBP and GSBP operators and

their associated projection operators to an abscissa rescaled and translated: c =
t−1t[m]

0
h . These results simplify several proofs using the Runge-Kutta characterization

in Section 5. This is presented as a series of three lemmas. The first defines the result
of a GSBP first-derivative operator applied to the abscissa:

Lemma A.1. An SBP or GSBP first-derivative operator D defined for the distri-
bution of solution points t[m] of order greater than or equal to p applied to a monomial

of the abscissa c = t−1t[m]
0

h of degree p ≥ 0 yields

(A.1) Dcp =
p

h
cp−1.
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Proof. In this article exponentiation of vectors is computed element-wise, i.e.

(A.2) cp = [cp1, . . . , c
p
n]

T .

Substituting the definition of the abscissa (5.7) into (A.2) and expanding yields

(A.3) cp =
1

hp

p∑

i=0

(
p

i

)
(t[m])p−i(−t[m]

0 )i,

where
(n
k

)
= n!

k!(n−k)! is the binomial coefficient. Applying an SBP or GSBP operator
of order greater than or equal to p yields

(A.4) Dcp =
1

hp

p∑

i=0

(
p

i

)
D(t[m])p−i(−t[m]

0 )i =
1

hp

p−1∑

i=0

(
p

i

)
(p−i)(t[m])p−1−i(−t[m]

0 )i.

Substituting the relationship (p− k)
(p
k

)
= p

(p−1
k

)
gives

(A.5) Dcp =
p

hp

p−1∑

i=0

(
p− 1

i

)
(t[m])p−1−i(−t[m]

0 )i =
p

h
cp−1.

The additional factor of 1
h comes from the norm matrix H of the SBP or GSBP

operator D = H−1Θ defined for the interval [t[m]
0 , t[m]

f ] of size h, rather than [0, 1] on
which the abscissa is defined.

Next, consider the application of the projection operator χt0 to the abscissa:
Lemma A.2. A projection operator χt0 defined for the distribution of points t[m]

of order greater than or equal to p applied to a monomial of the abscissa c = t−1t[m]
0

h
of degree p ≥ 0 yields:

(A.6) χt0c
p =

{
1, if p = 0
0, if p > 0

.

Proof. Begin by expanding χT
t0c

p using (A.3):

(A.7) χT
t0c

p =
1

hp

p∑

i=0

(
p

i

)
χT
t0(t

[m])p−i(−t[m]
0 )i =

1

hp

p∑

i=0

(
p

i

)
(t[m]

0 )p−i(−t[m]
0 )i.

Pulling out a factor of (t[m]
0 )p from the summation and given that

∑p
i=0

(p
i

)
(−1)i = 0

for p > 0, (A.7) simplifies to

(A.8) χT
t0c

p = 0 for p > 0.

If p = 0 then χT
t0c

p = χT
t01 = 1 by Definition 2.1.

Finally, consider the application of the projection operator χtf to the abscissa:

Lemma A.3. A projection operator χtf defined for the distribution of points t[m]

of order greater than or equal to p applied to a monomial of the abscissa c = t−1t[m]
0

h
of degree p ≥ 0 yields:

(A.9) χt0c
p = 1.
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Proof. Begin by expanding χT
tf c

p using (A.3):

(A.10) χT
tf c

p =
1

hp

p∑

i=0

(
p

i

)
χT
tf (t

[m])p−i(−t[m]
0 )i =

1

hp

p∑

i=0

(
p

i

)
(t[m]

f )p−i(−t[m]
0 )i.

Likewise, hp = (t[m]
f − t[m]

0 )p can be expanded as

(A.11) hp = (t[m]
f − t[m]

0 )p =
p∑

i=0

(
p

i

)
(t[m]

f )p−i(−t[m]
0 )i.

Therefore, simplifying (A.10) gives

(A.12) χT
tf c

p = 1 for p ≥ 0.

These relationships greatly simplify the analysis, as the components of SBP or
GSBP time-marching methods can be applied directly to the abscissae found in the
Runge-Kutta conditions.
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