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Abstract

This article presents constrained numerical optimization of high-order
linearly and algebraically stable diagonally-implicit Runge-Kutta methods.
After satisfying the desired order conditions, undetermined coe�cients are
optimized with respect to objective functions which consider accuracy, sta-
bility, and computational cost. Constraints are applied during the optimiza-
tion to enforce stability properties, to ensure a well-conditioned method,
and to limit the domain of the abscissa. Two promising third-order meth-
ods are derived using this approach, labelled SDIRK[3,(1,2,2)](3)L 14 and
SDIRK[3,1](4)L SA 5. Both optimized schemes have a good balance of prop-
erties. The relative error norm of the latter, the L2-norm scaled by a function
of the number of implicit stages, is a factor of two smaller than comparable
methods found in the literature. Variations on these methods are discussed
relative to trade-o↵s in their accuracy and stability properties. A novel fifth-
order scheme SDIRK[5,1](5)L 02 is derived with a significantly lower relative
error norm than the comparable fifth-order A-stable reference method. In ad-
dition, the optimized scheme is L-stable. The accuracy and relative e�ciency
of the Runge-Kutta methods are verified through numerical simulation of van
der Pol’s equation, as well as numerical simulation of vortex shedding in the
laminar wake of a circular cylinder, and in the turbulent wake of a NACA
0012 airfoil. These results demonstrate the value of numerical optimiza-
tion for selecting undetermined coe�cients in the construction of high-order

⇤
Corresponding author (+1-647-221-2587), Postdoctoral Researcher

Email address: pieter.boom@mail.utoronto.ca (Pieter D. Boom)

1
University of Toronto Distinguished Professor of Computational Aerodynamics and

Sustainable Aviation; Director, Center for Sustainable Aviation

Preprint submitted to Computational Physics June 20, 2018



Runge-Kutta methods with a balance between competing objectives.
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1. Introduction

Many phenomena in science and engineering are inherently time-depend-
ent and modelled with ordinary di↵erential equations (ODEs), either directly
or through semi-discretization of partial di↵erential equations. Consider fluid
dynamics as an example, where time-dependent phenomena include: vortex
shedding, transition, turbulence, and acoustics. Semi-discretization of the
governing equations describing these flows, the Navier-Stokes equations, re-
sults in a large coupled system of nonlinear ODEs.

Both the physics and numerical approximation of these problems can
lead to sti↵ ODEs [29, 57]. This is characterized by the presence of parasitic
modes in addition to the relevant driving modes. These parasitic modes do
not influence the accuracy of numerical solution but must remain stable [57].
Therefore, e�cient numerical simulation of sti↵ ODEs requires a solution
process that balances the accuracy of the driving modes, the stability of the
parasitic modes, and computational cost.

Unconditionally stable implicit time-marching methods enable the selec-
tion of the time step size based on the desired accuracy of the driving modes
[30]. In contrast, conditionally stable methods require that the time step size
be chosen to ensure the stability of the parasitic modes. For the simulation of
sti↵ ODEs, the maximum stable time step size is significantly smaller than
required to attain the desired accuracy. This translates into an increased
number of time steps, which correlates with the sti↵ness of the ODE being
solved. The reduction in number of time steps enabled by unconditionally
stable implicit methods can outweigh the increased computational cost as-
sociated with an implicit process [29]. As a result, unconditionally stable
implicit time-marching methods are a common choice for solving sti↵ ODEs.

The focus of this article is on the class of high-order unconditionally sta-
ble implicit Runge-Kutta methods. While low-order methods can obtain an
arbitrary level of accuracy, the number of time steps required to do so can
be prohibitive, especially as the desired level of accuracy becomes increas-
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ingly stringent. For simulations which require a high degree of accuracy,
the reduction in the number of time steps enabled by high-order methods
outweighs their increased computational cost per time step. In contrast to
linear multistep methods [30], unconditionally stable implicit Runge-Kutta
methods can be derived for arbitrarily high orders of accuracy [33].

It is important to note that there are other more generalized classes of
time-marching methods that enable the construction of high-order uncondi-
tionally stable time-marching methods. For example: advanced-step-point
methods [21, 22, 66, 67], cyclic and composite linear multistep methods
[8, 32, 45, 72], hybrid methods [36], multistep Runge-Kutta [42], and more
broadly, general linear methods [14]. Consideration of these methods is left
to a future paper.

Often in the construction of high-order implicit Runge-Kutta methods,
several coe�cients will remain undetermined after solving the desired order
[15, 41, 58] and stability [13, 17, 28, 30, 34] conditions. This can also be
created artificially by increasing the number of stages for a fixed order of
accuracy. At lower orders, optimal selection of coe�cients can be done an-
alytically. In this case, there are typically fewer undetermined coe�cients,
and the expressions generated by the order conditions are fairly simple. As
the order is increased, the size and complexity of the expressions grow, mak-
ing analytical optimization intractable. To address this challenge, two ap-
proaches are common: 1) heuristic selection of undetermined coe�cients;
and 2) numerical optimization. In the latter case, several authors have used
numerical optimization to improve the performance of Runge-Kutta methods
applied to linear ODEs [7, 9, 49, 79, 80]. Still others have sought to min-
imize the violation in the full conditions one order higher than the scheme
[10, 11, 63].

In this article we apply constrained numerical optimization to the con-
struction of high-order unconditionally stable diagonally-implicit Runge-Kut-
ta methods. The undetermined coe�cients are optimized with respect to
objective functions of accuracy, stability, and computational cost, and con-
strained by the desired linear or algebraic stability criteria. This is similar
to the second optimization step in the work of Parsani et al. [63], extend-
ing it to implicit methods. It also broadens the study of optimized Runge-
Kutta methods presented in Boom and Zingg [11] and Boom [10]. The novel
Runge-Kutta methods optimized in this article are compared to a wide range
of methods from the literature, in particular those discussed in the com-
prehensive review of diagonally-implicit Runge-Kutta methods presented by
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Kennedy and Carpenter [53]. Several of the novel methods are found to have
higher relative e�ciency than the reference methods. The properties of the
novel optimized methods are confirmed through numerical simulation of van
der Pol’s equation, along with an evaluation of their numerical performance
through numerical simulation of vortex shedding in the laminar wake of a
circular cylinder and the turbulent wake of a NACA 0012 airfoil at high
angle-of-attack.

Section 2 reviews the common properties of Runge-Kutta methods form-
ing the foundation of the optimization procedure presented in Section 3. The
procedure is applied in Section 4 to the construction of novel unconditionally
stable diagonally-implicit Runge-Kutta methods. The characteristics and
performance of the methods are compared in Section 5 with numerical sim-
ulation. Finally, a summary of the most promising optimized schemes and
conclusions are presented in Sections 6 and 7, respectively.

2. Diagonally-Implicit Runge-Kutta Methods

This section presents a brief review of diagonally-implicit Runge-Kutta
methods and their associated properties discussed in subsequent sections.
Given the initial-value problem (IVP)

Y 0 = F(Y , t), Y(t0) = y0, t0  t  tf , (1)

a Runge-Kutta method approximates the solution at a future point in time
as

y

[n+1] = y

[n] + h

sX

j=1

bjF(Yj, t
[n] + h cj), (2)

where n is the time step index such that y[n] ⇡ Y(t[n]) for t[n] = t0 + hn and
h is the time step size. The s internal stage approximations are

Yk = y

[n] + h

sX

j=1

AkjF(Yj, t
[n] + h cj) for k = 1, . . . , s. (3)

The coe�cients of a particular scheme are defined by the matrix A and the
vector b, along with the abscissa vector c = A1, where 1 = [1, . . . , 1]T . Note
that this definition can easily be extended to systems of di↵erential equations
using Kronecker products.
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2.1. Forms of Implicit Runge-Kutta Methods

Diagonally-implicit. Implicit Runge-Kutta methods can be classified based
on the form of theirA coe�cient matrix. In this article we focus on diagonally-
implicit methods, characterized by a lower triangular A coe�cient matrix
with nonzero diagonal [5, 27, 55, 60]. In this case, the solution to each stage
is independent of subsequent stage values; therefore, each stage can be solved
sequentially [1].

Singly-diagonally-implicit. One approach to solving the resulting nonlinear
system of equations at each stage is to use a Newton-type process. The
residual equation for an intermediate stage (3) can be written as

Rk =
Yk � y

[n]

h

�
kX

j=1

AkjF(Yj, t
[n] + h cj) = 0. (4)

The Jacobian with respect to the given internal stage approximation Yk is
then

Ak =
@Rk

@Yk
=

1

h

I � Akk
@F(Yk, t

[n] + h ck)

@Yk
, (5)

where I is the identity matrix. If the second term in the Jacobian @F(Yk,t[n]+h ck)
@Yk

varies slowly with respect to the step size h, then it can be approximated
as constant over one or more time steps. Furthermore, if the diagonal ele-
ments of the A coe�cient matrix are equal, then the Jacobian can be held
constant as well. Thus operations on the Jacobian, for example an LU de-
composition or the construction of a preconditioner, can be reused for each
stage throughout those time steps without any significant reduction in con-
vergence [27, 60]. Methods with a constant diagonal coe�cient are often
called singly-diagonally implicit [44].

Explicit first stage. An explicit first stage with c1 = 0 is required for a
diagonally-implicit Runge-Kutta method to obtain stage order two (See e.g.
[3]). This has a particular impact on the convergence rate of solutions to
very sti↵ ordinary di↵erential equations or di↵erential algebraic equations
[43, 44]. If stage order two is not required, an explicit first stage can also
provide additional free coe�cients for a fixed number of implicit stages to
satisfy higher-order conditions or minimize truncation error. The addition
of an explicit first stage is relatively inexpensive, especially when compared
to the computation of the other implicit stages. Furthermore, if the method
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satisfies cs = 1 and bT = As,:, the conditions for sti↵-accuracy discuss further
below, the explicit first stage need only be computed for the first time step
[48]. An alternative way of looking at the inclusion of an explicit first stage
is as a two-value multistage-Nordsieck method [76]. The explicit first stage
is equivalent to passing the derivative of the solution from the previous time
step forward in addition to the solution itself.

Sti↵ accuracy. One of the issues with implicit time-marching methods is a
phenomenon known as order reduction in which the convergence for sti↵
IVPs is lower than classical theory predicts. A well-known investigation of
this phenomenon was done by Prothero and Robinson [65] in which they in-
troduce the concept of sti↵ accuracy. While sti↵ accuracy does not eliminate
order reduction, it influences both the stability and rate of convergence of
numerical solutions to linear IVPs with sti↵ source terms. This concept has
also become important in the derivation of convergence rates for nonlinear
di↵erential algebraic and singular perturbation problems, for example van
der Pol’s equation (See e.g. [44] and Section 5). The algebraic conditions for
sti↵ accuracy are

cs = 1 and bT = As,:, (6)

implying that y[n+1] = Ys.

2.2. Order Conditions

Full order conditions. A Runge-Kutta method is said to be of order p if the
local error is

e = y

[n] � Y(t0 + nh) = O(hp+1). (7)

Using Butcher series, it can be shown that a Runge-Kutta method will be of
order p if [15, 41, 58]

O(t) = 1� ⇢(t)bT
mY

k=1

Y(tk) = 0, 8t such that 1  ⇢(t)  p, (8)

where t = [t1, . . . , tm] is a rooted tree of order ⇢(t) with m subtrees joined
by a single branch to the root, the product

Q
is computed element wise, and

Y(t) =

⇢
1 , if ⇢(t) = 0

⇢(t)A
Qm

k=1 Y(tk) , otherwise
. (9)
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Note that the empty tree ; with ⇢(;) = 0 is assumed to be a subtree of any
terminal vertex in a given tree. The full order conditions are not necessarily
easy to solve, but form a necessary and su�cient set of conditions for order
p.

In the literature these order conditions are often scaled by a factor of
1/ (⇢(t)

Qm
k=1 ⇢(tk)). This is obtained by simplifying the comparison of terms

in the Taylor series expansions of the exact and numerical solutions. The
form presented above is derived by comparing the derivatives of the ex-
act and numerical solutions, which is more common when considering the
broader class of general linear methods. Either scaling will lead to methods
of a prescribed order; however, the magnitude of the violation in the condi-
tions of order greater than p will di↵er. The ultimate goal of the numerical
tool presented in this article is to consider the broader class of general lin-
ear methods, thus the choice of scaling presented above. Furthermore, the
numerical results presented in Section 5 support the use of this scaling to
predict relative e�ciency.

Simplifying order conditions. To ease the construction of higher-order Runge-
Kutta methods, a number of simplifying conditions were derived by Butcher
[16]. These conditions are su�cient, but not necessary for order p. In this ar-
ticle, the full order conditions are used in the development and optimization
of new Runge-Kutta methods with the goal of using the additional degrees
of freedom to improve e�ciency and robustness. However, the degree to
which each method satisfies the simplifying conditions is presented for ref-
erence. Furthermore, these conditions are implemented in the optimization
procedure described below and could be used in the future to initialize the
coe�cients, or to form part of an objective function. The simplifying order
conditions are summarized in the following theorem from Butcher [16]:

Theorem 1. If the coe�cients A, b, and c of an Runge-Kutta method satisfy
the following conditions:

B(p) : bTcj�1 =
1

j

, j 2 [1, p], (10)

C(q) : Acj�1 =
cj

j

, j 2 [1, q], (11)

D(⇠) : jbT
C

j�1
A = bT (I � C

j), j 2 [1, ⇠], (12)
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with p  2q + 2 and p  q + ⇠ + 1, where C is a diagonal matrix formed by
the entries of c, then the Runge-Kutta method will be of order p.

The first condition B(p) (10) is the requirement that b be a quadrature
rule of order p. This corresponds to the full order conditions for “bushy”
trees: trees for which all subtrees are of order 1. The second condition C(q)
(11) is the requirement that the Runge-Kutta method have stage order q.
Stage order is the accuracy to which the stage values Y approximate the
solution Y(t[n]1 + c) [16]. It is not uncommon for Runge-Kutta methods
to have mixed stage order, meaning that each stage may satisfy a di↵erent
number of stage-order conditions. In this case, the stage order is taken as
the minimum across all stages. Finally, the second and third simplifying
conditions, C(q) (11) and D(⇠) (12), imply the equivalence of certain order
conditions based on the order and organization of subtrees, thus reducing
the total number of conditions to be satisfied.

2.3. Local Truncation Error

For linear di↵erential equations of the form

Y 0(t) = �Y(t), Y(t0) = y0, (13)

where Y(t) 2 C and � is a complex constant, the exact solution can be
written as

Y(t) = y0e
�t = y0

1X

j=0

(�t)j

j!
. (14)

Applying a Runge-Kutta method, the internal stage approximations (3) are
solved by the matrix equation

Y = (I � zA)�11y[n], (15)

where z = �h. Substituting this result into the solution update (2) and
simplifying gives

y

[n+1] = [1 + zb

T (I � zA)�11]y[n] = MA(z)y
[n]
, (16)

where MA(z) is called the iteration or linear stability polynomial. Expanding
using Taylor series and comparing to the exact solution, the local truncation
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error (LTE) coe�cient C 2 R is derived:

MA(z) = 1 + zb

T (I � zA)�11 =
pX

j=0

z

j

j!
+O(hp+1)

=e

z + C z

p+1

(p+ 1)!
+O(hp+2). (17)

When p is odd the leading error term is dissipative; when p is even it is
dispersive. While this is strictly linear error analysis, these properties can
be important for some nonlinear problems as well, such as aeroacoustics. In
this case, accurate propagation of acoustic waves to the farfield is critical,
and becomes essentially linear away from the source.

2.4. Stability

A-stability. Consider the linear IVP (13) once more. It is well known that
this equation is inherently stable for Re(�)  0 (e.g. [30, 57]). In the discrete
case, unconditional stability of the numerical solution to the linear IVP (13)
is defined as A-stability [30]. A Runge-Kutta method is called A-stable if
the polynomial MA(z)  1 for all z = �h in the left-half complex plane,
including the imaginary axis.

L-stability. While A-stability is a desirable property, parasitic components
of the solution may be damped very slowly. This motivates an extension to
the definition of A-stability, called L-stability [34]. A Runge-Kutta method
applied to the linear IVP (13) is called L-stable if it is A-stable, and Re(�)  0
implies that

MA(z) ! 0 as |�| ! 1. (18)

In addition to unconditional stability, this guarantees damping of sti↵ para-
sitic modes.

Internal A- and L-stability. It is possible to define similar stability properties
for the internal stages of a Runge-Kutta method, called internal A- and L-
stability [55]. In this case, we consider the stability polynomials

MA(z, i) = 1 + zAi,:(I � zA)�11, for i = 1, . . . , s, (19)

and the definitions of internal A and L-stability are analogous to those above.
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Algebraic stability. A nonlinear IVP (1) is said to be contractive if it satisfies
the one-sided Lipschitz condition [31]

Re[(F(Y , t)� F(Ŷ , t) , Y � Ŷ)]  ⌫|Y � Ŷ|2, 8Y(t), Ŷ(t) 2 Cm
, t 2 R,

(20)
with one-sided Lipschitz constant ⌫  0, where Y and Ŷ are two solutions
defined by the initial conditions y0 and ŷ0, respectively. This implies that the
distance between the two solutions |Y(t)�Ŷ(t)| is a non-increasing function of
time [44]. In the discrete case, this property is called B-stability2. Algebraic
criteria for B-stability were derived by Burrage and Butcher [13], and given
the name algebraic stability. A Runge-Kutta method is called algebraically
stable if

1. bi � 0 for i = 1, . . . , s, and

2. MBN = BdA+ A

T
Bd � bbT is non-negative definite,

where Bd is a diagonal matrix formed by the elements of b.

Internal algebraic stability. The internal algebraic stability matrix for each
stage is defined as

MBN(i) = Ad(i)A+ A

T
Ad(i)� Ai,:A

T
i,:, (21)

where Ad(i) is a diagonal matrix formed by the elements of Ai,:. As be-
fore, we desire that the internal algebraic stability matrix for each stage
be non-negative definite. Internal algebraic stability also requires that the
coe�cients of the A coe�cient matrix be non-negative.

3. Numerical Optimization of Coe�cients

This section presents a numerical tool developed for the construction and
optimization of implicit Runge-Kutta methods. While the focus of this arti-
cle is on diagonally-implicit Runge-Kutta methods, the tool can equally be
applied to fully explicit or implicit schemes as well. The tool is implemented
as a custom package in Maple 18.

2
B-stability is sometimes referred to as BN-stability when the distinction between au-

tonomous and non-autonomous IVPs is made (Compare Definitions 2.9.2 and 2.9.3 of [50]

and Definition 12.2 in [44]).
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3.1. Design Variables

A number of parameters must be selected at the outset, including the
number of stages s, the form of the A coe�cient matrix, whether or not to
enforce sti↵ accuracy, as well as the desired order p and stage order q of the
method. These parameters are used to determine the relationship between as
many coe�cients as possible. Careful selection of the sequence in which the
coe�cients are solved can aid this process. For example, we typically solve
for the abscissa values last as they appear with higher exponents in the order
conditions. Solving for the abscissa values often increases the cost of the
solution process since it can lead to multiple solutions. The supplementary
conditions for L-stability and internal L-stability, (limz!1 MA(z) = 0 and
limz!1 MA(z, i) = 0 for i = 1..s), may also be used to determine additional
relationships between coe�cients. The remaining undetermined coe�cients
are set as design variables.

3.2. Objective Function

A key metric used to evaluate the performance of a new method is ef-
ficiency. The order as well as the number of implicit stages plays a large
role in the e�ciency of the resulting method; however, they are set a pri-
ori. Therefore, to find an optimal set of coe�cients, the primary objective
function chosen is the L2-principal error norm [64]:

JE = E(p) =
s X

8t|⇢(t)=p+1

O(t)2, (22)

where O(t) are the order conditions (8). The objective function is evaluated
during the optimization by first substituting the design variables into the
coe�cient vectors and matrices, then numerically computing the violation in
p+ 1 order conditions for the L2-principal error norm. This is in contrast to
precomputing an expression for the objective function before the optimization
begins, then substituting the design variables into this expression during the
optimization. The former approach minimizes the number of large complex
symbolic expressions which need to be computed and stored.

One of the factors that can influence the di�culty in solving the implicit
system at each stage is the relative spacing of the abscissa values. The
closer the abscissa values, the better the solution at the previous stage will
be as an initial guess for the current stage solution. To account for this in
the optimization, the objective function discussed above can be multiplied
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by some function of the relative spacing in the abscissa. In this article we
consider the following modified objective function:

JcE = Pc

s X

8t|⇢(t)=p+1

O(t)2, (23)

where the premultiplying function is

Pc =
q

([cT 1]� [0 cT ]) ([cT 1]� [0 cT ])T . (24)

In this article the linear stability of the method is constrained; however,
the algebraic and internal stability of the method can also have an influence
on the computational e�ciency and stability of the method. To address this
potential shortcoming, the objective function can be modified by adding the
violation in these stability criteria. The resulting modified objective function
can have one of the following forms:

JcEs1 =
qP

8t|⇢(t)=p+1 O(t)
2 + Ps1,

JcEs2 =
qP

8t|⇢(t)=p+1 O(t)
2 + Ps1 + Ps2, or

JcEs2 =
qP

8t|⇢(t)=p+1 O(t)
2 + Ps3,

(25)

where
Ps1 = �P

8� min (0,R(�MBN )) ,

Ps2 = �P
i

P
8� min

�
0,R(�MBN (i))

�
,

Ps3 =
P

i MA(1, i),

(26)

and R denotes the real component. The modified objective functions can
also be combined with the e�ciency metric as follows

JcEs1 = Pc

⇣qP
8t|⇢(t)=p+1 O(t)

2 + Ps1

⌘
,

JcEs2 = Pc

⇣qP
8t|⇢(t)=p+1 O(t)

2 + Ps1 + Ps2

⌘
, and

JcEs2 = Pc

⇣qP
8t|⇢(t)=p+1 O(t)

2 + Ps3

⌘
.

(27)

Alternative objective functions can easily be implemented based on the
characteristics of the IVPs for which the methods are being constructed. For
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example the objective function could be the coe�cient of the local truncation
error, or some function of the dissipative and dispersive properties of the
method [49].

The gradient of the objective functions is computed using the complex
step method [74] with a step size of 10�20. If the coe�cients develop a small
imaginary component due to inexact arithmetic, a finite-di↵erence gradient
is also implemented. A typical finite-di↵erence step size is 10�10. The step
sizes are chosen to maximize accuracy, and in the case of finite-di↵erences, to
minimize round-o↵ error (See e.g. [40]). Note also that the code runs with
double precision.

3.3. Constraints

Stability criteria, as well as bounds on the coe�cients, are enforced
through the use of linear and nonlinear constraints. Similar to the objec-
tive function, the constraints are evaluated during the optimization after
first substituting the design variables into the coe�cient vectors and matri-
ces. Many of these constraints involve absolute values; therefore the gradient
is computed with finite di↵erences and a step size of 10�10.

A-stability. The constraint for A-stability is implemented using the stability
contour, which is obtained by solvingMA(z) = e

i✓ for the associated complex
z-coordinate, where i =

p�1 and ✓ 2 [0, 2⇡). Observe that the magnitude
of ei✓ is unity, thus defining the boundary between the stable and unstable
regions. A-stability requires that the stability contour be in the right-half
complex z-plane, including the imaginary axis. Given that the stability con-
tour is symmetric about the real z-axis, the the numerical tool requires that
only the domain ✓ 2 [0, ⇡) be discretized. Typically 40 non-equidistant points
are used clustered around the intersection of the contour and the origin. The
real components of the z-coordinates are then solved and constrained to be
greater than or equal to zero. An additional constraint, MA(z = �1)  1,
is used to ensure that it is the stable region of the contour which lies in the
left-half complex plane.

L-stability. The L-stability condition, MA(z) ! 0 as z ! 1, can be solve
before the optimization to determine the relationship between additional
coe�cients. This is the preferred approach. Alternatively, the condition can
be enforced as a constraint during the optimization.
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Algebraic stability. The constraints for algebraic-stability are implemented
with the simple inequalities:

� �MBN ,i  0, and � bi  0 for i = 1, . . . , s, (28)

where �MBN ,i are the eigenvalues of MBN .

Internal stability. Internal linear and algebraic stability are enforced in much
the same way as the standard stability constraints using the modified defini-
tions presented in Section 2.4.

Coe�cient Bounds. The design variables are bound during the optimization
to ensure a well-conditioned method:

±(Aij��)  0, ±(bi��)  0, and ±(ci��)  0 for i, j = 1, . . . , s.
(29)

where � is the bounding value. A typical bound is 100, though it is rarely
active at convergence. The bounds can vary between individual coe�cients.
For example, the abscissa values can be constrained to be within a time step,
in the domain [0, 1].

3.4. Optimization Strategy

The sequential quadratic programming (SQP) method of Maple’s nonlin-
ear optimization construct is used to optimize the design variables subject
to the nonlinear constraints. The design space is often multi-modal, having
several local minima; therefore a multi-start procedure is used [24]. Initial
values for the design variables are generated with a Sobol sequence [24, 51, 73]
in a predetermined range. Typically 200 initial solutions are generated in the
range [�1, 1]. The various initial conditions are then distributed and opti-
mized in parallel. It is important to note that since the design space can be
multi-modal, the results of the optimizations can only be interpreted as lo-
cal minima, rather than a global minimum. Increasing the number of initial
conditions increases the likelihood of finding the global minimum.

4. Optimized Runge-Kutta Methods

This section presents a number of novel methods derived using the opti-
mization procedure described in Section 3. The focus is on L-stable singly-
diagonally-implicit methods, including those with an explicit first stage.
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Some A-stable and algebraically stable methods are also discussed. The
novel methods are compared to a number of methods from the literature.
These reference methods were largely taken out of books on time-marching
methods and review articles, along with those found in the course of study.
It is impossible to do an exhaustive search given the size of the literature on
Runge-Kutta methods; however, over 130 new and reference methods were
considered in this study (See Appendix A). In the discussion below, we only
present the properties of the most relevant schemes. In this article we use
a similar form of identification for Runge-Kutta methods as that used by
Kennedy and Carpenter [53]:

ESDIRK[p,(qi)](s)X SA i

E Explicit first stage
S Singly

DI Diagonally-implicit
RK Runge-Kutta
p Order of the method
qi Stage order of the individual stages - if the stage orders are equal for

all s stages, or the first s � 1 stages for sti✏y accurate methods, only
the minimum stage order is shown

s Number of stages
X Stability property (A,L,Alg)

SA Sti✏y accurate
i Unique identifier

4.1. Comparison of Diagonally-Implicit Time-Marching Methods

E�ciency is defined by the relationship between solution error and com-
putational work. The L2-principal error norm (22) defined above does not
take into account the relative computational cost of each method. There-
fore, to investigate the relative e�ciency of diagonally-implicit Runge-Kutta
methods of a particular order, the relative error norm is introduced [10]:

Erel(p) = E(p)spi , (30)

where si is the number of implicit stages. The number of implicit stages
is used here as a crude approximation of computational work. In reality
there are many factors which can influence the e�ciency of a scheme. The
approximation given above is designed only to give a first order indication
of relative e�ciency; numerical simulation is required to more fully compare
the schemes. This is presented in Section 5.
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4.2. Low-order Methods

Low-order (p  2) methods have been thoroughly investigated in the
literature. When seeking maximal order with a given set of parameters,
lower-order methods tend have few free variables to optimize. Furthermore,
global minima can be found analytically due to the simplicity of the expres-
sions resulting from the order conditions. As a result, applying numerical
optimization to methods of order two or less yields known minima, along
with a few new methods with similar accuracy and stability properties.

4.3. Order Three Methods

Table 1 presents the properties of the most relevant third-order methods
optimized in this work, along with the details of some reference methods from
the literature. The methods are organized by the number of stages, then the
predicted e�ciency based on the relative L2-principal error norm. In this
case, numerical optimization is able to generate methods with improved e�-
ciency relative to the references. We also compare the trade-o↵s in stability
properties and the spacing in the abscissae.

First, consider three-stage methods which are not sti✏y accurate. The
reference methods are Methods 3-8 and 3-9, both of which are algebraically
stable. Optimizing solely with respect to the error norm, Methods 3-6 and
3-7 improve this metric by about 14% over the reference Method 3-8. In
addition, both optimized methods improve the internal algebraic stability
and are L-stable. However, the optimized methods have abscissae which
extend beyond the time step, and Method 3-7 has a negative abscissa value.
These properties did not a↵ect the simulations presented in this article (See
Section 5); however, there are some ODEs for which they can cause issues.
The user should be aware of the requirements of the problem they are solving,
and use the appropriate method. This highlights the potential danger in
optimizing a method without proper awareness of the necessary constraints.

Forfeiting algebraic stability, several optimized methods are derived with
significantly lower error norms: Methods 3-2 through 3-5. These methods are
all L-stable and their abscissae lie within the time step. The most e�cient
of these schemes is Method 3-2; however, the violation in the global and
internal algebraic stability properties is very large. By coincidence, this is
improved by increasing the stage order of stages two and three, as seen with
Method 3-3. Adding the global algebraic stability to the objective function,
rather than strictly enforcing it, yields Method 3-5. The method has an error
norm more than three times smaller than the reference Methods 3-8 and 3-9,
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and the violation in the algebraic stability condition is small. The latter is a
vast improvement over Method 3-2 and only forfeits about 12% in the error
norm. This demonstrates the potential optimization can have in developing
methods with a balance of competing objectives.

If sti↵-accuracy is required, the optimizer rederived Method 3-4 from the
literature with similar properties to Methods 3-3 and 3-5. The optimizer
also rederived the two-stage Method 3-1. This method has similar stability
properties to the reference Method 3-9, but is significantly more e�cient. The
relative error norm of this method is comparable to Methods 3-2 through 3-5.

Lastly, consider four-stage L-stable methods. The reduction in error norm
relative to the two and three-stage methods obtained by exploiting the ad-
ditional free coe�cients is enough to overcome the increased computational
cost of the additional stage. Therefore, the lowest relative error norm of the
four-stage methods is about eight times smaller than the two and three-stage
methods. This highlights the potential e�ciency benefit that can be obtained
by increasing the number of stages for a fixed order of accuracy.

With four stages the reference scheme is the sti✏y-accurate Method 3-13.
Through numerical optimization, Method 3-11 is derived which is nearly 60%
more e�cient based on the relative error norm. This improvement is due in
part to lowering the order of the third stage, though the formal stage order
of both methods is the same. One potential drawback of this method is the
larger violation in the internal algebraic stability conditions, though neither
method is algebraically stable.A second scheme is optimized for which stages
two and three both obtained stage order two, Method 3-12. This scheme
improves every metric relative to the reference, including reducing the error
norm by 11%. Finally, if sti↵ accuracy is forfeited and algebraic stability
is not a significant concern, Method 3-10 has an error norm more than five
times smaller than the reference Method 3-13.

The higher predicted e�ciency of the optimized schemes presented above
could yield a significant reduction in computational resources or solution time
required to obtain a result with a prescribed level of accuracy. This demon-
strates the potential benefits of numerical optimization for the selection of
undetermined coe�cients in the construction of Runge-Kutta methods.

4.4. Order Four Methods

Table 2 presents the properties of fourth-order methods. As with the
third-order methods, the most e�cient methods based on the relative error
norm have a greater number of stages than strictly required. Methods 4-10
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through 4-14 have two more implicit stages than Method 4-1, but have rela-
tive error norms one to two orders smaller. This again highlights the potential
advantage of increasing the number of stages for a fixed order of accuracy.
Applying optimization to six-stage methods with respect to the error norm
alone leads to fifth-order schemes. Future work will include investigation
of di↵erent objective functions which allow the optimization of fixed-order
schemes with a greater number of stages than required. This may be possible
by including the additional stability criteria into the objective function or by
considering the L2-principal error norm of the violation in both the p+1 and
p+ 2 order conditions.

With both three and five stages the numerical tool presented in this ar-
ticle rederived known methods from the literature, indicating that they are
already minima in the design space. While no reference method is found
with four stages, the optimization of these methods has demonstrated some
of the potential advantages in using numerical optimization to achieve dif-
ferent objectives. Method 4-2 is optimized for the lowest error norm E(p).
This is achieved; however the violation in the algebraic stability conditions
is large. Method 4-4 is optimized with the inclusion of the cost metric Pc.

The optimization is able to lower this metric by about 11%, without signif-
icantly a↵ecting the error norm (⇠ 1% increase). However, the violation of
the algebraic stability condition rises significantly and one of the coe�cients
of the method is large. Repeating the optimization with a reduced bound on
the coe�cients, from 100 to 10, yielded Method 4-6. This further reduced
the cost metric and improved the algebraic stability, though it is still large.
The trade-o↵ appears in the error norm, which rises by about 5% relative to
Method 4-2.

The objective function of Method 4-8 seeks to improve the algebraic sta-
bility of the methods and is able to reduce the violation in the algebraic
stability conditions by 3 to 4 orders of magnitude. This comes with a 7.7%
increase in the error norm and a 45% increase in the cost metric relative to
Method 4-2. Adding in the cost metric to the objective function, Method
4-7 is able to improve both the cost and error norm relative to Method 4-8.
The violation in the algebraic stability conditions increases by an order of
magnitude, but is still 2 to 3 orders smaller than Methods 4-2, 4-4 and 4-6.
However, the violation in the internal algebraic stability conditions spikes.
Methods 4-9 and 4-5 add in the violation of the internal algebraic stability
conditions to the objective function. Method 4-9 has the best global and in-
ternal algebraic stability properties, but also has the highest error norm and
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value of the cost metric and abscissa values outside of the time step. Method
4-5 seems to present a good balance of the properties considered, exchanging
some computational e�ciency for improved algebraic stability properties.

This study highlights the need to consider multiple factors in the opti-
mization of a method. It also highlights the ability of the optimization to
derive methods subject to competing objectives. For example, one could cre-
ate a Pareto front of methods relative to di↵erent objectives by manipulating
their relative importance in the objective function.

4.5. Order Five Methods

Table 3 summarizes the most significant fifth-order schemes considered
in this study. The reference five-stage Method 5-3 is an A-stable non-sti✏y
accurate method. The last three stages of this method are second-order ac-
curate, though the formal stage order of the method is still only first order.
Through numerical optimization, a novel Method 5-1 is derived which reduces
the relative error norm by over 40% and adds L-stability. This optimization
made use of the abscissa constraint to ensure that all values are within the
time step. The method yields an increase in the violation of algebraic stabil-
ity conditions and its stages are uniformly first order. A second optimization
is performed to balance the violation in the global and internal algebraic sta-
bility conditions. Method 5-2 does achieve a smaller violation in the internal
algebraic stability condition, but increases the error norm, the spacing in the
abscissa, and violation in the global algebraic stability condition relative to
Method 5-1. Method 5-2 is still markedly better than the reference Method
5-3. The significant improvements in predicted relative e�ciency obtained
through numerical optimization demonstrate the benefit of the approach, in
particular at higher orders of accuracy.

As mentioned above, optimizing a six-stage ESDIRK method yields a
fifth-order scheme. The reference Method 5-10 yields a noticeable violation
in the algebraic stability constraints, and the abscissa is not contained within
the time step. However, numerical optimization was not able to derive an
L-stable method with the abscissa wholly contained within the time step. If
one is willing to settle for A-stability, Method 5-4 has an abscissa contained
within the time step and achieves a 50% reduction in the error norm. The
internal linear stability is good, and the violation of the algebraic stability
conditions is of the same order of magnitude as the reference Method 5-10.

Optimizing a six-stage ESDIRK method solely with respect to the error
norm can yield a reduction of up to 30% in this metric. However, the resulting
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Methods 5-5 through 5-7 have abscissa values far outside of the time step and
significant internal linear instability. The internal linear instability can a↵ect
the robustness and e�ciency of the method for some problems (See Section
5.2.1). To overcome this result, the objective function is augmented with the
violation in the linear stability property, MA(1, i) = 0. Method 5-9 is able
to reduce the error norm with respect to the reference method, maintain the
violation in the internal linear stability property, and reduce the violation in
the algebraic stability condition. However, it introduces a negative abscissa
value, which is not ideal. This method is similar to the previously published
Method 5-9, exchanging mild linear instability for positive abscissa values.
If we repeat the optimization described above with the constraint that the
abscissa be positive, we recover a method very similar to the reference Method
5-9.

5. Numerical Simulations

This section aims to confirm the order and relative e�ciency results pre-
sented in Section 4. This is accomplished with numerical simulation of both
nonsti↵ and sti↵ variants of van der Pol’s equation to check the order of con-
vergence, and both laminar flow over a circular cylinder and turbulent flow
over a NACA 0012 airfoil to demonstrate relative e�ciency. This section also
discusses the impact of various properties on the performance of the methods
applied to the computational fluid dynamics simulations.

5.1. Van der Pol’s Equation

Van der Pol’s equation is a second-order nonlinear ODE

Y 00(x)� µ

�
1� Y(x)2

�Y 0(x) + Y(x) = 0, (31)

which is solved as a rescaled first-order system using Z1(t) = Y 0(x), Z2 =
µY 00(x), t = x/µ, and letting ✏ = µ

�2:

⇢ Z 0
1(t) = Z2(t)

✏Z 0
2(t) = (1� Z1(t)2)Z2(t)� Z1(t)

�
, (32)

where ✏ is called the sti↵ness parameter. This type of problem is known
as a singular perturbation problem. The initial conditions, Z1(0) = 2 and
Z2(0) = �2

3
+ 10

81
✏� 292

2187
✏

2� 1814
19683

✏

3, are chosen to give a smooth solution [44],
and the time domain is set to t = [0, 0.5] to be consistent with the literature
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[44, 52]. The aim is to evaluate the performance of time-marching methods
for sti↵ and nonsti↵ nonlinear problems. A relatively large value of ✏ = 0.1
is chosen for a nonsti↵ problem, and a much smaller value of ✏ = 10�5 for a
sti↵ problem.

The primary results are convergence rates based on the discrete L2 norm
of the solution error at end of each time step:

ez1/2 =

sPN
i=1(z1/2,i � z1/2,i,ref)2

N

, (33)

where N represents the number of time steps. The reference solution is
computed with ESDIRK[4,2](6)L SA kc and a time step 2�17. This is several
orders of magnitude smaller than any step size considered in the studies
below.

Table 4 summarizes the convergence rates obtained for simulations of both
the nonsti↵ and sti↵ van der Pol’s equation. For the nonsti↵ problem, all the
schemes recover the design order presented in Section 3. For the sti↵ problem,
the first-order form of van der Pol’s equation (32) is a singular perturbation
problem. The convergence theory for this class of sti↵ problem is more closely
related to di↵erential algebraic equations than ordinary di↵erential equations.
Hairer et al. [43] showed that the convergence of a Runge-Kutta method
applied to a singular perturbation problem achieves a convergence rate of

z

[n]
1 � z̃

[n]
d,1 = O(hp

N) +O(✏hq+1
N ), and z

[n]
2 � z̃

[n]
d,2 = O(hq+1

N ). (34)

Furthermore, if the method is sti✏y accurate, the convergence of the second
variable becomes

z

[n]
2 � z̃

[n]
d,2 = O(hp

N) +O(✏hq
N). (35)

In the sti↵ case, the Runge-Kutta schemes recover the order predicted by this
theory. In many cases the convergence rate of the methods transition from
the higher rate of p to the lower rate of q or q+1 as the time step is refined.
The fifth-order SDIRK[5,(1,1,2,2,2)](5)A co achieves a higher than predicted
convergence for z̃d,2; however, it does not appear to be transitioning to the
lower rate of q+1. This may be due to the higher-order accuracy in the last
three stages of the method, but is unknown. Overall, these simulations verify
the ability of the numerical tool presented in Section 3 to generate methods
with the prescribed accuracy properties.
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# Scheme s p q pz1/pz2

Nonsti↵ (✏ = 0.1) Sti↵ (✏ = 10�5)

3-1 SDIRK[3,1](2)Alg 2 3 1 3.0299 / 2.9831 2.9151 / 2.0829

3-2 SDIRK[3,1](3)L 13 3 3 1 3.0225 / 2.9612 2.8397 / 2.1808

3-3 SDIRK[3,(1,2,2)](3)L 14 3 3 1 3.0024 / 2.9706 2.7132 / 2.2593

3-4 SDIRK[3,1](3)L SA al 3 3 1 2.9865 / 2.9859 3.1216 / 1.2044

3-5 SDIRK[3,1](3)L 01 3 3 1 3.0071 / 2.9726 2.9769 / 2.2771

3-6 SDIRK[3,1](3)AlgL 3 3 1 2.9936 / 3.0169 3.1358 / 2.4148

3-7 SDIRK[3,1](3)AlgL 01 3 3 1 3.0289 / 2.9897 2.1769 / 2.3428

3-8 SDIRK[3,1](3)Alg no2 3 3 1 2.9813 / 2.9741 2.9489 / 2.0074

3-9 SDIRK[3,1](3)Alg no 3 3 1 3.0295 / 2.9805 2.9204 / 2.0843

3-10 SDIRK[3,(1,2,3,3)](4)L 11 4 3 1 2.9356 / 3.3090 3.4860 / 2.0145

3-11 SDIRK[3,1](4)L SA 5 4 3 1 2.9961 / 3.0310 3.0215 / 1.0566

3-12 SDIRK[3,(1,2,2,3)](4)L SA 7 4 3 1 3.0034 / 2.9934 3.0125 / 0.9820

3-13 SDIRK[3,(1,1,2,3)](4)L SA ca 4 3 1 3.0013 / 2.9419 3.0085 / 1.1692

4-1 SDIRK[4,1](3)Alg cr 3 4 1 3.8801 / 3.9313 2.0213 / 2.0097

4-2 SDIRK[4,1](4)L 03 4 4 1 3.9392 / 3.9551 2.0378 / 2.2780

4-3 SDIRK[4,(1,2,2,2)](4)L 13 4 4 1 3.9416 / 3.9560 2.0406 / 2.2934

4-4 SDIRK[4,1](4)L 01 4 4 1 3.8531 / 4.0139 1.8324 / 2.2087

4-5 SDIRK[4,1](4)L 05 4 4 1 3.9407 / 3.9610 2.0552 / 2.3390

4-6 SDIRK[4,1](4)L 04 4 4 1 3.8491 / 3.9186 2.2741 / 2.1995

4-7 SDIRK[4,1](4)L 02 4 4 1 3.9437 / 3.9588 2.0163 / 2.3243

4-8 SDIRK[4,1](4)L 00 4 4 1 3.9414 / 3.9622 2.0528 / 2.3426

4-9 SDIRK[4,1](4)L 06 4 4 1 3.9439 / 3.9630 2.0451 / 2.3635

4-10 SDIRK[4,1](5)L SA ha 5 4 1 3.9476 / 3.9623 2.4379 / 2.2324

4-11 ESDIRK[4,2](5)L SA k2c 5 4 2 3.8764 / 3.9397 4.0611 / 2.0462

4-12 ESDIRK[4,2](6)L SA sk4 6 4 2 3.9479 / 3.9776 4.2808 / 1.9356

4-15 ESDIRK[4,2](6)L SA kc 6 4 2 4.0178 / 4.0110 4.0511 / 2.0029

5-1 SDIRK[5,1](5)L 02 5 5 1 4.8517 / 5.0190 5.0017 / 2.0686

5-2 SDIRK[5,1](5)L 01 5 5 1 4.8744 / 4.9306 5.3009 / 2.0647

5-3 SDIRK[5,(1,1,2,2,2)](5)A co 5 5 1 4.6262 / 4.7871 5.3756 / 2.8450

5-4 ESDIRK[5,2](6)A SA 6 5 2 4.8415 / 4.8634 5.2847 / 2.0224

5-5 ESDIRK[5,2](6)L SA 00 6 5 2 4.8224 / 4.8740 4.7249 / 2.0871

5-6 ESDIRK[5,2](6)L SA 2 6 5 2 4.8197 / 4.8742 5.1336 / 2.0419

5-7 ESDIRK[5,2](6)L SA 01 6 5 2 4.8280 / 4.8742 4.6414 / 2.0849

5-8 ESDIRK[5,2](6)L SA bm 6 5 2 4.8390 / 4.9100 5.2840 / 2.0796

5-9 ESDIRK[5,2](6)L SA 07 6 5 2 4.8391 / 4.9098 5.2687 / 2.2270

5-10 ESDIRK[5,2](6)L SA k2c 6 5 2 4.9040 / 4.9397 5.2444 / 2.0863

5-11 ESDIRK[5,2](7)L SA k2c 7 5 2 4.9327 / 4.9390 4.9353 / 2.1706

5-12 ESDIRK[5,2](7)L SA sk 7 5 2 4.9293 / 4.9247 5.6822 / 2.2411

Table 4: Van der Pol’s equation (✏ = 0.1 and ✏ = 10

�5
): Convergence rates pz1/2 of

the solution error ez1/2 . The number of stages is given by s, q is the stage order, and p
is the order of the scheme. The convergence rates were computed using a line of best fit

through the 3 finest grid levels computed before round-o↵ error.
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5.2. Navier-Stokes and Reynolds-Averaged Navier-Stokes Equations

The flow solver chosen for this work is called Diablo and was developed
at the University of Toronto Institute for Aerospace Studies. It is capa-
ble of solving both the Navier-Stokes and Reynolds-averaged Navier-Stokes
equations with the negative variant of the one-equation Spalart-Allmaras
turbulence model [4]. The governing equations are discretized in space by
high-order classical finite-di↵erence summation-by-parts (FD-SBP) operators
and solved on structured multi-block grids. The viscous fluxes are computed
with a non-compact formulation of the classical FD-SBP second-derivative
operators, i.e. application of the first derivative twice. Simultaneous ap-
proximation terms (SATs) are used to enforce block-interface coupling and
boundary conditions, while matrix artificial dissipation compatible with the
FD-SBP-SAT discretization is used to maintain numerical stability. An inex-
act Newton-Krylov algorithm is used to drive the nonlinear residual equations
to zero. The convergence of Newton’s method is accelerated through the use
of restricted preconditioner updates, and relative tolerance nonlinear subit-
eration termination, discussed further below. Finally, the linear system is
solved with FGMRES and a parallel approximate-Schur preconditioner. All
computations were performed on the General Purpose Cluster (GPC) at the
SciNet HPC Consortium part of Compute Canada. For more information on
the Diablo flow solver refer to [46, 62].

Delayed preconditioner updates. For singly-diagonally-implicit time-marching
methods the temporal component of the Jacobian is constant and is often
significantly larger than the change in the spatial Jacobian over a stage or
an entire time step. Therefore, it is possible to freeze the preconditioner over
a stage or time step without a significant impact on the convergence of the
system. This reduces CPU time and thus increases the e�ciency of the solu-
tion algorithm. Current results were obtained by freezing the preconditioner
over each time step.

Termination of nonlinear iterations. The temporal integration has a certain
level of truncation error associated with it. The convergence of the residual
equations can, therefore, be terminated when the residual is less than this
error. This reduces computational cost and is done without any loss in
global accuracy. In this work, termination is based on a preset reduction
from the initial residual value. The necessary relative tolerance is fairly step
size independent since a reduction in step size will result in a better initial
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iterate and therefore a lower initial residual. For the comparative simulations
presented below, a conservative relative tolerance of 10�8 was used, requiring
between 4 and 8 Newton iterations per stage.

Error. A reference solution is obtained for each of the simulations presented
below. The ESDIRK[5,2](6)L SA k2c method with a time step size of �t =
2�7 is used for the laminar and turbulent simulations. The use of a reference
case, computed on the same grid, eliminates the influence of the spatial
discretization error, thus isolating the temporal error. The error is computed
as the root-mean-square of the di↵erence in lift and drag coe�cients (CL and
CD):

eCL/D
=

sPN
i=1(CL/D,i � CL/D,i,ref)2

N

, (36)

where N is the number of time steps.

5.2.1. Laminar Flow Around a Circular Cylinder

In this section, two-dimensional laminar flow around a circular cylinder
is simulated at Reynolds number 1200 and Mach number 0.3. Under these
conditions, unsteady vortex shedding is observed in the wake of the cylinder
causing regular smooth variations in lift and drag. This behaviour makes
it ideal for comparing the relative accuracy and e�ciency of time-marching
methods [19, 75]. The results presented are obtained with a fourth-order
spatial discretization on a 28, 000 cell grid: 141 nodes in the o↵wall direction,
and 200 in the circumferential direction. The o↵wall spacing at the surface
is 0.005 times the diameter of the cylinder, and 0.5 diameters at the outer
boundary, which is located 20 diameters from the surface of the cylinder.
The maximum aspect ratio is about 5.3 near the leading edge. This decrease
toward the leeward side of the cylinder due to the increased circumferentially
resolution to capture the details of the wake. Grids are decomposed into 16
blocks and the solution is computed in parallel with a one-to-one block to
processor ratio. Figure 1 shows the grid.

The temporal accuracy and e�ciency of the Runge-Kutta methods are
evaluated in a temporal convergence study with time step sizes from�t = 2�7

to �t = 23. The simulations are run for 40 non-dimensional time units,
equal to about 2.9 vortex shedding cycles. Table 5 presents the results of
the simulations, including convergence rates computed with a line of best fit
through the simulations with the three smallest time step before roundo↵
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Figure 1: Laminar Cylinder: Computational grid with block boundaries highlighted in

red

error and the total number of linear iteration required to obtain a prescribed
error. Individual values are shown for lift and drag, and the number of linear
iterations is interpolated for a prescribed error of eCL/D

= 10�6. Also shown
are the average number of linear iterations per implicit stage computed from
the simulation with the three smallest time step before roundo↵ error. The
methods are organized based on order, followed by the number of stages,
then the predicted relative e�ciency from Section 4.

Table 5 shows that the methods of orders three and four all roughly obtain
their prescribed rate of convergence. This further supports the results from
simulation of van der Pol’s equation. In contrast, the fifth-order methods
often exhibit higher than expect convergence rates. This may be due to
the methods not yet being in their asymptotic region of convergence before
hitting round-o↵ error for this problem.

One of the biggest influences on the relative e�ciency of the methods
applied to this problem is the local truncation error (LTE) coe�cient shown
in Table 6, rather than the error norm discussed to this point. This accounts
for the greatest variation in the results relative to the predictions made in
Section 4. It also demonstrates the need to be aware of which properties
influence the e�ciency of individual problems, and to optimize for these
properties.

Another property which has a significant impact of the results is internal
linear stability. Consider Methods 5-5 through 5-7, which have very poor in-
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CL CD Avg.

# Method p Lin its (e = 10�6) p Lin its (e = 10�6) Lin its/si

3-2 SDIRK[3,1](3)L 13 3.07 5.86e5 3.08 4.30e5 2.27e1
3-3 SDIRK[3,(1,2,2)](3)L 14 3.07 5.85e5 3.08 4.33e5 2.64e1
3-4 SDIRK[3,1](3)L SA al 3.07 5.86e5 3.08 4.31e5 2.27e1
3-5 SDIRK[3,1](3)L 01 3.01 5.85e5 3.02 4.33e5 2.27e1
3-6 SDIRK[3,1](3)AlgL 3.10 5.85e5 3.10 4.31e5 2.27e1
3-7 SDIRK[3,1](3)AlgL 01 3.11 5.85e5 3.12 4.28e5 2.27e1
3-8 SDIRK[3,1](3)Alg no2 3.09 9.29e5 3.10 6.91e5 2.05e1
3-9 SDIRK[3,1](3)Alg no 3.09 9.29e5 3.10 6.91e5 2.73e1

3-10 SDIRK[3,(1,2,3,3)](4)L 11 3.50 2.52e5 3.59 1.91e5 2.77e1
3-11 SDIRK[3,1](4)L SA 5 3.40 2.61e5 3.43 2.00e5 2.29e1
3-12 SDIRK[3,(1,2,2,3)](4)L SA 7 3.42 2.56e5 3.42 1.96e5 2.29e1
3-13 SDIRK[3,(1,1,2,3)](4)L SA ca 3.09 4.12e5 3.10 3.10e5 1.88e1

4-2 SDIRK[4,1](4)L 03 4.01 4.68e5 4.11 3.74e5 2.47e1
4-3 SDIRK[4,(1,2,2,2)](4)L 13 4.01 4.68e5 4.10 3.74e5 2.47e1
4-4 SDIRK[4,1](4)L 01 4.01 4.28e5 4.10 3.47e5 2.29e1
4-5 SDIRK[4,1](4)L 05 4.00 4.67e5 4.04 3.73e5 2.47e1
4-6 SDIRK[4,1](4)L 04 4.01 4.70e5 4.13 3.75e5 2.44e1
4-7 SDIRK[4,1](4)L 02 4.02 4.70e5 4.10 3.75e5 2.47e1
4-8 SDIRK[4,1](4)L 00 3.99 4.66e5 4.03 3.72e5 2.47e1
4-9 SDIRK[4,1](4)L 06 3.99 4.66e5 3.97 3.72e5 2.47e1

5-1 SDIRK[5,1](5)L 02 6.20 1.51e5 4.76 1.73e5 2.81e1
5-2 SDIRK[5,1](5)L 01 5.85 1.84e5 4.67 2.12e5 2.98e1
5-3 SDIRK[5,(1,1,2,2,2)](5)A co 6.49 2.25e5 5.87 1.94e5 2.68e1

5-4 ESDIRK[5,2](6)A SA 7.12 1.48e5 6.72 1.31e5 3.57e1
5-5 ESDIRK[5,2](6)L SA 00 5.64 1.92e5 5.57 1.64e5 4.23e1
5-6 ESDIRK[5,2](6)L SA 2 5.64 1.92e5 5.57 1.64e5 3.68e1
5-7 ESDIRK[5,2](6)L SA 01 5.64 1.92e5 5.57 1.64e5 3.69e1
5-8 ESDIRK[5,2](6)L SA bm 6.63 1.74e5 6.41 1.53e5 3.68e1
5-9 ESDIRK[5,2](6)L SA 07 6.79 1.72e5 6.51 1.52e5 3.68e1
5-10 ESDIRK[5,2](6)L SA k2c 6.81 1.72e5 6.53 1.52e5 3.68e1

Table 5: Laminar flow over a cylinder: Convergence rates are presented, along with

the number of linear iterations required to obtain an error of 10

�6
. These values are

computed for both lift and drag. The average number of linear iterations required per

implicit stage si is also reported.
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# Method C

3-2 SDIRK[3,1](3)L 13 2.59e-2
3-3 SDIRK[3,(1,2,2)](3)L 14 2.59e-2
3-4 SDIRK[3,1](3)L SA sk2 2.59e-2
3-5 SDIRK[3,1](3)L 01 2.59e-2
3-6 SDIRK[3,1](3)AlgL 2.59e-2
3-7 SDIRK[3,1](3)AlgL 00 2.59e-2
3-8 SDIRK[3,1](3)Alg no2 8.80e-2
3-9 SDIRK[3,1](3)Alg no 8.80e-2

3-10 SDIRK[3,(1,2,3,3)](4)L 11 3.79e-4
3-11 SDIRK[3,1](4)L SA 5 3.79e-4
3-12 SDIRK[3,(1,2,2,3)](4)L SA 7 3.79e-4
3-13 SDIRK[3,(1,1,2,3)](4)L SA ca 3.91e-3

4-2 SDIRK[4,1](4)L 03 2.73e-2
4-3 SDIRK[4,(1,2,2,2)](4)L 13 2.73e-2
4-4 SDIRK[4,1](4)L 01 2.73e-2
4-5 SDIRK[4,1](4)L 05 2.73e-2
4-6 SDIRK[4,1](4)L 04 2.73e-2
4-7 SDIRK[4,1](4)L 02 2.73e-2
4-8 SDIRK[4,1](4)L 07 2.73e-2
4-9 SDIRK[4,1](4)L 06 2.73e-2

5-1 SDIRK[5,1](5)L 02 5.30e-4
5-2 SDIRK[5,1](5)L 01 5.30e-4
5-3 SDIRK[5,(1,1,2,2,2)](5)A co 1.39e-3

5-4 ESDIRK[5,2](6)A SA 2.08e-4
5-5 ESDIRK[5,2](6)L SA 00 5.30e-4
5-6 ESDIRK[5,2](6)L SA 2 5.30e-4
5-7 ESDIRK[5,2](6)L SA 01 5.30e-4
5-8 ESDIRK[5,2](6)L SA 5.30e-4
5-9 ESDIRK[5,2](6)L SA 07 5.30e-4
5-10 ESDIRK[5,2](6)L SA k2c 5.30e-4

Table 6: Laminar flow over a cylinder: Local truncation error coe�cient for methods

applied to this problem.
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ternal linear stability relative to other ESDIRK[5,2] methods. Despite lower
relative error norms and equal LTE coe�cients, the number of linear itera-
tions required to obtain the prescribed level of accuracy by these methods is
greater than comparable methods. The only other property of these meth-
ods which is significantly di↵erent is the violation in the algebraic stability
condition. However, a similar increase in linear iterations is not observed
when using other methods with a large violation in the algebraic stability
conditions.

As alluded to above, both global and internal algebraic stability seem
to play a negligible role in the performance of the methods on this problem.
The maximum feasible time step size, the iterative performance of the solver,
the order, and relative e�ciency of the methods do not appear to be tied to
this property. Very little variation in iterative performance is also observed
relative to the spacing of the abscissa values. Furthermore, none of the
methods tested su↵ered ill e↵ects from having abscissa values outside of the
time step. This is seen by comparing Methods 3-6 and 3-7, which have
abscissa far outside of the time step, with the reference Methods 3-8 and
3-9, which have the abscissa values wholly within the time step. Both sets
of methods were stable, converged, and obtained similar order properties.
Those with abscissa values outside of the time step were more e�cient, as
predicted. This demonstrates that having abscissa values outside of the time
step does not preclude a method from being used; however, the reader should
be aware that for some problems, this property can cause issues.

5.2.2. Turbulent Flow Around the NACA 0012 Airfoil

It has been observed that the performance of high-order implicit time-
marching methods di↵ers when applied to turbulent flows simulated with
the Reynolds-averaged Navier-Stokes equations using the Spalart-Allmaras
turbulence model. In this case, the governing equations behave more like a
system of index one di↵erential algebraic equations, where the sti↵ source
terms in the the turbulent kinetic energy equation are thought to be the
source of the algebraic variables [19].

This section considers two-dimensional turbulent flow over a NACA 0012
airfoil at an angle of attack of 30�, Reynolds number of 105 and Mach number
of 0.2 [19, 20]. Under these conditions, the flow separates near the leading
edge of the airfoil creating large vortices in the wake. Similar to the cylin-
der case, these vortices create smooth regular variations in lift and drag.
This problem is simulated using a fourth-order spatial discretization of the
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Figure 2: Turbulent NACA 0012: Computational grid

Reynolds-Averaged Navier–Stokes equations and a second-order implementa-
tion of the turbulence model applied on a grid with 85, 000 cells: 601 nodes
on the surface of the airfoil and 101 in the o↵wall direction. The o↵wall
spacing at the surface is 0.001 times the chord, and 1 in the farfield located
a minimum of 20 chord lengths from the surface of the airfoil. Grids are
decomposed into 34 blocks and the solution is computed in parallel. Figure
2 shows a plot of the grid.

The maximum aspect ratio is about 15, but in the near-wall region the
maximum aspect ratio is similar the the laminar cylinder grid, about 5. The
aspect ratio increases toward the farfield as the radial mesh spacing increases
faster than the circumferential mesh spacing. This is particularly noticeable
in the lines emanating from the upper and lower surface near the trailing
edge. In general, the aspect ratio of the grid used for semi-discretization and
the sti↵ness of the resulting ODE will correlate. The aspect ratio does not
pose a stability problem, as all methods considered are A-stable and many
are L-stable. We would expect that sti↵ness due to the aspect ratio would
influence all of the methods similarly, though L-stable methods or methods
for which MA(1) << 1 could benefit from the additional damping of high
frequency modes.

Similar to the laminar flow over a circular cylinder, the temporal accuracy
and e�ciency of the methods are evaluated in a temporal convergence study
with time steps of sizes from �t = 2�7 to �t = 23. The simulation is
run for 40 non-dimensional time units, equal to about 2.58 shedding cycles.
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eCL
= 10�6 eCD

= 10�6 Avg.

# Method p Lin its p Lin its Lin its/si

3-2 SDIRK[3,1](3)L 13 1.00 2.27e8 1.00 1.19e8 1.96e2
3-3 SDIRK[3,(1,2,2)](3)L 14 1.00 5.65e7 1.00 3.61e7 1.54e2
3-4 SDIRK[3,1](3)L SA al 2.79 7.83e5 2.80 6.54e5 2.40e2
3-5 SDIRK[3,1](3)L 01 1.00 1.15e8 1.00 6.73e7 1.59e2
3-6 SDIRK[3,1](3)AlgL 1.00 1.04e8 1.00 6.71e7 1.13e2
3-7 SDIRK[3,1](3)AlgL 00 1.00 1.83e8 1.00 1.09e8 1.16e2
3-8 SDIRK[3,1](3)Alg no2 1.00 4.40e7 1.00 3.33e7 1.07e2
3-9 SDIRK[3,1](3)Alg no 1.00 1.19e8 1.00 7.90e7 1.10e2

3-10 SDIRK[3,(1,2,3,3)](4)L 11 1.14 3.50e7 1.16 2.51e7 3.40e2
3-11 SDIRK[3,1](4)L SA 5 1.45 4.21e5 1.48 3.73e5 1.95e2
3-12 SDIRK[3,(1,2,2,3)](4)L SA 7 2.45 4.46e5 2.43 3.87e5 2.11e2
3-13 SDIRK[3,(1,1,2,3)](4)L SA ca 2.52 5.51e5 2.56 4.73e5 1.98e2

4-2 SDIRK[4,1](4)L 03 1.00 3.96e8 1.00 2.31e8 1.97e2
4-3 SDIRK[4,(1,2,2,2)](4)L 13 1.00 1.07e7 1.00 9.58e6 1.12e2
4-4 SDIRK[4,1](4)L 01 1.00 9.11e7 1.00 6.31e7 1.43e2
4-5 SDIRK[4,1](4)L 05 1.00 8.93e7 1.00 6.21e7 1.16e2
4-6 SDIRK[4,1](4)L 04 1.00 1.08e8 1.00 7.35e7 1.48e2
4-7 SDIRK[4,1](4)L 02 1.00 4.62e8 1.01 2.66e8 2.29e2
4-8 SDIRK[4,1](4)L 00 1.00 8.00e7 1.00 5.63e7 1.14e2
4-9 SDIRK[4,1](4)L 06 1.00 8.29e7 1.00 5.81e7 1.15e2

5-1 SDIRK[5,1](5)L 02 1.00 5.78e6 1.00 5.25e6 9.23e1
5-2 SDIRK[5,1](5)L 01 1.00 2.13e6 1.00 2.18e6 8.18e1
5-3 SDIRK[5,(1,1,2,2,2)](5)A co 1.00 5.92e8 1.00 3.25e8 2.52e2

5-4 ESDIRK[5,2](6)A SA 2.69 5.18e5 3.08 4.42e5 2.27e2
5-5 ESDIRK[5,2](6)L SA 00 3.22 4.74e5 3.50 4.14e5 2.61e2
5-6 ESDIRK[5,2](6)L SA 2 3.55 4.60e5 3.81 4.08e5 2.32e2
5-7 ESDIRK[5,2](6)L SA 01 2.71 4.71e5 2.76 4.11e5 2.32e2
5-8 ESDIRK[5,2](6)L SA bm 3.46 4.69e5 3.67 4.19e5 2.62e2
5-9 ESDIRK[5,2](6)L SA 07 2.97 4.99e5 2.96 4.43e5 2.29e2
5-10 ESDIRK[5,2](6)L SA k2c 2.63 5.80e5 2.58 4.83e5 2.27e2

Table 7: Turbulent flow over the NACA 0012 airfoil: Sti↵ and non-sti↵ convergence

rates are presented, along with the number of linear iterations required to obtain an error

of 10

�6
. These values are computed for both lift and drag. The average number of linear

iterations required per implicit stage si is also reported.

Table 7 presents the results of the simulations, including sti↵ and nonsti↵
convergence rates computed by a line of best fit through the the smallest
three time steps before roundo↵ error. Individual values are shown for lift
and drag, and are interpolated for a prescribed error of 10�6. Also shown
are the average number of linear iterations per implicit stage computed from
the simulation with the three smallest time step before roundo↵ error. The
methods are organized based on order, followed by the number of stages,
then the predicted relative e�ciency from Section 4.

In this case, the turbulence model introduces significant sti↵ness, causing
nearly all the methods to su↵er from order reduction. The observed order
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of convergence for very sti↵ problems is largely tied to the stage order of
the methods. Thus, methods with lower stage order relative to their global
order will su↵er a greater amount of order reductions. This phenomenon has
been observed for unsteady RANS simulations in other articles [19, 20]. The
data also shows that non-sti✏y-accurate methods only achieve first-order
convergence, largely independent of step size (see highlighted rows in the
tables). From this we conclude that two of the most important properties for
simulation of very sti↵ problems is stage order and sti↵ accuracy, something
that is well known in the literature [44, 65].

In this case, the relative e�ciency of the methods seems to be much more
closely tied to the error norm used in the optimization, rather than the LTE
coe�cient which dominated in the laminar cylinder case. As a result, the
e�ciency ordering of the sti✏y-accurate third and fifth-order methods agree
reasonably well with the predictions made in Section 3.

Global and internal algebraic stability play a larger role in the relative
e�ciency of the methods for this case. This can be seen by considering the
fourth-order non-sti✏y-accurate SDIRK[4,1] methods. Methods with larger
violation in the algebraic stability properties also required a greater num-
ber of linear iterations to achieve the prescribed level of accuracy, and vice
versa. This is also observed to some extent with the fifth-order ESDIRK[5,2]
methods.

The influence of the error norm and algebraic stability properties seem
to dominate in this case, though some influence from the internal linear
stability remains with the fifth-order Methods 5-5 through 5-7. The spacing
of abscissa values plays a limited role in the relative e�ciency of the methods,
except in the extreme case of Methods 3-6 and 3-7. These methods have very
large spacing relative to comparable methods and required noticeably more
linear iterations to achieve the desired level of accuracy. As with the laminar
cylinder case, we observed no issues with the existence of abscissa values
outside the time step. The reader should be aware that this can be an issue
for some IVPs and should select a time-marching method appropriate for
their application.

Table 8 shows the convergence rates of two solution variables ⇢ and ⇢u,
as well as the turbulence variable ⌫. The data shows that solution variables
nearly always exhibit higher convergence rates as compared to the turbu-
lence variable. This is characteristic of di↵erential and algebraic variables,
respectively. The observed convergence rates are, for the most part, in line
with theoretical predictions for singular perturbation problems.
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Method p⇢ p⇢u p⌫

SDIRK[3,1](3)L 13 2.66 2.60 2.12
SDIRK[3,(1,2,2)](3)L 14 2.71 2.71 2.27
SDIRK[3,1](3)L SA sk2 2.74 2.57 2.00
SDIRK[3,1](3)L 01 2.51 2.21 2.35
SDIRK[3,1](3)AlgL 3.08 2.88 1.89
SDIRK[3,1](3)AlgL 00 2.66 2.64 2.47
SDIRK[3,1](3)Alg no2 2.68 2.65 2.49
SDIRK[3,1](3)Alg no 2.64 2.44 2.55

SDIRK[3,(1,2,3,3)](4)L 11 2.25 2.23 2.28
SDIRK[3,1](4)L SA 5 2.73 2.98 2.06
SDIRK[3,(1,2,2,3)](4)L SA 7 2.54 2.54 2.16
SDIRK[3,(1,1,2,3)](4)L SA ca 2.61 2.64 1.96

SDIRK[4,1](4)L 03 2.59 2.56 1.99
SDIRK[4,(1,2,2,2)](4)L 13 2.92 3.15 1.93
SDIRK[4,1](4)L 01 2.58 3.20 2.07
SDIRK[4,1](4)L 05 3.01 3.26 2.3
SDIRK[4,1](4)L 04 2.33 3.19 2.02
SDIRK[4,1](4)L 02 2.59 2.59 2.55
SDIRK[4,1](4)L 07 2.99 3.25 2.17
SDIRK[4,1](4)L 06 3.00 3.28 1.89

SDIRK[5,1](5)L 02 2.55 2.95 1.85
SDIRK[5,1](5)L 01 2.56 2.80 1.73
SDIRK[5,(1,1,2,2,2)](5)A co 3.17 3.50 2.35

ESDIRK[5,2](6)A SA 1.99 2.84 2.08
ESDIRK[5,2](6)L SA 00 2.86 3.10 1.46
ESDIRK[5,2](6)L SA 2 2.19 3.00 1.68
ESDIRK[5,2](6)L SA 01 2.26 2.93 1.79
ESDIRK[5,2](6)L SA bm 2.20 2.07 1.74
ESDIRK[5,2](6)L SA 07 2.12 2.48 1.33
ESDIRK[5,2](6)L SA k2c 2.52 2.73 1.43

Table 8: Turbulent flow over the NACA 0012 airfoil: Sti↵ convergence rates are

presented for flow variables ⇢ and ⇢u, as well as the turbuelent variable ⌫.
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6. Summary of Novel Optimized Runge-Kutta Methods

SDIRK[3,(1,2,2)](3)L 14 This method provides a good balance of prop-
erties, including a slightly reduced error norm relative to compara-
ble three-stage methods from the literature. SDIRK[3,1](3)L 13 has a
lower error norm, but forfeits the increased order on stages two and
three, and su↵ers from a more severe violation in the algebraic stabil-
ity conditions. SDIRK[3,1](3)L SA al is a comparable sti✏y-accurate
method with slightly higher error norm and violation in the algebraic
stability conditions.

SDIRK[3,1](4)L SA 5 This optimized four-stage method is the most ef-
ficient third-order sti✏y-accurate scheme considered, and has a good
balance of properties. It lowers the relative error norm of the SDIRK-
[3,(1,1,2,3)](4)L SA ca reference method by more than a factor of two,
which is supported by the numerical simulations. Two similar four-
stage optimized schemes are SDIRK[3,(1,2,3,3)](4)L 11 and SDIRK-
[3,(1,2,2,3)](4)L SA 7. The first is constructed to have individual stages
with higher-order accuracy. This comes at the price of a higher relative
error norm, though it is still lower than the reference method listed
above. The second method forfeits sti↵ accuracy in favour of an even
smaller relative error norm, nearly 60% smaller than SDIRK[3,1](4)L-
SA 5. This is not fully realized in the numerical simulations, although
a noticeable reduction in computational e↵ort is obtained.

Fourth-order methods Many of the most e�cient five-stage schemes were
rederived using numerical optimization, indicating that they are al-
ready minima in the design space. Unfortunately, no four-stage ref-
erence methods were identified; however, the optimized methods were
used to demonstrate the ability of numerical optimization to achieve a
desired balance between competing objectives.

SDIRK[5,1](5)L 02 This optimized five-stage method is more than 40%
more e�cient then the reference SDIRK[5,(1,1,2,2,2)](5)A co method
based on the relative error norm and is L-stable. It does show a small
increase in the violation of the algebraic stability conditions, especially
internally, and does not have the increased order for stages 3 through
5. SDIRK[5,1](5)L 01 better balances the violation in the algebraic
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stability conditions, and achieves a 34% reduction in error norm relative
to the reference.

ESDIRK[5,2](5)L bm This method provides an improvement in e�cient
relative to the reference ESDIRK[5,2](6)L SA k2c, especially in the tur-
bulent NACA 0012 case. It also improves the spacing in the abscissa
and reduces the violation in the algebraic stability constraints. The
method does sacrifice a small increase in the violation in the internal
linear stability condition, but is globally L-stable.

7. Conclusions

In this article constrained numerical optimization is applied to select
the undetermined coe�cients in the construction of high-order diagonally-
implicit Runge-Kutta methods. The approach first solves the desired order
conditions and any stability criteria with a closed form solution. Undeter-
mined coe�cients are then set as design variables. Given the multimodal
nature of the design space, a Sobol sequence is used to generate a quasi-
random set of initial coe�cients, which are optimized in parallel. The coe�-
cients are optimized relative to objective functions of accuracy, stability, and
computational cost and constrained by the desired stability criteria.

At lower orders the numerical tool rederived many known methods. In
this case it is possible to optimize the schemes analytically since there are few
undetermined coe�cients and the expressions obtained from the order con-
ditions are fairly simple. The results of the numerical optimization at lower
orders simply demonstrate the tool’s ability to recover known minima. As
the order of the schemes is increased, analytical optimization becomes more
challenging due to the size and complexity of the expressions resulting from
the order conditions. This is where the value of the optimization procedure
is realized. The numerical tool is able to discover several novel high-order
unconditionally stable schemes which are more e�cient than those found in
the literature. This is based on the relative L2-principal error norm of the
order conditions one order higher than the methods. The use of numerical
optimization is able to ensure that these methods also maintain a balance
of stability and solvability. A summary of the novel methods is given in the
previous section.

Order properties of the methods derived in this article are verified with
numerical simulation of both nonsti↵ and sti↵ van der Pol’s equation. The
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methods are also applied to numerical simulation of vortex shedding in the
laminar wake of a circular cylinder and the turbulent wake of a NACA 0012
airfoil at high angle-of-attack. These simulations were conducted to evaluate
the numerical performance of the novel methods and to compare them to
methods found in the literature. With few exceptions, the simulation re-
sults validate the theoretical predictions. In the turbulent case, non-sti✏y
accurate methods only achieved first-order convergence of lift and drag; how-
ever, the solution and turbulence variables exhibit rates more consistent with
di↵erential and algebraic variables, respectively.

The results presented in this article demonstrate the value of using nu-
merical optimization in the selection of undetermined coe�cients for Runge-
Kutta methods. Furthermore, they motivate the application of this approach
to more general classes of time-marching methods in the future, such as gen-
eral linear methods.

Appendix A. List of methods considered

List of reference methods from the literature (* denotes a method red-
erived using the optimization procedure described in Section 3)

1. *SDIRK[1,1](1)AlgL SA IE [23, 37]

2. *SDIRK[2,1](1)Alg Mid [23]

3. *ESDIRK[2,2](2)Alg SA Trap [6, 26, 59]

4. *SDIRK[2,1](2)AlgL SA yi [35, 78]

5. *ESDIRK[2,2](3)AlgL SA kv [53, 56]

6. *SDIRK[3,1](2)Alg cr [27]

7. *SDIRK[3,1](3)L SA al [1, 70]

8. SDIRK[3,1](3)A fr [39]

9. SDIRK[3,1](3)Alg no2 [61]

10. SDIRK[3,1](3)Alg no [61]

11. EDIRK[3,1](4)L SA el2 [35]

12. ESDIRK[3,2](4)L SA kc [52, 53]

13. DIRK[3,1](3)AlgL gsbp [12]

14. SDIRK[3,(1,1,2,3)](4)L SA ca [18]

15. *ESDIRK[3,2](4)L SA al [2, 70]

16. ESDIRK[3,2](4)L SA kv [54, 56]

17. EDIRK[3,2](4)L SA el [35]

18. ESDIRK[3,2](4)L SA kv [53, 56]

19. ESDIRK[3,2](4)L SA hi [47]

20. SDIRK[3,1](4)L SA sk [71]

21. ESDIRK[3,2](4)A SA wi [77]

22. SDIRK[3,1](4)A fr2 [39]

23. ESDIRK[3,2](5)L SA k2c [53]

24. ESDIRK[3,2](5)L SA k2c2I [53]

25. ESDIRK[3,(3,2,3,3,3)](5)L SA k2c [53]

26. *SDIRK[4,1](3)Alg cr [27]
27. DIRK[4,1](3)Alg co [25]
28. SDIRK[4,1](4)Alg sp1 [38]
29. SDIRK[4,1](5)AlgL sp2 [38]
30. SDIRK[4,1](5)L SA ha [44, 53]
31. SDIRK[4,(1,2,2,2,4)](5)L SA k2c [53]
32. SDIRK[4,1](5)L SA ha2 [44, 53]
33. SDIRK[4,1](5)L SA sk [70]
34. QSDIRK[4,(1,2,2,2,4)](5)L SA k2c [53]
35. ESDIRK[4,2](5)L SA kc [52, 53]
36. ESDIRK[4,(2,2,2,3,4)](5)L SA kv [53, 56]
37. SDIRK[4,1](6)AlgL sp3 [38]
38. ESDIRK[4,2](6)L SA sk4 [69]
39. ESDIRK[4,2](6)L SA k2cA [53]
40. ESDIRK[4,2](6)L SA k2cB [53]
41. ESDIRK[4,(2,2,2,2,3,4)](6)L SA k2c3I [53]
42. ESDIRK[4,2](6)L SA k2c [53]
43. ESDIRK[4,(2,2,3,3,3,4)](6)L SA k2c [53]
44. ESDIRK[4,(2,2,3,3,3,4)](6)L SA kv2 [56]
45. ESDIRK[4,2](6)L SA kc [52, 53]
46. ESDIRK[4,2](6)L SA k2cC [53]
47. ESDIRK[4,2](6)L SA sk2 [68, 69]
48. ESDIRK[4,2](6)L SA k2cD [53]
49. ESDIRK[4,(2,2,2,2,3,4)](6)L SA sk [70]
50. QESDIRK[4,(2,2,3,3,3,4)](6)L SA k2c [53]
51. ESDIRK[4,2](6)L SA k2cE [53]
52. ESDIRK[4,2](6)L SA sk6 [71]
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53. ESDIRK[4,(2,2,3,2,2,4)](6)L SA k2c [53]
54. QESDIRK[4,(2,2,3,3,3,4)](6)L SA k2c2 [53]
55. SDIRK[4,1](7)AlgL sp4 [38]
56. SDIRK[4,1](8)AlgL sp5 [38]
57. SDIRK[5,(1,1,2,2,2)](5)A co [25]
58. ESDIRK[5,2](6)L SA k2c [53]

59. ESDIRK[5,2](7)L SA k2c [53]

60. ESDIRK[5,2](7)L SA sk [68]

61. ESDIRK[5,(2,2,3,3,3,4,5)](7)L SA kv [56]

62. ESDIRK[5,(2,2,2,2,2,2,4,5)](8)L SA k2c [53]

63. ESDIRK[6,2](7)A k2c [53]

Classes of Runge-Kutta methods optimized, preceded by the number of
methods optimized in each class

1. h1i DIRK[4,1](4)L

2. h2i ESDIRK[2,1](3)L SA

3. h1i ESDIRK[2,2](3)Alg

4. h2i ESDIRK[2,2](3)AlgL SA

5. h2i ESDIRK[2,2](3)L

6. h1i ESDIRK[2,2](3)L SA

7. h1i ESDIRK[3,2](3)Alg

8. h2i ESDIRK[3,2](3)A SA

9. h1i ESDIRK[3,2](4)L

10. h1i ESDIRK[3,2](4)L SA

11. h2i ESDIRK[4,(2,2,3,3,4)](5)L SA

12. h1i ESDIRK[4,2](4)Alg

13. h1i ESDIRK[4,2](4)A SA

14. h1i ESDIRK[4,2](5)L

15. h1i ESDIRK[4,2](5)L(89.55

�
) SA

16. h5i ESDIRK[4,2](5)L SA

17. h2i ESDIRK[5,2](6)L SA

18. h2i SDIRK[2,(1,2)](2)L

19. h1i SDIRK[2,1](2)Alg

20. h2i SDIRK[2,1](2)AlgL

21. h1i SDIRK[2,1](2)AlgL SA

22. h1i SDIRK[2,1](2)L SA

23. h2i SDIRK[3,(1,2,2,3)](4)L SA

24. h2i SDIRK[3,(1,2,2)](3)L

25. h12i SDIRK[3,(1,2,3,3)](4)L

26. h4i SDIRK[3,(1,2,3,3)](4)L SA

27. h2i SDIRK[3,(1,2,3)](3)A

28. h2i SDIRK[3,1](3)AlgL

29. h2i SDIRK[3,1](3)L

30. h3i SDIRK[3,1](3)L SA

31. h4i SDIRK[4,(1,2,2,2)](4)L

32. h1i SDIRK[4,1](3)Alg

33. h8i SDIRK[4,1](4)L

34. h3i SDIRK[4,1](5)L SA

35. h4i SDIRK[5,1](5)L
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Appendix B. Coe�cients of Novel Time-Marching Methods

SDIRK[3,(1,2,2)](3)L 14.

A1,1 = 0.435866521508459
A1,2 = A1,3 = 0

A2,1 = �0.180541824593188
A2,2 = 0.435866521508459
A2,3 = 0

A3,1 = �0.6448674624242866
A3,2 = 1.049588373659196
A3,3 = 0.435866521508459
b1 = 0

b2 = 0.5819393784937729
b3 = 0.4180606215062271
c1 = 0.435866521508459
c2 = 0.2553246969152709
c3 = 0.840587432743368

SDIRK[3,(1,2,3,3)](4)L 11.

A1,1 = 0.2236468442071308
A1,2 = A1,3 = A1,4 = 0

A2,1 = �0.09263755605253625
A2,2 = 0.2236468442071308
A2,3 = A2,4 = 0

A3,1 = 0.029090502594485
A3,2 = �0.1674714344479084
A3,3 = 0.2236468442071308
A3,4 = 0

A4,1 = 0.2793910597960622
A4,2 = 1.172529025624291
A4,3 = �0.8748372875708956
A4,4 = 0.2236468442071308
b1 = 0

b2 = 1.351040830480596
b3 = �0.8443333686807888
b4 = 0.4932925382001925
c1 = 0.2236468442071308
c2 = 0.1310092881545946
c3 = 0.0852659123537074
c4 = 0.8007296420565881
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SDIRK[3,1](4)L SA 5.

A1,1 = 0.2236509951645569
A1,2 = A1,3 = A1,4 = 0

A2,1 = 0.3210161240223837
A2,2 = 0.2236509951645569
A2,3 = A2,4 = 0

A3,1 = �0.9231923320092694
A3,2 = 1.475417379665253
A3,3 = 0.2236509951645569
A3,4 = 0

A4,1 = 0.4108468452988502
A4,2 = 0.4287104001078981
A4,3 = �0.06320824057130515
A4,4 = 0.2236509951645569
b1 = 0.4108468452988502
b2 = 0.4287104001078981
b3 = �0.06320824057130515
b4 = 0.2236509951645569
c1 = 0.2236509951645569
c2 = 0.5446671191869406
c3 = 0.7758760428205402
c4 = 1

SDIRK[3,(1,2,2,3)](4)L SA 7.

A1,1 = 0.2236468426706971
A1,2 = A1,3 = A1,4 = 0

A2,1 = �0.09263755541612455
A2,2 = 0.2236468426706971
A2,3 =2,4= 0

A3,1 = �0.3390239162242422
A3,2 = 0.5361289668097047
A3,3 = 0.2236468426706971
A3,4 = 0

A4,1 = 0

A4,2 = 0.1735985747713019
A4,3 = 0.602754582558001
A4,4 = 0.2236468426706971
b1 = 0

b2 = 0.1735985747713019
b3 = 0.602754582558001
b4 = 0.2236468426706971
c1 = 0.2236468426706971
c2 = 0.1310092872545725
c3 = 0.4207518932561596
c4 = 1
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SDIRK[4,(1,2,2,2)](4)L 13.

A1,1 = 0.5728160624821349
A1,2 = A1,3 = A1,4 = 0

A2,1 = �0.2372681818252545
A2,2 = 0.5728160624821349
A2,3 = A2,4 = 0

A3,1 = �0.843659473560103
A3,2 = 0.9783006024430643
A3,3 = 0.5728160624821349
A3,4 = 0

A4,1 = �0.6504189474582887
A4,2 = 0.3710566153293516
A4,3 = 0.1337302071646674
A4,4 = 0.5728160624821349
b1 = 0

b2 = 2.001951626974973
b3 = 0.914347024151788
b4 = �1.916298651126761
c1 = 0.5728160624821349
c2 = 0.3355478806568805
c3 = 0.7074571913650962
c4 = 0.4271839375178652

SDIRK[4,1](4)L 05.

A1,1 = 0.5728160624821349
A1,2 = A1,3 = A1,4 = 0

A2,1 = �0.4506409404207292
A2,2 = 0.5728160624821349
A2,3 = A2,4 = 0

A3,1 = �0.417982144232982
A3,2 = 0.6303293042757349
A3,3 = 0.5728160624821349
A3,4 = 0

A4,1 = 0.6974938714633269
A4,2 = �0.4925759495246813
A4,3 = �0.3505500469029152
A4,4 = 0.5728160624821349
b1 = �0.426559400640419
b2 = 0.2441815104885498
b3 = 0.5849900719458051
b4 = 0.5973878182060641
c1 = 0.5728160624821349
c2 = 0.1221751220614057
c3 = 0.7851632225248877
c4 = 0.4271839375178653
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SDIRK[5,1](5)L 02.

A1,1 = 0.2780538411364523
A1,2 = A1,3 = A1,4 = A1,5 = 0

A2,1 = 0.5884293738285219
A2,2 = 0.2780538411364523
A2,3 = A2,4 = A2,5 = 0

A3,1 = 0.4757737281134862
A3,2 = �0.1649111223966794
A3,3 = 0.2780538411364523
A3,4 = A3,5 = 0

A4,1 = �0.1430556691639315
A4,2 = 0.2168859326308357
A4,3 = �0.3518841046033565
A4,4 = 0.2780538411364523
A4,5 = 0

A5,1 = 1.580366530916478
A5,2 = 0.1469597740924957
A5,3 = �0.6778647342704042
A5,4 = �0.605569255223904
A5,5 = 0.2780538411364523
b1 = 0.3632241891213434
b2 = 0.3363544171822351
b3 = 0.3182542934848578
b4 = 0.09279380620749932
b5 = �0.1106267059959357
c1 = 0.2780538411364523
c2 = 0.8664832149649742
c3 = 0.5889164468532591
c4 = 0

c5 = 0.7219461566511176

ESDIRK[5,2](6)A SA.

A1,1 = A1,2 = A1,3 = 0

A1,4 = A1,5 = A1,6 = 0

A2,1 = 0.246505193307038
A2,2 = 0.246505193307038
A2,3 = A2,4 = A2,5 = A2,6 = 0

A3,1 = 0.2450410672405718
A3,2 = 0.4973855759477314
A3,3 = 0.246505193307038
A3,4 = A3,5 = A3,6 = 0

A4,1 = 0.2564937950047032
A4,2 = 0.03908988375200104
A4,3 = �0.008556539796649578
A4,4 = 0.246505193307038
A4,5 = A4,6 = 0

A5,1 = 0.04501659096048612
A5,2 = 1.067115793643888
A5,3 = 0.06024953770808324
A5,4 = �1.154386154396951
A5,5 = 0.246505193307038
A5,6 = 0

A6,1 = 0.04357627047518315
A6,2 = �3.24634446857275
A6,3 = �0.1374502416258243
A6,4 = 3.37177845072737
A6,5 = 0.7219347956889822
A6,6 = 0.246505193307038
b1 = 0.04357627047518315
b2 = �3.24634446857275
b3 = �0.1374502416258243
b4 = 3.37177845072737
b5 = 0.7219347956889822
b6 = 0.246505193307038
c1 = 0

c2 = 0.493010386614076
c3 = 0.9889318364953411
c4 = 0.5335323322670926
c5 = 0.2645009612225441
c6 = 1
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ESDIRK[5,2](6)L SA bm.

A1,1 = A1,2 = A1,3 = 0

A1,4 = A1,5 = A1,6 = 0

A2,1 = 0.2780538411364523
A2,2 = 0.2780538411364523
A2,3 = A2,4 = A2,5 = A2,6 = 0

A3,1 = 0.3262449081464093
A3,2 = 0.3838598306191588
A3,3 = 0.2780538411364523
A3,4 = A3,5 = A3,6 = 0

A4,1 = 0.2991093048633836
A4,2 = 0.1491319274791011
A4,3 = �0.03781208693479417
A4,4 = 0.2780538411364523
A4,5 = A4,6 = 0

A5,1 = �0.2994138907017297
A5,2 = �0.7626765721782363
A5,3 = �0.1690593157465009
A5,4 = 0.8880327042046392
A5,5 = 0.2780538411364523
A5,6 = 0

A6,1 = 0.5920973606196398
A6,2 = 0.4332458780105385
A6,3 = �0.1688012973030839
A6,4 = 0.1845407853751282
A6,5 = �0.319136567838675
A6,6 = 0.2780538411364523
b1 = 0.5920973606196398
b2 = 0.4332458780105385
b3 = �0.1688012973030839
b4 = 0.1845407853751282
b5 = �0.319136567838675
b6 = 0.2780538411364523
c1 = 0

c2 = 0.5561076822729046
c3 = 0.9881585799020205
c4 = 0.6884829865441429
c5 = �0.06506323328537517
c6 = 1
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