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Abstract

A new class of homotopy continuation methods is developed suitable for globalizing quasi-
Newton methods for large sparse nonlinear systems of equations. The new continuation methods,
described as monolithic homotopy continuation, differ from the classical predictor-corrector al-
gorithm in that the predictor and corrector phases are replaced with a single phase which includes
both a predictor and corrector component. Conditional convergence and stability are proved ana-
lytically. Using a Laplacian-like operator to construct the homotopy, the new algorithm is shown
to be more efficient than the predictor-corrector homotopy continuation algorithm as well as the
widely-used pseudo-transient continuation algorithm for some inviscid and turbulent, subsonic
and transonic external aerodynamic flows over the ONERA M6 wing and the NACA 0012 airfoil
using a parallel implicit Newton-Krylov finite-difference flow solver.

Keywords: homotopy, continuation, globalization, Newton-Krylov, computational fluid
dynamics

1. Introduction

Newton’s method is a popular fixed-point iterative method for solving systems of nonlinear
equations due to its quadratic convergence rate. When combined with an iterative Krylov solver
such as the Generalized Minimal Residual method (GMRES) for solving the linear systems of
equations that arise, the method becomes an inexact Newton method, but the convergence rate
can still be super-linear or even quadratic [10]. However, it is well-known that Newton’s method
will usually not converge without a suitable initial guess. Obtaining the initial guess is referred to
as globalization and is performed using a continuation method. Thus, solving a nonlinear system
of equations with an inexact Newton method generally consists of two phases: a globalization
phase and an inexact Newton phase.

When solving a large sparse nonlinear algebraic system of equations, such as those arising
in computational fluid dynamics (CFD) when the steady flow equations are discretized in space,
the globalization phase can be computationally very expensive, often more expensive than the
inexact Newton phase. At the current state of CFD development and computer technology, many
CFD problems of interest remain computationally demanding so the efficiency of the nonlinear
equation solver is of engineering importance for CFD practitioners. In addition, the algorithm
may not always converge to the solution; some algorithms may stall or become unstable. The
reliability of the algorithm to converge to the solution is known as robustness and is also of im-
portance. Many algorithms contain tunable parameters to allow for a user to balance speed and
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robustness. However, regular tuning of parameters is undesirable and is also a consideration for
algorithm design: parameters should be few, intuitive, and should not need regular retuning.

The most common continuation method for globalizing steady CFD problems is pseudo-
transient continuation (PTC) [4, 8, 23, 24]. This is a method which imitates physical time march-
ing, though time-accuracy is not required. A viable alternative to PTC is homotopy continua-
tion. Homotopy continuation methods are discrete algorithms based on continuous deformations
known as homotopies. The most common application of homotopy continuation in the literature
has been for specialized study of systems with certain mathematical properties. For example,
homotopy continuation can be used to study systems where multiple solutions exist [31, 35] or
where solutions may be unstable [34, 22] in a more methodical and reliable way than can be
done with a method such as PTC. Homotopy continuation has also been applied to facilitate the
solution to CFD problems at high Reynolds numbers by solving the same problem at a lower
Reynolds number and gradually increasing the Reynolds number [5].

Hicken and Zingg [20] and Hicken et al. [18] designed a homotopy continuation algorithm
which they found could be used as a general globalization method for a Newton-Krylov exter-
nal aerodynamic flow solver developed by Hicken and Zingg [19] and Osusky and Zingg [29].
They found that the continuation method, which they termed dissipation-based continuation

since the homotopy was constructed based on a dissipation operator, was more efficient than
PTC in some cases, especially inviscid flows, but was not as competitive for turbulent flows.
To model the turbulent flows, they used the Reynolds-averaged Navier-Stokes equations with
Spalart-Allmaras [33] turbulence model (RANS-SA). We subsequently made several improve-
ments to their formulation, including the implementation of a classical predictor-corrector ap-
proach adapted to the Newton-Krylov algorithm [3]. For the cases that we investigated, we found
that the homotopy continuation method performed better than PTC for some three-dimensional
inviscid and laminar cases, as well as some two-dimensional RANS cases, but did not perform
as well for some three-dimensional RANS cases.

Homotopy continuation algorithms based on predictor-corrector methods are prevalent in the
homotopy literature; we refer to Allgower and Georg [1] and the references therein. In a context
where the homotopy continuation algorithm is needed to be as efficient as possible, predictor-
corrector algorithms can be wasteful because, in order to ensure that the algorithm is convergent,
parameters are chosen such that the corrector phase is often over-solved, by which we mean that
much of the work done in the corrector phase leads to only marginal improvement to the quality
of the predictor update. In addition, depending on the predictor method and corrector method
employed, both of these phases may require the solution to linear systems of equations and the
algorithm can be made more efficient if these linear solves are combined. These potential gains
in computational efficiency have been the motivation for developing the monolithic homotopy
(MH) continuation algorithm. The MH algorithm was developed based on a principle known
as dynamic inversion [14, 15, 16], which is the mathematically analogous problem of inexactly
predicting an implicitly-defined trajectory traced by a dynamic system. In addition to the gains in
efficiency, combining the predictor and corrector phases into a single phase reduces the number
of user parameters, simplifying user control. The objective of this paper is to present the mono-
lithic homotopy continuation algorithm, to characterize its performance on some compressible
flow problems, and to compare its performance to both a typical PTC algorithm and a homotopy
continuation algorithm based on a predictor-corrector method.
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2. Flow Solver

The flow solver to which the monolithic homotopy continuation algorithm is applied is a
Newton-Krylov-Schur parallel implicit flow solver based on a finite-difference [26] discretiza-
tion applicable to multi-block structured grids. The finite-difference discretization is based on the
SBP-SAT [6, 9, 12, 25] approach, which uses Summation-By-Parts (SBP) operators to represent
the discrete derivatives and Simultaneous Approximation Terms (SATs) to enforce the boundary
conditions and couple the flow equations at block interfaces. The flow solver originated as an
inviscid flow solver due to Hicken and Zingg [19] and was extended to the RANS-SA equations
by Osusky and Zingg [29]. The flow solver can be used for both subsonic and transonic operat-
ing conditions. For transonic cases, a first-order dissipation operator is included with a pressure
sensor [21] for shock capturing. To parallelize the flow solver, the domain is decomposed into
blocks. Parallel preconditioning of the Krylov solver is performed using the Schur complement
method [32] with block incomplete lower-upper (ILU) preconditioning applied to the domain
blocks. The specific type of ILU factorization used in the current study is known as ILU(p) [32],
where p is the fill level. The ILU(p) factorization is constructed based on an approximate Ja-
cobian matrix using nearest neighbour nodes only. Since the Schur complement preconditioner
can vary slightly throughout the Krylov solution process, a flexible variant of the Krylov solver
GMRES is used, which is termed Flexible Generalized Minimal Residual, or FGMRES [32].

3. Jacobian-Free Newton-Krylov Method

Consider a nonlinear algebraic system of equations, represented by

F (q) = 0, (1)

F : RN → R
N , q ∈ RN .

The update due to Newton’s method, when applied to this system of equations, is calculated by
solving the linear system of equations

∇F (n) (q) ∆q(n) = −F
(

q(n)
)

, (2)

∆q(n) ≡ q(n+1) − q(n),

where ∇F (n) : RN → RN is the Jacobian of F (q), defined as

∇Fi, j (q) ≡
∂Fi (q)

∂q j
, (3)

which can be represented by a square matrix. Since the linear system (2) is being solved to some
relative tolerance τ(n)

l ∈ R, the actual Newton step is taken inexactly, and the update ∆q does not
satisfy equation (2) but does satisfy the inequality

∥

∥

∥

∥

F
(

q(n)
)

+ ∇F (n) (q) ∆q(n)
∥

∥

∥

∥

≤ τ
(n)
l

∥

∥

∥

∥

F
(

q(n)
)

∥

∥

∥

∥

. (4)

Newton’s method is not expected to converge unless a suitable initial guess of the solution is
obtained, typically from a globalization algorithm. It can be advantageous to augment Newton’s
method with a line search algorithm in order to improve the success rate in case of insufficient
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globalization. From some experimentation we have found that including a line search capability
in the Newton phase can slightly improve the success rate of the algorithm but is not a require-
ment in that we did not observe any cases where it was only possible to obtain a converged
solution when the line search was active. Since augmenting Newton’s method with line search
can provide a similar benefit to any of the continuation algorithms investigated, it is not expected
to have a dramatic impact on the outcome of the performance comparisons presented in Sec-
tion 10 and so we choose to omit it for simplicity.

It is not always necessary to form and store the Jacobian matrix in a Newton-Krylov algo-
rithm [24] since this matrix is not needed explicitly by a Krylov iterative method for solving
linear systems, such as GMRES. What is needed by a Krylov solver are the Jacobian-vector
products, which can be approximated by the following finite-difference approximation:

∇qF (u) v ≈
F (u + ϵv) − F (u)

ϵ
, (5)

where the following expression for ϵ ∈ R is used in order to balance truncation error and rounding
error [19, 28]:

ϵ =

√

Nδ

vT v
, (6)

with δ ∈ R typically taken around 10−12, which is about 103 times machine precision when using
double-precision arithmetic.

An alternative way to approximate the Jacobian-vector products is to use the approximate
Jacobian matrix used in forming the ILU(p) factorization in place of the exact Jacobian. This re-
sults in a less accurate approximation than the finite-difference formulation but comes at reduced
cost. We have generally found it to be more cost-effective to use the approximate matrix-vector
products based on the preconditioner matrix in the continuation phase for both PTC and the ho-
motopy methods but not in the inexact Newton phase due to very slow convergence rate of the
inexact Newton iterations. However, when using the homotopy algorithms, the additional accu-
racy due to the finite-difference approximation can sometimes be important in the continuation
phase.

4. Pseudo-Transient Continuation

The update formula is given by the implicit Euler method with local time linearization [26]:

(

T (n) + ∇R(n)
)

∆q(n) = −R
(

q(n)
)

, (7)

where T (n) = 1
∆t
I, and I is the identity matrix. Since time-accuracy is not required in the

context of globalization, ∆t can take large values and vary spatially. This can be done for the
sake of efficiency.

Many update formulae for ∆t have been used over the years [4, 23] and some authors have
taken more sophisticated approaches based on PTC to achieve improve convergence; see Ceze
and Fidkowski [7], for example, who formulated the PTC update with physicality constraints as
an optimization problem with the objective of designing a robust algorithm.

Despite the extensive literature on PTC algorithms, due to practical considerations the present
study is limited to the update formula employed by Hicken and Zingg [19], which, based on
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experimentation, has been found to be efficient in comparison with other algorithms such as the
popular SER [27] algorithm. The time step ∆t is evolved according to:

∆t
(n)
i =

∆t
(n)
ref
Ji

1 +J
1
D

i

, ∆t
(n)
ref
= a (b)m⌊ n

m ⌋ , (8)

where J is the geometric Jacobian resulting from the coordinate transformation on the mesh, i

is the grid point index, D is the number of spatial dimensions, and ⌊·⌋ is the floor operator1. The
floor operator is present in the formula in the case where we choose to update the preconditioner
every m iterations instead of every iteration. Hicken and Zingg [19] suggest a = 0.1, b = 1.7 for
inviscid flows. In the studies in this paper, we have chosen more conservative parameter values
of a = 0.01, b = 1.4 to increase the success rate over the wide range of operating conditions
considered. For turbulent flows, Osusky and Zingg [29] have suggested a = 0.001, b = 1.3.
Again, we have opted to use more conservative values for the performance studies to improve
the robustness. For example, for one of the turbulent ONERA M6 cases we use a = 0.001,
b = 1.1.

PTC is terminated and the inexact Newton phase initiated when the relative residual

R
(n)
rel
≡

∥

∥

∥

∥

R
(

q(n)
)

∥

∥

∥

∥

∥

∥

∥R
(

q(0)
)

∥

∥

∥

(9)

is reduced below some user-specified tolerance τrel. Typical values of τrel are τrel ≈ 10−1 to 10−2

for the Euler equations and τrel ≈ 10−3 to 10−4 for the RANS-SA equations.
When the PTC method is used for globalization, the inexact Newton update is also modified

to take the form of the implicit Euler update (8). The time step matrix is carried over from the
last iteration of the PTC phase but the reference time step ∆tref is replaced with the successive
evolution relaxation used by Hicken and Zingg [19], which was adapted from Mulder and van
Leer [27]. The update is given as

∆t
(n)
ref
= max

[

α
(

R
(n)
d

)−β
,∆t

(n−1)
ref

]

, (10)

α = abm⌊
nNewt

m ⌋
(

R
(nNewt)
d

)β
, R

(n)
d
≡

∥

∥

∥R(n)
∥

∥

∥

∥

∥

∥R(0)
∥

∥

∥

,

where nNewt is the first inexact Newton iteration. This update formula tends to increase ∆tref

rapidly in the inexact Newton phase so that the contribution of T quickly becomes small, so
this modification can be seen as a short transition region between the pseudo-transient phase and
inexact Newton phase.

A pseudo-code of the PTC algorithm is provided as Algorithm 1.

5. Convex Homotopy Continuation

Consider a nonlinear system of equations R (q) = 0, R : RN → RN as well as the so-called
convex homotopy [1] which is defined as the (presumably) continuous solution q (λ) to

H (q, λ) = (1 − λ)R (q) + λG (q) = 0, (11)

1⌊x⌋ = y, where y is the largest integer less than or equal to x.
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Algorithm 1: Pseudo-transient continuation (PTC) algorithm

Choose a starting guess for q (e.g. free-stream)
while ∥R∥ > τrel and ∥R∥ > τabs do

Get R and ∥R∥

Set the reference time step ∆tref ← a · b⌊n/m⌋

Set the time step diagonal matrix T [:]←
(

1 +J1/D [:]
)

/ (∆trefJ [:])

Form and factor the preconditioner based on the matrix T + ∇R
Solve [T + ∇R]∆q = −R inexactly for ∆q and update q← q + ∆q

end

H : RN × R→ R
N , G : RN → R

N , R : RN → R
N , λ ∈ R.

Since the homotopy can be constructed by any means of our choosing, it is sensible to use the
convex formulation, as it is linear with respect to λ, and λ is conveniently bounded in the interval
[0, 1]. Interpreting the homotopy as a curve existing in RN , a continuation method, called convex
homotopy continuation (CHC) can be developed from this homotopy by discretizing in λ to form
a sequence of nonlinear equations:

H (q, λk) = (1 − λk)R (q) + λkG (q) = 0, (12)

k ∈ [0,m] , λk ∈ R, λ0 = 1, λm = 0, λk+1 < λk,

H : RN × R→ R
N , G : RN → R

N , R : RN → R
N .

SolvingH (q, λ) = 0 for sequentially increasing k is referred to as traversing.
In this paper it is assumed that the curve is monotonically decreasing. This is consistent with

our experience with the specific homotopies which we have generated, such as the homotopy
generated using the dissipation operator as described in Section 6. However, to our knowledge,
in the absence of an analytical expression for the homotopy curve, it is not possible to know
prior to numerical investigation whether or not a homotopy contains bifurcation points. One
common type of bifurcation is a Hopf bifurcation in which the curve begins progressing in the
opposite direction with respect to λ. For example, λ, which is normally decreasing, may at
some point begin to increase as the curve is traced. Such points pose several challenges, one of
which is that they are irregular points. That is, the Jacobian ∇qH (q, λ) is singular at such points.
Tracing curves with bifurcation points has many applications and has been studied extensively
in the homotopy literature - see Allgower and Georg [1] and the references therein or Wales et
al. [34] to give a more recent example. However, tracing curves featuring bifurcations is more
challenging for problems on the scale that we are studying and our codes do not currently possess
this capability.

6. The Dissipation Operator as Homotopy System

For all studies in this paper, the homotopy system G (q) is taken as the dissipation operator
with far-field boundary conditions. As mentioned in the introduction, Hicken et al. [18] used a
second-difference dissipation operator as the homotopy system. This operator was augmented
with pseudo boundary conditions by Brown and Zingg [3], which is the form employed in this
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paper.
For simplicity, we give only the version of the operator that would correspond to a scalar

one-dimensional problem. Extension to higher dimensional systems is straightforward; see, for
example, Pulliam [30] for the dissipation operator in two spatial dimensions. Explicitly, the
one-dimensional scalar version of the operator is:

D(2) = DTCD, (13)

D : RN → R
N−1, C : RN−1 → R

N−1,

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1
−1 1

. . .
. . .

−1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d1 1
2

d2 1
2

. . .

dN− 1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

di+ 1
2
=

1

2
(di + di+1) , di =

1

∆xi

(|ui| + ai) ,

where ∆xi ∈ R is the local grid spacing, ui ∈ R is the local fluid velocity, and ai ∈ R is the local
sound speed.

That D defines a mapping from RN to RN−1 is sufficient to identify that the range of D(2)

is spanned by at most N − 1 linearly independent vectors. ThereforeD(2) is singular and in the
context of convex homotopy it is a necessary condition for regularity that ∇G (q) be non-singular.
This can be achieved by augmentingD(2) with pseudo boundary conditions.

Pseudo boundary conditions forD(2) are formulated using the SAT approach to be consistent
with the application of the boundary conditions for the discrete flow equations. The scalar one-
dimensional version of the operator is analyzed for clarity of presentation. By analogy to the
diffusion equation, the operator, including boundary conditions, is assumed to be of the following
form:

G (q) = D(2)q + Σ (q) , (14)

Σ (q) = diag (σL (q1 − qL) , 0, . . . , 0,σR (qN − qR)) ,

Σ : RN → R
N , σL,σR, qL, qR ∈ R.

At a domain boundary, qL and qR are pseudo boundary conditions. At block interfaces, they are
the flow values at the same point in physical space but corresponding to the adjacent block.

Following some analysis of the Jacobian of the operator, and by comparison with the well-
known diffusion operator, it is inferred that the conditions σL = d1 and σR = dN are appropriate
conditions for the scalar one-dimensional version of the operator, since these conditions en-
sure invertibility of ∇G (q) and give a consistent representation of the operator on different grid
topologies. The extension to three-dimensional vector-valued systems is accomplished by sim-
ilarly constructing the SATs in each spatial coordinate direction and for each equation. In this
paper, the pseudo boundary conditions qL and qR are taken as far-field conditions at all domain
boundaries so that the vector containing all far-field values is a solution to G (q) = 0.
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7. Predictor-Corrector Algorithm

The objective of the predictor phase is to obtain a suitable starting guess for the k + 1st
sub-problem using the estimated solution at the k-th sub-problem, a trajectory, and a distance
(step-length) to travel along that trajectory. An Euler predictor update at the kth step is given by

u
(0)
k+1
= u

(pk)

k
+ hkdk, (15)

hk ∈ R+, uk ∈ R
N+1, dk ∈ R

N+1,

where uk ∈ RN+1, uk =
[

qk; λk
]

, hk ∈ R is the step-length, dk ∈ RN+1 is the step direction, and
pk ∈ Z is the number of iterations required to converge the k-th sub-problem.

In this study, the step direction dk is taken as an inexact estimate of the tangent vector. As in
Brown and Zingg [3], an expression for the tangent is given by

t =
τ

∥τ∥
, τ =

(

z
−1

)

, z =
[

∇qH (q, λ)
]−1 ∂

∂λ
H (q, λ) , (16)

t ∈ RN+1, z ∈ RN , τ ∈ RN+1,

where ∂
∂λ
H (q, λ) = G (q) − R (q) for convex homotopy.

The objective of the corrector phase is to solve the nonlinear sub-problem at λk. The sub-
problemH (qk, λk) = 0 is solved inexactly using the inexact Newton method. Newton iterations

are performed until the relative residual
∥

∥

∥

∥

H
(

q
(n)
k
, λk

)

∥

∥

∥

∥

/
∥

∥

∥

∥

H
(

q
(0)
k
, λk

)

∥

∥

∥

∥

is reduced below some

user-specified tolerance µk ∈ R. Typically, µk ∈ [0.1, 0.5].
In this paper, step-length adaptation is performed by determining a factor f ∈ R at the end of

each corrector phase by which the previous step-length hk−1 is divided. Once f is determined, the
condition fmin ≤ f ≤ fmax is enforced. In addition, the update to ∆λ is forced to satisfy |∆λ|min ≤

|∆λ| ≤ |∆λ|max. The step-length is adapted using the method of asymptotic expansions [1, 13]
using two criteria: the distance δ ∈ R between the predictor point and the corrector point and the
angle φ ∈ R between consecutive tangent vectors. Explicit expressions for these quantities are
given by

δ =
∥

∥

∥

∥

q
(pk)

k
− q

(0)
k

∥

∥

∥

∥

, (17)

φ = arccos
(

t
(pk)
k
· t

(pk−1)
k−1

)

, (18)

and the factor f is calculated as

f = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

δ

δ̃
,
φ

φ̃

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (19)

A pseudo-code of the predictor-corrector algorithm is provided as Algorithm 2.

8. Monolithic Homotopy Continuation Algorithm

8.1. Dynamic Inversion Principle

The motivation for the monolithic homotopy (MH) continuation algorithm comes from the
dynamic inversion principle. Dynamic inversion [14, 15, 16] is a process that was developed for
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Algorithm 2: Predictor-corrector (PC) algorithm.

Set λ = 1 and solve G (q) = 0 if necessary
Predictor iterations: while λ > 0 do

Corrector iterations: while ∥H∥ is above some (relative) tolerance do

GetH , ∥H∥, and ∂
∂λ
H

Form and factor the preconditioner based on the matrix ∇H
Solve the linear system ∇H∆q = −H and take a Newton step

end

Calculate the predictor direction
Calculate the step-length
Take a predictor step, updating λ and q

end

tracking implicitly-defined trajectories to which the inverse mapping is not analytically available
and is parameter-dependent. This method was developed for applications in the field of robotics,
where the parameter is time.

Consider a regular Lipshitz-continuous parameter-dependent system of equations

F (q (λ) , λ) = 0 (20)

F : RN ×R→ RN , (q (λ) , λ) -→ F (q (λ) , λ) given some parameter λ ∈ R and assume that qs (λ)

is the curve which satisfies equation (20). If ∇qF (qs (λ) , λ) is positive-definite then the ODE

q̇ (λ) + F (q (λ) , λ) = 0 (21)

converges asymptotically to the curve qs (λ) if q (λ) is sufficiently close to qs (λ). The principle
behind the dynamic inverse is that if the solution to the ODE (21) does not converge to qs (λ) then
it may be possible to introduce a so-called dynamic inverse F ∗ : RN × R → RN , (q (λ) , λ) -→
F ∗ (q (λ) , λ) such that the solution to the ODE

q̇ (λ) + F ∗F (q (λ) , λ) = 0 (22)

is locally asymptotically convergent to qs (λ). In the case where the ODE (21) is convergent, it
may be possible to construct a dynamic inverse F ∗ (q (λ) , λ) such that the modified ODE (22)
still converges but with a higher convergence rate. Formal definitions of the forward and reverse-
mode dynamic inverses, in the context of convex homotopy, are given by

Definition 1. Let qs (λ) be a regular homotopy defined implicitly by H (q, λ) = 0, H : RN ×

R → RN. Let H ∗ : RN × R → RN be continuous in λ and Lipschitz continuous on the ball
Br =

{

∆q ∈ RN | ∥∆q∥ ≤ r
}

, r > 0. Then H ∗ is called a forward dynamic inverse of H on Br if

there exists fixed β ∈ R, 0 < β < ∞, such that

∆qTH ∗ (H (qs (λ) + ∆q, λ) , λ) ≥ β ∥∆q∥2 (23)

for all ∆q ∈ Br. Similarly, H ∗ is called a reverse mode dynamic inverse of H on Br if there

exists fixed β ∈ R, 0 < β < ∞, such that

∆qTH ∗ (H (qs (λ) + ∆q, λ) , λ) ≤ −β ∥∆q∥2 (24)

for all ∆q ∈ Br.
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Remark 1. IfH ∗ is a (forward or reverse mode) dynamic inverse ofH with constant β, then for

any γ ∈ R, γ > 0, γH ∗ is a (forward or reverse mode) dynamic inverse ofH with constant γβ.

Remark 2. If H ∗ is a forward dynamic inverse of H , then −H ∗ is a reverse mode dynamic

inverse ofH .

The dynamic inverse H ∗ of Definition 1 is a local state- and parameter-dependent approxi-
mation to the inverse of the nonlinear system of equationsH (q, λ). Theorem 1 to follow presents
the predictor portion E, which is a local state- and parameter-dependent approximation to q̇s (λ),
the rate of change of actual curve values qs with respect to the parameter λ.

Theorem 1. Let qs (λ) be a regular homotopy defined implicitly by H (q, λ) = 0. Assume that

H ∗ : RN × R → RN; (w, λ) -→ H ∗ (w, λ) is a reverse mode dynamic inverse of H (q, λ) on

Br =
{

∆q ∈ RN | ∥∆q∥ ≤ r
}

, r > 0, 0 < β < ∞. Let E : RN × R → RN; (q, λ) -→ E (q, λ) be

locally Lipschitz in q and piecewise continuous in λ. Assume that for some fixed ω ∈ (0,∞),
E (q, λ) satisfies

−
1

2
ω ∥∆q∥2 ≤ ∆qT [

E (qs + ∆q, λ) + q̇s (λ)
]

≤
1

2
ω ∥∆q∥2 (25)

for all ∆q ∈ Br. Let q′s (λ) denote the solution to the system

−q̇ = γH ∗ (H (q, λ) , λ) + E (q, λ) , (26)

where γ ∈ R, γ > 0 (see Remark 1). Consider now some λk ∈ R such that

qs (λk) − q′s (λk) ∈ Br. (27)

Then
∥

∥

∥q′s (λ) − qs (λ)
∥

∥

∥ ≤
∥

∥

∥q′s (λk) − qs (λk)
∥

∥

∥ e−(γβ−ω)|λk−λ| (28)

for all λ < λk.

Proof.

The proof is similar to that of Getz [14], pp. 25-26. Let z (λ) = q′s (λ) − qs (λ), z ∈ RN . Let
V (z (λ)) = 1

2 ∥z (λ)∥2, V : RN → R. Then we have:

ż = q̇′s − q̇s

= −γH ∗
(

H
(

q′s, λ
)

λ
)

− E
(

q′s, λ
)

− q̇s

= −γH ∗ (H (qs + z, λ)) − E (qs + z, λ) − q̇s. (29)

Differentiating V (z (λ)) with respect to −λ gives:

d

d (−λ)
V (z (λ)) = −zT ż

= zT [

γH ∗ (H (qs + z, λ)) + E (qs + z, λ) + q̇s
]

≤ −γβ ∥z∥2 + ω ∥z∥2 . (30)

So, for z ∈ Br,
d

d (−λ)
V (z (λ)) ≤ −2 (γβ − ω) V (z (λ)) . (31)
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For an initial condition −λ = −λk, then by the Comparison Theorem (see, for example, Hart-
man [17]), we obtain:

V (z (λ)) ≤ V (z (λk)) e−2(γβ−ω)(λk−λ), λ < λk. (32)

Taking the square root of both sides of equation (32) returns equation (28) as required.

The ODE (26) converges to the homotopy curve asymptotically as long as γβ > ω and with
an upper bound on the convergence rate as given by equation (28). To achieve a high convergence
rate, it is desired that γβ − ω should be as large as possible. An explicit value for the parameter
β is generally unavailable but depends on the definiteness of H ∗H (q, λ). The parameter ω is
a measure of the quality of the predictor term E and is 0 if E is exact, which is possible in the
continuous case if E is set analytically to −q̇s, as can be verified by inspection of equation (25).
The final parameter γ is an additional degree of freedom introduced in the definition of the dy-
namic inverse and can be chosen by the user. The relationship between γ and |∆λ| is covered in
Section 8.5.

8.2. Construction of E

The quantity q̇s (λ) is the tangent vector with λ-parametrization and can easily be derived by
directly differentiatingH (qs (λ) , λ) = 0 and rearranging:

q̇s (λ) = −
[

∇qH (qs (λ) , λ)
]−1 ∂

∂λ
H (qs (λ) , λ) . (33)

A suitable choice for the operator E can be obtained by setting E to −q̇s, as per equation (25):

E (q, λ) =
[

∇qH
(

q′s (λ) , λ
)

]−1 ∂

∂λ
H

(

q′s (λ) , λ
)

. (34)

For the special case of convex homotopy, the specific form of this equation is

E (q, λ) =
[

∇qH
(

q′s (λ) , λ
)

]−1 [

G
(

q′s
)

− R
(

q′s
)]

. (35)

8.3. Construction ofH ∗

As mentioned previously, a stable ODE can be constructed for the homotopies studied in this
paper by taking the reverse mode dynamic inverse H ∗ as the identity operator. However, the
ODE that would result from equation (26) would resemble an explicit time-marching method
and a high convergence rate would not be expected.

A more efficient alternative might be to use the inverse Jacobian evaluated near the curve,
which is a forward dynamic inverse [15]. The most practical location to evaluate the inverse
Jacobian, of course, is at the current point generated by the algorithm. It is shown in Section 8.5
that this results in a Newton-like update. While using an inverse Jacobian as the dynamic inverse
requires for a linear system of equations to be solved, this contributes no additional cost when
constructing E according to equation (34) because this term also contains an inverse Jacobian
and the two linear solves can be combined into one in the MH update expression.

We now show, following the approach of Getz and Marsden [15], that the inverse Jacobian
evaluated near the curve is a dynamic inverse of H . Assume that the continuation algorithm
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has arrived at some point qs + ∆q, ∆q ∈ Br ⊂ RN , r > 0. The residual H (qs + ∆q, λ) can be
represented locally by taking the Taylor expansion at qs:

H (qs + ∆q, λ) = H (qs, λ) + ∇qH (qs, λ)∆q + O
(

∥∆q∥2
)

. (36)

Similarly expanding ∇qH (q, λ) at qs gives

∇qH (qs, λ) = ∇qH (qs + ∆q, λ) + O (∥∆q∥) . (37)

Using equation (37) andH (qs, λ) = 0, equation (36) becomes

H (qs + ∆q, λ) = ∇qH (qs + ∆q, λ)∆q + O
(

∥∆q∥2
)

. (38)

LetH ∗ =
[

∇qH (qs + ∆q, λ)
]−1

be a candidate for a forward dynamic inverse ofH (qs + ∆q, λ).

If it is a forward dynamic inverse, it must satisfy Definition 1. This is verified by applying∆qTH ∗

to both sides of equation (38):

∆qTH ∗∇qH (qs + ∆q, λ) = ∆qTH ∗∇qH (qs + ∆q, λ)∆q + ∆qTH ∗O
(∥

∥

∥∆q2
∥

∥

∥

)

= ∥∆q∥2 + O
(

∥∆q∥3
)

. (39)

The contribution of theO
(

∥∆q∥3
)

terms can be positive or negative. In either case, for sufficiently
small r > 0, there exists fixed 0 < β < 1 such that these combined terms are upper-bounded by
(1 − β) ∥∆q∥2. Thus, for sufficiently small r > 0, there exists fixed 0 < β < 1 such that

∆qTH ∗H (qs + ∆q, λ) ≥ ∥∆q∥2 − (1 − β) ∥∆q∥2 = β ∥∆q∥2 (40)

for all ∆q ∈ Br. Hence, the inverse Jacobian evaluated at qs + ∆q is a forward dynamic inverse.
Since a reverse-mode dynamic inverse is what is needed in the context of homotopy, then, by
Remark 2, a suitable expression forH ∗ is

H ∗ = −
[

∇qH (q, λ)
]−1
. (41)

8.4. Numerical Implementation

Substituting equations (41) and (35) into (26) gives the following ODE:

−q̇ (λ) =
[

∇qH (q, λ)
]−1 [

−γH (q, λ) + G (q) − R (q)
]

, (42)

which can then be integrated numerically to obtain an update formula for the state. For example,
using an Euler integration scheme, we obtain:

qk+1 = qk + (λk+1 − λk)
[

∇qH (qk, λk)
]−1 [

γkH (qk, λk) − G (qk) + R (qk)
]

, (43)

where selection of ∆λk and γ are discussed in Section 8.5. Though not of direct import to the
analysis in this paper, it may be worth noting that equation (42) can equivalently be written as

d

dλ
H (q, λ) = γH (q, λ) . (44)
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Algorithm 3: Monolithic homotopy (MH) continuation algorithm

Set λ = 1 and solve G (q) = 0 if necessary
while λ > 0 do

Get γ,H , ∥H∥, and −γH + G − R
Form and factor the preconditioner approximating the matrix ∇H
Solve the linear system ∇qH∆q =

[

−γH + G − R
]

for ∆q

Determine ∆λ from step-length adaptation (Algorithm 4)
Update λ and q

end

Ideally, the monolithic homotopy algorithm is initiated at λ0 = 1 with an exact solution for
G (q) = 0, thus ensuring that condition (27) is met for λ = 1. Taking small enough |∆λ| should

ensure that −
[

∇qH (q, λ)
]−1

evaluated at the current value of q remains a dynamic inverse of
H (q, λ) and so there should always exist small enough |∆λ| such that the MH algorithm is stable.

Once traversing is complete and λ is reduced to 0, the inexact Newton phase is initiated to
solve the system R (q) = 0. A pseudo-code for the MH algorithm is provided as Algorithm 3.

8.5. Predictor-Corrector Analogue and Selection of γk and ∆λk

For notational convenience, introduce tq ∈ RN , tλ ∈ R, such the t =
[

tq; tλ
]

. Since an Euler
update for the PC method is given by

(

q

λ

)(0)

k+1

=

(

q

λ

)(pk)

k

+ hk

(

tq
tλ

)

k

, (45)

where hk ∈ R is the step-length, then hk and ∆λk are correlated by

∆λk = −hk/ ∥τk∥ . (46)

Equation (46) can be used with equation (16) to develop an equation for ∆λkzk:

∆λkzk = ∆λk ∥τk∥ tq = −hktq, (47)

which can then be used to rewrite equation (43) as a combination of more familiar quantities:

∆qk = γk∆λk
[

∇H (qk, λk)
]−1
H (qk, λk) − ∆λkzk

= γk∆λk
[

∇H (qk, λk)
]−1
H (qk, λk) + hktq. (48)

Numerically, the monolithic homotopy update formula is applied in the form of equation (43).
However, writing this equation in the form of equation (48) reveals that each update iteration
with γk = 1/ |∆λk | is analogous to a combination of a Newton iteration and a predictor step,
both evaluated at the same state. When |∆λk | is small, the corrector portion of the update will be
emphasized and the algorithm will be more robust, but more steps will be required for traversing.

Since it may be desirable to adjust ∆λk after the linear solve, the following formula can be
used for γk:

γk =
1

|∆λk |
∗ , (49)

where |∆λk |
∗ is an approximation to |∆λk |. A suitable choice might be |∆λk |

∗ = |∆λk−1|, k ≥ 1.
This is the approach adopted in this paper.
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8.6. Step-length Adaptation

Though the MH method allows for more control over traversing, less information is available
to do so, especially since it is not possible to distinguish between the predictor and corrector
portion of the update. The distance to the curve is not available, and any change in orientation
of the corrector portion of the update is not particularly meaningful, so that the angle between
consecutive updates is not a useful metric.

The only useful information comes from the update itself. If the norm of the state update
∥∆qk∥ is large, then |∆λk | should be reduced in order to attempt to maintain a consistent ∆s. The
proposed update formula is based on keeping ∥∆qk∥ constant, calibrated from the first iteration.
Thus, the user chooses an initial value of |∆λ| to calibrate the step-length adaptation rather than
choosing a target value of ∥∆q∥.

Denote the target value of ∥∆q∥ by ∥∆q∥tar. This quantity can be set according to

∥∆q∥tar = ∥q̇0∥ |∆λ0| , (50)

which can be used to calculate the numerical integration step

∆λk = −
∥∆q∥tar

∥q̇∥
. (51)

The step size |∆λ| is also restricted by upper and lower bounds:

min {|∆λ|min , fmin |∆λk−1|} ≤ |∆λk | ≤ max {|∆λ|max , fmax |∆λk−1|} , (52)

where |∆λ|min , fmin, |∆λ|max , fmax ∈ R can be user-defined. For the current study, fmin = 1/3 and
fmax = 2; |∆λ|min and |∆λ|max are adjusted according to the initial step size |∆λ0| but are generally
not chosen to be overly restrictive. In addition, a maximum step size can be imposed at the final
step to attempt to improve the quality of the initial guess for the inexact Newton phase at λ = 0.
A detailed pseudo-code of the step-length adaptation is provided in Algorithm 4, including many
different checks that are applied to ∆λ.

Surrogate curves generated from the values of the lift coefficient CL calculated along the
homotopy curve can be used as a semi-quantitative assessment of how accurately the curve is
being traced. The ‘exact’ values of CL along the curve are estimated using the predictor-corrector
method with a small step size and tight convergence tolerance in the corrector phase.

The CL values calculated along the MH trajectory using several values of |∆λ0| are compared
to the surrogate curves generated by the PC algorithm in Figure 1. The case is inviscid flow
over the ONERA M6 wing at Mach 0.5 and angle of attack 6◦ on a 1.9207 × 106 node mesh.
We can see from the figure the effects of |∆λ0| on the ability of the MH algorithm to trace the
curve accurately. The expected trend is observed that larger |∆λ0| results in fewer iterations in
total but reduces the curve-tracing accuracy. We also see that the number of iterations taken
for traversing is not linearly proportional to |∆λ0|. This effect is due to the active step-length
adaptation. The algorithm takes 17 iterations at |∆λ0| = 0.1, 11 iterations at |∆λ0| = 0.15, 10
iterations at |∆λ0| = 0.2, and 9 iterations at |∆λ0| = 0.25. While all flow solves converged, the
apparent loss of accuracy at |∆λ0| = 0.25 is an indication that robustness may be lost for other
cases with this parameter setting. Since there appears to be no major CPU time reduction under
this setting, we might recommend, based on this figure, that |∆λ0| values in the range of 0.15 to
0.2 are suitable for this case.
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Algorithm 4: Detailed step-length adaptation pseudo-code for the MH algorithm

Data: |∆λ|min, fmin, |∆λ|max, fmax, ∆λprev, |∆λ|max,final, k

Result: ∆λ
if k = 0 then

Initialize ∆λ from the input value
∥∆q∥tar ← ∥q̇∥ |∆λ|

else

∆λ← −∥q̇∥ / ∥∆q∥tar

f ← |∆λ| /
∣

∣

∣∆λprev

∣

∣

∣

f ← max {min { f , fmax} , fmin}

∆λ← f∆λprev

end
/* Check |∆λ| against |∆λ|min and |∆λ|max */
if |∆λ| < |∆λ|min and λ > 0 then
∆λ← ∆λmin

else if |∆λ| > |∆λ|max then

∆λ← ∆λmax

end

/* Additional checks near λ = 0 */
λ∗ ← λ + ∆λ
λmin ← 0.25λ
if λ∗ < 0 then

/* Adjust ∆λ so that the Euler update will give exactly λ = 0 */
∆λ← −λ

if λ∗ > |∆λ|max,final then
/* Adjust ∆λ if it is the final step and exceeds |∆λ|max,final */

λmin ← min
{

λmin, |∆λ|max,final

}

∆λ← λmin − λ

end

else if λ∗ < λmin then

/* This logic exists to even out the final steps */
∆λ← λmin − λ

end

9. Convergence Investigation

Convergence of the algorithm is proved on condition that equation (35) is satisfied with strict
equality. However, when using the Jacobian-free Newton-Krylov approach, the linear systems
are solved inexactly, so the equation is not strictly satisfied. The consequences of solving equa-
tion (35) inexactly are studied in this section.

9.1. Inviscid Flow Study

The expected relationship between |∆λ| and the homotopy residual ∥H (q, λ)∥ is that as |∆λ|
is reduced, the curve should be traced more accurately, so ∥H (q, λ)∥ should become smaller.
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Figure 1: Tracking error history for the MH method, including step-length adaptation, when
applied to the inviscid ONERA M6 wing at Mach number 0.5 and angle of attack 6◦

However, it was consistently observed that ∥H (q, λ)∥ can grow to larger values during traversing
for cases where smaller step sizes were taken.

This behaviour is investigated numerically for inviscid flow over the ONERA M6 wing at
Mach 0.5 and angle of attack of 3◦ by applying the MH algorithm several times with several
values of |∆λ| and with the step-length adaptation inactive. The mesh has an H-C topology with
about 1.88 million nodes divided evenly into 32 blocks. It is observed from Figure 2 that for
smaller |∆λ|, the tracking error is consistently lower, but the homotopy residual norm ∥H (q, λ)∥
is generally higher. This behaviour was found to be linked to the linear solver tolerance. Fig-
ure 2b shows the same study performed using a linear solver tolerance of τl = 0.001, in which
∥H∥ and the error in CL are both consistently lower for smaller |∆λ|.

The observed inverse relationship between ∥H (q, λ)∥ and |∆λ| is an effect of evaluating
discrete residuals on data which contains high-frequency error and is indicative of the onset of
instability in the MH iterations caused by inexactly forming E. However, no performance degra-
dation is apparent for these inviscid cases.

9.2. Turbulent Flow Study

The second stability study is investigated for the case of three-dimensional transonic flow
over the ONERA M6 wing at Reynolds number 1 × 107, Mach number 0.8, and angle of attack
3◦. The grid consists of 3.68× 107 nodes divided into 1024 blocks with a minimum off-wall dis-
tance of 8.00× 10−7 mean chord units. The step size |∆λ| was kept constant at a very small value
of 0.005 in order to attempt to isolate the effects of certain solver parameters in the continuation
phase. The parameters studied were the use of approximate matrix-vector products versus finite-
difference matrix-vector products, the tolerance used for the linear solver, and different scalings
for the linear system. The scalings employed are the geometric scaling, which is consistent with
Osusky and Zingg [29], and the row/column normalization scaling, which is performed by nor-
malizing the rows and then subsequently normalizing the columns. The parameter combinations
investigated are presented in Table 1.

The effects of the solver parameters on the tracking error are shown in Figure 3. As with the
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Figure 2: Trajectory of the MH algorithm at Mach number 0.5 and angle of attack 6◦ with
τl = 0.001

Case Linear solver tolerance Matrix-vector product Scaling

F2 10−2 finite-difference Geometric
F3 10−3 finite-difference Geometric
A2 10−2 approximate Geometric
A3 10−3 approximate Geometric

RC-F2 10−2 finite-difference Row/column normalization

Table 1: List of studies performed with the MH method with constant |∆λ| when solving the
RANS-SA equations on the ONERA M6 wing at Mach 0.8, angle of attack 3◦, and Reynolds
number 1 × 107
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Figure 3: Tracking error history for the MH algorithm with constant |∆λ| when applied to the
1024 block turbulent case at Mach 0.8, angle of attack 3◦, and Reynolds number 1 × 107

inviscid case, there is a clear correlation between the linear solver tolerance and ∥H∥. However,
an additional effect is observed here that the tracking error becomes very large in the (approx-
imate) region 0.6 < λ < 0.9 regardless of whether the finite-difference or approximate matrix-
vector products were used. This effect was greatly reduced when the linear solver tolerance was
reduced to τl = 0.001. This is an important observation, since such large deviation from the
curve can lead to non-convergence of the algorithm.

Some important performance differences were observed when forming the matrix-vector
products with the finite-difference or approximate matrix-vector products. Though a similar
error trend was observed throughout most of the traversing process between Cases F2 and A2,
and similarly between Cases F3 and A3, there is significant discrepancy near λ = 0 where CL

values are predicted much better using the finite-difference matrix-vector products. This can be
attributed to the growth in the approximation error resulting from the use of the approximate
Jacobian as the contribution from the flow residual becomes increasingly dominant. This ob-
servation is important because it affects the quality of the starting point for Newton’s method
and can significantly affect the success rate in the inexact Newton phase. By comparison, the
accuracy of the matrix-vector products is less important for PTC.

10. Performance Studies

Performance studies are conducted to evaluate the performance of the monolithic homotopy
continuation algorithm compared to the established homotopy predictor-corrector continuation
algorithm and the pseudo-transient continuation algorithm. Test suites are constructed over a
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wide range of subsonic and transonic conditions. Since it is not always known which cases
will be transonic and which will be subsonic, the second-difference dissipation with the pressure
sensor is active for all test cases. Parameters for each test suite are chosen to attempt to match
robustness for all algorithms (e.g. a similar number of cases should converge for each algorithm)
and then comparing the time to convergence for each algorithm, averaged over all cases that con-
verged for all three algorithms.

The range of test cases included in each test suite often includes several configurations which
are expected to be unsteady, and thus the steady state solution, if it exists, is expected to be dy-
namically unstable. While some researchers have demonstrated interest in obtaining dynamically
unstable steady solutions [34], these solutions are non-physical and rarely of engineering value.
There are many cases at high Mach number and angle of attack considered in the test suites pre-
sented in this section which we have been unable to converge with any of the three algorithms,
but, since these cases are presumed to be unstable, we do not consider this to be an issue that
needs to be resolved or addressed.

The parameters chosen for the pseudo-transient method are based on our experience and test-
ing and are consistent with those used by previous authors [2, 11, 19, 29]. The parameters chosen
for the homotopy methods are similarly based on our experience and testing. The algorithm pa-
rameters used for each test suite are listed in Table 2 for all three algorithms. For all algorithms
and for all test suites, the entire suite has been executed for several combinations of parameters
to ensure that no algorithm is significantly under-represented due to poor parameter selection,
though fine-tuning of parameters has been avoided. Fine-tuning has also been avoided by virtue
of the fact that a large number of test cases has been included in each test suite.

All timing statistics are reported in TauBench work units2. The TauBench code roughly sim-
ulates the CPU cost of running the DLR-developed flow solver Tau, which is a three-dimensional
hybrid multigrid solver for the RANS equations. A benchmark timing factor is generated by the
TauBench codes by specifying a grid size, number of processors, and number of iterative steps.
For this study, the TauBench benchmark that was used is a 2.50 × 105 node mesh run in serial
with 10 iterative steps, which takes about 9.571s on the SciNet general purpose cluster where the
performance studies were carried out.

10.1. Explanation of the Figures Accompanying Each Test Suite

Timing data is shown in the bar-graph figures accompanying each test suite, an example of
which is Figure 4. If data for a particular case is missing from the figure then this indicates that
that particular case failed to converge. The white portion of the bar-graph labeled INP refers to
the inexact Newton phase.

In addition to timing statistics, a sample convergence history is displayed for one case from
each test suite. The convergence history is characterized with four plots, an example of which is
Figure 5. Each marker on the plots represents a nonlinear iteration. The amount of time taken for
each nonlinear iteration depends mainly on the number of Krylov iterations as well as the cost of
the matrix-vector products. The dashed vertical lines indicate the switch to the inexact Newton
phase, and the solid vertical lines indicate that the flow solve has completed.

The top left plot shows the evolution of the % error in CL with time for each continuation
algorithm based on the final CL value. Relative error values below 10−6% are not displayed.

2DLR Germany, TauBench Version 1.1, IPACS. http://www.ipacs-benchmark.org . Accessed: 2014-09-20.
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The top right plot shows the evolution of the residual for PTC and the evolution of λ for CHC-
PC and CHC-MH. The residual for PTC is shown on the left vertical axis and λ for the CHC
algorithms is shown on the right vertical axis. The plot on the bottom left shows the residual
history, either R (q) for PTC or H (q, λ) for CHC. In the inexact Newton phase, both residuals
are R (q). However, these residuals cannot be directly compared for RANS cases because we
have scaled the residual differently for the homotopy and PTC algorithms. The final plot on
the bottom right shows a comparison of the residuals of the two homotopy algorithms during
traversing.

10.2. Inviscid Flow Cases

The inviscid test cases are three-dimensional flows over the ONERA M6 wing. The perfor-
mance studies are carried out on two meshes. The first mesh consists of 1.9207 × 106 nodes
and has an H-C topology. The nodes are divided evenly into 32 blocks for parallelization on 32
processors. The second mesh is generated from the first by doubling the number of grid points
in each direction and also splitting the blocks once in each direction, resulting in eight times
more grid nodes and blocks. The parameters used for the pseudo-transient flow solves on the
coarser mesh are similar to those obtained by Dias [11] through several parameter studies. For
the predictor-corrector method on the original coarser mesh, we have found that it is sufficient
to solve the subproblems to a relative tolerance of only 0.5 and that a large initial step size of
|∆λ0| = 0.2 could be used. The same initial step size is used for the monolithic method. A listing
of the algorithm parameters used for all three algorithms is provided in Table 2.

Timing data for the complete flow solve for all three algorithms averaged over all test cases
is shown in Figure 4 and Table 2 for the two test suites. On the coarser grid, the convex homo-
topy with the predictor-corrector method performs only slightly better than the pseudo-transient
method with a similar success rate and a 12% reduction in wall time. The monolithic homotopy
algorithm has in turn performed slightly better than the predictor-corrector algorithm. On aver-
age, on the coarser grid, convergence of the algorithm is achieved in about 23% less wall time
with the monolithic homotopy continuation algorithm than with pseudo-transient continuation.

To investigate and compare how the algorithms scale with mesh size, the parameters that have
been determined to be suitable for the coarser mesh are used for the same test suite on the finer
mesh. For the test suite on the finer mesh, the relative timing data of the homotopy algorithms
improved slightly compared to the pseudo-transient algorithm, with the PC algorithm converging
in 15% less time and the MH algorithm converging in 34% less time. However, the change in
robustness is more significant, with the pseudo transient method converging in only 21/40 cases,
down from 32/40 on the coarser mesh, while the PC algorithm converged in 26/40 and the MH
algorithm converged in 27/40. Of course these statistics could be improved by parameter tuning,
but that is not the purpose of the study.

The convergence histories for all three algorithms for a representative case from both test
suites are shown in Figure 5. While it seems likely from this figure that the PTC algorithm
would converge more efficiently if the switching tolerance for the inexact Newton phase were
selected less conservatively, determining the most efficient switching tolerance a priori is impos-
sible and so this over-solving is typical and expected for PTC.
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F
lo

w

Geometry ONERA M6 ONERA M6 NACA 0012 ONERA M6 ONERA M6
Equations 3D inviscid 3D inviscid 2D RANS-SA 3D RANS-SA 3D RANS-SA

Ma 0.2, 0.3, . . ., 0.9 0.2, 0.3, . . ., 0.9 0.2, 0.3, . . ., 0.9 0.4, 0.6, 0.75, 0.85 0.4, 0.6, 0.8, 0.9
α (degrees) 0, 3, 6, 9, 12 0, 3, 6, 9, 12 0, 4, 8, 12 0, 1.5, 3, 4.5 0, 1.5, 3, 4.5

Re - 4.00 × 107 1.172 × 107 1.00 × 107

G
ri

d

Topology H-C H-C H H-H H-C
Blocks 32 256 8 192 1024
Nodes 1.88 × 106 1.53664× 108 1.92 × 104 2.336064× 106 3.6799488× 107

Off-wall 2.00 × 10−3 1.09 × 10−3 7.32 × 10−7 1.17 × 10−6 8.00 × 10−7

Max. wall time (wu) 533 752 31 564 2821

P
T

C

a 0.01 0.01 0.0001 0.001 0.0001
b 1.4 1.4 1.35 1.1 1.1
m 3 3 1 1 1

ILU(p) fill 0 0 2 2 3
mat.-vec. approximate approximate approximate approximate finite-diff.
τl 0.05 0.05 0.01 0.01 0.01
τrel 0.05 0.05 0.0001 0.0001 10−5

Converged 32/40 21/40 31/32 16/16 13/16
Rel. Time 1.00 1.00 1.00 1.00 1.00

C
H

C
-P

C

|∆λ0| 0.20 0.20 0.04 0.03 0.03
ILU(p) fill 1 1 2 2 3
mat.-vec. approximate approximate approximate approximate finite-diff.
τl 0.01 0.01 0.01 0.01 0.01
τs 0.5 0.5 0.5 0.5 0.1

Converged 32/40 27/40 32/32 16/16 13/16
Rel. Time 0.88 0.85 0.73 1.14 3.33

C
H

C
-M

H

|∆λ0| 0.20 0.20 0.04 0.02 0.02
ILU(p) fill 1 1 2 2 3
mat.-vec. approximate approximate approximate finite-diff. finite-diff.
τl 0.01 0.01 0.01 0.01 0.03

Converged 33/40 27/40 32/32 16/16 14/16
Rel. Time 0.77 0.66 0.55 0.64 1.00

IN
P τl 0.01 0.01 0.01 0.01 0.01

ILU(p) fill 2 2 2 3 3

Table 2: Summary of test case suites and performance statistics for all performance comparisons;
τl - relative linear solver tolerance;
τrel - relative tolerance required for globalization of PTC;
τs - relative tolerance to which the subproblems are converged for CHC-PC;
INP - inexact Newton phase;
Rel. Time (relative time) is calculated as follows: the average wall time to complete a flow solve
is calculated for each algorithm, considering only the flow solves at the operating conditions that
converged for all three algorithms; this average wall time is then divided by the average wall
time taken by PTC
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Figure 4: Performance comparison of several continuation algorithms for inviscid flows over the
ONERA M6 wing
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Figure 5: Convergence histories for different continuation algorithms for inviscid flow over the
ONERA M6 wing at Mach 0.6 and angle of attack 3◦
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10.3. Turbulent Flow Cases

Three turbulent test suites are investigated. One is a two-dimensional flow over the NACA
0012 airfoil at Reynolds number 4 × 107. The grid has an H topology and consists of 1.92 × 104

nodes divided evenly into 8 blocks. Flow separation is expected in many cases in this suite as
they are at high Mach number and angle of attack. The other two suites are on the ONERA M6
wing. One is at Reynolds number 1.172 × 107. The grid has an H-H topology and consists of
2.336064 × 106 nodes divided evenly into 192 blocks. The other is at Reynolds number 1 × 107

on a finer grid consisting of 3.6799488× 108 nodes divided evenly into 1024 blocks. As with the
inviscid cases, the parameters used for all three test suites are listed in Table 2.

The performance data for the NACA 0012 test suite is shown in Figure 6 and Table 2. Con-
vergence histories for all three algorithms for a representative case are shown in Figure 7. Flow
solves were completed successfully across the entire range of input parameters investigated. On
average, the CHC-PC algorithm converged in 27% less wall time than the PTC method and the
CHC-MH algorithm converged in 45% less wall time than PTC, all with 100% success rate. It
was found that the approximate matrix-vector products could be used for the CHC-MH algorithm
without incurring a robustness penalty.

The performance data for the ONERA M6 test suite on the coarser grid is shown in Fig-
ure 8 and Table 2. Convergence histories for all three algorithms for a representative case are
shown in Figure 9. The success rate of all three algorithms was also high in this case. The
finite-differencing method was used to compute the matrix-vector products for the MH method.
While it has been found that using the approximate matrix-vector products for this suite resulted
in similar performance statistics, the homotopy residual increased throughout traversing to the
point where stability was a concern. From Figure 9, it appears that stability may still be a concern
for these cases, even when the finite-differencing method is used for the matrix-vector products.
While the need to use finite-difference matrix-vector products has implications on cost, the flow
solves still completed in 36% less wall time with the CHC-MH method than with PTC, whereas
the CHC-PC method took 14% longer than PTC.

The turbulent test suite on the ONERA M6 with the finer mesh was the least successful for
the homotopy methods. The timing data for this test suite is shown in Figure 10 and Table 2.
Convergence histories for all three algorithms for a representative test case are shown in Fig-
ure 11. The CHC-PC method was found to be unreliable for this test suite unless a traceback
method is employed, where the predictor phase is repeated if a subproblem fails to converge to
the specified tolerance. Since this method is needed for convergence in many cases, it would
appear that the step-length adaptation is not adequate to determine an appropriate step size for
this case. Using this method is expensive and inefficient but at least the success rate of PTC
could be matched. For the MH cases, the row/column normalization scaling was used instead
of the geometric scaling based on the earlier observations that this improves the stability of the
algorithm. Since, in our experience, using this scaling results in significantly more error reduc-
tion in each linear solve, but also increases the cost of each linear solve significantly, the linear
solver tolerance was relaxed to 0.03 for the MH algorithm. On average, the flow solves using the
CHC-MH algorithm took about the same amount of time to converge as the PTC flow solves and
were successful in one additional case.

10.4. Performance Summary

It was found for the first inviscid test suite that the CHC-MH algorithm converged in an
average of 23% less time than the PTC algorithm whereas the CHC-PC algorithm converged in
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Figure 6: Performance comparison of several continuation algorithms for turbulent flows at
Reynolds number 4 × 107 over the NACA 0012 airfoil
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Figure 7: Convergence histories for different continuation algorithms for turbulent flow over the
NACA 0012 airfoil at Mach 0.7 and angle of attack 4◦
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Figure 8: Performance comparison of several continuation algorithms for turbulent flows at
Reynolds number 1.172 × 107 over the ONERA M6 wing on the coarser grid

0 20 40 60 8010−6

10−4

10−2

100

102

Time (wu)

%
E
rr
or

in
C

L

 

 
PTC
CHC - PC
CHC - MH

     10−13

10−8

10−3

101

105

Time (wu)

∥R
(q
)∥

0 20 40 60 800

0.2

0.4

0.6

0.8

1

λ

0 20 40 60 8010−13

10−8

10−3

101

105

Time (wu)

∥R
(q
)∥

or
∥H

(q
,
λ
)∥

00.20.40.60.8110−5

10−4

10−3

10−2

λ

∥H
(q
,
λ
)∥

Figure 9: Convergence histories for different continuation algorithms for turbulent flow over the
ONERA M6 wing on the coarser grid at Mach 0.75 and angle of attack 1.5◦
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Figure 10: Performance comparison of several continuation algorithms for turbulent flows at
Reynolds number 1 × 107 over the ONERA M6 wing on the finer grid
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Figure 11: Convergence histories for different continuation algorithms for turbulent flow over
the ONERA M6 wing on the finer grid at Mach 0.8 and angle of attack 3◦
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only 12% less time. A similar success rate was observed for each algorithm. When the mesh
was refined, the CPU time reduction in the convergence of the CHC-MH algorithm increased to
34%. Moreover, only 6 additional cases failed, whereas 11 additional cases failed for PTC.

It was found for the two-dimensional RANS test case that a 45% CPU time reduction could
be obtained over PTC with the CHC-MH algorithm whereas only 27% CPU time reduction was
observed with the CHC-PC algorithm. For both three-dimensional cases, the CHC-PC algorithm
performed worse than the PTC algorithm. For the first three-dimensional RANS test case, the
CHC-MH algorithm converged in 34% less time than the PTC algorithm. One reason that the MH
algorithm out-performed the PC algorithm is that the step sizes are generally smaller with the MH
algorithm, giving the algorithm more flexibility in responding to regions of high curvature which
are more problematic for the RANS cases than the inviscid cases. The final three-dimensional
RANS test case proved the most problematic. We were able to demonstrate that the CHC-MH
algorithm can converge in the same amount of time as PTC but converged in one additional
case. However, the convergence problems associated with the use of the Krylov solver made
parameter selection difficult for this case. At any rate, we were unable to choose parameters
for the PC algorithm that made it even remotely competitive with PTC for this case and so the
performance benefit of the MH algorithm over the PC algorithm is clearly established for all test
suites.

11. Conclusions

A new monolithic homotopy continuation algorithm was developed and conditional local
convergence to the homotopy curve was proved. An effective step-length adaptation methodol-
ogy was also presented for the new algorithm. The new algorithm was demonstrated through
numerical testing to be more efficient than the classical predictor-corrector homotopy contin-
uation algorithm as well as an implementation of the pseudo-transient continuation algorithm
when applied to a computational aerodynamic flow solver for some three-dimensional inviscid
and turbulent external aerodynamic flows using a Newton-Krylov solution methodology.
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