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Practical aerodynamic design problems must balance the goal of performance optimization over a range of
on-design operating conditions with the need to meet design constraints at various off-design operating conditions.
Such design problems can be cast as multipoint optimization problems where the on-design and off-design operating
conditions are represented as design points with corresponding objective and constraint functions. Twomethods are
presented for obtaining optimal airfoil designs that satisfy all design objectives and constraints. The firstmethod uses
an unconstrained optimization algorithm where the optimal design is achieved by minimizing a weighted sum of the
objective functions at each of the operating conditions. To address the competingdesign objectives between on-design
and off-design operating conditions, an automated procedure is used to efficiently weight the off-design objective
functions so as to limit their influence on the overall optimization while satisfying the design constraints. The second
method uses the constrained optimization algorithm SNOPT, which allows the aerodynamic constraints imposed at
the off-design operating conditions to be treated explicitly. Both methods are applied to the design of an airfoil for a
hypothetical aircraft where the problem is formulated as an 18-point multipoint optimization. Results are presented
confirming that at least two locally optimal solutions exist for this design problem.

Nomenclature
C1 = differentiability class of a function whose first

derivative is continuous
C = off-design constraint function
Cd = coefficient of drag
Cl = coefficient of lift
Cl;max = maximum lift coefficient
C!
l;max = lower bound on maximum lift coefficient constraint
bC!
l;max = objective function-specific target maximum lift

coefficient
G = geometric constraint function
g = constraint used in the Kreisselmeier–Steinhauser

function
gmax = maximum Kreisselmeier–Steinhauser constraint value
g = vector of Kreisselmeier–Steinhauser constraint values
h = weight update formula exponent
j = index of flowfield nodes
J = objective function
M = Mach number
Mks = estimate of maximum Mach number in the flowfield

given by the Kreisselmeier–Steinhauser function
Mmax = maximum Mach number in the flowfield
M!

max = upper bound on maximum Mach number constraint
n = index of weight update cycles
NG = number of geometric constraints
p = index of on-design objective functions
q = index of off-design objective/constraint functions

r = index of geometric constraint functions
X = design variable vector
XA = design variables at optimal solution A
XB = design variables at optimal solution B
! = angle of attack
" = step size along vector !X
!X = vector denoting difference in design variables between

optimal solutions A and B
# = ‘1 penalty function penalty parameter
$ = Kreisselmeier–Steinhauser function draw-down

parameter
%1 = ‘1 penalty function
 = constraint function used in off-design weight update

formula
 ! = bound on constraint function used in off-design weight

update formula
! = objective function weight

I. Introduction

T HE aircraft design process applied in industry is a complex
endeavor that involves concurrent engineering of the many

systems that comprise a fully functional aircraft. In addition to the
aerodynamic performance of an aircraft, equal considerationmust be
given to the disciplines taskedwith specifying appropriate structures,
controls, materials, and propulsion systems necessary to satisfy a
truly comprehensive set of design requirements. In this day and age
where greenhouse gas emissions associated with commercial
aviation are of public concern with regard to climate change, and
rising jet fuel prices are negatively impacting profits of commercial
carriers, the design objective of improving aircraft fuel efficiency has
become increasingly important. Since aircraft fuel efficiency is
directly related to both aerodynamics and weight, the potential for
improvements in this area can only be fully realized using a
multidisciplinary optimization (MDO) approach. The methods
presented in this paper provide a means to consider a broad range of
aerodynamic considerations and can be incorporated into an MDO
framework.

The coupling of computational fluid dynamics with numerical
optimization techniques has resulted in aerodynamic shape optimi-
zation algorithms that are efficient at producing aircraft shape
configurations with improved performance characteristics at a given
aircraft operating condition. While significant progress in the field
of aerodynamic shape optimization has been made over the past
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20 years, further advancement is still required to make numerical
optimization techniques useful to solvepractical aerodynamic design
problems. Practical aerodynamic design problems are characterized
by design requirements that must be satisfied over a broad range of
aircraft operating conditions. For aerodynamic shape optimization to
be considered a viable alternative to the traditional cut-and-try
approach to aerodynamic design, it must be capable of producing an
optimal design that satisfies the design requirements over this broad
range of operating conditions. This type of optimization, in which
more than one aircraft operating condition is considered, is
commonly referred to as multipoint optimization.

Researchers have addressed the topic ofmultipoint optimization in
various contexts within the realm of aerodynamic design problems
[1]. Recently, Epstein et al. [2] used multipoint optimization to
minimize wing drag at the main cruise operating condition and
nearby secondary cruise operating conditions. Cliff et al. [3] compare
two approaches to multipoint optimization as applied to the aerody-
namic shape optimization of the Technology Concept Airplane
designed by The Boeing Company, simultaneous multipoint design
vs sequential cruise-point design followed by trim optimization at
transonic conditions. Zingg and Elias [4] as well as Li et al. [5] have
used multipoint optimization techniques applied to airfoil design to
achieve constant drag over a range of cruise Mach numbers. Li and
Padula [6] demonstrate multipoint techniques applied to robust
optimization problems which aim to reduce design sensitivity to
small changes in uncertain quantities such as Mach number.

Although significant contributions have been made by these
researchers and others in the area of multipoint optimization, the
scope of its application to aerodynamic design problems has been
limited with respect to the range of operating conditions considered.
The objective of this paper is to develop a framework for addressing
practical aerodynamic design problems that can accommodate the
full range of flight conditions that an airplane encounters during a
mission. This capability is demonstrated by applying the method-
ology to the design of an airfoil section for a hypothetical aircraft
where the problem is cast as an 18-point multipoint optimization
problem. Although this example contains only a portion of the
operating conditions that must be considered in the design of an
aircraft, it contains a sufficient number of varied on- and off-design
conditions to demonstrate the applicability of the methodology to
more general problems.

It is now appropriate that we define the terms on-design and off-
design as they apply to the practical aerodynamic design problem
presented in this paper. In our multipoint optimization problem
formulation, on-design points refer to the operating conditionswhere
we wish to optimize aerodynamic performance according to
specified design objectives. For example, we may wish to minimize
drag over a range of expected cruise Mach numbers and lift
requirements. Our off-design points refer to operating conditions that
can be considered aerodynamic constraints to the optimization. For
example, the off-design requirement that an aerodynamic shapemust
be able to achieve a specified maximum lift coefficient at low speeds
constrains the potential for drag minimization at cruise conditions.
Note that the off-design requirements are typically inequality
constraints, and there is no benefit to surpassing the specifications.

Thework described in this paper follows from the investigation of
multipoint optimization applied to practical aerodynamic design
problems undertaken by Zingg and Billing [7]. Their goal was to
demonstrate that multipoint optimization techniques can be applied
to complex aerodynamic design problems that encompass a broad
range of requirements extending beyond typical drag minimization
over a range of cruise conditions. This broad range of design
requirements includes high lift at low speed and consideration of
maneuverability under dive conditions. The current work focuses on
several key findings from their investigation:

1) Performance at on-design points is compromised by the need to
satisfy off-design constraints.

2) On-design performance may be unnecessarily sacrificed if off-
design constraints are oversatisfied.

3) Oversatisfaction of off-design constraints can be prevented by
appropriate selection of their respective design point weights.

The design point weights mentioned above refer to the weights
applied to the respective objective functions in the composite
objective function. A problemwith multipoint optimization noted by
several researchers [4,5] is that the appropriate off-designweights are
not known a priori. As implied by the findings of Zingg andBilling, a
poor assignment of off-design weights will result in one of two
outcomes: 1) the off-design constraints are violated, or 2) the on-
design performance is unnecessarily compromised.

Onemight assume that there is an ideal weight value for any given
off-design point that will result in a final optimized shape where its
constraint value is exactly satisfied. However, a practical aerody-
namic design problem may include off-design points that will have
their constraints satisfied regardless of the weight applied to them,
referred to as redundant points. Given this property of redundant off-
design points, their appropriate weight is zero, and they are typically
oversatisfied without penalizing performance.

This paper investigates the application of two different methods to
solve a practical aerodynamic design problem. The goal of the first
method using an unconstrained optimization algorithm is to
determine the ideal weights for all of the off-design points considered
in a practical aerodynamic design problem in a way that does not
require user intervention.We introduce a procedure for automatically
obtaining the ideal off-design weights by exploiting aerodynamic
performance trends as they evolve throughout the optimization. The
secondmethod uses the constrained optimization algorithm SNOPT,
which allows the aerodynamic constraints imposed at the off-design
operating conditions to be treated explicitly. The off-design points in
this method are not included in the composite objective function
(which contains only on-design objectives). Rather they are enforced
as constraints in conjunctionwith the composite objective function to
define a Lagrangian function that we seek to minimize to find the
optimal solution. The following sections characterize, evaluate, and
compare these two different approaches to solving practical aerody-
namic design problems.

II. Overview Of Optima2D
Bothmethodsmake use of the following tools containedwithin the

computational code Optima2D: 1) two-dimensional turbulent flow
solver, 2) airfoil geometry parametrization, 3) discrete adjoint
gradient calculation, and 4) mesh movement algorithm.

The compressible Reynolds-averaged Navier–Stokes equations
are solved at each design iteration with the Newton–Krylov method
developed byNemec andZingg [8] andNemec et al. [9], inwhich the
linear system arising at each Newton iteration is solved using the
generalizedminimal residualmethod (GMRES) preconditionedwith
an incomplete lower–upper actorization with limited fill. Spatial
derivatives in the governing equations are discretized using second-
order centered finite differences with added scalar numerical dissi-
pation. Eddy viscosity is computed using the one-equation Spalart–
Allmaras turbulence model. The airfoil geometry is parametrized
using B-spline control points. The vertical coordinates of these
control points are considered design variables, thus allowing altera-
tions to the baseline shape. For lift-constrained drag minimization
problems, the design variables are B-spline control points, and the
angle of attack is computed as part of the flow solution tomeet the lift
constraint (see Zingg and Billing [7] for a description of this
treatment of the lift constraint). For lift maximization problems, the
angle of attack is a design variable in addition to theB-spline control
points. Gradients of objective and constraint functions that are
dependent on the flow solution are calculated using the discrete-
adjoint method; the adjoint equation is solved using preconditioned
GMRES. The computation of the gradient typically requires less than
half of the computing time of a flow solution. The first method uses
an unconstrained quasi-Newton optimizer inwhich an estimate of the
inverse Hessian based on the BFGS (Broyden–Fletcher–Goldfarb–
Shanno) rank-two update formula is used to compute a search
direction [10]. The step size is determined using a line search, which
enforces the strong Wolfe conditions [10]. The search direction and
step size together, determine the new shape of the airfoil (and a new
angle of attack in the case of lift maximization). Geometric
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constraints are added to the objective function as penalty terms. The
secondmethod uses the constrained optimization algorithm SNOPT,
which is briefly described in Sec. VI. At each design iteration, the
grid around the updated airfoil shape is perturbed using a simple
algebraic grid movement technique.

III. Design Problem Definition
To define a practical aerodynamic design problem, a design

specification for a hypothetical aircraft is considered§. The aircraft
has a maximum weight of 100,000 lb, a wing area of 1000ft2, with a
35-deg sweep. The maximum cruise Mach number of the aircraft is
0.88. The design of the wing section at the mean aerodynamic chord
is considered, and it is assumed that the sectional lift coefficient is
equal to thewing lift coefficient. The target thickness to chord ratio is
0.12. Regions of the flight envelope considered for this design
problem include cruise, long-range cruise, dive, and low-speed
conditions.

The first four operating conditions, labeled A-D in Table 1,
correspond to cruise. Because of the sweep angle, the effectiveMach
number is 0.72. Two sets of operating weights and altitudes are
considered. For operating point A the altitude is 29,000 ft, theweight
is 60,000 lb; for B the altitude is the same, but the weight is
100,000 lb; for C the altitude is 39,000 ft, the weight is 60,000 lb; for
D the altitude is 39,000 ft, the weight is 100,000 lb. This leads to the
Reynolds numbers and lift coefficients given in Table 1.

The next four operating conditions, labeled E–H, correspond to
long-range cruise. The Mach number is 0.78, producing an effective
Mach number of 0.64. The altitudes and weights are the same as for
A–D, respectively. The vertices of the lower and upper shaded
surfaces shown in Fig. 1 are chosen as design points to represent the
continuous range of cruise and long-range cruise operating
conditions.

The cruise and long-range cruise conditions represented by design
points A–H are considered on-design operating conditions. The on-
design performance goal for these eight operating conditions is to
minimize drag while maintaining their specified lift coefficients. In
general, a complete problem specification could involve a careful
prioritization of on-design operating conditions based on the
knowledge of the aircraft mission requirements. The combination of
mission requirements with design objectives may be translated into
an objective function defined by a weighted integral which when
approximated using a numerical quadrature method provides
weights for a finite number of operating conditions. In the present
design problem specification, all on-design points are assigned equal
importance and thus equal weights.

The next eight operating conditions (I–P) are associated with a
safety requirement for maneuverability under dive conditions. The
flightMach number is 0.93, making the effectiveMach number 0.76.
In addition to the two sets of weights and altitudes considered for the
on-design points, two load factors are also taken into account. The
combination produces a total of eight dive operating conditions. For
operating point I, the altitude is 29,000 ft., theweight 60,000 lbs., and
the load factor is 1.3. For operating point J, the altitude andweight are
the same, but the load factor is 0.7. Operating points K and L have an
altitude of 29,000 ft, a weight of 100,000 lb, and load factors 1.3 and
0.7, respectively. For operating points M and N, the altitude is
39,000 ft, theweight is 60,000 lb, and the load factors are 1.3 and 0.7,
respectively. Operating points O and P have the same altitude and
load factors, but the weight is 100,000 lb. The dive maneuverability
requirement is achieved by keeping shock strengths modest under
these conditions, such that the Mach number upstream of a shock is
less than or equal to 1.35. Figure 2 shows the vertices of the top
shaded surface, which are chosen as design points to represent the
continuous range of dive operating conditions.

The final two operating points reflect a safety requirement to be
able to achieve an adequate maximum lift coefficient at low-speed
conditions. For operating condition Q, the altitude is sea level, the

weight is 60,000 lb, and the effective Mach number is 0.16. For
operating point R the weight is 100,000 lb, and the effective Mach
number is 0.20. The safety requirement specifies that the maximum
attainable lift coefficient under these conditions is at least 1.75¶. It
should be noted that a detailed analysis of the design problem would
give consideration to high-lift configurations achievedwith the use of
slats and flaps. For the sake of simplicity, only single-element airfoils
are used to illustrate the methods in this paper.

The last ten design points, I–R, represent off-design operating
conditions. The design requirements at these conditions impose
constraints on the optimization. These 18 operating points span the
flight envelope. Table 2 summarizes the design objectives and
constraints for this design problem. This design problem definition is
meant to illustrate a basic set of on-design and off-design specifi-
cations that can be used to formulate a multipoint optimization
problem. In practice, additional operating conditions, such as climb,
also need to be considered, but can be easily accommodated by the
methods presented in this paper.

IV. Interpretation of Design Point Weights
There are two terms that are frequently seen in the optimization

literature, importance (or priority, of a design point) and difficulty (to
improve a design point). Often these two terms are used inter-
changeably due to their mutual associations with optimization
weights. If a design point is considered more important than others,
higher weights will be assigned to it. Similarly, a common response
to handling a design point that is difficult to improve is to increase its
weight, creating the illusion that important points and difficult points
should be treated in the same way. However, this multipoint
optimization study reveals that it is crucial to distinguish between the
two terms and clearly understand their respective influences since the
philosophy behind each optimization weight adjustment strategy is
shaped by the understanding of these two terms.

Consider the case of a two-point optimization starting at equal
weights based on the two points having equal importance and having
no prior knowledge of their respective difficulty. After the optimi-
zation converges for this hypothetical case, the drag of the first point
is reduced by 50% while the drag of the second point is reduced by
only 5%. For the next optimization stage, presumably to allow further
improvement, one may be tempted to increase the weight on the
second point. By doing so, however, the optimization becomes
implicitly driven by the difficulty factor. When a point is already in

Table 1 Operating conditions for an
18-point optimization

Operating
point

Reynolds
number

Mach
number

Lift
coefficient

A 27:32 " 106 0.72 0.17
B 27:32 " 106 0.72 0.28
C 18:57 " 106 0.72 0.27
D 18:57 " 106 0.72 0.45
E 24:22 " 106 0.64 0.21
F 24:22 " 106 0.64 0.36
G 16:46 " 106 0.64 0.34
H 16:46 " 106 0.64 0.57
I 28:88 " 106 0.76 0.28
J 28:88 " 106 0.76 0.15
K 28:88 " 106 0.76 0.46
L 28:88 " 106 0.76 0.25
M 19:62 " 106 0.76 0.45
N 19:62 " 106 0.76 0.24
O 19:62 " 106 0.76 0.74
P 19:62 " 106 0.76 0.40
Q 11:8 " 106 0.16 -
R 15:0 " 106 0.20 -

§The design specification was provided by Dr. Tom Nelson at Bombardier
Aerospace.

¶The optimization procedures applied to this design problem are
demonstrated on a coarsemesh. Prior experience has shown that using a lower
target lift coefficient of 1.60 on our relatively coarse mesh will yield a lift
coefficient of at least 1.75 on a finer mesh.
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the vicinity of the physical limit to which it can be optimized, the
reduction of the objective function will be small. Concentrating on
the more difficult point, we forfeit the opportunity to achieve larger
overall weighted objective function reduction obtainable by placing
equal emphasis on both points based on their having equal
importance. The path of the optimization is characterized by sets of
optimization weights dictated by the difficulty factor. However this
might not be in agreement with the importance factor of each design
point. Hence adjusting on-design weights during the optimization
based on difficulty is not logical without advanced knowledge of the
priorities for the on-design points.

For the off-design points representing aerodynamic constraints
the two factors work in harmony. An off-design point whose
aerodynamic constraint is the most difficult to improve will be given
moreweight, implying that it is more important than other off-design
points. In this case it is true, since this point is the bottleneck with
respect to satisfying the off-design aerodynamic constraints.

V. Strategy for Obtaining Ideal Weights
for Off-Design Points (Method 1)

Practical aerodynamic design problems as defined in this paper
are by nature constrained optimization problems. The composite

objective function used in this method written in terms of on-design
and off-design points is given by

J #
X# of

on-design

p#1

!ON
p J ON

p $
X# of

off-design

q#1

!OFF
q J OFF

q (1)

The goal of the strategy used in this method is to find the values for
the off-design weights !OFF

q that allow the best possible on-design
performance to be achieved while satisfying the off-design con-
straints. These ideal off-design weights are obtained using an
automated weight update procedure that exploits aerodynamic
performance trends as they evolve throughout the optimization. The
strategy presented in this section employs the unconstrained BFGS
optimization algorithm.

The objective function used at on-design points A–H and off-
design points I–P is J ON # J OFF # Cd. The lift requirements for
these points specified in Table 1 are satisfied using a technique
whereby the angle of attack is altered during the iterations of the flow
solution such that the desired value ofCl is obtained at convergence.
The design variable vectorX for this objective function contains only
geometric design variables (B-spline control points that define the
airfoil geometry).

It is important to note that the off-design constraints are
represented as objective functions in thismethod, as shown inEq. (1),
because they cannot be handled directly by the BFGS algorithm. The
off-design constraints are satisfied indirectly by minimizing
objective functions known to correlate with the constraint values.
For example, the off-design constraints at operating points I–P are
given byMmax % 1:35. The upstream Mach number near a shock on
the airfoil has a loose correlation to the drag coefficient. By reducing
the drag coefficient, the maximum Mach number in the flowfield is
also reduced. Therefore, the objective function representing these
off-design constraints is given by J OFF # Cd. At off-design points
where Mmax > 1:35, the corresponding off-design weights are
adjusted so that Cd is reduced just enough to satisfy the Mmax

constraint value at exactly 1.35.
The same logic is applied to the high-lift constraints at off-design

points Q and R where the constraints are given by Cl;max & 1:60. In
this case, the objective function representing these constraints is
given by

J OFF #
!
1 ' Cl;max

bC!
l;max

"
2

(2)

where bC!
l;max is a target maximum lift coefficient specific to the

objective function not to be confused with the lower bound on the
maximum lift coefficient constraint, C!

l;max [see Eq. (5) used in the
weight update formula]. The value of bC!

l;max is set to a value that is
unattainable and hence this corresponds to lift maximization. The
optimization algorithm will strive to attain the objective-function-
specific target lift value bC!

l;max at points Q and R, while their
corresponding weights will be adjusted to ensure that Cl;max &
C!
l;max. For this lift maximization objective function, the angle of

attack, !, is a design variable in addition to the geometric design
variables.

A. On-Design-First Optimization

In this approach, the procedure begins with an optional start-up
optimization. The term on-design-first refers to this start-up
optimization, which includes only the on-design points. Performing
an initial optimization with only on-design operating points serves
two purposes. First, it gives a clear picture of the performance
tradeoffs associated with the off-design constraints. Second, the
initial airfoil may be poorly suited to the off-design operating points,
which may cause flow solver convergence difficulties. In such cases,
performing the on-design-first optimization typically provides a
better starting shape for introducing the off-design points. The
resultant airfoil geometry from the on-design-first optimization
minimizes a weighted sum of the objective functions at all on-design
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Fig. 1 Visualization of cruise and long-range cruise operating
conditions.
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Fig. 2 Visualization of dive operating conditions.

Table 2 Design objectives and constraints for an 18-point optimization

Operating
point

Operating
condition

On-design
objective

Off-design
constraint

A–D Cruise Lift-constrained
drag minimization

——

E–H Long-range cruise Lift-constrained
drag minimization

——

I–P Dive —— Mmax % 1:35
Q–R Low speed —— Cl;max & 1:60
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points. Under the assumption that all of the on-design operating
conditions are of equal importance, all on-design objective functions
areweighted equally; however theweight assignment is ultimately at
the discretion of the designer, who may choose to weight the on-
design points differently according to design priorities. This on-
design-first airfoil is the starting point for the main optimization
procedure that includes both the on-design points and the off-design
points.

In cases where the initial airfoil geometry does not cause flow
solver convergence difficulties at any of the off-design points, the on-
design-first optimization may be unnecessary.Moreover, the method
is likely to be more efficient if the on-design first optimization can be
omitted.

B. Weight Update Formula

For any given off-design point, there are 3 possibilities for the
value of its respective aerodynamic constraint: 1) the constraint is
violated, 2) the constraint is exactly satisfied, and 3) the constraint is
oversatisfied.

For off-design points where the constraints are violated, a higher
weight is required on these points to pull them into the feasible region
of the design space. For off-design points where the constraints are
exactly satisfied, the weight is appropriate and does not require
modification. For off-design points where constraints are over-
satisfied, a lower weight is required to allow them to drift toward the
boundary of the feasible region of the design space. As there is no
particular benefit to oversatisfying an off-design constraint, it is
desirable to shed weight on the off-design points that are in this
category to reduce the negative impact on on-design performance. To
facilitate the modification of off-design weights, a simple weight
update formula is employed.

The concept for this approach to off-design weight modification
can be credited to thework of Zingg and Elias [4] that demonstrates a
similar technique for obtaining equal drag coefficients across a range
of cruiseMach numbers by altering the objective function weights of
design points in a multipoint optimization. For an off-design
constraint given by  %  !, where  is some functional, the weight
update formula used in our procedure is

!n$1 # !n

!
 n
 !

"
h

(3)

where  n is the current off-design constraint value, !n and !n$1 are
the current and updated off-design weights, the exponent h is a user
defined parameter that affects the magnitude of the weight change,
and n is the index of weight update cycles.

For off-design points representing requirements for Cl;max, the
values of  n and  ! to be used in the weight update formula are

 n #
1

Cnl;max

(4)

 ! # 1

C!
l;max

(5)

For off-design points with a maximum local Mach number
constraint,Mmax % M!

max, the values of  n and  ! to be used in the
weight update formula are

 n #Mn
max (6)

 ! #M!
max (7)

The first application of the weight update formula to obtain initial
off-designweights!1 requires special treatment because there are no
previous weights to use in the formula. An arbitrary value of unity is
assigned to !0 for all off-design points. The off-design constraint
values  0 are evaluated using the initial airfoil geometry. Initial off-
design weights !1 are then calculated using the weight update
formula with!0 # 1. It is important to clarify that the !0 weights are

not used at any time during the optimization procedure; they only
facilitate the calculation of !1. The weight update formula is
subsequently used at regular intervals (after every weight update
cycle) throughout the main optimization procedure to update the off-
design weights.

C. Weight Update Cycles
The weights of the off-design points are updated periodically

based on the values of their respective constraints during the course
of the optimization. A weight update cycle consists of a user-
specified number of optimization iterations followed by an
evaluation of the off-design constraints and corresponding update of
the off-design weights. A new weight update cycle begins with a
restarted optimization using the updated off-design weights and the
final airfoil geometry from the previous weight update cycle. If the
magnitude of the change in the updated weights is less than a user-
specified tolerance, the optimization leaves the weights unchanged
and continues until the next weight update cycle. In this manner,
weight update cycles are executed until a converged optimal solution
is obtained. At the converged optimal solution, the off-design
weights are as low as possible while satisfying all of the off-design
constraints.

VI. Alternative Strategy Using Constrained
Optimization (Method 2)

An alternative strategy for solving practical aerodynamic design
problems uses the SNOPT algorithm for constrained optimization
problems developed by Gill et al. [11]. The SNOPTalgorithm allows
us to treat the off-design operating conditions as explicit constraints
within the framework of a constrained optimization problem.
SNOPTuses a sequential quadratic programming (SQP)method that
obtains search directions from a sequence of quadratic programming
(QP) subproblems. Each QP subproblem minimizes a quadratic
model of a Lagrangian function which is used to represent an
objective function subject to linearized constraints.

A. On-Design-First Optimization with SNOPT

Aswith the off-design weight update strategy, it may be necessary
to perform an on-design-first optimization to obtain a favorable
airfoil geometry for use as a starting point before the introduction of
the off-design constraints. In such cases SNOPT is used to minimize
a weighted sum of the objective functions at all on-design points.
This composite objective function is subject only to geometric
thickness constraints which are satisfied explicitly by SNOPT.

B. KS Function Used for Evaluation of Maximum Mach Number
Constraints

Off-design points I-P representing dive conditions are subject to
the constraint that the maximum Mach number in the flowfield not
exceed 1.35. ThemaximumMach number function used to represent
this constraint is not continuous with respect to the design variables
and therefore cannot be handled directly by SNOPT. Since the Mach
number at each node is continuous with respect to the design
variables, we could assign the Mach number constraint to each node
in the flowfield. However, performing an adjoint gradient evaluation
of the Mach number constraint at each node would be prohibitively
expensive. Instead we use the Kreisselmeier–Steinhauser (KS)
function [12] as ameans to aggregate theMach number constraints at
all nodes in the flowfield into a single composite function that is
continuously differentiable. The KS function produces an envelope
surface that is C1 continuous and represents a conservative estimate
of the maximum among the set of constraint functions considered
[13]. The KS function has been used in various applications where
constraint aggregation is required for efficient use of gradient-based
optimization methods including aerodynamic shape optimization
[14] and aircraft design [15–17]. An alternate formulation of the KS
function proposed by Wrenn [13] is used to reduce numerical
difficulties associated with the original formulation and is given by
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KS (g)X*+ # gmax)X* $
1

$
ln
#Xm

j#1

e$(gj)X*'gmax)X*+
$

(8)

where g)X* contains the set of constraints, gmax is the maximum
constraint value evaluated at the current design iteration, X, and $ is
the draw-down parameter that governs the conservativeness of the
estimate of gmax such that

lim
$!1

KS)X; $* # gmax)X* (9)

The constraints gj)X* are evaluated at every node in the flowfield
with the exception of the nodes on the surface of the airfoil and are
given by

gj)X* #
Mj)X*
M!

max

' 1 (10)

where M!
max # 1:35 is the upper bound on the Mach number

constraint,Mj)X* is the Mach number at node j at the current design
iteration, X, and the constraint is considered satisfied if gj)X* % 0.
gmax is given by

gmax)X* #
Mmax)X*
M!

max

' 1 (11)

whereMmax)X* is the maximumMach number in the flowfield at the
current design iteration X.

A conservative estimate of the maximum Mach number is given
by:

Mks)KS* # )KS$ 1*M!
max (12)

The actual constraint that SNOPT works with is Mks. To obtain a
solution that satisfies the desiredmaximumMach number constraint,
Mmax % M!

max, appropriate values of $ and the Mks target must be
specified and are case dependent. Currently, an ad hoc approach is
taken to determine these values.

C. Evaluation of High-Lift Constraints

Off-design points Q-R representing design requirements for high
lift at low speeds are subject to the constraint that Cl;max must be at
least 1.60. The constraint function assigned to these points is given
simply as Cl.

D. Off-Design Constraint Function Gradients

The gradients of the constraint functionsMks and Cl with respect
to the design variables, X, are computed using the discrete adjoint
approach.

VII. Results
A. Multipoint Optimization Setup

For all cases, the airfoil geometry is parametrized using 15 B-
spline control points. Unless otherwise specified, one control point is
frozen at the leading edge and two at the trailing edge. The remaining
12 control points are designated as design variables and are split
evenly between the top and bottom airfoil surfaces. Thickness
constraints of 1 and 0.2% chord are imposed at 95 and 99% chord,
respectively, to prevent trailing-edge crossover. The latter is typically
inactive once convergence is achieved. In addition, case-specific
floating thickness constraints are described in the following sections.
The base grid used in all cases has a C topologywith 289 nodes in the
streamwise direction and 65 nodes in the normal direction; the off-
wall spacing is 2 " 10'6 chord. It was created using the RAE 2822
airfoil geometry. Cases 1 to 3 use the off-design weight update
method described in Sec. V. Case 4 and cases A and B use the
constrained optimization method described in Sec. VI.

The flow solver described in Sec. II is used to evaluate airfoil
performance in all cases. Given studies of the flow solver’s accuracy
performed by Zingg [18] and Zingg et al. [19], the grids used can be

expected to predict lift coefficients accurate to within 1% and drag
coefficients to within 5% for attached and mildly separated flows,
including both numerical and physical model error.

1. Off-Design Weight Update Setup for Cases 1–3

For design points A through P, the design objective is lift-
constrained drag minimization. For each of these design points, the
corresponding objective function is given by J # Cd. For design
points Q and R, the design objective is to meet minimum Cl;max

requirements needed at low speeds. Avalue of 2.0 is used for bC!
l;max in

the high-lift objective function Eq. (2). Off-design objective
functions at design points I-R are used to satisfy corresponding off-
design constraints as described in Sec. V. The objective functions at
all design points are normalized by their respective objective function
values obtained using the initial airfoil geometry. Theweights for the
on-design points A–H remain fixed at unity throughout the duration
of the optimization procedure. The weights for the off-design points
I-R are periodically modified throughout the optimization procedure
according to the strategy described in Sec. V. Ten optimization
iterations are executed per weight update cycle. The value of the
exponent used in the weight update formula, Eq. (3), is h# 4. This
choice leads to adequate convergence behavior but has not been
studied extensively, so other values may be preferable in some cases.
Convergence for an optimization performed using the off-design
weight update procedure is achieved when the change in the sum of
on-design drag coefficients over six consecutive weight update
cycles is less than 10'4, and all off-design constraints are satisfied.
Because the penalty method used to handle constraints allows for
small violations, afloating thickness constraint of 12.06% is imposed
to ensure a thickness of at least 12% chord.

2. Constrained Optimization Setup for Case 4 and Local Minima Cases

For on-design points A–H, the design objective is lift-constrained
drag minimization. For each of these design points, the corre-
sponding objective function is the drag coefficient normalized by the
drag coefficient evaluated using the initial airfoil geometry. A
composite objective function is formed by a weighted sum of the
individual on-design objective functions with all weights equal to
unity. The off-design constraints are defined as described in Sec. VI.
A value of $# 31:45 is used in the KS function. The target value of
Mks used by SNOPT is 1.50. Experiments were performed to
determine the values of Mks and $ which produce Mmax % 1:35 as
desired (Sec. VI.B). Unlike the penalty method used for handling
constraints in cases 1–3, thickness constraints in case 4 and the local
minima cases are satisfied exactly by SNOPT. Therefore, for case 4,
the floating thickness constraint of 12.0002% chord is based on the
thickness of the optimized geometry obtained from case 1 to ensure
an accurate comparison between these two cases. For the local
minima cases, a floating thickness constraint of 11.857% is used.

B. Case 1: Baseline 18 Point Optimization (Optimized RAE 2822
Airfoil)

The initial geometry used for the optimization in this case is the
RAE 2822 airfoil. The practical aerodynamic design problem is
solved using the off-design weight update procedure with the full set
of 18 design points, A-R, described in Table 1.

The results for case 1 presented herewere obtained after 27weight
update cycles, or approximately 400 function evaluations (flow
solutions) per operating condition. Figure 3 shows the optimized
airfoil from case 1 compared with the initial RAE 2822 airfoil.
Tables 3 and 4 provide a summary of the on-design and off-design
performance values for the initial RAE 2822 airfoil and the airfoil

RAE 2822 Airfoil
Optimized RAE 2822 Airfoil

Fig. 3 Optimized RAE 2822 airfoil versus initial RAE 2822 airfoil.
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after 27 weight update cycles. Note that for the RAE 2822 airfoil the
off-design constraints at points O, Q, and R, shown in bold text, are
violated. A comparison of the drag coefficients at the on-design
points for the final optimized airfoil versus the RAE 2822 airfoil
shows that there has been degradation in performance, but the
severity of the degradation has been mitigated by use of the
automated weight update procedure. The penalty incurred in on-
design performance is the price paid to satisfy the off-design
constraints. Pressure distributions for all on-design points A–H are
shown in Figs. 4 and 5. The solutions are shock free at all eight on-
design operating conditions.

1. Off-Design Points

Figures 6 and 7 show the evolution of the constraint values for off-
design points I-P and Q and R, respectively, throughout the
optimization procedure. Figure 8 shows corresponding off-design
weights. At the beginning of the optimization procedure, the off-
design constraints are violated at points O, Q, and R, while the
remaining off-design constraints are satisfied. Since some off-design
constraints are not satisfied, we must proceed with the weight update
cycles, which will result in degradation in on-design performance.
The off-design weights begin at their initial reference values of unity.
Within the first several weight update cycles, two distinct categories
of off-design points emerge from these plots: 1) active off-design
points, and 2) redundant off-design points.

Points O, Q, and R can be considered active. These points require
nonzeroweights to prevent violation of their target constraint values.
It is clear from Fig. 8 that the off-design constraint at point O is the
most difficult to satisfy, as illustrated by its high weight compared
with the other active points Q andR. Points J, I, K, L,M,N, and P can
be considered redundant. These points will have their constraints
satisfied regardless of the weight applied to them. Redundant points

have their constraints satisfied by virtue of their proximity to active
points with similar operating conditions. The weight update strategy
recognizes this property of the redundant off-design points and
accordingly reduces their weights to zero, as shown in Fig. 8.

The behavior of the active off-design points is characterized by an
initial period of growth followed by asymptotic convergence of their
constraints to their respective target values with corresponding
constant weight values. The redundant points attain constant over-
satisfied constraint values with corresponding weightings of zero.
This behavior is observed in Figs. 6–8.

It is likely that point Q is also redundant. Throughout the
optimization procedure, the off-design constraint value at point Q,
Cl;max, follows slightly above theCl;max constraint value at point R, as
shown in Fig. 7. It appears that as long as theCl;max constraint at point
R is satisfied, the Cl;max constraint at point Q will also be satisfied
with a slightly higher value. The claim of redundancy of point Q can
be further justified by noting that its weight is slowly approaching
zero while the weight on point R remains constant during the last 10
weight update cycles. It is reasonable to assume that if the
optimization were allowed to continue beyond 27 weight update
cycles, the weight for point Q would eventually reach zero.

2. On-Design Points

Since the on-design optimization weights are held constant
throughout the optimization procedure, the on-design performance is
evolving through the course of the optimization solely due to the shift
of emphasis characterized by the relative change in the off-design
weights. Figure 9 shows the evolution of the drag coefficients for the
eight on-design points. In the first 7 weight update cycles, some on-
design performance fluctuation is observable. With the introduction
of the off-design points, the on-design drag values immediately begin
to rise. Figure 10 shows the sum of the on-design drag coefficients
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Fig. 4 Surface pressure coefficient distributions for operating points A-D (RAE 2822 optimized airfoil).
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superimposed against the sum of the off-design weights. It illustrates
the relationship between on-design performance and off-design
weights.

C. Case 2: Alternate Initial Airfoil (Optimized NACA 0012 Airfoil)
The initial geometry used for the optimization in this case is the

NACA 0012 airfoil, which is a symmetrical airfoil, in contrast to the
RAE2822 supercritical airfoil used in case 1. The initial grid is found
by using the grid movement algorithm to alter the grid generated
around the RAE2822 airfoil for case 1 to conform to theNACA0012
airfoil. This ensures that despite the different initial airfoils, the grid
produced around a given geometry is the same for Cases 1 and 2. An
on-design-first optimization is performed followed by the main
optimization employing the off-design weight update procedure
using the full set of 18 design points, A-R, described in Table 1.

The results shown were obtained after 45 weight update cycles. A
comparison of the optimized NACA 0012 airfoil obtained in case 2
versus the optimized RAE 2822 airfoil obtained in case 1 is shown in
Fig. 11. Table 5 shows a comparison of the performance values for
the final optimized airfoil for case 2 versus the initial NACA 0012
airfoil performance values. Although the on-design performance for
case 2 is comparable to case 1, significant differences are observed in
off-design performance and airfoil geometry. In spite of these
differences, the off-design weight update procedure has produced a
converged solution for case 2 according to the definition provided in
Sec. VII.A.1. As further described in Sec. VII.F, the solutions to
cases 1 and 2 are examples of two locally optimal solutions. In the
presence of local optima, the initial geometry becomes important.
TheRAE2822, being a supercritical airfoil, is a better choice than the
symmetric NACA 0012 section. Furthermore, the optimization
converged more rapidly when initialized with the RAE 2822 airfoil.
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D. Case 3: Reduced Set of Off-Design Points
The initial geometry used for the optimization in this case is the

RAE 2822 airfoil. A reduced set of design points is used. On-design
points A-H are included, but only off-design points O and R are
included for a total of 10 design points. The results from case 1
revealed that the other off-design points are redundant.

Table 6 shows the performance values for the optimized airfoil
obtained after 26 weight update cycles and a comparison of the
optimized airfoil geometries from case 3 versus case 1 are shown in
Fig. 12. These results show that the final airfoil geometry and

performance values for case 3 are nearly identical to results obtained
for case 1. In practice, the knowledge regarding the redundancy of the
off-design points would not be available before running the
optimization. However it is instructive to show that the same
optimized results are obtained with significantly less computational
effort. Both cases required a similar number of design iterations and
weight update cycles, but only 10 flow solutions and adjoint
calculations per design iterationwere required for this case compared
with 18 for case 1. To improve computational efficiency, criteria for
determining redundancy of design points during the optimization
procedure could be incorporated into the method, providing the
opportunity to eliminate analysis of such points and the associated
computing cost.

E. Case 4: Full Set of Off-Design Points Using SNOPT
Case 4 repeats case 1 but using the constrained optimization

method instead of the off-design weight update method. The results
for case 4 were obtained after 52 function evaluations (flow
solutions) per operating condition. The optimized solution satisfies
the first-order optimality conditions for a constrained optimization
problem. On-design performance has been optimized while all off-
design constraints have been satisfied. A comparison of the perform-
ance results shown in Table 7 versus the performance results for case
1 shown in Table 4 reveals that the on-design and off-design
performance is very similar in both cases. Figure 13 shows that the
optimized airfoil geometries for cases 1 and 4 are also very similar.
Convergence using the SNOPT method is achieved with sub-
stantially less computational effort than that required for the
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Table 3 RAE 2822 airfoil performance

Operating point ! Cl Cd Mmax Cl;max

A '0:71, 0.17 0.0090 —— ——
B '0:06, 0.28 0.0092 —— ——
C '0:12, 0.27 0.0101 —— ——
D $0:93, 0.45 0.0108 —— ——
E '0:36, 0.21 0.0090 —— ——
F $0:66, 0.36 0.0094 —— ——
G $0:53, 0.34 0.0104 —— ——
H $2:10, 0.57 0.0115 —— ——
I '0:17, 0.28 0.0100 1.20 ——
J '0:85, 0.15 0.0092 1.10 ——
K $0:87, 0.46 0.0136 1.30 ——
L '0:33, 0.25 0.0097 1.17 ——
M $0:77, 0.45 0.0141 1.30 ——
N '0:39, 0.24 0.0105 1.16 ——
O $3:46, 0.74 0.0383 1.40 ——
P $0:48, 0.40 0.0128 1.26 ——
Q $16:50, —— —— —— 1.43
R $16:50, —— —— —— 1.40

Table 4 Optimized RAE 2822 airfoil performance
after 27 weight update cycles (case 1)

Operating point ! Cl Cd Mmax Cl;max

A '1:26, 0.17 0.0093 —— ——
B '0:63, 0.28 0.0094 —— ——
C '0:67, 0.27 0.0103 —— ——
D $0:38, 0.45 0.0109 —— ——
E '1:00, 0.21 0.0092 —— ——
F $0:03, 0.36 0.0096 —— ——
G '0:09, 0.34 0.0105 —— ——
H $1:49, 0.57 0.0116 —— ——
I '0:66, 0.28 0.0110 1.21 ——
J '1:33, 0.15 0.0120 1.32 ——
K $0:36, 0.46 0.0138 1.30 ——
L '0:82, 0.25 0.0110 1.23 ——
M $0:31, 0.45 0.0143 1.29 ——
N '0:86, 0.24 0.0118 1.24 ——
O $1:87, 0.74 0.0209 1.35 ——
P $0:01, 0.40 0.0133 1.27 ——
Q $14:92, —— —— —— 1.60
R $14:70, —— —— —— 1.60
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off-design weight update method given that the final solution of case
4 was achieved approximately eight times faster than for case 1.

F. The Existence of Multiple Local Minima

The results presented in this section confirm the existence of at
least two locally optimal solutions to the design problem described in
Sec. III. Both solutions satisfy thefirst order optimality conditions for
a constrained optimization problem, yet the solutions exhibit
dramatic differences in geometry and performance.

The two solutions were obtained using the SNOPT constrained
optimization method described in Sec. VI. The optimization input
parameters in each case are identical with the exception of the initial

airfoil geometry. Both cases use the same base grid, which ensures
that the underlying grid properties are consistent. CaseNACAbegins
with the base grid initially perturbed to conform to the NACA 0012
airfoil geometry, whereas case RAE begins with the base grid
perturbed to conform to the RAE 2822 airfoil geometry. A
comparison of the final optimized airfoil geometries for cases NACA
andRAE is shown in Fig. 14. Table 8 shows a comparison of the final
optimized performance values for cases NACA and RAE.

To illuminate the character of the local optimal solutions obtained
in cases NACA and RAE, the objective and constraint functions are
evaluated at points along a vector, !X, connecting the two sets of
designvariables that define the optimal airfoil geometries. Each point
represents an intermediate airfoil geometry between the two optimal
geometries. The design variables at the intermediate points are
interpolated between the design variables at case NACA and case
RAE as

X)"* # XNACA $ "(!X+ (13)

!X # XRAE ' XNACA (14)

with XNACA and XRAE representing the design variables for the final
airfoil geometries of cases NACA and RAE, respectively. Therefore,
"# 0 and "# 1 correspond to case NACA and case RAE,
respectively.

A merit function that combines the objective function with
measures of constraint violation can be plotted to show the optimal
solutions as stationary points along !X. The merit function used to
visualize the behavior of the objective and constraint functions near
the optimal solutions is the ‘1 penalty function, defined as

%1)X* #
X# of

on-design

p#1

J p)X* $ #
X# of

off -design

q#1

(Cq)X*+' $ #
XNG

r#1

(Gr)X*+' (15)

where the first term represents the objective function, which is the
sum of drag coefficients at the on-design operating conditions, and
the second and third terms represent weighted sums of off-design and
geometric constraint violations, respectively. Constraint violations
are added as penalties to the objective function. The notation (z+' #
maxf0;'zg is used to indicate that a satisfied constraint does not
contribute to its penalty term. The positive scalar # is the penalty
parameter. It must be noted that the ‘1 penalty function is considered
to be an exact merit function because it has the important property

NACA 0012 Airfoil
Optimized RAE 2822 Airfoil
Optimized NACA 0012 Airfoil

Fig. 11 Optimized NACA 0012 airfoil versus optimized RAE 2822
airfoil.

Optimized RAE 2822 Airfoil - 18pt
Optimized RAE 2822 Airfoil - 10pt

Fig. 12 Optimized RAE 2822 airfoil optimized with reduced set of off-
design points versus optimizedRAE2822 airfoil using full set of 18 design
points.

Optimized RAE 2822 Airfoil - Wt Update
Optimized RAE 2822 Airfoil - SNOPT

Fig. 13 Comparison of optimized airfoils obtained using the SNOPT
method and the off-design weight update method.

Optimized NACA 0012 Airfoil
Optimized RAE 2822 Airfoil

Fig. 14 A comparison of two locally optimal airfoil geometries.

Table 5 Optimized NACA 0012 airfoil performance versus NACA 0012 airfoil performance

Operating point NACA 0012 Optimized NACA 0012 airfoil

! Cl Cd Mmax Cl;max ! Cl Cd Mmax Cl;max

A $1:01, 0.17 0.0092 —— —— '1:42, 0.17 0.0093 —— ——
B $1:67, 0.28 0.0105 —— —— '0:77, 0.28 0.0094 —— ——
C $1:61, 0.27 0.0111 —— —— '0:82, 0.27 0.0103 —— ——
D $2:82, 0.45 0.0188 —— —— $0:23, 0.45 0.0110 —— ——
E $1:45, 0.21 0.0093 —— —— '1:14, 0.21 0.0093 —— ——
F $2:48, 0.36 0.0100 —— —— '0:11, 0.36 0.0096 —— ——
G $2:35, 0.34 0.0108 —— —— '0:23, 0.34 0.0105 —— ——
H $3:95, 0.57 0.0136 —— —— $1:36, 0.57 0.0115 —— ——
I $1:57, 0.28 0.0160 —— —— '0:80, 0.28 0.0112 1.25 ——
J $0:81, 0.15 0.0110 —— —— '1:51, 0.15 0.0100 1.17 ——
K $3:06, 0.46 0.0337 1.47 —— $0:28, 0.46 0.0150 1.31 ——
L $1:38, 0.25 0.0146 1.32 —— '0:97, 0.25 0.0108 1.23 ——
M $2:92, 0.45 0.0326 1.46 —— $0:22, 0.45 0.0155 1.31 ——
N $1:33, 0.24 0.0149 1.32 —— '1:02, 0.24 0.0115 1.22 ——
O $15:50, 0.74 0.2545 1.68 —— $1:81, 0.74 0.0219 1.35 ——
P $2:42, 0.40 0.0261 1.42 —— '0:09, 0.40 0.0142 1.30 ——
Q $15:00, —— —— —— 1.45 $14:78, —— —— —— 1.60
R $15:00, —— —— —— 1.44 $14:62, —— —— —— 1.60
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that for an appropriately selected value of #, any locally optimal
solution of the constrained optimization problem is also a local
minimizer of %1 [10]. Figure 15 shows the behavior of the ‘1 penalty
function along the direction !X in the vicinity of the solutions for
cases NACA and RAE. Two local minima can be seen at "# 0 and
"# 1 which correspond to the final airfoil geometries of Cases
NACA and RAE, respectively. The solution for case RAE is clearly
superior because it has a lower objective function value, or in
practical design terms, it has a lower sum of on-design drag
coefficients. Case RAE also attains lower values of the Mks off-
design constraints where it can be seen in Table 8 that only theMks

constraint at point O is active, compared with case NACAwhere the
Mks constraints at points J, K, M, O, and P are active or near-active.
The juxtaposition of the active constraint functions against the
objective function shown in Figs. 16a–16c typifies the nature of
optimal solutions to a constrained optimization problem. These
figures highlight the role that the active constraints play in
determining the local optimal solutions in Cases NACA and RAE. In
each figure, the intersections between the constraint bound and the
constraint function signify the locations of the design feasibility
boundaries along the direction !X. The vertical dotted lines have
been added to illustrate that the feasibility boundaries coincide
exactly with the optimal solutions at "# 0 and "# 1 for Cases
NACA and RAE. For each solution, a step in either the positive or
negative !X direction will result in an increase in the objective
function or violation of one or more of the constraints.

Table 6 Performance of optimized RAE 2822 airfoil
with reduced set of off-design points

Operating point ! Cl Cd Mmax Cl;max

A '1:34, 0.17 0.0093 —— ——
B '0:70, 0.28 0.0094 —— ——
C '0:75, 0.27 0.0103 —— ——
D $0:31, 0.45 0.0109 —— ——
E '1:07, 0.21 0.0093 —— ——
F '0:04, 0.36 0.0096 —— ——
G '0:17, 0.34 0.0105 —— ——
H $1:41, 0.57 0.0116 —— ——
I '0:73, 0.28 0.0110 1.21 ——
J '1:41, 0.15 0.0122 1.32 ——
K $0:29, 0.46 0.0137 1.29 ——
L '0:89, 0.25 0.0110 1.23 ——
M $0:23, 0.45 0.0142 1.29 ——
N '0:94, 0.24 0.0118 1.25 ——
O $1:81, 0.74 0.0210 1.35 ——
P '0:07, 0.40 0.0131 1.27 ——
Q $14:90, —— —— —— 1.60
R $14:73, —— —— —— 1.60

Table 7 Performance of optimized RAE 2822 airfoil obtained
using the SNOPT method

Operating point ! Cl Cd Mmax Mks Cl;max

A '1:47, 0.17 0.0093 —— —— ——
B '0:84, 0.28 0.0094 —— —— ——
C '0:89, 0.27 0.0103 —— —— ——
D $0:15, 0.45 0.0109 —— —— ——
E '1:21, 0.21 0.0092 —— —— ——
F '0:20, 0.36 0.0095 —— —— ——
G '0:32, 0.34 0.0105 —— —— ——
H $1:25, 0.57 0.0115 —— —— ——
I '0:86, 0.28 0.0113 1.23 1.39 ——
J '1:53, 0.15 0.0122 1.32 1.44 ——
K $0:16, 0.46 0.0145 1.30 1.44 ——
L '1:02, 0.25 0.0113 1.24 1.39 ——
M $0:11, 0.45 0.0150 1.30 1.43 ——
N '1:06, 0.24 0.0121 1.24 1.39 ——
O $1:75, 0.74 0.0224 1.34 1.50 ——
P '0:19, 0.40 0.0138 1.28 1.42 ——
Q $14:56, —— —— —— —— 1.60
R $14:48, —— —— —— —— 1.60

Table 8 A comparison of performance values at two locally optimal solutions

Operating Optimized NACA 0012 airfoil Optimized RAE 2822 airfoil

Point ! Cl Cd Mks Cl;max ! Cl Cd Mks Cl;max

A '1:82, 0.17 0.0093 —— —— '1:44, 0.17 0.0093 —— ——
B '1:16, 0.28 0.0096 —— —— '0:81, 0.28 0.0095 —— ——
C '1:22, 0.27 0.0104 —— —— '0:86, 0.27 0.0103 —— ——
D '0:11, 0.45 0.0120 —— —— $0:19, 0.45 0.0110 —— ——
E '1:50, 0.21 0.0093 —— —— '1:18, 0.21 0.0093 —— ——
F '0:46, 0.36 0.0096 —— —— '0:16, 0.36 0.0096 —— ——
G '0:59, 0.34 0.0106 —— —— '0:28, 0.34 0.0106 —— ——
H $1:00, 0.57 0.0117 —— —— $1:28, 0.57 0.0117 —— ——
I '1:02, 0.28 0.0148 1.45 —— '0:84, 0.28 0.0111 1.38 ——
J '1:86, 0.15 0.0120 1.49 —— '1:50, 0.15 0.0117 1.43 ——
K $0:40, 0.46 0.0220 1.50 —— $0:19, 0.46 0.0145 1.44 ——
L '1:23, 0.25 0.0140 1.44 —— '0:99, 0.25 0.0110 1.38 ——
M $0:30, 0.45 0.0222 1.50 —— $0:13, 0.45 0.0150 1.43 ——
N '1:29, 0.24 0.0145 1.44 —— '1:04, 0.24 0.0118 1.38 ——
O $2:76, 0.74 0.0343 1.50 —— $1:79, 0.74 0.0226 1.50 ——
P '0:13, 0.40 0.0199 1.49 —— '0:16, 0.40 0.0138 1.41 ——
Q $14:64, —— —— —— 1.60 $14:65, —— —— —— 1.60
R $14:64, —— —— —— 1.60 $14:41, —— —— —— 1.60
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VIII. Conclusions
Two methods for solving practical aerodynamic design problems

with competing design objectives and aerodynamic constraints using
multipoint optimization have been presented. Both methods address
issues that arise in practical multipoint optimization due to the
coexistence of on-design and off-design points. The application of
the off-design weight update method to an 18-point airfoil optimi-
zation demonstrates that it is able to adjust off-design weights
iteratively based on the evolution of aerodynamic performance so as
to satisfy off-design constraints while minimizing the penalty in on-
design performance. The method allows designers to identify
redundant and critical operating points. Furthermore, this technique
is capable of preventing the off-design constraints from being
oversatisfied to minimize their negative influence on the on-design
performance. The resulting optimized airfoil for the baseline case
satisfies all off-design constraints and minimizes degradation in on-
design performance.

The second method using the constrained optimization algorithm
SNOPT is capable of producing the same results as the off-design
weight update method with significantly less computational effort.
The off-design weight update method provides the opportunity to
delete redundant operating conditions on-the-fly, thus potentially
improving its computational efficiency.

Results presented in Sec. VII.F provide evidence for the existence
of two locally optimal solutions to the practical aerodynamic design
problem. Designers should be aware that more than one optimal
solution is possible with design problems involving complex
interactions betweenmultiple objectives and constraints. Alternative
optimization techniques, such as hybrid methods combining
gradient-based and gradient-free approaches, may be appropriate for
such problems.

The concept of design under uncertainty recognizes that various
uncertainties involved in the optimization procedure can lead to
significant uncertainty in the optimal solution. To further increase the
usefulness of the approach presented here, it would be beneficial to
incorporate a methodology for dealing with uncertainty.
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