
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Three-dimensional aerodynamic computations on unstructured
grids using a Newton–Krylov approach

Peterson Wong, David W. Zingg *

University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, Canada M3H 5T6

Received 29 May 2006; received in revised form 24 October 2006; accepted 29 April 2007
Available online 21 June 2007

Abstract

A Newton–Krylov algorithm is presented for the compressible Navier–Stokes equations in three dimensions on unstructured grids.
The algorithm uses a preconditioned matrix-free Krylov method to solve the linear system that arises in the Newton iterations. Incom-
plete factorization is used as the preconditioner, based on an approximate Jacobian matrix after the reverse Cuthill–McKee reordering of
the unknowns. Several approximate viscous operators that involve only the nearest neighboring terms are studied to reduce the cost of
preconditioning. The performance of the algorithm is demonstrated through numerical studies of the ONERA M6 wing and the DLR-F6
wing-body configuration. A ten-order-of-magnitude residual reduction for the wing and wing-body configurations can be obtained with
a computing cost equivalent to 5500 and 8000 function evaluations, respectively, on grids with a half million nodes.
� 2007 Elsevier Ltd. All rights reserved.

1. Introduction

After many years of development, computational fluid
dynamics has become an important aerodynamic design
tool [1,2]. The current technology is capable of solving vis-
cous compressible flows over complete aircraft configura-
tions. Two Drag Prediction Workshops were organized
to assess the accuracy of current solvers when applied to
these flows [3–7]. Some issues arise in these studies, includ-
ing inconclusive grid refinement results and variation
among solutions obtained using different codes. These are
expensive computations due to the use of fine grids, which
are necessary to accurately resolve the flow features such as
shock waves and boundary layers around the aircraft
geometry. A typical computation on a grid with a few mil-
lion nodes requires hours to obtain a solution on multiple
processors. It is an area of research to improve the effi-
ciency of algorithms to reduce computational time.

The Newton–Krylov method is an efficient method for
solving the Navier–Stokes equations [8]. The method has

a fast convergence rate when the solution is close to the
final result. A fully converged solution is thus more obtain-
able, which is beneficial to numerical optimization in
avoiding objective function uncertainties caused by inexact
flow solves. Moreover, Newton’s method is implicit; the
convergence rate is less sensitive to high-aspect-ratio cells,
which are typical in viscous applications. Newton–Krylov
algorithms have been developed by many researchers [9–
20]. Blanco and Zingg [14] compared approximate-New-
ton, standard Newton, and matrix-free Newton methods
on triangular grids. A fast solver is developed using a
matrix-free inexact-Newton approach together with an
approximate-Newton startup strategy. Pueyo and Zingg
[15] developed a preconditioned matrix-free Newton–Kry-
lov algorithm, which converges faster and more reliably
than an approximate Newton algorithm and an approxi-
mately-factored multigrid algorithm. Geuzaine et al. [16]
studied mesh sequencing and multigrid preconditioning
of the Newton–Krylov method. Nemec and Zingg [17]
applied the Newton–Krylov method to numerical optimi-
zation using the discrete adjoint approach. Chisholm and
Zingg [18] developed an efficient startup strategy for the
Newton–Krylov algorithm using the Spalart–Allmaras

0045-7930/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compfluid.2007.04.005

* Corresponding author. Tel.: +1 416 667 7709; fax: +1 416 667 7799.
E-mail address: dwz@oddjob.utias.utoronto.ca (D.W. Zingg).

www.elsevier.com/locate/compfluid

Available online at www.sciencedirect.com

Computers & Fluids 37 (2008) 107–120

Author's personal copy

turbulence model. Smith et al. [19] compared several Jaco-
bian formulations of the Newton–Krylov method on
unstructured grids. Manzano et al. [20] applied the New-
ton–Krylov algorithm to three-dimensional inviscid flows
using unstructured grids. A closely related Newton–Krylov
Runge–Kutta algorithm has been successfully applied to
implicit computations of unsteady flows [21].

The objective of this research is to extend the algorithm
of Manzano et al. [20] to turbulent flows on hybrid unstruc-
tured grids. The use of unstructured grids is motivated by
simpler grid generation about complex geometries and the
possibility to use mesh adaptation to improve solution
accuracy. For viscous computations, hybrid grids can be
used to improve accuracy and to possibly reduce computa-
tional cost [22,23]. However, the use of hybrid grids
increases the complexity of the spatial operator. In particu-
lar, the discretization of the viscous terms involves next-to-
nearest neighbors. Several approximations to the viscous
operator involving only nearest neighbors are compared
here in the approximate Jacobian used to form the precon-
ditioner. A detailed description of the algorithm is fol-
lowed by studies identifying optimal values of various
parameters. The algorithm is then applied to solve the flow
over well-known wing and wing-body configurations using
several different meshes. The algorithm presented here is
based on the ideas presented in [14,15,17,18] and [20]. The
key original contribution here is the extension of the algo-
rithm to three-dimensional turbulent flows on unstructured
meshes.

2. Governing equations

The governing equations are the compressible Navier–
Stokes equations. These equations describe the conserva-
tion of mass, momentum and total energy for a viscous
compressible flow. They are written as

d

dt

Z
X

QdV þ
Z

oX
F � n̂dS ¼

Z
oX

G � n̂dS ð1Þ

where X is an arbitrary control volume, oX is the boundary
of the control volume, and n̂ is the unit normal vector at
the boundary pointing outward. Here, Q is the set of con-
servative flow variables (density q, momentum components
qu; qv; qw, total energy qEÞ;F is the inviscid flux tensor,
and G is the flux tensor associated with viscosity and heat
conduction. They are written as

Q ¼

q

qu

qv

qw

qE

2
666666664

3
777777775
; F ¼

q~V

qu~Vþ p̂i

qv~Vþ p̂j

qw~Vþ pk̂

~VðqE þ pÞ

2
666666664

3
777777775

ð2Þ

G ¼

~0

sxx̂iþ syx̂jþ szxk̂

sxy îþ syy ĵþ szy k̂

sxẑiþ syẑjþ szzk̂

s � ~Vþ krT

2
66666664

3
77777775

ð3Þ

where ~V is the velocity vector, and s � ~V denotes the work
done on the fluid due to viscosity. It is given by

s � ~V ¼ ðusxx þ vsxy þ wsxzÞ̂iþ ðusyx þ vsyy þ wsyzÞ̂j
þ ðuszx þ vszy þ wszzÞk̂ ð4Þ

The viscous stresses are given by the Stokes relation for a
Newtonian fluid:

sij ¼ l
oui

oxj
þ ouj

oxi

� �
� 2

3
lðr � ~VÞdij ð5Þ

where dij is the Kronecker delta function. The heat flux vec-
tor is given by Fourier’s law of heat conduction:
q = �k$T. The thermal conductivity is related to the dy-
namic viscosity through the Prandtl number Pr ¼ cpl=k.
Sutherland’s law is used to calculate the dynamic viscosity
l. For turbulent flows the eddy viscosity, computed as de-
scribed in the following section, is added to the viscosity.
Pressure p for a perfect gas is written in terms of the con-
servative flow variables as

p ¼ ðc� 1Þ qE � 1

2
qðu2 þ v2 þ w2Þ

� �
ð6Þ

3. Turbulence modeling

The Favre-averaged Navier–Stokes equations are solved
for turbulent flows. The Reynolds-stress tensor that arises
from time averaging is modeled with an eddy-viscosity
term using the Boussinesq approximation. The eddy viscos-
ity is modeled using the Spalart–Allmaras turbulence
model [24]. In differential form, it is written as

o~m
ot
þ ð~V � rÞ~m ¼ cb1ð1� ft2Þ~S~m

þ 1

r
ðr � ððmþ ~mÞr~mÞ þ cb2ðr~mÞ2Þ

� cw1fw �
cb1

j2
ft2

� � ~m
d

� �2

þ ft1DU 2 ð7Þ

where DU is the norm of the velocity difference between a
field point and the trip. The model is solved in a form fully
coupled with the mean-flow equations. The eddy viscosity
mt is calculated from the working variable ~m, and m denotes
the kinematic viscosity. The terms on the right-hand side of
the equation are the production, diffusion, destruction, and
trip terms respectively. Production of eddy viscosity is pro-
portional to a vorticity-like term eS , which contains the
magnitude of the vorticity in the mean flow. The destruc-
tion term governs the dissipation of the eddy viscosity
due to blocking effects from the wall. The distance to the

108 P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120

Author's personal copy

closest wall is denoted as d, j is the von Kármán constant,
and fw is a function that models near-wall effects. The trip
term models laminar-to-turbulent transition. Transition
locations are specified by the user. The flow can be assumed
to be fully turbulent by setting the trip functions ft1 and ft2

to zero. Closure coefficients r; cb1; cb2, and cw1 are the same
as those given by Spalart and Allmaras [25]. The wall
boundary condition is ~m ¼ 0. A value of m1/10 is used as
the free-stream condition for ~m, where m1 is the kinematic
viscosity in the free stream.

Ashford [26] proposed a modification to eS in the pro-
duction term. The modification is found to produce better
numerical properties [27] and is adopted in the current
work.

4. Spatial discretization

The spatial discretization follows the finite-volume
approach of Mavriplis and Venkatakrishnan [28] for
hybrid unstructured grids. A cell-vertex approach is used;
the flow variables are stored at grid vertices. Control vol-
umes are constructed around the vertices using a median
dual approach. The spatial terms in the governing equa-
tions are approximated by integrating fluxes over control
volume boundaries. The inviscid flux at a face is given by

fik ’
1

2
ðFðQiÞ þ FðQkÞÞ �~nik þ Dik ð8Þ

where fik is the inviscid numerical flux at face ik, which has
neighboring cells i and k, and~nik is the area-weighted nor-
mal of face ik. Here, Qi is the cell-averaged solution at cell i,
Dik is the numerical dissipation operator, and F(Q) is given
by Eq. (2).

Artificial dissipation is added to the spatial discretiza-
tion to resolve shocks and to provide numerical stability.
The dissipation scheme follows the approach of Jameson
and Mavriplis [29] using undivided Laplacian and bihar-
monic operators. The matrix dissipation scheme of Swan-
son and Turkel [30] is used to improve accuracy. The
dissipation term is written as

Dik ¼ �
1

2
jAikj eð2Þik ðQk � QiÞ � eð4Þik ðLk � LiÞ

� �
Li ¼

X
k

ðQk � QiÞ

where

eð2Þi ¼
X

k

j2

jpk � pij
pk þ pi

and

eð4Þi ¼ max 0; j4 � eð2Þi

� �
ð9Þ

where eik is calculated by averaging from the two neighbor-
ing cells. Two parameters j2 and j4 control the addition of
second- and fourth-difference dissipation. A pressure
switch selects the second-difference operator in the presence

of shocks, while the fourth-difference operator is used in
areas of smooth flow. The resulting scheme is second-order
accurate except in the vicinity of shocks, where it becomes
locally first-order accurate. The Laplacian operator is
denoted as L, and A is the inviscid flux Jacobian:
A ¼ ðoF=oQÞ �~n. The Jacobian can have small eigenvalues
near stagnation points and sonic points, which can be
avoided using two parameters V l; V n, as described by
Swanson and Turkel [30]. A scalar dissipation scheme is
recovered with Vl = Vn = 1, while Vl = Vn = 0 leads to a
pure matrix-dissipation scheme. Values of j2 ¼ 2; j4 ¼
0:1; V l ¼ V n ¼ 0:25 are used in the current study. The con-
vective terms in the turbulence model are discretized using
a first-order scheme, as suggested by Spalart and Allmaras
[24].

Boundary conditions are enforced by extrapolating the
solution to boundary faces and imposing the appropriate
boundary conditions. They are handled in a fully-implicit
manner to obtain a fast convergence rate using Newton’s
method.

4.1. Viscous discretization

The viscous flux at a face is written as

gik ’ GðQik;rQikÞ �~nik ð10Þ

where gik is the viscous flux at face ik;rQ is the gradient of
the flow variables, and GðQ;rQÞ is given by Eq. (3). The
flow variables and gradient at a face can be obtained by
averaging from neighboring cells. i.e.,

Qik ’
1

2
ðQi þ QkÞ ð11Þ

rQik ’
1

2
ðrQi þrQkÞ ð12Þ

The gradient at a cell can be computed using

rQi ’
1

Xi

X
ik

Qik~nik ð13Þ

following Barth and Jespersen [31]. Here, the sum is per-
formed over all faces of cell i, and Xi is the volume of the
cell. The above viscous formulation has a non-compact
stencil involving next-to-nearest neighboring terms. It has
a 13-point stencil on regular quadrilateral grids. It is re-
ferred to as the simple averaging approach in this study.

Alternative approaches to calculate the face gradient
rQik are studied to obtain viscous formulations with a
smaller stencil. The first approach approximates the direc-
tional gradient normal to the face by finite differences from
neighboring cells:

rQik � n̂ik ’
Qk � Qi

lik
l̂ik

� �
� n̂ik ð14Þ

This approach is used by Smith et al. [19] and Mavriplis
[32]. Here, l̂ik is the unit vector from the centroid of cell i
to the centroid of cell k, lik is the distance between the cent-
roids of cells i and k, and n̂ik is the unit normal of face ik.

P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120 109

Author's personal copy

This approach has a compact stencil involving only neigh-
boring cells. It has a five-point stencil on regular quadrilat-
eral grids. However, this approximation is only accurate on
regular grids. The method is inaccurate when the line join-
ing the centroids of cells i and k is not in the normal direc-
tion of face ik. This occurs on irregular grids, especially on
stretched triangular grids.

The second approach computes the face gradient by
integration over a diamond shaped control volume, as
studied by Coirier [33]. The gradient is given by

rQik ’
1

Xw

X
j

Qj~nj ð15Þ

where Xw is the volume of the integrating region, and
j ¼ 1; . . . ;N j are the faces bounding the integrating region.
The region is illustrated in Fig. 1a for a square grid. It is
defined by the closed volume bounded by the centroids of
cells i and k and the vertices of face ik. This extends to three
dimensions and to hybrid grids. The flow variables at face j

can be obtained by averaging from the face vertices (e.g.
v1; k in Fig. 1a). This requires knowledge of the flow vari-
ables at vertices of face ik (e.g. v1), which can be approxi-
mated by averaging from neighboring cells (i.e. i; k; a1; a2).

The diamond path approach has a nine-point stencil on
regular quadrilateral grids. On the other hand, it has the
same stencil as the approximate difference approach on tri-
angular grids.

The third approach computes the face gradient by inte-
gration over control volumes on the primal grid [33]. This
is illustrated in Fig. 1b, again for a square grid. The gradi-
ent is obtained by averaging from face vertices:

rQik ’
1

N v

X
v

rQv ð16Þ

where v ¼ 1; . . . ;N v are the vertices of face ik. Each v has a
corresponding cell on the primal grid. The gradient rQv is
obtained by integration over the corresponding primal-grid
cell. The primal grid approach has the same stencil as the
diamond path approach.

5. Newton–Krylov algorithm

5.1. Newton iterations

After spatial discretization, the steady-state governing
equations, including the turbulence model equations,
become a system of nonlinear algebraic equations:
RðQÞ ¼ 0. Newton’s method, which has the potential for
fast convergence, can be used to solve these equations. At
each Newton iteration, a linear system is solved for the
solution update DQ:

oR

oQ

� �n

DQn ¼ �RðQnÞ ð17Þ

Qnþ1 ¼ Qn þ DQn ð18Þ

Here, n denotes a Newton iteration, and oR=oQ is the flow
Jacobian. This procedure is repeated until the solution sat-
isfies some convergence tolerance.

Newton’s method may not converge when the solution
is far from the final result. This is because the linear system,
Eq. (17), is a reasonable approximation to Rnþ1 ¼ 0 only
for small DQn, when the solution is close to the final solu-
tion. Alternatively, the implicit-Euler method can be used,
which is more robust. The matrix of the implicit-Euler
method with local time linearization [34] is written as

AðQnÞ ¼ X
Dt
þ oR

oQ

� �n

ð19Þ

where X/Dt represents a diagonal matrix of cell volumes di-
vided by time steps. When the time step is increased to-
wards infinity, Newton’s method is approached from the
implicit-Euler method. In the current study, the implicit-
Euler approach is used to provide a robust startup strategy.
Newton-type convergence is obtained using large time steps
near convergence.

5.2. The linear system

The linear system that arises in the implicit Euler itera-
tions can be written as Ax ¼ b, where A is given in
Eq. (19), x ¼ DQn and b ¼ �RðQnÞ. The system is large
and non-symmetric. In addition, the matrix is indefinite
due to the hyperbolic nature of the Navier–Stokes equa-
tions. Krylov methods can be used to solve this class of
problems. In particular, the generalized minimum residual
method, GMRES, developed by Saad and Schultz [35] is
found to be effective for aerodynamic applications. The
method is implemented using the PETSc numerical code
[36]. This method has the property of minimizing the L2-
norm of the residual over all vectors in the Krylov subspace.
The GMRES method computes a new search vector every
iteration. The vector is added to the Krylov subspace to
progressively improve the solution. However, more search
directions incur higher memory and computational costs.
For large problems, this limits the maximum number of
iterations that can be used. The restarted version of the

Dual Mesh
Contour of integration

i k

a1a2

v1

j1

Dual Mesh
Contour of integration / Primal Mesh

i k

v1

a b

Fig. 1. Calculation of the face gradients by integration over (a) a diamond
path and (b) a primal-grid cell.

110 P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120

Author's personal copy

algorithm can be used, where the algorithm is restarted
from the most recent solution. However, for indefinite
matrices, convergence of the restarted algorithm may stag-
nate. Alternatively, the number of iterations can be reduced
in a more effective way by the use of preconditioning.

Complete solving of the linear system equation (17) is
unnecessary to obtain fast convergence of Newton’s
method. An inexact Newton method can significantly
reduce computational work by avoiding over-solving of
the system [37]. The linear system can be solved until

kRðQnÞ þAðQnÞDQnk 6 gnkRðQnÞk ð20Þ

with a tolerance parameter gn.
A matrix-free approach can be used for Krylov meth-

ods, such as GMRES, that require Jacobian matrix–vector
products but not explicit Jacobian matrices. The matrix–
vector product can be approximated using a finite differ-
ence approximation to the Fréchet derivative:

Av ’ RðQþ �vÞ �RðQÞ
�

þ X
Dt

v ð21Þ

where � is a step size. The matrix-free approach allows qua-
dratic convergence of Newton’s method because the matrix
of the linear system is a complete linearization of the residual
vector. Moreover, this approach reduces memory usage and
avoids some difficulties during linearization. A stepsize of

�kvk2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
10�10

p
ð22Þ

is used following Chisholm and Zingg [18].
Scaling of the linear system as suggested by Chisholm

[38] is found to improve convergence of the matrix-free
inexact Newton method with a fully-coupled turbulence
model. The scaled linear system is written as

DrAD�1
c Dcx ¼ Drb ð23Þ

where Dr;Dc are diagonal matrices containing scaling fac-
tors. The scaling factors can be chosen so that the coupled
residual and solution vectors are better scaled, i.e. the en-
tries are of similar magnitudes. Scaling the turbulence
equation and variables by a value of 10�3 is considered
in this work, following the approach of Chisholm [38].
Proper scaling of the equations (Dr) ensures that both the
turbulence and the mean-flow residuals are reduced in an
inexact linear solve. On the other hand, scaling of the vari-
ables (Dc) improves the accuracy of the matrix-free Jaco-
bian approximation, which improves convergence of
Newton’s method.

5.3. Preconditioning

Preconditioning transforms the linear system to one
which has the same solution, but is easier to solve by an
iterative solver. It can dramatically reduce the number of
GMRES iterations required to solve the system to a spec-
ified tolerance. Right preconditioning can be used:

AM�1u ¼ b; u ¼Mx ð24Þ

where M is the preconditioner. This approach is selected
since the residual is available every iteration, which is ben-
eficial for checking convergence. The preconditioner M is
chosen so that AM�1 has a better condition number than
A, while M�1 is efficient to compute.

An incomplete lower-upper factorization preconditioner
ILU(p) is used following Pueyo and Zingg [15]. This
approach is found to be effective for aerodynamic flows.
The factorization is based on an approximate Jacobian of
the fully coupled discrete mean-flow and turbulence model
residual equations after applying the reverse Cuthill–
McKee reordering. This is written as

LU ’ fA; M ¼LU ð25Þ

where L, U are the incomplete factors, and fA is the
approximate Jacobian. The parameter p controls the
amount of fill in the factors. Higher fill results in more
effective preconditioning but with a higher memory usage
and computational cost. The approximate Jacobian is con-
structed by a linearization of the flow equations with only
second-difference dissipation. The resulting Jacobian has
contributions from nearest neighbors only. This is found
to be more effective than the complete Jacobian [15]. The
dissipation coefficients in fA are given by

eð2Þp ¼ eð2Þ þ reð4Þ ð26Þ

where r is a parameter which controls the diagonal domi-
nance of the matrix, e(2), e(4) are the dissipation coefficients
as given in Eq. (9), and the subscript p denotes values used
in the preconditioner. As a note, the same matrix dissipa-
tion parameters Vl, Vn are used in the preconditioner and
on the right-hand side.

Approximate viscous calculations are studied for pre-
conditioning. The simple averaging approach in Eq. (12),
and the diamond-path and primal-grid approaches in
Eqs. (15) and (16), have a non-compact stencil involving
next-to-nearest neighboring terms. The inclusion of these
terms leads to more non-zeros in fA, which increases cost
and memory usage of preconditioning, especially in three
dimensions. Neglecting these terms is considered to main-
tain a compact stencil in fA.

Besides the aforementioned preconditioner ILU(p)
based on a level-of-fill strategy, an alternative approach
based on a threshold strategy is also considered in this
work. This approach provides more control over the num-
ber of nonzero entries in the preconditioner, which is
important in three dimensions. The threshold approach
ILUT(P, s) is based on dropping elements in the factoriza-
tion according to their magnitude rather than their loca-
tions. The drop tolerance s determines the elements to be
neglected, while P controls how many elements are kept.

5.4. Time-stepping strategy

This section describes the choice of the time step, Dt in
Eq. (19), of the implicit Euler method. A time-stepping

P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120 111

Author's personal copy

strategy which combines the use of small time steps during
startup and switches to large time steps near convergence is
used to provide a robust and efficient algorithm with a
Newton-type convergence. For the mean-flow equations,
the local time step following Pulliam [39] is used:

Dtflow;i ¼
Dtref

1þ
ffiffiffiffiffiffiffiffi
X�1

i

q ð27Þ

where i is the cell index, and Xi is the nondimensional local
cell volume. A reference time step Dtref is used to control
the time step globally. For the nth nonlinear iteration,
the time step is written as

Dtn
ref ¼

Dt1 n 6 n1

a n ¼ n1 þ 1

b� Dtn�1
ref n is a multiple of f

Dtn�1
ref otherwise

8>>><
>>>: ð28Þ

A small time step Dt1 is used in the first n1 iterations.
After that, the time step is switched to a larger value a.
The time step is multiplied by a factor b every f iterations.
Suggested parameters are

n1 ¼ 2; Dt1 ¼ 0:05; a ¼ 2; b ¼ 2; f ¼ 5 ð29Þ

A safeguarding mechanism is included to prevent non-
physical solution updates caused by too large a time step.
The solution update is checked every nonlinear iteration.
If nonphysical flow quantities, such as negative pressure
or density, are encountered, then the recent solution update
is rejected and the time step of the next iteration is halved.
A similar approach is used by Smith et al. [19].

The turbulence model requires small time steps during
startup. Otherwise, large solution updates occur which
cause the solution to become unstable. However, small
time steps adversely affect convergence. Spalart and Allm-
aras [24] suggest the use of an M-type Jacobian matrix to
prevent negative values of the turbulent solution. This
improves robustness at a penalty on the convergence rate.
Chisholm and Zingg [27] suggest an alternative approach.
This approach attempts to prevent large updates by locally
reducing the time step used in the turbulence model update
only. Larger time steps are allowed elsewhere in the
domain. Moreover, this approach can be used with the
matrix-free method since it does not require a modification
to the Jacobian matrix. The time step is written as

Dtturb;i ¼
Dtflow;i if jde;ij < dm;i

jDtlimit;ij otherwise

�
ð30Þ

where de,i is an estimate of the local solution update, and
dm;i ¼ r~mi is the maximum allowable change in the turbulence
solution specified by a parameter r. A typical value of r is
0.3, which allows a 30% change. When the estimate exceeds
the allowable value, the time step is reduced to a small time
step Dtlimit,i. Otherwise, the mean-flow time step is used. The
estimate is determined from the following scalar equation:

J turb;ide;i ¼ �Rturb;i ð31Þ

where J turb;i is the diagonal entry in fA that corresponds to
the local turbulence equation, and Rturb;i is the entry in the
residual vector that corresponds to the local turbulence
equation. The limiting time step is determined so that it re-
duces the estimate to the allowable value, i.e. jde;ij ¼ dm;i.
This can be calculated by solving the following equation
for Dtlimit;i:

Xi

Dtlimit;i
þ J turb;i

� �
dm;i ¼ �Rturb;i ð32Þ

Further details about the local time step can be found in
the original work by Chisholm and Zingg [18].

6. Results

Two cases are presented. A summary of the flow condi-
tions is given in Table 1. The grids are summarized in Table
2. Case 1 is a turbulent flow over the ONERA M6 wing
[40]. The case is studied on three hybrid grids with increas-
ing densities. The grids have prisms in the viscous region
and tetrahedra elsewhere in the domain. Grid 1c is depicted
in Fig. 2. Case 2 is a turbulent flow over the DLR F6 wing-

Table 1
Summary of test cases and flow conditions

Case Geometry M1 a� Re

1 ONERA M6 0.8395 3.06 11.7 · 106

2 DLR F6 0.75 0.52 3.0 · 106

Table 2
Summary of grids

Grid Geometry Size Type

1a ONERA M6 179,758 Hybrid
1b ONERA M6 480,775 Hybrid
1c ONERA M6 1,124,270 Hybrid
2a DLR F6 584,543 Hybrid
2b DLR F6 1,293,250 Hybrid
2c DLR F6 1,121,301 Tetrahedral

Fig. 2. Grid 1c over the ONERA M6 wing with 1,124,270 nodes (hybrid).
Density volume region included above the wing surface.

112 P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120

Author's personal copy

body configuration [3,41]. Three grids are used for Case 2.
Grids 2a and 2b are hybrid grids with a half million nodes
and over one million nodes, respectively. Grid 2b is
depicted in Fig. 3. Grid 2c is the tetrahedral grid with
1,121,301 nodes from the second Drag Prediction Work-
shop [3]. The cases are assumed to be fully-turbulent. The
CPU times reported in this paper are based on a single
1.5 GHz Intel Itanium 2 processor.

6.1. Grid generation

The ICEM CFD grid generator is used to generate the
hybrid grids 1a–1c, 2a, and 2b. For grids 1b, 1c, 2a, and
2b, a density volume region is included above the wing sur-
face to provide a better resolution of the shock wave. This
is depicted in Figs. 2 and 3. For grids 1a, 1b, and 2a, the
prism layers are generated by extruding 15 layers of prism
elements from the body surface mesh using a growth ratio
of 1.5. For grids 1c and 2b, the prism layers are generated
by extruding 26 layers of prism elements from the surface
mesh. The first 15 layers from the body have a growth ratio
of 1.2, and the remaining 11 layers have a growth ratio of
1.5. These parameters are comparable to those described
by Lee-Rausch et al. [3]. The off-wall spacing is
2.5 · 10�6 mean aerodynamic chords for grids 1a–1c over
the wing, and is 2 · 10�6 mean aerodynamic chords for
grids 2a and 2b over the wing-body configuration. The
far-field boundary is specified at 15 mean aerodynamic
chords from the wing. It is located at 12 times the length
of the fuselage from the wing-body configuration for grids
2a and 2b. These grids are not expected to be sufficiently
fine to achieve a low numerical error in drag.

6.2. Preconditioning study

Table 3 tabulates the results of a study of various ILU
preconditioners. The preconditioners are compared based
on their effectiveness to reduce the linear residual by two

orders of magnitude. The comparisons are performed for
Case 1 on grid 1a (abbreviated as Case 1a in this paper)
using the linear system when the nonlinear residual is

10�4. The matrix fA for preconditioning is constructed as
described in a previous section. The viscous terms in the
matrix are calculated using the simple averaging approach
given in Eq. (12) with and without the next-to-nearest
neighboring contributions. The matrix neglecting these
terms is denoted as a distance-1 (D1) matrix. This approach
is used unless otherwise stated. The matrix including these
terms is denoted as a distance-2 (D2) matrix. The viscous
terms in the right-hand side R are computed using the sim-
ple averaging approach including the next-to-nearest neigh-
boring terms.

The block version of the level-of-fill approach, ILU(p),
is studied, where p is a parameter which controls the
amount of fill. The ILU(p) approach in Table 3 is based
on the distance-1 matrix. Higher fill improves the effective-
ness of the preconditioner, requiring fewer GMRES itera-
tions to solve the linear system, but with a higher
computing cost and memory usage. As shown in Table 3,
this approach becomes more effective when p is increased.
For this case, the number of GMRES iterations, denoted
as i-it in the table, is reduced from 33 to 9 when p is
increased from 0 to 4. The computational work to factorize
the matrix, denoted as CPU-form in the table, increases
nonlinearly with p. The total cost, denoted as CPU-total,
includes factorization cost and the cost of triangular
back-solves U�1L�1. The former cost increases with p,
while the latter cost increases with the number of GMRES
iterations. Therefore, an optimal p can be found, in this
case p = 2. The storage of the factors, denoted as nnzB/
N, also increases nonlinearly with p. This number is the
average number of nonzero blocks per block row in the fac-
tors. In general, memory usage is unpredictable for the
level-of-fill approach. Considering both computing cost
and memory usage, the ILU(1) preconditioner is a better
choice than ILU(2).

Fig. 3. Grid 2b over the DLR-F6 wing-body configuration with 1,293,250
nodes (hybrid). Density volume region included above the wing surface.

Table 3
Memory, CPU cost and effectiveness to reduce the inner residual by two
orders of magnitude for different preconditioners

Preconditioner nnzB/N CPU-form i-it CPU-total

ILU(0) 10.9 10 33 236
ILU(1) 21.8 29 24 202
ILU(2) 41.4 96 12 197
ILU(3) 69.7 269 10 375
ILU(4) 106.8 638 9 759
D2-ILU(0) 45.4 139 16 350
D2-ILU(1) 134.0 1124 10 1362
D2-ILU(2) 294.5 5537 8 5856
ILUT(20,10�3) 14.2 548 42 918
ILUT(80,10�3) 25.1 1176 21 1395
ILUT(160,10�3) 36.0 2065 15 2262
ILUT(20,10�5) 15.3 2802 42 3199
ILUT(80,10�5) 31.6 7365 20 7616
ILUT(160,10�5) 50.1 14,971 14 15,201

CPU time units are in seconds.

P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120 113

Author's personal copy

Preconditioning based on the distance-2 matrix is also
examined in Table 3. This is denoted as D2-ILU(p), where
the viscous terms in fA include next-to-nearest neighboring
terms. For similar effectiveness, as indicated by i-it in Table
3, the distance-2 approach is more expensive and requires
more memory usage than the distance-1 approach. An
example is the comparison between ILU(3) and D2-ILU(1).

Finally, results for a scalar version of the threshold
approach, ILUT(P ; s), are also shown in Table 3. The
ILUT(P ; s) factorization is based on the distance-1 matrix.
The parameter P is the number of scalar elements allowed
to fill in each row in each of the factors L;U, respectively.
The elements in the factors that are smaller than s in mag-
nitude are dropped. Unlike the level-of-fill approach, mem-
ory usage of the threshold approach is predictable. For
similar effectiveness in terms of inner iterations, the thresh-
old approach has a much higher factorization cost than the
level-of-fill approach, but with a similar memory usage. An
example is the comparison between ILUT(80,10�3) and
ILU(1). The ILUT preconditioner becomes more effective
when P is increased. On the other hand, the use of a smaller
s of 10�5 over 10�3 is only slightly more effective but with a
much higher factorization cost. Based on these results, the
level-of-fill approach ILU(p) with p = 1 is selected.

6.3. Viscous preconditioning

Various viscous formulations are studied in the matrixfA for preconditioning. This includes the simple-averaging,
approximate-difference, diamond-path, and primal-grid
approaches, as described in a previous section. Except for
the approximate-difference approach, these approaches
have a non-compact stencil involving next-to-nearest
neighboring terms. These terms can be dropped in the
matrix fA, as described in the previous section. This is
referred to as a distance-1 (D1) approach.

Fig. 4 depicts the convergence histories using various
viscous formulations in fA. The study is performed for Case
1a. The simple-averaging approach is used on the right-
hand side. Thus these cases converge to the same solution.
Here, ‘‘CPU time in RHS evaluations’’ (denoted as CPU-
f.e. in Table 4) is the CPU time in terms of equivalent
right-hand side (RHS) evaluations, or function evaluations.
It is the CPU time divided by the time required for one RHS
evaluation. This unit provides a convenient measure to
compare efficiency of algorithms on various platforms and
grids. Convergence histories using the simple-averaging-
D1, approximate-difference, diamond-path-D1, and pri-
mal-grid-D1 preconditioners are similar. These approaches
have a faster convergence than the diamond-path and the
primal-grid preconditioners when next-to-nearest neigh-
bors are included. As a note, the simple-averaging approach
with next-to-nearest neighbors is not included in the study
because it is too expensive.

The number of outer (o-it) and inner (i-it) iterations is
summarized in Table 4. The cost of the preconditioner
can be measured in terms of the cost per inner iteration.

This is denoted as CPU-f.e./
P

i-it in the table. The D1 pre-
conditioners (simple-averaging-D1, diamond-path-D1, pri-
mal-grid-D1) and the approximate-difference approach
have a cost of roughly 2.4 units. The diamond-path and
the primal-grid approaches have a higher cost of 3.7 and
3.5 units, respectively. These two approaches have more
nonzero elements in the matrix fA, i.e. the next-to-nearest
neighboring terms. It can be concluded from Fig. 4 and
Table 4 that the D1 and the approximate-difference precon-
ditioners have a lower cost.

The above results are computed using the various vis-
cous formulations only in the matrix fA for precondition-
ing. Next we consider using these formulations on the
right-hand side as well. This affects both accuracy and con-
vergence. The next-to-nearest neighboring terms are kept
on the right-hand side. These terms are dropped in the

matrix fA using a D1 approach. The results are depicted
in Fig. 5. The simple-averaging and the approximate-differ-
ence approaches have a faster convergence than the dia-
mond-path and the primal-grid approaches. This is due
to more expensive right-hand side calculations using the
latter two approaches. The simple-averaging right-hand
side formulation as given in Eq. (12) is inexpensive since
the cell gradients rQi are pre-calculated. These terms are

Table 4
Convergence statistics using different viscous calculations

Preconditioner RHS o-it
P

i-it CPU-f.e. CPU-f.e./P
i-it

Simple avg. D1 Simple avg. 92 1668 3777 2.3
Approx diff. Simple avg. 92 1590 3591 2.3
Diamond path D1 Simple avg. 92 1592 3845 2.4
Primal grid D1 Simple avg. 95 1597 3851 2.4
Diamond path Simple avg. 92 1504 5495 3.7
Primal grid Simple avg. 97 1704 6017 3.5

Approx diff. Approx Diff. 92 1593 3884 2.4
Diamond path D1 Diamond Path 92 1588 5285 3.3
Primal grid D1 Primal Grid 92 1582 5178 3.3

(CPU-f.e. denotes the CPU time normalized by the time for one RHS
calculation using the simple averaging approach.)

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 1000 2000 3000 4000 5000 6000

R
es

id
ua

l

CPU time in RHS evaluations (Simple Avg.)

Simple Avg. D1
Approx Diff

Diamond Path D1
Primal Grid D1
Diamond Path

Primal Grid

Fig. 4. A study of viscous preconditioning for Case 1a. The simple
averaging approach is used on the right-hand side.

114 P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120

Author's personal copy

required to compute the source terms in the turbulence
model.

The computed lift and drag coefficients are tabulated in
Table 5 for the various viscous right-hand side formula-
tions. For this particular case and mesh, all four
approaches give very similar force coefficients. In principle,
the diamond-path and the primal-grid approaches are
more accurate than the simple-averaging approach. On
the other hand, the approximate-difference approach can

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 1000 2000 3000 4000 5000 6000

R
es

id
ua

l

CPU time in RHS evaluations (Simple Avg.)

Simple Avg. (D1 prec.)
Approx Diff

Diamond Path (D1 prec.)
Primal Grid (D1 prec.)

Fig. 5. A study of various viscous calculations in the preconditioner and
on the right-hand side for Case 1a.

Table 5
Lift and drag coefficients using different viscous calculations on the right-
hand side

RHS CL CD

Simple avg. 0.2640 0.01466
Approx diff. 0.2649 0.01462
Diamond path 0.2654 0.01466
Primal grid 0.2648 0.01461

Table 6
Convergence statistics to converge the mean-flow residual to 10�10: effect
of the linear system tolerance

Case g o-it
P

i-it CPU-f.e.

1b 10�1 155 2152 5594
1b 10�2 125 2546 5565
1b 10�3 134 3522 7021

2a 10�1 204 2126 6386
2a 10�2 123 2698 5755
2a 10�3 121 3138 6284

Table 7
Convergence statistics to converge the mean-flow residual to 10�10: effect
of scaling

Case Scaling o-it
P

i-it CPU-f.e.

1b No scaling 210 2337 6755
1b Scaling 125 2546 5565

2a No scaling 557 3627 14,675
2a Scaling 123 2698 5755

Table 8
Total number of GMRES iterations (

P
i-it) required to converge the

mean-flow residual to 10�10 for different values of r

r Case 1a Case 1b Case 2a

4 1928 3092 4752
6 1781 2649 3514
8 1684 2500 3043
10 1668 2546 2698
12 1689 2616 2613
14 1858 2884 3139

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 4000 8000 12000 16000

R
es

id
ua

l

CPU time in RHS evaluations

Case 1a
Case 1b

Case 1c (64-bit)

Fig. 6. Case 1 convergence histories.

Table 9
Statistics of the Newton–Krylov algorithm

Case o-it
P

i-it
P

i-it/o-it CPU-f.e. CPU time (h)

1a 92 1668 18.1 3777 5.0
1b 125 2546 20.4 5565 20.9
1ca 187 4511 24.1 15,542 130.6
2a 154 4348 28.2 8568 38.1
2ba,b 99 2068 20.9 7812 72.4
2ca 298 9925 33.3 35,156 360.5

a Using 64-bit code.
b Note: Case 2b is not fully converged. For this case, results are shown

for convergence to 10�6.

0.15

0.2

0.25

0.3

0.35

0 2000 4000 6000

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Li
ft

co
ef

fic
ie

nt

D
ra

g
co

ef
fic

ie
nt

CPU time in RHS evaluations

Lift
Drag

Fig. 7. Convergence of lift and drag coefficients for Case 1b.

P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120 115

Author's personal copy

be inaccurate on stretched triangular grids. For the remain-
ing studies, the simple-averaging approach is used on the
right-hand side. The simple averaging-D1 approach is used
in fA for preconditioning.

Table 10
Convergence data for the lift and drag coefficients

Convergence criterion CPU-f.e.

0.5% of CL 3950
0.1% of CL 4270
0.01% of CL 4588
0.5% of CD 3906
0.1% of CD 4230
0.01% of CD 4571
Fully converged 5565

Fig. 8. Pressure contours over the ONERA M6 wing at M1 = 0.8395,
a = 3.06�, and Re = 11.7 · 106.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

0 10000 20000 30000 40000

R
es

id
ua

l

CPU time in RHS evaluations

Case 2a
Case 2b (64-bit)
Case 2c (64-bit)

Fig. 9. Convergence for Case 2 over a wing-body configuration. Symbol
spacing: 5 iterations.

Table 11
Startup procedure for Case 2c

Stage RHS Prec. Turb. model Scaling Max Dtref Switching criteria

First-order e(2) = 1, e(4) = 0 eð2Þp ¼1 Off Off – 10 iter.

First-order e(2) = 1/4, e(4) = 0 eð2Þp ¼1/2 On Off – Rf <10�4

First-order e(2) = 1/4, e(4) = 0 eð2Þp ¼1/2 On On – Rf <10�4

Scalar diss. j2 = 2, j4 = 0.4 r = 10 On On 16 50 iter.
Scalar diss. j2 = 2, j4 = 0.4 r = 10 On On – 30 iter.
Matrix diss. j2 = 2, j4 = 0.1, r = 10, On On 256 70 iter.

Vl = Vn = 0.25 Vl = Vn = 0.6
Matrix diss. j2 = 2, j4 = 0.1, r = 10, On On – –

Vl = Vn = 0.25 Vl = Vn = 0.25

Rf denotes L2-norm of the mean-flow residual.

0.3

0.4

0.5

0.6

0.7

0 10000 20000 30000 40000

Li
ft

co
ef

fic
ie

nt

CPU time in RHS evaluations

Case 2a
Case 2b
Case 2c

Fig. 10. Case 2 lift convergence.

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 10000 20000 30000 40000

D
ra

g
co

ef
fic

ie
nt

CPU time in RHS evaluations

Case 2a
Case 2b
Case 2c

Fig. 11. Case 2 drag convergence.

Fig. 12. Pressure contours over the DLR-F6 wing-body configuration at
M1 = 0.75, a = 0.52�, and Re = 3 · 106.

116 P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120

Author's personal copy

6.4. Solver parameters

A summary of the solver parameters is given in this sec-
tion. This set of parameters is used for all subsequent cases.
These parameter values are effective for a broad range of
problems without tuning for individual cases. A non-
restarted version of GMRES with 50 Krylov vectors is used
as a linear solver. An inexact-Newton approach with a lin-
ear system tolerance of g = 10�2 is selected based on the
results shown in Table 6. In the table, o-it denotes outer
iterations, i-it denotes inner iterations, and CPU-f.e. is
the CPU time in terms of equivalent function evaluations.
Note that the CPU time is not proportional to the number

of inner iterations. This is because the cost of precondition-
ing every outer iteration is a major contribution to the total
cost in three dimensions. Thus, the CPU time also depends
on the number of outer iterations.

Scaling is applied to the linear system as discussed in a
previous section. The turbulence equation and variables
are scaled by a value of 10�3. This is found to improve con-
vergence in terms of outer iterations, as shown in Table 7.
Preconditioning is obtained using an incomplete factoriza-
tion ILU(1) based on an approximate Jacobian matrix. A
value of r = 10 is used, where r is the parameter defined
in Eq. (26). A study of r is summarized in Table 8. Note
that the matrix dissipation parameters Vl and Vn in the

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Experiment
480k hybrid
1.12M hybrid

20% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1
44% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1
65% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1
80% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1
90% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1
95% wing span

Fig. 13. Comparison with experimental pressure coefficients [40] at different wing span locations for Cases 1b and 1c.

P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120 117

Author's personal copy

approximate Jacobian are the same as those on the
right-hand side. The simple-averaging approach is used
to calculate the viscous terms on the right-hand side. The
simple-averaging-D1 approach is used in the matrix fA
for preconditioning. The Reverse Cuthill–McKee approach
is used to reorder the matrix before factorization.

The time step sequence in Eq. (28) is used. The param-
eters are given in Eq. (29). A first-order discretization
scheme is used before switching to matrix dissipation. This
allows larger time steps to be used during startup and pro-
vides a better initial solution to Newton’s method. The
first-order scheme is defined with eð2Þ ¼ 1=4; eð4Þ ¼ 0, and
eð2Þp ¼ eð2Þ. When the mean-flow residual is reduced to

10�4, the algorithm switches to the matrix-dissipation
stage. The same time step sequence is used in both the
first-order and the matrix-dissipation stages. A nonzero ini-
tial solution of ~m ¼ 10m1 is used for the turbulence model,
as suggested by Chisholm and Zingg [27].

6.5. Convergence results

Fig. 6 depicts the convergence histories for Case 1 over a
wing on three grids with increasing densities. The conver-
gence statistics are given in Table 9. The solver parameters
are as summarized in the previous section. For the half-mil-
lion-node case (Case 1b), convergence to 10�10 is obtained

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Experiment
584k hybrid
1.29M hybrid
1.12M tetra

15% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

23.9% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

33.1% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

37.7% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

51.4% wing span

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

63.8% wing span

Fig. 14. Comparison with experimental pressure coefficients at different wing span locations for Cases 2a, 2b, and 2c.

118 P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120

Author's personal copy

in a CPU time equivalent to 5565 RHS evaluations
(20.9 h). It requires 125 outer and 2546 inner iterations to
converge. For the one-million-node case (Case 1c), the
solution is converged using a different version of the code,
which is referred to as the 64-bit code. This code uses 64-bit
long integers to store memory locations, as supported by
the PETSc numerical software [36]. This is necessary due
to the large number of entries in the matrix for precondi-
tioning. The 64-bit code is found to be 1.86 times slower
than the original code in terms of both CPU time and
CPU-f.e. This factor should be taken into account when
interpreting the results.

Convergence of lift and drag coefficients for Case 1b is
shown in Fig. 7. The force coefficients converge asymptot-
ically to their final values as the residual converges to zero.
The time required to converge the force coefficients to some
specified tolerances is summarized in Table 10. It requires
about 4000 RHS evaluations, which is about three quarters
of the total time, to converge to within 0.5% of the con-
verged lift and drag coefficients, which are 0.262 and
0.0146, respectively. Fig. 8 depicts the pressure contours
over the wing on grid 1c. The pressure coefficients at differ-
ent wingspan locations are compared to experimental data
in Fig. 13. Reasonable agreement is obtained, but the solu-
tion is not grid converged. The solution on grid 1c has a
stronger shock wave than the solution on grid 1b. The con-
verged lift and drag coefficients for Case 1c are 0.282 and
0.0149, respectively.

Fig. 9 depicts the convergence histories for Case 2 over a
wing-body configuration on different grids. The conver-
gence statistics are given in Table 9. For the half-million-
node case (Case 2a), convergence to 10�10 is obtained in a
CPU time equivalent to 8568 RHS evaluations (38.1 h).
Cases 2a and 2b are converged using the solver parameters
as given in the previous section. Case 2c is converged using
an alternative startup procedure as summarized in Table 11.
This startup procedure allows larger time steps to be used
for this case. Both Cases 2a and 2c are converged below
10�10 in the study. For Case 2b the residual convergence
stalls just below 10�6; however, the lift and drag coefficients
are converged, as depicted in Figs. 10 and 11. This may be
caused by poor mesh quality at the leading edge close to the
wing tip. The experimental results are CL = 0.5 and
CD = 0.0295 as given by Lee-Rausch et al. [3].

Fig. 12 depicts the pressure contours over the wing-body
configuration on grid 2a. The pressure coefficients at differ-
ent wingspan locations are compared to experimental data
in Fig. 14. Note that the tetrahedral grid (grid 2c) does not
have increased density in the shock wave region.

7. Conclusions

A Newton–Krylov algorithm is presented for the com-
pressible Navier–Stokes equations on three-dimensional
hybrid unstructured grids. Residual convergence to 10�10

for the ONERA M6 wing and the DLR F6 wing-body con-
figuration can be obtained in a CPU time equivalent to

5500 and 8000 RHS evaluations, respectively, on grids with
a half million nodes.

ILU preconditioning based on a distance-2 matrix
including next-to-nearest neighboring terms is found to be
computationally expensive in three dimensions. Distance-
1 ILU(1) preconditioning is found to be relatively efficient
with reasonable effectiveness and memory usage. Alterna-
tive distance-1 viscous formulations are considered for pre-
conditioning and are found to be feasible alternatives with
similar computational costs. Future work involves develop-
ment of an efficient parallel implementation of the algo-
rithm and investigation of multi-level preconditioners.

Acknowledgements

This research was supported by Bombardier Aerospace
and the Government of Ontario. The authors thank J.V.
Lassaline and T.T. Chisholm for many useful discussions.

References

[1] Johnson FT, Tinoco EN, Yu NJ. Thirty years of development and
application of CFD at Boeing Commercial Airplanes, Seattle. AIAA
Paper 2003-3439.

[2] Nelson TE, Zingg DW. Fifty years of aerodynamics: successes,
challenges, and opportunities. CAS J 2004;50(1):61–84.

[3] Lee-Rausch EM, Frink NT, Mavriplis DJ, Rausch RD, Milholen
WE. Transonic drag prediction on a DLR-F6 transport configuration
using unstructured grid solvers. AIAA Paper 2004-0554.

[4] May G, van der Weide E, Jameson A, Sriram, Martinelli L. Drag
prediction of the DLR-F6 configuration. AIAA Paper 2004-0396.

[5] Luo H, Baum JD, Löhner R. High-Reynolds number viscous flow
computations using an unstructured-grid method. AIAA Paper 2004-
1103.

[6] Mavriplis DJ, Levy DW. Transonic drag prediction using an
unstructured multigrid solver. AIAA Paper 2002-0838.

[7] Mavriplis DJ. Grid resolution study of a drag prediction workshop
configuration using the NSU3D unstructured mesh solver. AIAA
Paper 2005-4729.

[8] Knoll DA, Keyes DE. Jacobian-free Newton–Krylov methods: a
survey of approaches and applications. J Comput Phys
2004;193:357–97.

[9] Venkatakrishnan V, Mavriplis DJ. Implicit solvers for unstructured
meshes. J Comput Phys 1992;105:83–91.

[10] Barth TJ, Linton SW. An unstructured mesh newton solver for
compressible fluid flow and its parallel implementation. AIAA Paper
95-0221.

[11] Nielsen EJ, Anderson WK, Walters RW, Keyes DE. Application of
Newton–Krylov methodology to a three-dimensional unstructured
Euler code. AIAA Paper 95-1733.

[12] Anderson WK, Rausch RD, Bonhaus DL. Implicit/multigrid algo-
rithms for incompressible turbulent flows on unstructured grids. J
Comput Phys 1996;128:391–408.

[13] Forsyth PA, Jiang H. Nonlinear iteration methods for high speed
laminar compressible Navier–Stokes equations. Comp Fluids
1997;26(3):249–68.

[14] Blanco M, Zingg DW. Fast Newton–Krylov method for unstructured
grids. AIAA J 1998;36(4):607–12.

[15] Pueyo A, Zingg DW. Efficient Newton–Krylov solver for aerody-
namic computations. AIAA J 1998;36(11):1991–7.

[16] Geuzaine P, Lepot I, Meers F, Essers JA. Multilevel Newton–Krylov
algorithms for computing compressible flows on unstructured
meshes. AIAA Paper 99-3341.

P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120 119

Author's personal copy

[17] Nemec M, Zingg DW. Newton–Krylov algorithm for aerodynamic
design using the Navier–Stokes equations. AIAA J
2002;40(6):1146–54.

[18] Chisholm T, Zingg DW. Start-up issues in a Newton–Krylov
algorithm for turbulent aerodynamic flows. AIAA Paper 2003-3708.

[19] Smith TM, Hooper RW, Ober CC, Lorber AA, Shadid JN.
Comparison of operators for Newton–Krylov method for solving
compressible flows on unstructured meshes. AIAA Paper 2004-0743.

[20] Manzano LM, Lassaline JV, Wong P, Zingg DW. A Newton–Krylov
algorithm for the euler equations using unstructured grids. AIAA
Paper 2003-0274.

[21] Isono S, Zingg DW. A Runge–Kutta–Newton–Krylov algorithm for
fourth-order implicit time marching applied to unsteady flows. AIAA
Paper 2004-0433.

[22] Haselbacher A, McGuirk J, Page G. Finite volume discretization
aspects for viscous flows on mixed unstructured grids. AIAA J
1999;37(2):177–84.

[23] Aftosmis M, Gaitonde D, Tavares T. Behavior of linear reconstruction
techniques on unstructured meshes. AIAA J 1995;33(11):2038–49.

[24] Spalart PR, Allmaras SR. A one-equation turbulence model for
aerodynamic flows. AIAA Paper 92-0439.

[25] Spalart PR, Allmaras SR. A one-equation turbulence model for
aerodynamic flows. La Rech Aérospatiale 1994(1):5–21.

[26] Ashford GA. An unstructured grid generation and adaptive solution
technique for high Reynolds number compressible flows. Ph.D.
thesis, University of Michigan; 1996.

[27] Chisholm T, Zingg DW. A Newton–Krylov algorithm for turbulent
aerodynamic flows. AIAA Paper 2003-0071.

[28] Mavriplis DJ, Venkatakrishnan V. A unified multigrid solver for the
Navier–Stokes equations on mixed element meshes. AIAA Paper 95-
1666.

[29] Jameson A, Mavriplis D. Finite volume solution of the two-
dimensional Euler equations on a regular triangular mesh. AIAA J
1986;24(4):611–8.

[30] Swanson RC, Turkel E. On central-difference and upwind schemes. J
Comput Phys 1992;101:292–306.

[31] Barth TJ, Jespersen DC. The design and application of upwind
schemes on unstructured meshes. AIAA Paper 89-0366.

[32] Mavriplis DJ. On convergence acceleration techniques for unstruc-
tured meshes. AIAA Paper 98-2966.

[33] Coirier WJ. An adaptively-refined, cartesian, cell-based scheme for
the Euler and Navier–Stokes equations. Ph.D. thesis, University of
Michigan; 1994.

[34] Lomax H, Pulliam TH, Zingg DW. Fundamentals of computational
fluid dynamics. Springer-Verlag; 2001.

[35] Saad Y, Schultz MH. GMRES: a generalized minimum residual
algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat
Comput 1986;7:856–69.

[36] Balay S, Buschelman K, Gropp W, Kaushik D, Knepley M, McInnes
L, Smith B, Zhang H. PETSc Web page, <http://www.mcs.anl.gov/
petsc>; 2001.

[37] Eisenstat SC, Walker HF. Choosing the forcing terms in an inexact
Newton method. SIAM J Sci Comput 1996;17(1):16–32.

[38] Chisholm TT. A fully coupled Newton–Krylov solver with a one-
equation turbulence model. Ph.D. thesis, University of Toronto;
2005.

[39] Pulliam TH. Efficient solution methods for the Navier–Stokes
equations, Lecture Notes for the von Kármán Institute for fluid
dynamics lecture series: numerical techniques for viscous flow
computation in turbomachinery bladings. Brussels, Belgium; January
1986.

[40] Schmitt V, Charpin F. Pressure distributions on the ONERA-M6-
Wing at transonic Mach numbers, experimental data base for
computer program assessment. Report of the Fluid Dynamics Panel
Working Group 04. AGARD AR 138; May 1979.

[41] Brodersen O, Stürmer A. Drag prediction of engine-airframe inter-
ference effects using unstructured Navier–Stokes calculations. AIAA
Paper 2001-2414.

120 P. Wong, D.W. Zingg / Computers & Fluids 37 (2008) 107–120

