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A methodology is presented for characterizing flow solver performance. The

methodology can be applied to assess the efficiency of a given approach, where ef-

ficiency is defined in terms of accuracy per unit cost measured in CPU time. The

procedure is presented by demonstrating its application to the parallel Newton-Krylov-

Schur finite-difference flow solver known as Diablo. The benchmark cases to which the

procedure is applied are two-dimensional turbulent flows modeled using the Reynolds-

averaged Navier-Stokes equations on three families of NACA 0012 grids with three

sets of operating conditions. Performance statistics are presented in a variety of ways

that show the relationships between CPU time, grid spacing, and accuracy in ways

that are informative for both flow solver users and developers.

I. Introduction

This paper presents a series of external computational aerodynamics flow solver performance
studies recently conducted as part of a discussion group session at the 53rd AIAA Aerospace
Sciences Meeting [1]. The objective of this discussion group is to develop a methodology for
comparing and analyzing flow solver algorithms in terms of robustness and overall efficiency.

The overall efficiency of CFD codes is highly dependent on the hardware, compiler technology,
and how efficiently the codes have been programmed. Also, the relative performance of CFD
codes can be case-dependent and also grid-dependent. Instead of attempting any sort of direct or
conclusive comparison, the methodology in this paper employs a variety of metrics which can be
used to compare and assess flow solver performance. The purpose of this procedure is to guide
future research and development efforts and also to improve understanding of program performance
for both users and developers. The intent of this paper is to present the pertinent flow solver
statistics in such a way that the sources of CPU time are evident and that the relative advantages of
different algorithms can be assessed in a meaningful way. It is our objective to develop an approach
that can be applied to evaluate the efficiency benefits of higher-order and adaptive approaches as
well, although such methods are not included here.

The flow solver studied in this paper is known as Diablo. It is based on a parallel implicit
Newton-Krylov-Schur algorithm. Diablo uses a finite-difference discretization with summation-
by-parts operators and simultaneous approximation terms [2–7], referred to as an SBP-SAT
discretization, and is used to solve external aerodynamic flows in two or three spatial dimensions.
The equations solved in this paper are the compressible Reynolds-averaged Navier-Stokes equations
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with the Spalart and Allmaras [8] one-equation turbulence model (RANS-SA). It should be stressed
that this is a research code written by students, and although the algorithms are written to be
efficient, the code is not highly optimized for computational efficiency.

Diablo originated as an Euler (inviscid) solver which was developed by Hicken and Zingg [9].
It was augmented to the full Navier-Stokes equations by Osusky et al. [10] and to the RANS-SA
equations by Osusky and Zingg [11, 12]. The Diablo RANS-SA flow solver has been validated at
the Fifth AIAA Drag Prediction Workshop [13, 14], where the focus was on the three-dimensional
wing-body geometry referred to as the NASA Common Research Model (CRM). In addition, several
supplemental two-dimensional cases were investigated for solver accuracy, all from the Turbulence
Modeling Resource (TMR) website:∗ flow over a flat plate, flow over a bump in channel, and flow
over the NACA 0012 airfoil [14].

When the grid spacing of a family of grids is small enough such that the flow solution obtained
on the grids is in the asymptotic region of grid convergence, the accuracy of the lift and drag
functionals can be estimated using Richardson extrapolation as long as at least three grid levels
are used [15], where each grid in the grid family, except for the finest, has been coarsened by a
common factor from the previous grid level [16, 17]. This method is useful for analysis because it
facilitates an estimate of the solution accuracy at a given mesh level. As the grid is refined, the lift
and drag functionals of interest can be computed with reduced numerical error but at increased
computational cost. The emphasis of the current study is on the relationship between accuracy
and computational cost. A methodology for quantifying this relationship will be presented.

The main benchmark cases investigated in the current study are the steady RANS-SA equations
solved in two spatial dimensions on the NACA 0012 airfoil at Mach 0.15, Reynolds number 6
million, and several angles of attack. Since Diablo is not written to handle two-dimensional cases
very efficiently, nor low Mach number flows, and because the code suffers from programming
inefficiencies, it is important to emphasize that the focus of this study is on the methodology and
not the final data. To give some examples of the performance of Diablo for three-dimensional
transonic cases, performance studies for the transonic ONERA M6 case and transonic CRM
wing-body case from Osusky and Zingg [18] are also included.

The NACA 0012 grids used for the main benchmark cases are publicly available from the
TMR website. Three grid families are available on this website, the main difference being in the
trailing-edge spacing. While the effect of the trailing-edge spacing on flow solver performance is
minimal, results obtained by previous researchers using the established flow solvers CFL3D [19]
and FUN3D [20] have demonstrated that the different trailing-edge spacings have a noticeable
impact on the accuracy of the lift, drag, and moment coefficients and also the minimum grid
spacing required to be considered in the asymptotic region of grid convergence. This will affect the
relationship between the error and computational cost. Different numerical dissipation models are
also investigated for their effect on flow solution accuracy and convergence to steady state.

II. Governing Equations and Spatial Discretization

This section presents the continuous version of the Navier-Stokes equations and the Spalart-
Allmaras turbulence model. The spatial discretization is also presented but in minimal detail.

[] ∗ Turbulence Modeling Resource, http://turbmodels.larc.nasa.gov , Langley Research Center, United States
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A. Navier-Stokes Equations

The three-dimensional Navier-Stokes equations under the coordinate transformation (x, y, z) →
(ξ, η, ζ) are given by Pulliam and Zingg [21]:

∂tq̂ + ∂ξÊ + ∂ηF̂ + ∂ζĜ =
1

Re

(

∂ξÊv + ∂ηF̂v + ∂ζĜv

)

, (1)

where

q̂ = J−1q,

Ê = J−1 (ξxE + ξyF + ξzG) , F̂ = J−1 (ηxE + ηyF + ηzG) , Ĝ = J−1 (ζxE + ζyF + ζzG) ,

Êv = J−1 (ξxEv + ξyFv + ξzGv) , F̂v = J−1 (ηxEv + ηyFv + ηzGv) , Ĝv = J−1 (ζxEv + ζyFv + ζzGv) ,

J = (xξyηzζ + yξzηxζ + zξxηyζ − xξzηyζ − yξxηzζ − zξyηxζ)
−1 , (2)
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In the above equations: ρ is the density, a is the speed of sound, e is the energy, p is the pressure, l is
the mean chord length, u = (u, v, w) are the Cartesian velocity components, τ = τ (u, v, w, µ, µt) are
the viscous stresses given by the Newtonian stress tensor, Re is the Reynolds number, and µ = µ (a)
is the viscosity given by Sutherland’s law as:

µ =
a3 (1 + S∗/T∞)

a2 + S∗/T∞

, (7)

where S∗ = 198.6◦R is Sutherland’s constant. The turbulent viscosity µt = µt (ρ, µ, ν̃), where ν̃ is
the turbulence variable, is added to µ in the case of turbulent flows. The subscript ∞ indicates the
free-stream value of a quantity. Explicit expressions for Ev, Fv, and Gv are omitted here but are
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given by Pulliam and Zingg [21] or Osusky and Zingg [12].
Non-dimensional variables are used: the density is non-dimensionalized by ρ∞, the velocities by

a∞, the viscosity by µ∞, the temperature by T∞, and the spatial coordinates by l. Assuming that
the flow behaves as an ideal gas, the pressure can be written in terms of energy and velocity:

p = (γ − 1)

(

e−
1

2
ρ
(

u2 + v2 + w2
)

)

, (8)

reducing the effective number of variables to five for the Euler and Navier-Stokes equations.

B. Turbulence Model

The effect of turbulence is included through the Spalart-Allmaras turbulence model. The stan-
dard form of the equation is used, given here in Cartesian coordinates:
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d

)2

+Reft1∆U2,

(9)

where ν is the kinematic viscosity, and ν̃ will be referred to simply as the turbulence variable.
Many of the terms above are functions of ν̃ or other state variables. More details of the SA model
and the discretization used in this paper, including boundary conditions, are available from Osusky
and Zingg [12].

C. Spatial Discretization

The RANS-SA equations are discretized on single and multi-block structured grids using a
finite-difference discretization with summation-by-parts operators and simultaneous approximation
terms (SATs) to weakly enforce the boundary conditions on the domain boundaries and to couple
the system across block interfaces [2–5, 7]. All of the results presented were computed using
spatially second-order accurate SBP operators, except for the advection term of the SA model for
which a first-order upwinding scheme is used. Osusky [22] has investigated the use of a third-order
dissipation scheme but found that the accuracy benefit was not significant and that the convergence
time increased significantly.

The SAT approach minimizes the amount of information that needs to be communicated
between processors when the algorithm is parallelized. Additionally, the fact that this discretization
does not need to form any derivatives across block interfaces reduces the continuity requirement for
meshes at interfaces. In fact, only C0 continuity is necessary for grid lines at interfaces, allowing
for the algorithm to provide accurate solutions even on grids with slope changes at block interfaces.

Numerical dissipation is added to the discrete flow equations for numerical stability. The two
types of dissipation commonly applied in the Diablo algorithm are the scalar dissipation model
developed by Jameson et al. [23] and later refined by Pulliam [24] and the matrix dissipation model
of Swanson and Turkel [25].

The advantage of scalar dissipation is that it tends to result in a more stable algorithm, but
it is also more dissipative, resulting in higher error. Since the numerical dissipation vanishes in
the limit of the grid spacing vanishing, both dissipation models will give the same grid converged
solution. Hence, scalar and matrix dissipation give similar results on fine meshes.
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III. Solution Methodology

The flow solver uses a parallel Newton-Krylov-Schur algorithm for steady three-dimensional
flows. The distributed Schur complement [26] parallel preconditioner uses ILU(p) [27] internally,
and the linear systems are solved iteratively using the Krylov solver FGMRES [27]. The ILU(p)
factorization is built from a nearest-neighbour approximation to the Jacobian matrix where the
fourth-difference dissipation is approximated with a second-difference dissipation operator, and the
cross-derivatives in the viscous shear stresses are neglected.

With the use of the Krylov solver, Newton iterations are solved inexactly, so the method is
referred to as an inexact Newton method. Since Newton’s method will usually not converge unless a
suitable starting guess is given, iterations are commenced using a pseudo-transient iterative method
which is used to reduce the residual between 4 and 6 orders of magnitude before switching to the
inexact Newton phase. These values are based on parameter studies performed by Osusky [22].
While he has found that a two order of magnitude reduction can be sufficient for some 2D cases,
he has advocated the use of more conservative values based on experience. We have found that at
least four orders of magnitude are needed for the NACA 0012 cases studied in this paper. For three
dimensional cases, Osusky has found that an efficient choice for the switching tolerance is generally
around a 4 or 5 order of magnitude residual reduction. Four orders of magnitude was sufficient for
the three-dimensional results analyzed in this paper. In general, cases with finer grid spacing or
cases involving shocks can require smaller values of this tolerance than subsonic cases on coarser
grids.

A. Inexact Newton Method

Consider a nonlinear system of algebraic equations, represented by

R (q) = 0, (10)

R : RM → R
M , q ∈ R

M .

In the context of CFD, this system of equations represents the discrete residual. Then Newton’s
method is given by:

A(n) ∆q(n) = −R
(

q(n)
)

, (11)

∆q(n) ≡ q(n+1) − q(n),

where A(n) : RM → RM is the Jacobian of R (q). Since the linear system is being solved to some
relative tolerance η(n) ∈ R, the actual Newton step is taken inexactly:

∥

∥

∥
R

(

q(n)
)

+A(n) ∆q(n)
∥

∥

∥
≤ η(n)

∥

∥

∥
R

(

q(n)
)
∥

∥

∥
. (12)

B. Pseudo-Transient Continuation

Obtaining an initial iterate for Newton’s method can be accomplished using a globally conver-
gent algorithm, which will typically have a lower convergence rate than Newton’s method. Such
algorithms are known as continuation methods.

Pseudo-transient continuation is a pseudo-time-marching method, i.e. it is an imitation of phys-
ical time-marching, though time-accuracy is not required. The update formula at the n-th iteration
is given by the implicit Euler method with local time linearization [28]:

(

T (n) +A(n)
)

∆q(n) = −R
(

q(n)
)

, (13)
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where T (n) = 1
∆t

I, and I is the identity matrix. Since time-accuracy is not required in the context
of globalization, ∆t can take large values and vary spatially. In this study, ∆t is evolved according
to:

∆t(n)i = Tia (b)
m⌊ n

m⌋ , Ti =
1

1 + J
1

D

i

, (14)

where J is the geometric Jacobian resulting from the coordinate transformation on the mesh, i is
the grid node index, D is the number of spatial dimensions (either 2 or 3 in this paper), and ⌊·⌋ is
the floor operator∗. The floor operator is present in the formula in the case where we update the
preconditioner every m iterations instead of every iteration. Applying this technique can reduce the
overall convergence time of the algorithm. However, the value of m was set to unity for all cases in
this paper. The values of a and b used in the current study are based on Osusky and Zingg [12] and
the explicit values used in the NACA 0012 studies are reported in Section V. The values taken by
these parameters can generally be chosen more conservatively for more difficult cases, such as cases
on finer grids or cases where shocks are present.

The pseudo-transient continuation phase is terminated and the inexact-Newton phase initiated
when the relative residual

R(n)
rel ≡

∥

∥R
(

q(n)
)
∥

∥

∥

∥R
(

q(0)
)
∥

∥

(15)

is reduced below some user-specified tolerance µrel.

C. Matrix-Vector Products

When using a Krylov solver such as FGMRES, it is not necessary to calculate and store A(n)

since at no point in the algorithm is an explicit expression for A(n) required, and this matrix can
be expensive in terms of data storage. The Krylov solver does, however, require an approximation
to the matrix-vector product A(n)v, v ∈ RM . There are several ways in which this matrix-vector
product can be approximated without forming the full Jacobian.

One option is to use finite-difference matrix-vector products:

A(n)v ≈
R

(

q(n) + ϵv
)

−R
(

q(n)
)

ϵ
, (16)

where ϵ ∈ R is the perturbation parameter and is chosen to balance between truncation error and
round-off error. Based on Nielsen et al. [20], the following formula is used in this work:

ϵ =

√

Mδ

vTv
,

where δ ∈ R is a value near to machine precision (δ = 10−13 is used in all cases in this study).
A second option is to recycle the nearest-neighbour approximate Jacobian used to form the ILU
preconditioner. This approximate Jacobian uses a small-stencil approximation to the third-order
dissipation term, ignores the cross-derivative terms in the discretization of the viscous terms, and
ignores the differentiation of the pressure sensor used for shock-capturing. Matrix-vector products
using the approximate Jacobian will be referred to as approximate matrix-vector products.

Using the approximate Jacobian matrix to compute matrix-vector products is less accurate
than using finite-differencing but comes at reduced computational cost. In the inexact Newton

[] ∗ ⌊x⌋ = y, where y is the largest integer less than or equal to x.
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phase it is beneficial to use the finite-differencing method. However, either type of matrix-vector
product can be used during the globalization phase. We have generally found that using ap-
proximate matrix-vector products in the continuation phase gives faster convergence than the
finite-differencing method without sacrificing robustness.

IV. Performance Analysis

Performance is analyzed in terms of both the accuracy of the discretization and the efficiency
of the flow solver at obtaining the steady solution on various mesh levels and at different operating
conditions.

A. The High Performance Computing System

All computations were performed on the SciNet General Purpose Cluster (GPC), hosted in
Toronto, Ontario, Canada. The GPC consists of 3,780 nodes (IBM iDataPlex DX360M2) with a
total of 30,240 cores (Intel Xeon E5540) at 2.53GHz, with 16GB RAM per node (2GB per core).

B. Estimating Grid-Converged Functionals

The grid-converged functionals are the values of the functionals for the theoretical case of infinite
mesh resolution. These values can be obtained by applying Richardson extrapolation to the three
finest grid levels on which the functionals have been calculated. This procedure is described in detail
by Roache [29].

To apply Richardson extrapolation, the convergence rate p ∈ R must first be calculated from
the three finest converged functional values:

p =
ln (|f3 − f2| / |f2 − f1|)

ln (r)
, (17)

where fi is the functional of interest at grid level i (1 being the finest and 3 the coarsest) and r ∈ R

is the grid ratio, which is equal to 2 for all studies in this paper. The convergence rate is then used
to extrapolate the functional value on an infinite resolution mesh, denoted f0, using the two finest
grid levels:

f0 =
rp f1 − f2
rp − 1

. (18)

The three-grid Richardson extrapolation method is not reliable unless it is applied in the asymptotic
region [29]. If the final three points are non-monotonic, or if the estimated convergence rate is less
than 1, then the grid-converged functional is estimated from a first-order extrapolation by setting
p = 1 in equation (18).

C. Benchmarking Flow Solver Performance

The purpose of this study is to quantify the computational cost associated with specific levels
of functional accuracy. Osusky and Zingg [18] have previously performed performance analysis on
the Diablo RANS-SA flow solver, and a similar approach will be taken here. Osusky and Zingg [18]
also discuss the pros and cons of various cost measures for comparing solvers.

Measuring performance from the CPU time required to complete a flow solve can be useful
for comparing the relative performance of a flow solver under different conditions, but since
performance will depend on the computer system, this is not a useful measure for comparing
against the performance of other CFD codes run on a different computer system. One way to
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Table 1: Grid details for the NACA 0012 geometry. OW=Off-Wall, TE=Trailing Edge. Spacings
measured in chord units (c).

Family I Family II Family III
Level Grid Size OW Spacing TE Spacing OW Spacing TE Spacing OW Spacing TE Spacing

1 7169 × 2049 1.000 × 10
−7

1.25× 10
−4

1.000 × 10
−7

1.25× 10
−5

1.000 × 10
−7

3.75× 10
−5

2 3585 × 1025 2.009 × 10
−7

2.50× 10
−4

2.009 × 10
−7

2.50× 10
−5

2.009 × 10
−7

7.50× 10
−5

3 1793 × 513 4.057 × 10
−7

5.00× 10
−4

4.056 × 10
−7

5.00× 10
−5

4.056 × 10
−7

1.50× 10
−4

4 897 × 257 8.270 × 10
−7

1.00× 10
−3

8.265 × 10
−7

1.00× 10
−4

8.267 × 10
−7

3.00× 10
−4

5 449 × 129 1.719 × 10
−6

2.00× 10
−3

1.716 × 10
−6

2.00× 10
−4

1.717 × 10
−6

6.00× 10
−4

6 225 × 65 3.716 × 10
−6

4.00× 10
−3

3.706 × 10
−6

4.00× 10
−4

3.711 × 10
−6

1.20× 10
−4

7 113 × 33 8.736 × 10
−6

8.00× 10
−3

8.685 × 10
−6

8.00× 10
−4

8.708 × 10
−6

2.40× 10
−4

eliminate this problem is to use a benchmark such as the TauBench codes∗ to non-dimensionalize
cost, as was done by Wang et al. [30]. The TauBench code roughly simulates the CPU cost of
running the flow solver Tau for a mesh of a user-specified size, number of processors, and number
of iterative steps.

The benchmark that was used for all cases in this paper is 2.50 × 105 nodes on 1 processor
with 10 iterative steps. The average CPU time after running the TauBench code four times on
the SciNet general purpose cluster was 9.571s, which will be referred to as one work unit. The
convention is to measure wall time rather than processor time. The total CPU time can be
measured by multiplying the wall time by the number of processors used.

V. NACA 0012 Results

Three nested families of grids are provided by the TMR website for the modified NACA 0012
geometry. All grids are structured C-topology grids with the far-field boundary located 500 chords
from the airfoil. The main difference between the three grid families is the trailing-edge spacing.

Since all grid families are structured grids consisting of the same number of nodes, refining the
grid in the trailing-edge region has the effect of coarsening the grid elsewhere. Aside from these
differences, the three grid families are very similar. The finest (level 1) mesh for all three families
consists of 7196 × 2049 nodes, with 4097 points along the airfoil surface. Coarser meshes are
generated from the finer ones by removing every node with an even index number in each direction.
Grid details can be found in Table 1.

All flow solutions are computed at a Reynolds number of 6 million based on the chord length
with freestream Mach number and temperature of 0.15 and 540R respectively. The angles of attack
of interest are α = 0, 10◦, and 15◦. A far-field vortex correction is not used for any cases in this
paper. The additional error incurred by using scalar dissipation instead of matrix dissipation can
also be assessed by comparing the functionals calculated at various levels of grid convergence.
However, as discussed previously, the choice of numerical dissipation should not affect the grid
converged solution.

A. Grid Convergence

The grid convergence data is plotted in Figures A.1 through A.3 in the Appendix. Tables A.1
through A.3 in the Appendix show the estimated grid-converged values for all three grid families

[] ∗ Taubench Version 1.1, IPACS, http://www.ipacs-benchmark.org , DLR, Germany
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and all three sets of operating conditions calculated from mesh levels 2 through 4. The extrapolated
functional values from Diablo, FUN3D, and CFL3D are in fairly good agreement where the data is
available for all three flow solvers. However, Diablo generally seems to lose more accuracy on the
coarser meshes, particularly with scalar dissipation.

As explained previously, Richardson extrapolation was used by applying equation (18) with the
predicted convergence rate calculated from equation (17) in all cases where the functional values on
these grid levels were monotonic and the convergence rate calculation gave p > 1. In cases where
the convergence rate p was calculated to be less than or equal to 1, or if the functional values at
the three finest grid levels were non-monotonic, a first-order extrapolation was used to predict the
grid-converged values by applying equation (18) with convergence rate p = 1. The extrapolated
values for cases where p < 1 are shown in Table A.4.

Due to the presence of the trailing-edge singularity, the design order of convergence is difficult
to predict. Therefore it can be unclear when the asymptotic region is reached, and the use
of Richardson extrapolation must be assessed carefully. Qualitative analysis of Figures A.1
through A.3 indicates that the extrapolated data fit well with the established pattern of the
calculated functional values. Furthermore, the extrapolated values obtained by Diablo, FUN3D,
and CFL3D, where available, have generally been found to be in better agreement than the values
calculated directly on the finest mesh. Based on these observations, it is our assessment that
the extrapolated values are better estimates of the theoretical grid-converged values than those
calculated directly on the finest mesh level.

B. Accuracy

Performance studies were carried out with pseudo-time-stepping parameters a = 0.001 and
b = 1.35 for most of the NACA 0012 cases based on the recommendations of Osusky and Zingg [12],
which are based on the parameter studies of Osusky [22]. The only exception was the angle of
attack α = 0◦ case at mesh level 3, for which the value of b was reduced to 1.25 for Family I and
1.3 for both Family II and Family III due to stalled convergence for this particular case at the more
aggressive value of b. The reason this problem was encountered for this case is because the reference
time step tref became too large late in the approximate Newton phase due to the large number of
iterations that were taken in this phase.

The residual drop parameter µrel used for switching to the inexact Newton phase is set to
µrel = 10−4 for the α = 10◦ and α = 15◦ cases for all grid levels and all grid families. This
parameter was set to µrel = 10−5 for the α = 0◦ case at all grid levels and for all grid families. The
more conservative tolerance may not have been necessary for all α = 0◦ cases but was applied based
on the convergence failure of a few cases, which stalled after switching to the inexact Newton phase,
indicating that a suitable starting guess for Newton’s method was not reached in those cases.

The ILU(p) fill level was set to p = 2 for the approximate Newton phase and p = 4 for the
inexact Newton phase for all cases. While the optimal value of p is generally smaller on coarse grids
than fine grids, we did not optimize this parameter for each case as such tuning is not performed
in practice and it seemed more appropriate for the analysis to use consistent parameter settings
as much as possible for all cases. This may result in some modest inefficiency for the cases on the
coarser grid levels.

An understanding of how the error relates to the mesh spacing is useful for mesh design and is
the first subject investigated. Figures 1 and 2 show the relationship between the numerical error
in the functional estimates and the mesh spacing. Since the average mesh spacing is proportional
to

√

1/N for two-dimensional cases under uniform mesh refinement, where N is the number of
grid points, the average mesh spacing h is represented as

√

1/N . The numerical errors in the
calculated Cd, Cl, and Cm values presented in the figures were estimated based on the extrapolated
values obtained from the grid convergence study individually for each grid family for each α. These
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extrapolated values are reported in Tables A.1 through A.3.
It is apparent from Figures 1 and 2 that the accuracy depends not only on the mesh spacing

but the grid family. The different functionals also exhibit different error profiles as the mesh is
refined. The level of mesh refinement required depends on the level of accuracy desired. The lift
coefficient is calculated to within 5% accuracy even on the coarsest mesh. The drag coefficient is
more sensitive to mesh refinement. At mesh level 5, the numerical error in Cd is in excess of 10%
for all grid families at α = 15◦. At mesh level 4 the numerical error is reduced to around 4%. The
Cm is the most sensitive to the grid family. With grid Family I, the error in Cm is estimated to
be around 10% even at grid level 3 for α = 10◦. However, the Cm appears to be estimated much
more accurately for grid Family II; the error estimates are already below 2% by grid level 5 for both
α = 10◦ and α = 15◦.

C. Flow Solver Performance

When the mesh is refined by a factor of two in each direction, the computational cost will
clearly increase since there are four times more nodes in the computational domain (in 2D) and
therefore roughly four times more floating point operations for each residual evaluation. However,
the total cost of the flow solve will increase by more than a factor of four because the linear system
conditioning will worsen and the nonlinear problem can also become more difficult to converge. It
is of practical interest to quantify how much extra cost is incurred by the flow solver to attain a
certain level of accuracy.

The slower convergence rate of both the linear solver and nonlinear iterations for finer grids
can be observed by plotting the residual history against the number of linear iterations taken by
FGMRES, as shown in Figure 3. This is a way to investigate the effect of grid refinement on the
linear system and nonlinear iterative methods without considering CPU time. It is also noteworthy
that the zero angle of attack case takes the most iterations, particularly for the level 3 Family I
grid, though the reason for this is unclear.

A plot of the CPU cost of reducing the L2-norm of the residual by eleven orders of magnitude
versus the number of grid nodes is shown in Figure 4. It can be observed from the plots that
performance is similar for the three grid families. One observation that stands out when comparing
Figure 4 with Figure 3 is that the CPU time is not noticeably higher for the α = 0◦ case than
it is for the other two angles of attack (with the exception of the level 3 Family I grid), despite
taking significantly more linear and nonlinear iterations. The reason for this is because the extra
iterations occurred mainly in the pseudo-transient phase which makes use of much cheaper matrix-
vector products. This emphasizes an important point, which applies to both linear and nonlinear
iterations: the cost of an iteration can vary substantially throughout the flow solve and the number
of iterations is not necessarily proportional to CPU time.

Figure 5 shows the number of equivalent residual evaluations required to reduce the L2-norm
of the residual by eleven orders of magnitude plotted against the number of grid nodes, where an
equivalent residual evaluation is the total CPU time divided by the CPU time required to calculate
the residual vector once. This can alleviate some of the timing inconsistency incurred by running
different flow solvers on different processors. Also, since the cost of the residual vector is expected
to be roughly proportional to the number of grid nodes∗, any increase in the number of equivalent
residual evaluations is mainly due to an increased number of linear and nonlinear iterations.

Figure 6 shows the work units per grid node required to reduce the norm of the residual by
eleven orders of magnitude on each mesh level. The figure would look very similar to Figure 5

[] ∗ For these NACA 0012 cases the cost of the residual generally increases by a factor of between 4.0 and 4.4 at each
grid refinement.
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Fig. 1: Error in the Cd and Cl values calculated
at the converged flow solution at grid levels 3
to 6 for the NACA 0012 cases. Results are

shown for all three grid families (F.I=Family I,
for example) using matrix dissipation.
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Fig. 2: The same as Figure 1 but with more
detail visible.

except that both axes of the plot are logarithmic, and a line of best fit is included instead of simply
connecting the data points. This leads to a rather interesting and useful analysis which can be
performed. If the CPU time per grid node is represented by t/N and the number of nodes is N ,
then the following model might be assumed relating the CPU time per grid node to the number of
nodes:

t/N = κNβ . (19)
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Fig. 3: Residual history plotted against the number of linear iterations for the NACA 0012 cases.
Results are shown for all three grid families using matrix dissipation. The legend entries describe
the family and grid level (L3=level 3, L4=level 4, etc.). From top to bottom, the angles of attack
are 0◦, 10◦, and 15◦. Each marker on the plot represents one iteration of either Newton’s method

or the pseudo-transient method.

In this equation, κ and β are unknowns. The parameter β is a metric relating computational cost to
mesh size - if β = 0 then the code exhibits perfect linear scaling with respect to the number of grid
points. This parameter is estimated as the slope of the best fit lines shown in Figure 6. Estimates
for β were calculated for each case and each grid family and are shown in Table 2. They range from
0.2295 to 0.4623.

A similar study was performed by Pueyo and Zingg [31] using the flow solver known as
Probe. Probe is a two-dimensional flow solver which uses the same finite-difference discretiza-
tion as ARC2D [32], the fundamental difference being that Probe uses a Newton-Krylov algorithm
to solve the discrete flow equations whereas ARC2D uses an approximate factorization algorithm.
Both Probe and ARC2D use the Baldwin-Lomax [33] algebraic model. The test case is explicitly-
tripped flow over the RAE 2822 airfoil at Mach 0.729, α = 2.31◦, and Re = 6.50 × 106. Pueyo
and Zingg [31] calculated β = 0.325 for Probe and β = 0.73 [34] for ARC2D for this case. Their
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Table 2: Values of the parameter β from equation (19)

Angle of Attack

0
◦

10
◦

15
◦

Family I 0.4623 0.2295 0.4297

Family II 0.2833 0.2335 0.2677

Family III 0.3163 0.2487 0.4289

calculation was based on equivalent residual evaluations instead of CPU time per grid node. This
will only result in the same β if their residual calculation scales perfectly with grid size. Since the
cost of the residual in Diablo tends to increase slightly with mesh size, calculating β in terms of
relative residual evaluations would result in slightly smaller β values than those presented in Table 2.

The final study performed relates the accuracy obtained at each grid level to the cost of per-
forming the flow solve. The results can be found in Figure 7, where the most accurate and most
expensive points correspond to the finer grid levels. Such plots enable the assessment of a solver’s
efficiency, i.e., the cost associated with reducing numerical error below a specified threshold.

The non-monotonic behaviour of the Cl and Cm values as the mesh is refined may occur for two
reasons:

1. These functionals take scalar values and are not a true representation of the solution error -
the scalar values may match the accurate grid-converged functional estimates as a results of
error cancellation even if the actual error in the flow solution is high.

2. The grid-converged functional values are estimated with limited accuracy. The non-monotonic
behaviour is evident mainly when the error in the functional values is estimated to be quite
low. Lack of precision in estimating the grid-converged functional estimates is most likely
significant enough to affect the error estimates in this error regime.

VI. Three-Dimensional Results

To demonstrate the performance of the Diablo flow solver for three-dimensional cases in tran-
sonic flows, performance studies are also included for two cases from Osusky and Zingg [18]. The
two cases selected are as follows:

1. Flow over the ONERA M6 wing at Reynolds number 1.1×107, Mach number 0.8395, and angle
of attack 3.06◦. The case was run on the SciNet general purpose cluster using 128 processors.

2. Flow over the NASA Common Research Model (denoted CRM-t2 in Osusky and Zingg [18])
at Reynolds number 5 × 106, Mach number 0.85, and angle of attack 2.229◦. The case was
run on the SciNet general purpose cluster using 832 processors.

The grid details are given in Table 3. The pseudo-time-stepping parameters used for the ONERA
M6 case are a = 0.001 and b = 1.3, and the parameters used for the CRM case are a = 0.001 and
b = 1.25. The switching tolerance for the inexact Newton phase µrel is set to 10−4 for both cases.
For the CRM case, the ILU(p) fill level is set to p = 2 in the approximate Newton phase and p = 3
in the inexact Newton phase. For the ONERA M6 case, p = 2 is used for both phases.

Figure 8 shows the relationship between CPU time and error for these two cases, though it
should be emphasized that the nominal error values obtained for these cases should be regarded as
estimates, so the data in the figure are approximate and only recommended for qualitative analysis.
The total CPU time is calculated by multiplying the wall time taken to reduce the flow residual
eleven orders of magnitude by the total number of processors used. In addition, the relationship
between CPU time and grid spacing is shown in Figure 9.
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Table 3: Grid details for the ONERA M6 and NASA CRM grids

Grid Blocks Processors Nodes, N Average off-wall spacing (c)

ONERA M6 - 1 128 128 35, 152, 000 9.01× 10
−7

ONERA M6 - 2 128 128 4, 599, 936 1.92× 10
−6

ONERA M6 - 3 128 128 628, 824 4.35× 10
−6

CRM - 1 6656 832 7, 008, 768 5.13× 10
−6

CRM - 2 6656 832 3, 261, 440 6.84× 10
−6

CRM - 3 6656 832 1, 164, 800 1.03× 10
−5

VII. Concluding Remarks

A methodology has been presented for comparing and assessing the performance of different
flow solvers. The methodology focuses on characterizing the relationship between the computational
cost of completing a flow solve, the grid refinement, and the accuracy of the lift and drag coefficients.
Several metrics were used to measure the flow solve completion time, each with their relative merits.
By analyzing the flow solver from several perspectives it is possible to develop an understanding
of the flow solver which can help to guide future research directions. Specifically this methodology
enables the assessment of the efficiency of high-order and adaptive methods.

The methodology was presented by demonstrating its application using the RANS-SA capabil-
ities of the flow solver known as Diablo. The methodology was used to profile the performance of
Diablo for three families of 2D NACA 0012 grids under several operating conditions. The perfor-
mance of Diablo was also characterized for an ONERA M6 wing case as well as a CRM wing-body
case, both under transonic flow conditions.
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Fig. 4: Work units taken to reduce the
L2-norm of the residual by eleven orders of

magnitude for mesh levels 3 to 6 for the NACA
0012 cases. Results are shown for all three grid

families using matrix dissipation.
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Fig. 5: Equivalent residual evaluations required
to reduce the L2-norm of the residual by eleven
orders of magnitude for grid levels 3 to 6 for
the NACA 0012 cases. Results are shown for

all three grid families using matrix dissipation.
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reduce the L2-norm of the residual by eleven
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APPENDIX A: ADDITIONAL DATA AND FIGURES

Table A.1: Richardson extrapolated functional values for the NACA 0012 case at α = 0◦,
calculated from grid levels 2 to 4

Cd Cdp Cdv

F
am

.
I scalar 8.1201 × 10

−3
1.3050 × 10

−3∗
6.8164 × 10

−3

matrix 8.1284 × 10
−3

1.3038 × 10
−3

6.8260 × 10
−3∗

F
.
II scalar 8.1191 × 10

−3
1.3036 × 10

−3
6.8168 × 10

−3

matrix 8.1276 × 10
−3

1.3020 × 10
−3

6.8260 × 10
−3

F
.
II

I scalar 8.1195 × 10
−3

1.3040 × 10
−3

6.8169 × 10
−3

matrix 8.1280 × 10
−3

1.3023 × 10
−3

6.8270 × 10
−3∗

Table A.2: Richardson extrapolated functional values for the NACA 0012 case at α = 10◦. This
table also includes extrapolated grid converged functional values calculated from data obtained
from the TMR website for the flow solvers FUN3D and CFL3D. The data was obtained without

the use of far-field vortex correction. The functional values for the Diablo flow solver were
calculated from grid levels 2 to 4 whereas the FUN3D and CFL3D flow solvers used grid levels 1

to 3.

Cd Cdp Cdv Cl Cm

F
am

.
I

scalar 1.2262 × 10
−2

6.0692 × 10
−3

6.1901 × 10
−3

1.0916†6.8418 × 10
−3∗

matrix 1.2259 × 10
−2

6.0674 × 10
−3

6.2060 × 10
−3∗

1.0908∗6.8396 × 10
−3∗

FUN3D 1.2223 × 10
−2

6.0184 × 10
−3

6.2043 × 10
−3∗

1.0905∗6.9422 × 10
−3∗

CFL3D 1.2212 × 10
−2

6.0079 × 10
−3

6.2060 × 10
−3∗

1.0888∗7.3407 × 10
−3∗

F
.
II

scalar 1.2254 × 10
−2

6.0605 × 10
−3

6.1930 × 10
−3

1.0910 6.7517 × 10
−3

matrix 1.2249 × 10
−2

6.0602 × 10
−3

6.2050 × 10
−3

1.0911∗6.7696 × 10
−3∗

FUN3D 1.2225 × 10
−2

6.0208 × 10
−3

6.2038 × 10
−3∗

1.0913∗6.7725 × 10
−3∗

CFL3D 1.2216 × 10
−2†

6.0121 × 10
−3

6.2041 × 10
−3∗

1.0911 6.8067 × 10
−3

F
.
II

I

scalar 1.2253 × 10
−2

6.0609 × 10
−3

6.1920 × 10
−3

1.0904∗6.9299 × 10
−3∗

matrix 1.2250 × 10
−2

6.0599 × 10
−3

6.2013 × 10
−3

1.0903∗6.9102 × 10
−3

FUN3D 1.2225 × 10
−2

6.0205 × 10
−3

6.2040 × 10
−3†

1.0912 6.7856 × 10
−3

CFL3D 1.2217 × 10
−2†

6.0126 × 10
−3†

6.2049 × 10
−3∗

1.0905∗6.9561 × 10
−3†

[] ∗ These values were calculated using a first-order extrapolation because the convergence rate p calculated using
equation (17) was less than 1.

[] † These values were calculated using a first-order extrapolation because the data on the three finest grid levels was
non-monotonic.
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Table A.3: Richardson extrapolated functional values for the NACA 0012 case at α = 15◦,
calculated from grid levels 2 to 4

Cd Cdp Cdv Cl Cm

F
am

.
I scalar 2.1025 × 10

−2
1.5824 × 10

−2
5.1972 × 10

−3
1.5519 1.6298 × 10

−2∗

matrix 2.1018 × 10
−2

1.5825 × 10
−2

5.2150 × 10
−3∗

1.5513∗1.6370 × 10
−2∗

F
.
II scalar 2.0998 × 10

−2
1.5794 × 10

−2
5.2016 × 10

−3
1.5505 1.6401 × 10

−2∗

matrix 2.0996 × 10
−2

1.5805 × 10
−2

5.2160 × 10
−3∗

1.5510∗1.6431 × 10
−2

F
.
II

I scalar 2.1000 × 10
−2

1.5793 × 10
−2

5.2013 × 10
−3

1.5501 1.6543 × 10
−2∗

matrix 2.0997 × 10
−2

1.5791 × 10
−2

5.2170 × 10
−3∗

1.5502 1.6526 × 10
−2

Table A.4: Comparison of functional estimates calculated with Richardson and first-order
extrapolation for all Family I cases where p < 1 was observed.

α Solver Functional p Richardson First order

0
◦ Diablo s. Cdp 0.73697 1.3065 × 10

−3
1.3050 × 10

−3

Diablo m. Cdv 0.96347 6.8271 × 10
−3

6.8260 × 10
−3

10
◦

Diablo s. Cm 0.45322 1.0073 × 10
−2

6.8418 × 10
−3

Diablo m. Cdv 0.94753 6.2082 × 10
−3

6.2060 × 10
−3

Diablo m. Cl 0.25046 1.0818 1.0908

Diablo m. Cm 0.45831 7.6879 × 10
−3

6.8396 × 10
−3

FUN3D Cdv 0.59819 6.2048 × 10
−3

6.2043 × 10
−3

FUN3D Cl 0.76012 1.0899 1.0905

FUN3D Cm 0.78594 7.0593 × 10
−3

6.9422 × 10
−3

CFL3D Cdv 0.28369 6.2174 × 10
−3

6.2060 × 10
−3

CFL3D Cl 0.39605 1.0875 1.0888

CFL3D Cm 0.46506 7.5735 × 10
−3

7.3407 × 10
−3

15
◦

Diablo s. Cm 0.10551 2.2495 × 10
−2

1.6298 × 10
−2

Diablo m. Cdv 0.93289 5.2183 × 10
−3

5.2150 × 10
−3

Diablo m. Cl −0.97961 1.5556 1.5513

Diablo m. Cm 0.48168 1.7141 × 10
−2

1.6370 × 10
−2
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Fig. A.1: Grid convergence data for Family I of the NACA 0012 case. Grid levels 2 through 5 are
shown for Diablo, levels 1 through 5 for CFL3D, and levels 1 through 4 for FUN3D. The data

shown for Diablo include both scalar and matrix dissipation, and the extrapolated grid-converged
values are shown at

√

1/N = 0.
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Fig. A.2: Grid convergence data for Family II of the NACA 0012 case. Grid levels 2 through 5 are
shown for Diablo, levels 1 through 5 for CFL3D, and levels 1 through 4 for FUN3D. The data

shown for Diablo include both scalar and matrix dissipation, and the extrapolated grid-converged
values are shown at

√

1/N = 0.
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Fig. A.3: Grid convergence data for Family III of the NACA 0012 case. Grid levels 2 through 5
are shown for Diablo, levels 1 through 5 for CFL3D, and levels 1 through 4 for FUN3D. The data
shown for Diablo include both scalar and matrix dissipation, and the extrapolated grid-converged

values are shown at
√

1/N = 0.
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