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Abstract

Homotopy continuation, in combination with a quasi-Newton method, can be an efficient and
robust technique for solving large sparse systems of nonlinear equations. The homotopy itself
is pivotal in determining the efficiency and robustness of the continuation algorithm. As the
homotopy is defined implicitly by a nonlinear system of equations to which the analytical so-
lution is by assumption unknown, many properties of the homotopy can only be studied using
numerical methods. The properties of a given homotopy which have the greatest impact on the
corresponding continuation algorithm are traceability and linear solver performance. Metrics
are presented for the analysis and characterization of these properties. Several homotopies are
presented and studied using these metrics in the context of a parallel implicit three-dimensional
Newton-Krylov-Schur flow solver for computational fluid dynamics. Several geometries, grids,
and flow types are investigated in the study. Additional studies include the impact of grid refine-
ment and the application of a coordinate transformation to the homotopy as measured through
the traceability and linear solver performance metrics.

Keywords: homotopy, continuation, computational fluid dynamics, high-dimensional curves,
implicitly-defined curves, curvature, traceability

1. Introduction

Consider a curve segment defined implicitly by the system of equations

H (q (λ) , λ) = 0, (1)

H : RN × R → RN , q ∈ RN , λ ∈ R on some interval λ ∈ Λ, Λ ⊂ R. Without loss of generality,
let Λ = [0, 1]. In this paper we assume that H is at least C1 differentiable, invertible, and that
the curve is regular on Λ. As such, the curve derivatives cannot vanish and no bifurcations are
present. While bifurcation analysis has been of practical interest to many researchers, includ-
ing several in computational fluid dynamics [33, 36, 44, 45], the application of interest in this
paper is the design of efficient homotopy continuation algorithms, for which the construction of
bifurcated curves should be avoided as such curves are difficult and computationally expensive
to trace numerically.

The curve defined implicitly by equation (1) can also be interpreted as a deformation. If the
deformation is continuous, it is called a homotopy [1]. In the case where H (q, 1) = 0 is easy
to solve numerically and H (q, 0) = 0 is difficult to solve numerically, solving H (q, 1) = 0
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for q and approximately tracing the curve numerically from λ = 1 to λ = 0 can be an efficient
and robust strategy [4, 6, 13, 14, 16, 43, 46] for acquiring an approximation to the solution to
H (q, 0) = 0, whereR (q) = H (q, 0) is a system of equations for which the solution is of interest.
This is referred to as homotopy continuation [1].

The use of homotopy continuation for its efficiency and robustness is a recent research area
in computational fluid dynamics. Part of the attraction of homotopy continuation for large-scale
scientific computing is the performance scalability as the number of degrees of freedom in the
calculation increases. This is particularly attractive for future applications as the average problem
size continues to increase, precipitated by the increasing availability and power of computational
hardware. Performance scaling with grid refinement or discretization order has been investigated
numerically by several authors [6, 13, 46] and is further investigated in this paper.

There are unlimited different ways in which to construct a regular homotopy H (q, λ) = 0
satisfyingH (q, 0) = R (q) for a givenR (q). For our application of interest, the homotopy should
be constructed to maximize the efficiency and robustness of the curve-tracing algorithm. Homo-
topies targeting this application have so far been designed with little to ensure that the curve will
be easy to trace or result in an efficient algorithm.

Some studies have been performed of homotopies in the context of efficient continuation.
Hicken and Zingg [16] calculated eigenvalues along the continuation path to give an idea of the
performance of the nonlinear and linear system solvers as a function of λ. For a simple one-
dimensional problem, Hao et al. [13] plotted the solution field at several values of λ to give
some intuitive visualization of the homotopy. For more complex three-dimensional systems,
Brown and Zingg [6] tracked functionals as surrogates for the homotopy curve. However, even
combining all of these approaches gives an incomplete profile of the homotopy and important
information pertinent to continuation algorithm performance is still lacking.

Timing comparisons are not performed in this paper as they have been performed previously
by Brown and Zingg [6], who found performance to be competitive or superior to the popular
pseudo-transient continuation algorithm over an extensive suite of computational aerodynamics
test cases. The focus of this paper is on identifying and quantifying features of homotopies which
affect the performance of the continuation algorithm and in improving our understanding of why
some homotopies lead to better algorithm performance. This knowledge will improve our abil-
ity to design effective homotopy continuation algorithms. The methodology is demonstrated by
considering some candidate homotopies for the external aerodynamic flow solver of Hicken and
Zingg [15] and Osusky and Zingg [29].

2. Homotopy

2.1. Homotopy Continuation

Consider the so-called convex homotopy [1] which is defined as the (presumably) continuous
solution q (λ) to

H (q, λ) = (1 − λ)R (q) + λG (q) = 0, (2)

H : RN × R→ R
N , G : RN → R

N , R : RN → R
N , λ ∈ R.

A continuation method can be developed from this homotopy by discretizing in λ to form a
sequence of nonlinear equations:

H (q, λk) = (1 − λk)R (q) + λkG (q) = 0, (3)
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k ∈ [0,m] , λk ∈ R, λ0 = 1, λm = 0, λk+1 < λk.

In the context of the studies in this paper, R (q) is the discrete flow residual and G (q) a system
of equations of our own design which we refer to as the homotopy system.

Another form of homotopy continuation, known as global or Newton homotopy continuation
due to its original formulation as a globally convergent generalization of Newton’s method [1, 7,
26], is performed by sequentially solving

H (q, λk) = R (q) − λkR (q0) = 0, (4)

k ∈ [0,m] , λk ∈ R, λ0 = 1, λm = 0, λk+1 < λk,

H : RN × R→ R
N , R : RN → R

N .

The vector q0 ∈ RN can be any vector of choice; for the computational aerodynamics examples
presented in this paper, this vector is populated with the far-field boundary conditions.

2.2. Predictor-Corrector Algorithm for Homotopy Continuation

As the name suggests, the predictor-corrector algorithm consists of two phases: the predictor
phase and the corrector phase. The two phases are applied repeatedly until traversing is complete.

The objective of the predictor phase is to obtain a suitable starting guess for the k + 1st sub-
problem using the estimated solution at the k-th sub-problem, a trajectory, and a distance (step-
length) to travel along that trajectory. A common choice of predictor is the Euler predictor, for
which the update at the kth step is given by

u
(0)
k+1 = u

(pk)

k
+ hkdk, (5)

hk ∈ R+, uk ∈ RN+1, dk ∈ RN+1,

where uk =
[

qk; λk
]

, hk is the step-length, dk is the step direction, and pk ∈ Z (where Z is the
set of integers) is the number of iterations required to converge the k-th sub-problem. The step
direction dk is typically an estimate of the vector tangent to the curve. The step-length hk is typi-
cally initialized at the first step and adjusted throughout the traversing process using a step-length
adaptation algorithm [1, 4].

A variety of higher-order predictors do exist and have been shown to be effective for cer-
tain cases. Higher-order predictors can be based, for example, on polynomial extrapolation [1],
Adams-Bashforth [24], or Runger-Kutta [2] methods. However, all examples of which we are
aware of homotopy continuation algorithms applied to computational fluid dynamics problems
have used Euler predictors, most likely due to their relative simplicity.

The objective of the corrector phase is to solve the nonlinear sub-problem at λk. The sub-
problemH (qk, λk) = 0 is solved inexactly using the inexact Newton method. Newton iterations

are performed until the relative residual
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∥

∥

∥

is reduced below some

user-defined tolerance µk ∈ R.

2.3. Parametrization

The most intuitive way to interpret the homotopy curve is to consider the parametric curve

q ∈
{

H−1 (0) |λ ∈ [0, 1]
}

, q ∈ RN , (λ) &→ q (λ). This homotopy curve will be referred to as
having λ parametrization. However, the curve can be written in a more general parametrized

form c (s) ∈
{

H−1 (0, λ) |λ ∈ [0, 1]
}

, (s) &→ c (s), c : R → RN × R, where c (s) is of the form
(q (s) ; λ (s)) and s ∈ S, S ⊂ R. It is common in homotopy curve tracing algorithms to use an
arclength parametrization as a reference frame [1, 4, 6].
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Definition 1. Let c : R → RM, (s) &→ c (s) be a C1-differentiable curve in RM with parameter

s ∈ S, S ⊂ R. The parametrization defined implicitly by

ċ (s) · ċ (s) = 1 (6)

is called an arclength parametrization of c (s) [22].

A formal definition of the λ parametrization can also be given in the following form.

Definition 2. Let c : R :→ RM × R, (r) &→ c (r) be a C1-differentiable curve in RM × R of the

form (q (r) ; λ (r)) with parameter r ∈ R, r ∈ [0, 1]. The parametrization defined by

λ̇ (r) = −1 (7)

is called a λ parametrization of c (r).

From this point forward, the notation c (s) is used to indicate that the curve has an arclength
parametrization, while c (r) indicates that the curve has a λ parametrization.

2.4. Tangent Vector

The vector tangent to the curve was presented previously by Brown and Zingg [4]:

ċ (s) = ξ
τ

∥τ∥
, τ =

(

z

−1

)

, z =
[

∇qH (q, λ)
]−1 ∂

∂λ
H (q, λ) , (8)

where z ∈ RN , τ ∈ RN+1, and ξ = ±1. According to Allgower and Georg [1], to ensure that the
curve is traced in a consistent direction, ξ should be chosen such that the sign of

det

(

∇H (q, λ)

ċ (s)T

)

is consistent for all λ ∈ Λ. However, if it is assumed that no bifurcation points are present, then
we should choose ξ = −1 since this will give λ̇ (s) < 0.

An expression for the tangent vector under a λ parametrization can be developed by differen-
tiatingH (c (r)) = 0 and using condition (7):

∇qH (c (r)) q̇ (r) =
∂

∂λ
H (c (r)) . (9)

Note the very useful property

q̇ (r) =
√

z · z + 1 q̇ (s) , (10)

which allows for easy conversion between q̇ (s) and q̇ (r).
The tangent calculation presented in this section, if the algebra is performed exactly, is an

exact expression for the tangent vector. However, when the calculation is performed in practice,
the calculation can be inexact for several reasons:

1. The point at which the tangent is evaluated is typically an inexact solution toH (q, λ) = 0;

2. There may be some inaccuracy associated with the solution to the linear system; in the
numerical studies presented in this paper, the linear system is solved inexactly using a
Krylov solver, and the Jacobian-vector products are formed inexactly;

3. Round off error, though typically insignificant compared to the other two sources of error.
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2.5. Curvature Vector Estimation

Direct methods have been developed to calculate the curvature vector c̈ (s) applicable to ho-
motopies in low spatial dimensions [25, 30, 38, 41]. Though we have also developed a method
for directly calculating curvature suitable for application to large sparse systems [5], this method
is not used here as the work was unpublished at the time that the current manuscript was being
prepared. However, many of the calculations presented in the current paper have been carried
out using the direct method and can be found in the first author’s PhD thesis [3].

Curvature vectors are estimated by applying finite-differencing to the tangent vector. The
following centred-difference estimate is used when considering an arclength parametrization:

c̈
(

si+ 1
2

)

≈ c̈∗
(

si+ 1
2

)

=
1

∆s∗
i

(ċ (si+1) − ċ (si)) , (11)

si+ 1
2
≈

1

2
(si+1 + si) .

A similar expression is used when considering a λ parametrization.
Note that once the finite-difference step size |∆λ| becomes sufficiently small, the error in the

finite-difference approximation to c̈ (s) will begin to increase with decreasing step size. This can
be explained by considering the error vectors e (si) , e (si+1) ∈ RN associated with the tangent
vectors, which are independent of the estimated step size ∆s∗ = si+1 − si. Then the curvature
approximation can be written as

c̈∗ (s) =
1

∆s∗
(ċ (si+1) + e (si+1) − ċ (si) − e (si)) . (12)

As ∆s∗ goes to 0, 1
∆s∗

(ċ (si+1) − ċ (si)) approaches c̈ (s) but, since e (s) does not decrease with

∆s, 1
∆s∗
|e (si+1) − e (si)| will grow as ∆s∗ decreases and will eventually become larger than the

truncation error. In effect, arbitrary accuracy cannot be achieved by taking ∆s arbitrarily small,
and the value of ∆s corresponding to the maximum accuracy which can be achieved depends
on how accurately the tangent is calculated. Assuming that the error associated with the tangent
estimation can be modeled as random, propagation of this error into the curvature estimate will
manifest as random noise.

2.6. Curvature

Curvature is a scalar metric calculated from the curvature vector. Several definitions are given
for different types of curvature:

Definition 3. Let c : R → RM, (s) &→ c (s) be a C2-differentiable curve in RM with arclength

parameter s ∈ S, S ⊂ R. The total curvature [22] κ : R→ R, (s) &→ κ (s) is defined as

κ (s) =
√

c̈ (s) · c̈ (s), (13)

and the partial curvature κq : R→ R is defined as

κq (s) =
√

q̈ (s) · q̈ (s). (14)

Definition 4. Let c : R :→ RM × R, (r) &→ c (r) be a C2-differentiable curve in RM × R of

the form c (q (r) , λ (r)) with parameter r ∈ R such that λ̇ (r) = −1. The total curvature with λ
parametrization κr : R→ R, (r) &→ κ (r) is defined as

κr (r) =
√

q̈ (r) · q̈ (r). (15)
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2.7. Validation of the Curvature Estimation

The error in the finite-difference curvature estimations can be approximated numerically us-
ing Richardson extrapolation to estimate the converged curvature values, meaning the curvature
estimated on an infinite-resolution grid, where the grid, in the present context, consists of the
set of s or λ values, as appropriate, over which the curvature estimates are evaluated. To apply
Richardson extrapolation, the convergence rate p ∈ R must first be calculated from the three
finest converged functional values:

p =
ln (| f3 − f2| / | f2 − f1|)

ln (r)
, (16)

where fi is the functional of interest (curvature) at grid level i, where i = 1 is the finest grid
and i = 3 the coarsest, and r ∈ R is the grid ratio. The grid ratio is equal to 2 for all studies in
this paper. The convergence rate is then used to extrapolate the functional value on an infinite
resolution mesh, denoted f0, using the two finest grid levels:

f0 =
rp f1 − f2

rp − 1
. (17)

If the final three points are non-monotonic, or if the estimated convergence rate is less than 1,
then the grid-converged functional is estimated from a first-order extrapolation by setting p = 1
in equation (17).

Validation is performed for each curvature study using grid sizes based on |∆λ| = 0.02, 0.04,
and 0.08. For the κq calculation, this does not result in perfectly uniform grid refinement since
the grid consists of the arclength values. The curvature estimates are performed every |∆λ| = 0.02
regardless of grid spacing. Due to the coarse grid spacing, Richardson extrapolation can only be
performed for curvature values corresponding to λ values between 0.96 and 0.04. Since centered
differencing is used, curvature values using the fine mesh correspond to λ values such as 0.95,
0.93, 0.91, etc, whereas curvature values estimated on the coarser grids correspond to λ values
of 0.94, 0.92, etc. Since Richardson extrapolation must be applied to the curvature estimated at
the same nodal locations on each grid level, the fine grid estimates are interpolated to λ = 0.94,
0.92, etc. using cubic splines. In the case of the κq estimates, s (λ) is in addition interpolated to
λ = 0.95, 0.93, etc. using cubic splines.

2.8. µ-Scaling

If a homotopy continuation algorithm is limited to local curve and tangent information, then
the prediction of subsequent points along the curve is hindered if the curvature is significant.
Step-length adaptation can be used to mitigate this effect locally by reducing the step size in re-
gions of high curvature. However, step-length adaptation algorithms have limited effectiveness,
especially if the curvature increases significantly over a short arc segment. The µ-scaling was
developed as a means to improve the performance of step-length adaptation algorithms by dis-
tributing the curvature more evenly across the homotopy curve [4]. This scaling is equivalent to
a global re-parametrization, which can be written as a coordinate transformation in λ:

λ←
λµ

1 − λ + µλ
. (18)
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This transformation is equivalent to explicitly modifying the convex homotopy given by equa-
tion (3) to the following form:

H (q, λk) = (1 − λk)R (q) + λkµG (q) = 0, (19)

k ∈ [0,m] , λk ∈ R, λ0 = 1, λm = 0, λk+1 < λk.

This modified homotopy equation is reminiscent of a technique known as the “γ-trick” [13, 27,
39], where a complex parameter is included in the equation for the purpose of avoiding potential
bifurcation points. The difference is that our modification does not fundamentally alter the curve
and exists solely for the purpose of re-distributing the curvature. As can be seen by the change
of coordinates formula (18), µ > 1 effectively compresses the domain near λ = 0 and stretches it
near λ = 1, while µ < 1 has the reverse effect.

In practice, it is convenient to apply µ-scaling as two components:

µ = µaµu, µa, µu ∈ R, (20)

where µa is some fixed benchmark value that can be determined from a numerical algorithm or
based on experience, and µu is user-supplied. In this study, the minimization algorithm of Brown
and Zingg [4] is used to determine an appropriate value for µa. When using the dissipation
operator with far-field boundary conditions (described in Section 6) as the homotopy system, µa

is determined to be 0.7 for inviscid flow, 0.5 for laminar flow, and 0.1 for turbulent cases, each
obtained from a single subsonic case over the ONERA M6 [37] wing.

3. Newton-Krylov Flow Solver

3.1. Computational Aerodynamics Flow Solver

With the exception of the first test case (Section 7.1), the numerical studies are performed
using a Newton-Krylov-Schur parallel implicit flow solver based on a finite-difference [23] dis-
cretization applicable to multi-block structured grids. The discretization is based on the SBP-
SAT [8, 9, 11, 21] approach, which uses Summation-By-Parts (SBP) operators to represent the
discrete derivatives and Simultaneous Approximation Terms (SATs) to enforce the boundary
conditions and couple the flow equations at block interfaces. The nonlinear numerical scheme is
stabilized using the artificial dissipation operator of Pulliam [31], which was based on the earlier
work of Jameson et al. [19].

The original inviscid flow solver flow of Hicken and Zingg [15] is used for all calculations
in this paper though the flow solver has since been extended to viscous flows by Osusky and
Zingg [29]. Turbulence is modeled using the Reynolds-averaged Navier-Stokes (RANS) equa-
tions with Spalart-Allmaras (SA) [40] turbulence model. The flow solver can be used for both
subsonic and transonic operating conditions. For transonic cases, a first-order dissipation opera-
tor is included with a pressure sensor [15, 19] for shock capturing.

3.2. Newton’s Method

Consider a nonlinear algebraic system of equations, represented by

F (q) = 0, (21)
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F : RN → R
N , q ∈ RN .

The update due to Newton’s method, when applied to this system of equations, is calculated by
solving the linear system of equations

∇F (n) (q) ∆q(n) = −F
(

q(n)
)

, (22)

∆q(n) ≡ q(n+1) − q(n),

where ∇F (n) : RN → RN is the Jacobian of F (q), defined as

∇Fi, j (q) ≡
∂Fi (q)

∂q j
, (23)

which can be represented by a square matrix.

3.3. Solving the Distributed Linear System

To parallelize the flow solver, the domain is decomposed into blocks. Parallel precondi-
tioning of the Krylov solver is performed using the Schur complement method [34] with block
incomplete lower-upper (ILU) preconditioning applied to the domain blocks. The specific type
of ILU factorization used in the current study is known as ILU(p) [34], where p is the fill level.
The ILU(p) factorization is constructed based on an approximate Jacobian matrix using nearest
neighbour nodes only. Since the Schur preconditioner can vary slightly throughout the Krylov
solution process, a flexible variant of the Krylov solver GMRES is used, which is termed Flexi-
ble Generalized Minimal Residual, or FGMRES [34].

3.4. Jacobian-Free Newton-Krylov

Since the linear system (22) is solved to some relative tolerance τ(n)
l
∈ R using FGMRES, the

actual Newton step is taken inexactly, and the update ∆q does not satisfy equation (22) but does
satisfy the inequality

∥

∥

∥

∥

F
(

q(n)
)

+ ∇F (n) (q) ∆q(n)
∥

∥

∥

∥

≤ τ(n)
l

∥

∥

∥

∥

F
(

q(n)
)

∥

∥

∥

∥

. (24)

It is not always necessary to form and store the Jacobian matrix in a Newton-Krylov algo-
rithm [20] since this matrix is not needed explicitly by a Krylov iterative method for solving
linear systems, such as GMRES. What is needed by a Krylov solver are the Jacobian-vector
products, which can be approximated using, for example, a finite-differencing approach [15, 28].

3.5. Solving the Nonlinear System

Newton’s method has a high convergence rate but usually requires a good initial guess to be
successful. A globally convergent method such as pseudo-transient continuation or homotopy
continuation can be used to obtain a suitable starting guess for Newton’s method. Hence the
solution process is divided into two phases: the continuation phase and the inexact Newton
phase.
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4. Homotopy Design

4.1. Desired Properties of ∇qH (q, λ)

The suitability of a given G (q) as a homotopy system will depend on the curve-tracing
methodology. An important consideration for curve-tracing efficiency is how accommodating
the Jacobian of the homotopy is to the (preconditioned) linear solver. In the special case of
the (flexible) GMRES-ILU(p) combination, it is important that the Jacobian matrix ∇qH (q, λ)
should be positive definite [34] and well-conditioned.

As discussed in Section 1, it is contrary to our objectives to construct homotopies which fea-
ture bifurcations. To ensure that no bifurcations exist, the determinant of ∇qH (q, λ) should be
maintained positive for all λ ∈ Λ, as explained in the following paragraphs.

Recall the condition, presented in Section 2.4, that the value of ξ used in the tangent calcula-
tion in equation (8) should be chosen such that the sign of

det

(

∇H (q, λ)

ċ (s)T

)

is consistent for all λ ∈ Λ. Considering equation (8), we can derive a relationship between this

expression and det
(

∇qH (q, λ)
)

:

det

(

∇H (q, λ)

ċ (s)T

)

= det

(

∇qH (c (s)) ∂
∂λ
H (c (s))

ξ 1
∥τ∥z

T −ξ 1
∥τ∥

)

(25)

= ξ
1

∥τ∥
det

(

∇qH (c (s)) ∇qH (c (s)) z

zT −1

)

= ξ
1

∥τ∥
det

(

∇qH (c (s)) 0
zT z · z + 1

)

det

(

I z

0T −1

)

= − ξ
1

∥τ∥
(1 + z · z) det

(

∇qH (c (s))
)

, (26)

We observe that a change of sign in the determinant of∇qH (q, λ) will cause ξ and hence, consid-
ering equation (8), λ̇ (s) to change sign, indicating the presence of a Hopf bifurcation somewhere
along the curve segment.

Assuming that we are only interested in studying dynamically stable flow solutions, all eigen-
values of the converged flow solution may be assumed to have positive (by convention) real part.
Since the determinant is equal to the product of the eigenvalues, the determinant of ∇R (q) is
positive at the converged flow solution. A desirable property of G (q) is therefore that it should

induce det
(

∇qH (q, λ)
)

> 0 for all λ ∈ Λ, which, since the determinant is equal to the product of
the eigenvalues, can be assured if all real eigenvalues of ∇qH (q, λ) are strictly positive for all λ.
(Since complex eigenvalues always occur in complex conjugate pairs for real-valued matrices,
complex eigenvalues do not affect the sign of the determinant.)

4.2. Curve Traceability

The implicitly-defined homotopy curve is nonlinear and can be traced with limited accuracy
with a given numerical continuation method. The homotopy should be designed to facilitate
curve tracing using the continuation algorithm. This is discussed further in Section 5.2.
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4.3. Convex Homotopy System Design Objectives

In the context of the Newton-Krylov framework, the suitability of a homotopy system G for
use in a homotopy continuation algorithm depends on how well each of the following criteria are
met:

1. The matrix ∇G (q) improves the performance of the linear solver when added to ∇R (q)

- Most of the computational work is within the linear solver, so the efficiency of the
linear solver is crucial to the efficiency of the algorithm

2. All real-valued eigenvalues of ∇qH (q, λ) are strictly positive for all λ

- As per Section 4.1

3. The solution to G (q) = 0 is known or easily obtainable

- The algorithm would be redundant if G (q) = 0 is as difficult to solve as R (q) = 0

4. The solution to G (q) = 0 is unique

- Otherwise, we risk introducing bifurcations

5. The homotopy connecting G−1 (0) and R−1 (0) is easy to trace.

- Though difficult to predict, this directly impacts the efficiency, robustness, and even
the viability of the curve-tracing algorithm

5. Methods for Numerical Analysis

5.1. Surrogate Curves

Since the curves representing the homotopies exist in higher dimensional real space and
cannot be visualized, one-dimensional surrogate curves can be used to assess the performance of
the homotopy continuation algorithms. For example, the values of the lift coefficients (Cl for two-
dimensional flow, CL for three-dimensional flow) and drag coefficients (Cd for two-dimensional
flow, CD for three-dimensional flow) calculated along the curve can be used as one-dimensional
surrogates for the curve. These surrogates are not expected to give a realistic impression of the
features of the curve such as curvature but can be used to roughly evaluate the effectiveness of
various curve tracing or curve prediction tools or to assess how similar two different homotopies
might be.

5.2. Curvature

While it is clear that curvature is an important metric for evaluating curve traceability, the
apparent curvature, and hence traceability, also depends on the parametrization. For example,
if it is assumed that traversing is performed with a constant step-length, where the step-length
is measured with respect to an arclength parametrization, then it is important to consider κq.
However, if it is assumed that the curve is traced with constant ∆λ then it is more relevant
to consider κr. Since the use of λ as the parameter controlling the deformation is a matter of
convenience and not performance, curve tracing algorithms are generally designed to attempt to
maintain a relatively consistent ∆s. However, in our experience, it is usually advantageous to
enforce upper and lower bounds on ∆λ, as well as upper and lower bounds on the factor that ∆λ
can change by between successive iterations, so some elements of a λ parametrization can be
present in practice. Hence, both parametrizations are typically relevant.

Since κq is (mostly) independent of the parametrization, this is a useful tool for assessing
10



the suitability of a homotopy system for use in a continuation algorithm under the assumption
that the curve can be re-parametrized. However, it is not a good metric for directly comparing
two homotopies because it assumes both curves are being traced with the same step size ∆s and
does not take into account that, under this condition, more steps would be needed if the curve is
“longer”. To establish a more appropriate metric, consider the Taylor expansion around some s0:

q (s0 + ∆s) = q (s0) + ∆sq̇ (s0) +
1

2
∆s2q̈ (s0) + O

(

∆s3
)

. (27)

If a predictor is formed using only c (s) and ċ (s), then, neglecting O
(

∆s3
)

terms, the norm of the
error e ∈ R resulting from the curvature is

e =

√

(

1

2
∆s2

)2

q̈ (s) · q̈ (s) =
1

4
∆s2κq. (28)

If it is assumed that the curve is always traced with the same number ns of equally spaced (in ∆s)
steps then stot = ns∆s and hence equation (28) becomes

e =
1

4n2
s

s2
totκq. (29)

The actual value of ns is irrelevant for comparison and so s2
totκq is the traceability metric con-

sidered when assuming an arclength parametrization. This quantity can be plotted against λ to
quantify how traceability varies with λ. To assess how traceability varies (nearly) independently
of the parametrization, the traceability metric could instead be plotted against s/stot. The values
of ∆s and stot can be estimated numerically as

∆si ≈
√

∥qi − qi−1∥2 + |λi − λi−1|2, (30)

stot ≈
ns
∑

i=1

∆si. (31)

While the traceability metrics presented in this section are useful for comparing homotopies
on a given mesh under certain flow conditions, the curvature can scale in complicated ways with
mesh size, local grid refinement, and the state variables q. Hence the traceability metrics should
not, in general, be used to compare traceability across meshes or under different flow conditions.
An exception to this is if the mesh is refined in a consistent way; such a study is performed in
Section 7.5.

5.3. Linear System Convergence

The amount of curvature gives an indication of how many iterations will be required by the
continuation algorithm. However, the cost of each iteration can vary significantly during the
continuation process. For this reason, it is important to develop a profile for the convergence
behaviour of the linear solver as a function of the continuation parameter. In this case, the linear
solver is Schur-preconditioned FGMRES with block ILU(p).
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In addition to curvature profiles, we would like to profile the FGMRES convergence be-
haviour using an accessible metric. A simple way to profile FGMRES convergence is simply to
plot the number of linear iterations taken to converge the linear system residual below a speci-
fied relative tolerance τ

l
. However, this assumes that the ideal τ

l
is known and it is preferable to

develop a metric which is independent of the τ
l
value.

The linear solver convergence behaviour when solving a linear system of the form Ax = b

with FGMRES depends on both A and b and is an area of ongoing research [42]. Under the
assumption thatA is diagonalizable, an upper bound on the convergence profile has been known
since the original paper on GMRES by Saad and Schultz [35]. For an application of GMRES that
has reached the kth iteration, this convergence bound is given by the rather intractable expression

∥rk∥2
∥r0∥2

≤ κn (V) min
p∈Pk ,p(0)=1

max
β∈E(A)

|p (β)| , (32)

where xk is the solution estimate at the kth iterate, and rk ≡ Axk − b is the corresponding linear
system residual. Additionally, κn (V) ≡ ∥V∥2

∥

∥

∥V−1
∥

∥

∥

2
is the condition number of V, V is the

eigenvector matrix ofA, E is the set of eigenvalues ofA, and Pk is the space of kth degree poly-
nomials. However, this is not necessarily a sharp convergence bound, as investigated by authors
such as Embree [10]. In fact, Greenbaum et al. [12] have shown that for any non-increasing
sequence, it is possible to constructA and b such that the sequence formed by the residual ∥rk∥
matches this sequence.

Since a reliable method for predicting and profiling convergence of our preconditioned FGM-
RES linear solver does not appear to currently exist, we rely on a posteriori numerical analysis.
We attempt to apply the model

Rk ≡
∥rk∥2
∥r0∥2

≈ Cγk, (33)

with C, γ ∈ R. Setting C = 1 satisfied the initial condition Rk = 1. However, since GMRES
convergence often does not exhibit its asymptotic behaviour in the initial iterations [10], it may
be preferable to consider both C and γ as variables, which can be solved for simultaneously by
applying least-squares regression to the sequence

ln Rk = ln C + k ln γ, (34)

ignoring data from the early iterations. This may give a value of γ which is more representative
of the asymptotic convergence rate. However, when solving the linear system to a fairly relaxed
tolerance such as τ

l
= 0.01, the asymptotic region may not be prevalent, and so accurately mod-

eling the asymptotic region of convergence may be less important. In the present study, C = 1 is
assumed in the model and all Rk data is used in the regression. The effectiveness of this model
for assessing linear solver performance is investigated numerically in Section 7.2, including the
coefficient of determination R2 and qualitative comparison of the model with the convergence
data.

6. Some Specific Homotopy Systems

The operators presented in this section have been designed for use as homotopy systems with
special consideration for the computational fluid dynamics flow solver of Hicken and Zingg [15]
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and Osusky and Zingg [29]. It is expected that similar operators will also be effective for appli-
cation to other equation solvers where the nonlinear system of equations has similar properties.
In particular, these operators could be adapted to homotopy continuation algorithms for other
computational fluid dynamics solvers.

The operators are designed such that the homotopies satisfy the first four requirements listed
in Section 4.3. That is, they result in good performance in the linear solver for all λ ∈ Λ, the
eigenvalues of the Jacobian of G (q) are positive, G (q) = 0 can be solved easily, and G (q) = 0
has a unique solution. Existence of the curve is verified numerically, and the curvature profiles
are investigated numerically.

6.1. The Diagonal Operator

A linear operator G (q) with the property (G (q))[i] = giq[i], gi > 0, gi ∈ R is a suitable
homotopy system because the Jacobian of this system is a diagonal positive-definite matrix. As
such, the Jacobian is nonsingular, can be inverted trivially, and improves the diagonal dominance
of the Jacobian when added to the discrete flow equations. Because the Jacobian is diagonal, this
homotopy system will be referred to as the “Diagonal” operator.

By analogy to the Jacobian formed when applying a pseudo-transient method, the equation
blocks of this homotopy system for the three-dimensional RANS equations take the form:

G(i) (q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +J
1
D

[i]

J[i]
,

1 +J
1
D

[i]

J[i]
,

1 +J
1
D

[i]

J[i]
,

1 +J
1
D

[i]

J[i]
,

1 +J
1
D

[i]

J[i]
, 1 +J

1
D

[i]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

q(i), (35)

whereJ is the metric Jacobian resulting from transforming the coordinates of the block-structured
mesh from physical space to computational space and can be interpreted as the reciprocal of a
grid cell volume (see, for example, Pulliam and Zingg [32]). The rounded brackets in the sub-
script (i) indicate the sub-vector corresponding to the ith grid node, and the square brackets [i]
indicate the ith component of the vector. The parameter D is the number of spatial dimensions
and is equal to 3 for three-dimensional flows. For two-dimensional flows, D is set to 2, and the
equation block size is reduced by one by deleting the fourth entry of equation (35), since this
entry corresponds to the conservation of momentum equation in the third spatial direction. This
homotopy system is similar in construction to the pseudo time operator used in pseudo-transient
continuation algorithms. It varies from the operator found in the pseudo-transient continuation
algorithm of Hicken and Zingg [15] only in that it does not contain a factor of the reference time
step ∆tref .

While this operator has an easily invertible Jacobian, the solution toG (q) = 0 is q = 0, which
includes zero density and is non-physical. This is obviously a poor choice of homotopy system
and so it is preferable to apply this operator as a warm-started homotopy operator as described
in Section 6.3. This formulation allows for any specified value of q, such as far-field conditions,
to satisfy the modified homotopy system without affecting the system Jacobian. This is the ap-
proach taken in this paper, with a vector of far-field conditions used to construct the source term
vector.

6.2. The Dissipation Operator

Scalar artificial dissipation operators such as presented by Jameson et al. [19] are often added
to the discrete flow equations for numerical stability, and this dissipation scheme is used for the
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studies in this paper. Adding such operators to the discrete flow equations can have a highly sta-
bilizing effect and can improve the performance of the preconditioned linear solver by increasing
the diagonal dominance of the Jacobian matrix. Hence, dissipation operators are suitable for ap-
plication as a homotopy system. This has been previously acknowledged by Hicken et al. [14],
who investigated the efficiency of a simple homotopy continuation algorithm using as the homo-
topy system the second-difference dissipation operator of Jameson et al. [19] absent the pressure
sensor used for shock capturing.

The second-difference dissipation operator is given explicitly by

D(2) (q) = ∆TC∆q, (36)

∆ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1
−1 1

−1 1
. . .

. . .

−1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d[ 1
2 ]

d[ 3
2 ]
. . .

d[N− 3
2 ]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

∆ ∈ R(N−1)×N , C ∈ R(N−1)×(N−1),

d[i+ 1
2 ] =

1

2

(

d[i] + d[i+1]
)

, d[i] =
∣

∣

∣u[i]

∣

∣

∣ + a[i].

where a is the sound speed, u the fluid velocity. Note the u and a can both be written in terms
of q, making the operator nonlinear. For clarity of presentation, the one-dimensional scalar
(eg. assuming one equation, and hence one variable, per grid point) version of the operator is
presented. The operator can be applied to three-dimensional vector-valued equations by applying
the operator given by equation (36) to each equation and in each spatial direction. Details are
given by Pulliam and Zingg [32]. In addition, for three-dimensional flows, the equation for d is
replaced by

d[i+ 1
2 ] =

1

2

(

d[i] + d[i+1]
)

, d[i] =

[

J−1
(

|Un| + a
√

ξ2x + η
2
y + ζ

2
z

)]

[i]
, (37)

where Un is the contra-variant velocity and ξx, ηy, and ζz are related to the coordinate transfor-
mation [32].

That ∆ defines a mapping from RN to RN−1 is sufficient to identify that the rank of the D(2)

is at most N − 1. Therefore D(2) is singular and, as discussed previously, it is desired that the
homotopy system should be nonsingular to ensure that the curve representing the homotopy de-
formation is unique. This can be remedied by augmentingD(2) with pseudo boundary conditions.

Pseudo boundary conditions forD(2) are formulated using the SAT approach to be consistent
with the SATs used for the flow equations. The scalar one-dimensional version of the operator is
analyzed for clarity of presentation. By analogy to the diffusion equation, the following form of
the equation, including boundary conditions, is assumed:

G (q) = D(2)q + B (q) , (38)

B (q) = diag
(

σL
(

q[1] − qL
)

, 0, . . . , 0,σR
(

q[N] − qR
))

,

B : RN → R
N , σL,σR, qL, qR ∈ R.
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At a domain boundary, qL and qR are boundary conditions. At grid block interfaces, they are the
flow values at the same point in physical space but corresponding to the adjacent block.

Since D(s) is not an SBP operator, it is not straightforward to derive the stability condition
on the SATs using the usual energy method. However, ignoring the dependence of d on q for
simplicity, it is possible to determine some necessary conditions on the SATs by analysis of the
pseudo-linear operator representing the Jacobian. For analysis, this operator is most conveniently
expressed by giving the expression for the rows in the one-dimensional case:1

G(l)
[i,:] =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

σL + d[ 3
2 ],−d[ 3

2 ], 0, 0, . . . , 0
)

i = 1,

tridi

(

−d[i− 1
2 ], d[i− 1

2 ] + d[i+ 1
2 ],−d[i+ 1

2 ]

)

i = 2, . . . ,N − 1,
(

0, . . . , 0, 0,−d[N− 1
2 ], d[N− 1

2 ] + σR

)

i = N.

(39)

Consider the subtraction of the sum of the absolute values of the off-diagonal elements of the
matrix from the absolute value of the diagonal elements:

∣

∣

∣

∣

G(l)
[i,i]

∣

∣

∣

∣

−
∑

j!i

∣

∣

∣

∣

G(l)
[i, j]

∣

∣

∣

∣

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

σL i = 1,

0 i = 2, . . . ,N − 1,

σR i = N.

(40)

Since G(l) is easily verified to be irreducible, the necessary and sufficient condition for G(l) to be
irreducibly row-diagonally dominant is

σR ≥ 0, σL ≥ 0, σL + σR > 0. (41)

Since irreducibly row-diagonally dominant systems are nonsingular [34], condition (41) is also
a sufficient condition for non-singularity of G(l).

By symmetry, and comparison with the well-known diffusion operator, it is inferred that the
conditions for well-posedness are given by σL = d1 and σR = dN for the scalar one-dimensional
version of the operator. The extension to three-dimensional vector-valued systems is accom-
plished by similarly constructing the SATs in each direction and for each equation.

The boundary conditions qL and qR do not affect the conditioning of the linear system and
can be chosen based on other criteria. One benefit to setting qL and qR to far-field conditions
at all domain boundaries (including boundaries which are interpreted as solid surfaces for the
physical problem) is that G (qff) = 0, where qff ∈ RN is the vector consisting of the far-field
values in all corresponding elements. This ensures that the third criterion of Section 4.3 is sat-
isfied as G (q) = 0 has a known solution. Since these boundary conditions are treated as part of
the homotopy system, the actual boundary conditions ofH (q, λ) can be interpreted as gradually
progressing from far-field everywhere at λ = 1 to the “correct” physical boundary conditions at
λ = 0 with a non-physical combination of the two boundary condition types when 1 > λ > 0.

Use of “flow-imitative” boundary conditions is also considered, where the boundary condi-
tions are set at the solid surfaces, far-field boundaries, and symmetry planes which imitate the
SATs corresponding to the flux terms of R (q). The motivation for including such boundary con-
ditions is to attempt to produce a homotopy system which has solution closer to the solution of
R (q) = 0, potentially leading to a shorter or somehow “easier” homotopy path. Though the
solution is not immediately known for this choice of boundary conditions, from our experience
it can be obtained with minor computational effort from a few inexact Newton iterations.

1In this context, tridi (x, y, z) refers to the ith row of a matrix with x at the i− 1st entry, y at the ith entry, z at the i+ 1st
entry, and zeros everywhere else.

15



6.3. Warm-Started Homotopy Systems

The concept of “warm-starting” a nonlinear algorithm applies to fixed-point methods such as
Newton’s method or the pseudo-transient continuation method where a good initial guess q0 can
reduce the total number of iterations taken by the algorithm and thus reduce the total CPU time
needed for convergence. Global homotopy continuation can naturally take an initial guess q0,
but convex homotopies cannot because q0 will not correspond to a point on the curve. However,
an effect similar to warm-starting can be obtained in the context of convex homotopy for a given
homotopy system G by constructing a modified homotopy system

G∗ (q) = G (q) − G (q0) (42)

since q = q0 is a solution to G∗ (q) = 0.

7. Some Numerical Studies of Homotopies

The numerical studies are carried out in the context of the flow solver described in Section 3.
The homotopy systems investigated are the convex homotopy with the dissipation operator using
far-field boundary conditions, the dissipation operator using flow-imitative boundary conditions,
and the diagonal operator with a source term based on far-field conditions, as well as global
homotopy. These are indicated as “Diss - ff”, “Diss - flow”, “Diag”, and “Global” respectively
on the plots. Richardson extrapolation is abbreviated as RE.

7.1. Surrogate Curves for some One-Dimensional Inviscid Homotopies

Two cases are considered, one of which is subsonic and the other transonic. Both cases con-
sist of airflow through a converging-diverging nozzle under conditions such that compressibility
cannot be neglected. The shape of the nozzle S (x) for both cases is given by

S (x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 + 1.5
(

1 − x
5

)2
0 ≤ x ≤ 5

1 + 0.5
(

1 − x
5

)2
5 ≤ x ≤ 10.

(43)

For both cases, the air is considered to be a perfect gas with ideal gas constant R = 287N · m ·
kg−1 · K−1, heat capacity ratio γ = 1.4, total temperature T0 = 300K, and total inlet pressure
p01 = 100kPa. The critical area is S ∗ = 0.8 for the subsonic case and S ∗ = 1 for the transonic
case. The critical area is used to calculate the Mach number at the inlet in this case and can
also be used to calculate the Mach number for all x. Both problems are described by Pulliam
and Zingg [32], who in turn reference Hirsch [18]. More details of the problem can be found in
either textbook, including the relationship between S ∗ and the Mach number.

To discretize the governing system of partial differential equations we have used the SBP-
SAT approach with 200 equally spaced nodes and an interface at x = 6m, where coupling across
the interface is also enforced using the SAT approach. The location of the interface has been
chosen more or less arbitrarily near the mid-point of the domain. The implementation is in Mat-
lab using an LU decomposition to solve the linear system. Flow cases for both the subsonic and
transonic conditions of Pulliam and Zingg [32] are considered.

The homotopies considered are the convex homotopy with the dissipation operator, where
the pseudo boundary conditions match the physical inlet and outlet boundary conditions of the
flow, and the global homotopy, where q0 is set to the physical boundary conditions at the domain
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boundaries and interpolated based on these values at points interior to the domain. The surrogate
for the deformation in this case is the pressure profile over the spatial domain x ∈ [0, 10], x ∈ R.
It can be seen from Figure 1 that for the subsonic case the global homotopy curve is much more
traceable than the convex homotopy curve with the dissipation operator. However, the convex
homotopy curve is far more traceable in the transonic case. When applying the global homotopy
to the transonic case, the predictor-corrector method was found to diverge from the curve unless
a very small step size (approximately |∆λ| = 0.001) was taken, even for this relatively simple
problem.

The performance of the linear solver can vary greatly from the continuation phase to the
inexact Newton phase depending on the continuation algorithm. Previously, based on an im-
plementation of the one-dimensional linear convection equation, Hicken et al. [14] investigated
the evolution of the condition number and eigenvalue spectrum with respect to the continuation
parameter for a dissipation-based continuation strategy and compared the results to a pseudo-
transient continuation algorithm. A similar study is performed here for the subsonic converging-
diverging nozzle problem, and a similar trend is observed. Evolution of the condition number κn
is shown for the respective Jacobian matrices of the convex homotopy with dissipation operator
and the pseudo-transient continuation method in Figure 2. For pseudo-transient continuation, the
condition number is plotted against the Courant number Cn, which is used to define the spatially-
varying time step ∆t using the formula

∆t =
Cn∆x

(|u| + a)
, (44)

where u is the local fluid velocity and a the local speed of sound.
It is apparent from Figure 2 that reducing the Courant number (and hence the time step) has

the effect of improving the condition number, whereas adding the dissipation operator to the
system actually worsens the conditioning. To study these effects, the eigenvalue spectra are in-
vestigated for different λ and Cn in Figures 3 through 5. For pseudo-transient continuation, when
the Courant number is decreased, the eigenvalues migrate away from the imaginary axis so the
difference in magnitude of the smallest and largest in magnitude eigenvalues decreases, resulting
in improved conditioning. For the convex homotopy with dissipation operator, increasing λ com-
presses the eigenvalue spectrum to and stretches it along the real axis. Though pseudo-boundary
conditions have been applied to the dissipation operator, the smallest in magnitude eigenvalue at
λ = 1 is near to zero, resulting in a poorly-conditioned system. However, what is important for
the convergence of Krylov iterative solvers is not the conditioning of the Jacobian matrix itself
but the conditioning of the preconditioned matrix. When increasing λ, the diagonal dominance
and definiteness of the linear system is gradually improved, which can significantly improve the
quality of the ILU decomposition when using the ILU(p) algorithm [34]. As a result, the con-
ditioning of the preconditioned linear system can still be quite good. Since the one-dimensional
problem studied here results in a narrow banded matrix for which a complete LU factorization
can easily be formed, this is not a suitable problem for studying linear system performance and
so we leave these studies for the two- and three-dimensional cases.

7.2. Curvature Profiles for a Two-Dimensional Inviscid Subsonic Flow

The test case for this study is an inviscid subsonic flow over the NACA 0012 airfoil. The
grid consists of 18 blocks divided evenly into 15390 nodes. The operating conditions are Mach
0.3 and an angle of attack of 1◦. Surrogate curves and curvature profiles are generated for the
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(d) Convex homotopy, transonic flow
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(f) Convex homotopy, transonic flow

Figure 1: Surrogate curves for the global and convex homotopies with the dissipation homotopy
system for a one-dimensional converging-diverging nozzle problem under subsonic and transonic
conditions
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Figure 2: Condition number evolution for three continuation methods for the subsonic
converging-diverging nozzle
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Figure 3: Evolution of the eigenvalue spectrum of the Jacobian matrix for the convex homotopy
with dissipation operator for the subsonic converging-diverging nozzle case
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Figure 4: Evolution of the eigenvalue spectrum of the Jacobian matrix for the global homotopy
for the subsonic converging-diverging nozzle case
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Figure 5: Eigenvalue spectrum of the Jacobian matrix for pseudo-transient continuation with
different Courant numbers for the subsonic converging-diverging nozzle case
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Figure 6: Surrogate curves and curvature profiles for several homotopies for inviscid flow over
the NACA 0012 airfoil at Mach 0.3 and angle of attack of 1◦

convex homotopy with the dissipation operator using both far-field and flow-imitative boundary
conditions, the convex homotopy with the diagonal operator, and also for global homotopy. The
surrogate curves are generated by accurately solving for points along the curve using a step size
of |∆λ| = 0.001, whereas the curvature estimates use |∆λ| = 0.02 to avoid propagating too much
error from the tangent calculation. The validation of the curvature calculation is performed by
visual inspection of Figure A.19, from which we assess that the calculation is converged. The
slight oscillations apparent for the global homotopy on the finest grid are most likely due to error
propagation from the tangent calculation.

The surrogate curves and curvature profiles for this test case are shown in Figure 6. Clearly
the lift and drag profiles do not accurately portray the curve traceability. The traceability of the
different homotopy curves can be compared by considering the curvature profiles with respect to
different parametrizations. Under both arclength and λ parametrizations, the curve generated by
the convex homotopy with the diagonal operator appears to exhibit the lowest traceability, and
the curve generated by the global homotopy appears to exhibit the highest traceability. Neither
boundary condition type for the dissipation operator definitively stands out as giving a curve with
better traceability over the other. A notable feature of the curvature profiles from the homotopies
using the dissipation operators is the significant curvature increase near s/stot = 1, which indi-
cates that these curves become increasingly difficult to trace near λ = 0.

Figure 7a shows the values of γ obtained by applying linear regression to the FGMRES
convergence data using τ

l
= 0.01 according to equation (33). The profile for γ as a function of λ

shows a similar trend to the number of iterations k as a function of λ, lending credibility to the
metric. To show that γ is relatively independent of τ

l
, the study is performed a second time using

τ
l
= 0.001, as shown in Figure 7b.

To investigate the accuracy of the convergence model, the coefficients of determination (R2
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Figure 7: FGMRES convergence profile investigation for the convex homotopy with dissipation
operator with far-field boundary conditions for inviscid flow over the NACA 0012 airfoil at Mach
0.3 and angle of attack of 1◦

values) are plotted as a function of λ alongside the γ profiles in Figure 7. In addition, the conver-
gence models are compared to the convergence data in Figure 8 at three values of λ. Comparing
the plots in Figure 8 with the corresponding R2 values in Figure 7a gives an idea of the relation-
ship between the R2 values and the quality of the fit. Clearly the model is not perfect and the
metric should not be treated as more than a rough measure.

Values of γ vary between 0 and 1, with 0 being optimal and 1 indicating that the linear
solver has stalled. However, it is not very representative of the cost of FGMRES and it does not
provide an intuitive cost comparison. As apparent from equation (34), 1/ lnγ is proportional to
k for a given linear solver residual target, making it a more representative metric of the actual
cost of FGMRES than γ. When considering 1/ lnγ, values near 0 indicate a high convergence
rate and smaller (large magnitude negative) values indicate slower convergence. The FGMRES
1/ ln γ profiles are shown for the subsonic NACA 0012 test case for the various homotopies in
Figure 9. It is apparent that the diagonal homotopy yields by far the best FGMRES convergence
and that the global homotopy yields no significant improvement in convergence relative to the
unmodified system.
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Figure 10: Surrogate curves and curvature profiles for several homotopies for inviscid flow over
the NACA 0012 airfoil at Mach 0.8 and angle of attack of 3◦

7.3. Curvature Profiles for a Two-Dimensional Transonic Inviscid Flow

This study is analogous to the previous one except that it is performed at the transonic con-
ditions of Mach 0.8 and angle of attack 3◦. Validation of the curvature calculations is shown in
Figure A.20. The surrogate curves and curvature profiles are shown in Figure 10.

The global homotopy case could not be converged, hence data is not shown for the global
homotopy case. For the other three homotopies, the Cl and Cd surrogate curves profiles show
surprising similarity to the surrogate curves from the subsonic example. As with the subsonic
example, the traceability of the convex homotopy with the diagonal operator is lower than the
traceability using the dissipation operator, with the far-field boundary conditions showing small
improvement over flow-imitative boundary conditions.

7.4. A Demonstration of the Effects of µ-Scaling

As an example illustrating the effect of µ-scaling, the Cl and Cd surrogate curves, as well
as the curvature profiles, are shown in Figure 11 for the inviscid NACA 0012 test case at Mach
number 0.3 and angle of attack 1◦. The convex homotopy with the dissipation operator and far-
field boundary conditions is used. It can be seen from the Cl and Cd surrogate curves that setting
µu > 1 has the effect of stretching the curve near λ = 1 and compressing it near λ = 0, while
choosing µu < 1 has the reverse effect. This is also reflected by the s vs. λ plot, where it can be
seen that more of the arclength s is traversed early on when using smaller µu, or by the κq vs. λ
plot, which shows how the partial curvature κq has been redistributed.

The following plot, which shows κqs2
tot vs. s/stot, shows much less dramatic redistribution

of the curvature, indicating that the value of µ has much less impact on the performance of a
continuation method which takes constant ∆s than a continuation method which takes constant
∆λ. The plot of κr vs. λ provides a metric for how difficult it would be to trace each of the three
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Figure 11: Effect of µu on the homotopy using the dissipation operator with far-field boundary
conditions for the inviscid NACA 0012 test case at Mach 0.3 and angle of attack 1◦

curves if constant ∆λ is used. Ideally, µ is chosen to make the κr profile is as flat as possible,
indicating even curvature distribution. It is apparent from the bottom right subplot that µu = 1
provides the most consistent κr profile throughout traversing. This indicates that the value of
µa = 0.7, which, as discussed in Section 2.8, was obtained previously [4] from a numerical
algorithm applied to a different case, is effective for this case as well.

7.5. Curvature Profiles for a Three-Dimensional Inviscid Flow and Effect of Mesh Refinement

The purpose of this study is two-fold: to profile the homotopies for three-dimensional invis-
cid flows and to investigate the effects of grid refinement on the homotopy. For global homotopy,
the homotopy residual has a continuous counterpart which is obtained by taking the limit of zero
mesh spacing. As such, the homotopy itself is expected to converge to a grid-converged value
in the limit of zero mesh spacing in much the same way as the flow solution does. Furthermore,
since the flow residual is second-order accurate, the homotopy should also be second-order ac-
curate in the same sense as the flow residual; that is, the error in the homotopy on a current mesh
calculated relative to its continuous counterpart is expected to be proportional to the grid spacing
squared.

For convex homotopy, the homotopy will only have a continuous counterpart if the homotopy
system is mesh-independent. Since both the dissipation operator and diagonal operator presented
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in this paper do not have mesh-independent continuous counterparts, the deformation can change
in a more fundamental way as the mesh is refined, even if the mesh is already fine enough to give
a very accurate flow solution.

The surrogate curves and curvature profiles are generated for inviscid flow over the ONERA
M6 wing at Mach 0.4 and angle of attack 3◦. The grid consists of 1.9208 × 106 nodes divided
evenly into 32 blocks. The fine version of the mesh is generated by doubling the number of
nodes in each direction, the location of the new nodes determined by interpolation from a B-
spline parametrization of the grid [17, 47], which is important in order to fit the ONERA M6
wing smoothly on the fine mesh. Each block is then split evenly into 8 blocks, resulting in 256
blocks in total. Validation of the curvature calculation is shown in Figures A.21 and A.22 for
the two meshes. The λ spacing appears to be sufficiently small for all cases, though the error is
somewhat significant for the global homotopy on the fine mesh.

Since there are 8 times more points on the fine mesh than the original, the κqs2
tot and κr values

will naturally increase by a factor of
√

8. The reason for this can be seen from the curvature
equations. For example, if instead the nodes had increased by a factor of two (consider, for ex-
ample, the 1D case), then the additional elements appended to the q vector are very close in size
to the original values and so κr,fine ∼

√

q̇ (r) · q̇ (r) + q̇ (r) · q̇ (r) =
√

2κr. This factor is simply
due to having more state elements in the approximation to the continuous deformation and does
not indicate decreased traceability on the finer mesh. To account for this effect, κqs2

tot/
√

N and

κr/
√

N are used as traceability metrics instead of the usual κqs2
tot and κr . Note that this modifica-

tion to the traceability metrics is only applicable to uniform mesh refinement and is not suitable
for comparing traceability on different meshes in general.

Figure 12 shows the comparison of the surrogate curves and curvature profiles on the origi-
nal mesh and finer mesh. The CL and CD profiles appear similar on both meshes for all convex
homotopies and unchanged for the global homotopy. Traceability, when including 1/

√
N in the

metric, has been affected noticeably but not dramatically by the mesh refinement for all homo-
topies.

The FGMRES convergence profiles are also shown for both meshes in Figure 13. On the
coarse mesh, the linear solver converges fastest under the convex homotopy with the diagonal
operator, followed by the dissipation operators, followed by global homotopy, which is consis-
tent with performance for the inviscid subsonic NACA 0012 case. When the mesh is refined,
the convergence rate of the linear solver becomes universally slower for all homotopies and for
all λ ∈ Λ. Oddly, on the fine mesh the dissipation operators seem to actually worsen the linear
solver performance relative to the linear systems associated with R (q).

7.6. Curvature Profiles for a Three-Dimensional Laminar Flow and Effect of Grid Topology

This test case is laminar flow over the ONERA M6 wing at Mach 0.3, angle of attack 1◦, and
Reynolds number 1× 103. Two grids are used: the first grid consists of 2.11× 106 nodes divided
evenly into 48 blocks and the second grid consists of 1.88 × 106 nodes divided evenly into 16
blocks. Though the grids are of similar size and refinement, the first one has an H-H topology
whereas the second one has an H-C topology. Validation of the curvature estimates is shown in
Figures A.23 and A.24 for the two grids.

The homotopies on the two grids are compared in Figure 14. The surrogate curves and
curvature profiles appear to be quite similar on the two grids for the three convex homotopies
investigated. In addition, FGMRES convergence profiles are shown in Figure 15. The R2 values
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Figure 13: FGMRES convergence profiles for inviscid flow over the ONERA M6 geometry at
Mach 0.4 and angle of attack of 3◦

for this case indicate less agreement of the linear residual data with the convergence model
assumed. This is especially true for the dissipation operator with far-field boundary conditions
on the H-C topology mesh, which may be disregarded entirely. Data for the global homotopy is
not shown because we were unable to converge this case using the global homotopy.

7.7. Curvature Profiles for a Two-Dimensional Turbulent Flow

This study is a curvature profiling for turbulent flow over the NACA 0012 airfoil using the
RANS-SA equations. The grid consists of 19200 nodes divided evenly into 8 blocks. The
Reynolds number based on the chord length for the test case is 4 × 106, the Mach number is
0.4, and the angle of attack is 1◦. Validation of the curvature estimates is shown in Figure A.25.
The diagonal operator, in this case, appears to be somewhat under-converged, while at the same
time exhibiting oscillations indicating that |∆λ| is sufficiently small such that error propagated
from the tangent estimation is becoming significant. It appears also that some features may be
missing from the κr profiles near λ = 1 for all homotopies due to insufficient resolution in ∆λ.

The curvature profiles are shown in Figure 16 and are more complicated in this case. The
s/stot vs. λ plot is helpful to put the curvature profiles into the proper context. Most of the work is
done once λ becomes small. For the diagonal case, at λ = 0.05, s/stot is still only 0.04, indicating
that only 4% of the curve has been traversed, measured in distance along the curve. For small λ,
the curvature would thus appear much lower moving along the curve than to an outside observer
using the λ coordinate system, as the curvature has been stretched out along the length of the
curve.
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Figure 15: FGMRES convergence profiles for laminar flow over the ONERA M6 geometry at
Mach 0.4, angle of attack 3◦, and Reynolds number 1 × 103

29



00.20.40.60.81
0

0.5

1

C
d

λ
00.20.40.60.81

−0.1

0

0.1

0.2

C
l

λ

0 0.2 0.4 0.6 0.8 1
0

2

4

6 x 106

s/stot

κ
q
s2 to

t

00.20.40.60.81
102

104

106

108

λ

κ
r

 

 
“Diss - ff”
“Diss - flow”
“Diag”

00.20.40.60.81
0

0.5

1

λ

s/
s t
ot

0 0.2 0.4 0.6 0.8 1
10−2

100

102

104

s/stot

κ
q
∆
s∣ ∣ ∣ ∣

2 |∆
λ
|=
0.
02

Figure 16: Curvature profiles of several homotopies for turbulent flow over the NACA 0012
airfoil at Mach 0.4, Reynolds number 4 × 106, and angle of attack of 1◦

To give a better indication of the local curve traceability, the analysis is also performed by
plotting κq∆s|2|∆λ|=0.02 against s/stot, from which a very different profile is apparent. This metric
is different from κr; it still represents the traceability assuming constant ∆s except that the ac-
tual value of ∆s assumed is that locally associated with |∆λ| = 0.02. The traceability using this
metric may be a more representative metric of the performance of a continuation algorithm and
appears quite different from the usual κqstot metric. It is clear from the plots that the curvature
distribution is very imbalanced for this homotopy. This issue cannot be addressed by a simple
change of coordinates.

7.8. Curvature Profile for a Three-Dimensional Turbulent Flow

This case is a three-dimensional turbulent flow over the ONERA M6 wing. The study is
performed using an H-H topology mesh consisting of 2.33 × 106 nodes divided evenly into 192
blocks. The flow conditions are Mach 0.4, angle of attack 3◦, and Reynolds number 1× 106. The
validation attempt is shown in Figure A.26. Due to significant error apparent in the validation
attempt, the curvature profiles are not shown for this case. The CL and CD profiles are shown in
Figure 18. What is remarkable about the profiles is the clear similarity to the Cl and Cd profiles
obtained for the two-dimensional NACA 0012 case shown in Figure 16.
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Figure 17: FGMRES convergence profiles for turbulent flow over the NACA 0012 geometry at
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8. Summary of Observations Based on the Results

The cases studied were one-dimensional inviscid subsonic and transonic flow through a
converging-diverging nozzle, two-dimensional inviscid subsonic and transonic flows over the
NACA 0012 airfoil, three-dimensional subsonic laminar flow over the ONERA M6 wing, two-
dimensional turbulent subsonic flow over the NACA 0012 airfoil, and three-dimensional turbu-
lent subsonic flow over the ONERA M6 wing. A summary is provided based on the studies
presented on these cases.

8.1. Global Homotopy

For subsonic inviscid cases, this homotopy exhibits the highest traceability but the augmented
operator under this homotopy offers no benefit to linear solver convergence compared to the
unmodified residual. We were unable to converge any inviscid transonic cases with the global
homotopy except for a one-dimensional case, which required extremely conservative parameter
settings. The surrogate curves in this case show a sharp and dramatic change in curve values
with respect to λ at the point where the shock appeared in the solution. This may indicate why
the two- and three-dimensional cases failed. We were also unable to converge any of the viscous
cases using this homotopy.

8.2. Convex Homotopy – Diagonal Operator

The diagonal homotopy was found to give the greatest benefit to linear system performance
but generally exhibited the highest curvature. The expected effect, from a continuation perspec-
tive, is a greater number of nonlinear iterations but each coming at less cost than a continuation
algorithm based on any of the other homotopies investigated. However, it tends to be less robust,
especially for RANS cases, than the dissipation operators, due to the reduced traceability, and
we were unable to converge some of the cases under consideration.

8.3. Convex Homotopy – Dissipation Operators

While not offering much improvement to the linear solver performance, and actually worsen-
ing performance on one of the fine mesh cases investigated, the homotopies based on dissipation
operators exhibit modest curvature compared to the diagonal operator and are more versatile than
the global homotopy in that we were able to converge all cases under consideration with these
operators. Of the two choices of boundary conditions under consideration, “far-field” and “flow-
imitative”, traceability and linear solver performance were both quite similar, but traceability
using “far-field” boundary conditions was generally marginally better.

9. Conclusions

A framework for assessing the suitability of homotopies for continuation has been presented
and demonstrated through application to several specific homotopies for application to compu-
tational aerodynamics problems. Identifying and understanding the underlying features which
affect performance of homotopy continuation algorithms is important in designing efficient and
robust homotopy continuation algorithms. The knowledge gained of the specific homotopies
presented in this paper has been summarized in Section 8.

The effects of mesh refinement and changes in mesh topology were quantified using some
examples, demonstrating that traceability is, as predicted, relatively insensitive to these effects.
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This is because the homotopy curve is not fundamentally altered by refining the mesh or chang-
ing the mesh topology. However, the cost of the linear solver is generally expected to grow
super-linearly with mesh size, so that algorithm cost is still a super-linear function of mesh size.
This knowledge is useful in selecting continuation parameters such as step size, indicating that
these parameters should not change with mesh refinement. This contrasts with pseudo-transient
continuation where it is well-known that more conservative parameters are generally needed on
finer meshes. If the homotopy algorithm exhibits reduced performance when the mesh is refined,
it is most likely the linear solver parameters which should be adjusted.

The practical effect of re-parametrizing the curve with respect to its continuation parameter
λ was investigated numerically. While this re-parametrization does not affect the implicitly-
defined curve, it does in practice affect the performance of a practical continuation algorithm
which likely includes restrictions on the minimum and maximum allowable |∆λ| and perhaps
the ratio of consecutive |∆λ|. While re-parametrizing the curve can make it more amenable to
continuation, identifying the optimal parametrization requires numerical experimentation.
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(a) Convex homotopy with dissipation operator with far-field boundary conditions
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(b) Convex homotopy with dissipation operator with flow-imitative boundary conditions
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(d) Global homotopy

Figure A.19: Validation of the curvature estimation for inviscid flow over the NACA 0012 airfoil
at Mach 0.3 and angle of attack of 1◦
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(a) Convex homotopy with dissipation operator with far-field boundary conditions
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(b) Convex homotopy with dissipation operator with flow-imitative boundary conditions
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(c) Convex homotopy with diagonal operator

Figure A.20: Validation of the curvature estimation for inviscid flow over the NACA 0012 airfoil
at Mach 0.8 and angle of attack of 3◦
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(a) Convex homotopy with dissipation operator with far-field boundary conditions
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(c) Convex homotopy with diagonal operator
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(d) Global homotopy

Figure A.21: Validation of the curvature estimation for inviscid flow over the ONERA M6 ge-
ometry on the coarse mesh at Mach 0.4 and angle of attack of 3◦
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(a) Convex homotopy with dissipation operator with far-field boundary conditions
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(c) Convex homotopy with diagonal operator
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Figure A.22: Validation of the curvature estimation for inviscid flow over the ONERA M6 ge-
ometry on the fine mesh at Mach 0.4 and angle of attack of 3◦
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(a) Convex homotopy with dissipation operator with far-field boundary conditions
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(c) Convex homotopy with diagonal operator

Figure A.23: Validation of the curvature estimation for the laminar ONERA M6 on the H-H
topology mesh at Mach 0.3 and angle of attack of 1◦
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(a) Convex homotopy with dissipation operator with far-field boundary conditions
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(c) Convex homotopy with diagonal operator

Figure A.24: Validation of the curvature estimation for the laminar ONERA M6 on the H-C
topology mesh at Mach 0.3 and angle of attack of 1◦
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(a) Convex homotopy with dissipation operator with far-field boundary conditions
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(b) Convex homotopy with dissipation operator with flow-imitative boundary conditions
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(c) Convex homotopy with diagonal operator

Figure A.25: Validation of the curvature estimation for turbulent flow over the NACA 0012
airfoil at Mach 0.4, Reynolds number of 4 × 106, and angle of attack of 1◦
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(a) Convex homotopy with dissipation operator with far-field boundary conditions
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(c) Convex homotopy with diagonal operator

Figure A.26: Validation of the curvature estimation for the ONERA M6 cases at Mach 0.4,
Reynolds number of 106, and angle of attack of 3◦
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