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Abstract

The predictor component of a monolithic homotopy continuation algorithm is augmented with
higher derivative information for use as an efficient, robust, and scalable continuation algorithm
suitable for application to large sparse systems of nonlinear algebraic equations. Convergence
of the algorithm is established analytically, and efficiency studies are performed by applying the
method to a practical computational aerodynamics problem.
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1. Introduction

Homotopy continuation methods are root-finding algorithms based on continuous deforma-
tions known as homotopies [1]. Some applications in the field of computational fluid dynamics
(CFD) include the study systems where multiple solutions exist [29, 36] or where solutions may
be unstable [18, 35]. Homotopy continuation has also been applied to facilitate the solution to
CFD problems at high Reynolds numbers by solving the same problem at a lower Reynolds num-
ber and gradually increasing the Reynolds number [7].

Motivated (at least in some cases) by the increased demand for scalable CFD solvers, there
has been interest in implementing homotopy continuation as an efficient equation solver for CFD
problems in general [3, 14, 17] or with special focus on higher-order accurate spatial discre-
tizations [34, 37]. By far the most common continuation method in CFD is pseudo-transient
continuation, the computational cost of which scales super-linearly with mesh refinement due to
the dependence on the Courant-Friedrichs-Lewy (CFL) number [22]. Homotopy continuation
algorithms can fare better. For example, Hao et al. [14] found that computational cost scales
linearly with mesh refinement for a homotopy continuation algorithm for some one- and two-
dimensional problems for a third-order finite-difference WENO scheme [21], presumably using
a direct solver. Brown and Zingg [6] similarly observed better performance scaling for some
three-dimensional inviscid cases using a finite-difference SBP-SAT [8, 9, 12, 20] discretization
with the Krylov linear solver FGMRES [30].

The present research programme follows from the work of Hicken et al. [15], who studied a
non-physical homotopy based on adding a large amount of non-physical dissipation to the dis-
crete governing equations and gradually removing it. Based on the promising results presented
by the authors, we continued this approach using a predictor-corrector method [3], which was

Preprint submitted to Journal of Computational and Applied Mathematics July 3, 2018



later improved upon by introducing a more efficient monolithic approach to homotopy curve tra-
cing [6].

The monolithic approach of Brown and Zingg [6] can be interpreted as combining the pre-
dictor and corrector components of the predictor-corrector algorithm into a single update. A
Newton-like corrector was used to reduce error associated with the current homotopy estimate in
conjunction with a tangent predictor, which is second-order accurate, to estimate progress of the
homotopy. The current paper presents an augmented formulation of the monolithic homotopy
continuation algorithm which allows for the inclusion of predictors based on higher derivatives.

Higher derivative information can be used to improve the accuracy in locally predicting the
homotopy [5], but comes at increased computational cost. The only way to determine if this
additional cost is justifiable is through numerical investigation. Aside from potential efficiency
gains, utilizing higher derivatives in predicting the homotopy can potentially lead to improved
algorithm robustness, as an algorithm based on the first derivative with a posteriori step-length
adaptation has limited capability of anticipating or responding to sudden changes in the curva-
ture of the homotopy. The objectives of this paper are to develop an augmented version of the
monolithic homotopy continuation algorithm using higher curve derivatives, to develop a practi-
cal and efficient method for applying the algorithm, to establish convergence analytically, and to
investigate the algorithm numerically.

2. Flow Solver

The flow solver to which the monolithic homotopy continuation algorithm is applied is a
Newton-Krylov-Schur parallel implicit flow solver based on a finite-difference [22] discretiza-
tion applicable to multi-block structured grids. The finite-difference discretization is based on the
SBP-SAT [8, 9, 12, 20] approach, which uses Summation-By-Parts (SBP) operators to represent
the discrete derivatives and Simultaneous Approximation Terms (SATs) to enforce the boundary
conditions and couple the flow equations at block interfaces. The flow solver originated as an
inviscid flow solver due to Hicken and Zingg [16] and was extended to the Reynolds-averaged
Navier-Stokes equations by Osusky and Zingg [27], though only inviscid cases are considered in
this paper.

To parallelize the flow solver, the domain is decomposed into blocks. Parallel preconditi-
oning of the Krylov solver is performed using the Schur complement method [30] with block
incomplete lower-upper (ILU) preconditioning applied to the domain blocks. The specific type
of ILU factorization used in the current study is known as ILU(p) [30], where p is the fill level.
The ILU(p) factorization is constructed based on an approximate Jacobian matrix using nearest
neighbour nodes only. Since the Schur complement preconditioner can vary slightly throughout
the Krylov solution process, a flexible variant of the Krylov solver GMRES is used, which is
termed Flexible Generalized Minimal Residual, or FGMRES [30].

To avoid forming and storing the full Jacobian matrix, the matrix-vector products needed by
the linear solver can be estimated using either the approximate Jacobian matrix used in forming
the preconditioner in place of the full Jacobian or using a finite-differencing technique [19, 26].
The finite-differencing is more expensive but more accurate and is used for all studies in this
paper.
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3. Inexact Newton Method

Newton’s method is a root-finding method with q super-linear convergence near the root [10],
though only local convergence is generally expected. As such, it normally needs to be globalized

using a globally convergent method such as pseudo-transient continuation or the homotopy met-
hod. Globalization is the determination of a point sufficiently near the solution that a root-finding
algorithm is expected to converge.

Consider a nonlinear algebraic system of equations, represented by

F (x) = 0, (1)

F : RN → R
N , x ∈ RN .

The update due to Newton’s method, when applied to this system of equations, is calculated by
solving the linear system of equations

∇F (xi) ∆xi = −F (xi) , (2)

∆xi ≡ xi+1 − xi,

where ∇F (xi) : RN → RN is the Jacobian of F (xi), defined as

∇F[ j,k] (x) ≡
∂F[ j] (x)

∂x[k]
, (3)

where the subscripted square brackets indicate a matrix or vector index and the non-bracketed
subscripts denote the iteration index. The Jacobian of F can be represented by a square matrix.

If the linear system (2) is being solved to some relative tolerance τl,i ∈ R, as in the results
presented in this paper, then the actual Newton step is taken inexactly, and the update ∆xi does
not satisfy equation (2) but does satisfy the inequality

∥F (xi) + ∇F (xi) ∆xi∥ ≤ τl,i ∥F (xi)∥ . (4)

4. Convex Homotopy Continuation

Consider a nonlinear system of equations (1) as well as the so-called convex homotopy [1]
which is defined as the (presumably) continuous isolated solution xs : R → RN , (λ) (→ xs (λ),
λ ∈ R to

H (x, λ) = (1 − λ)F (x) + λG (x) = 0, (5)

H : RN × R→ R
N , G : RN → R

N , F : RN → R
N ,

λ ∈ Λ, Λ = {λ ∈ R, λ ∈ [0, 1]}

Interpreting the homotopy as a curve existing in RN , a continuation method, called convex homo-
topy continuation, can be developed from this homotopy by discretizing in λ to form a sequence
of nonlinear equations:

H (x, λi) = (1 − λi)F (x) + λiG (x) = 0, (6)

H : RN × R→ R
N , G : RN → R

N , F : RN → R
N

i ∈ [0,m] , λi ∈ Λ, Λ = {λ ∈ R, λ ∈ [0, 1]} , λ0 = 1, λm = 0, λi+1 < λi.
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SolvingH (x, λ) = 0 for sequentially increasing i is referred to as traversing.
It can also be of interest to formulate convex homotopy continuation in terms of an arbitrary

parametrization, in which case equations (5) and (6) are unmodified but the solution is interpreted
as the pair

(s) (→ xs (s) , (s) (→ λ (s) ,

x : R→ R
N , λ : R→ R, s ∈ S, S ⊂ R.

This pair can be conveniently represented as a single function

c ∈ RN+1, (s) (→ c (s) , c (s) ≡ [x (s) ; λ (s)] .

Choice of parametrization does not affect the continuous curve but can influence some step-
length adaptation strategies used in the discrete algorithm. Most commonly, an arc-length para-
metrization is used [1], which is defined implicitly by

∥ċ (s)∥ = 1. (7)

In this paper it is assumed that the curve is regular, which is to say that the Jacobian ofH is
nonsingular for all λ, which also indicates that no bifurcations are present [1]. While bifurcation
study is often of interest, it is not relevant to our objectives and regularity is consistent with our
experience with the homotopies relevant to our applications.

5. Monolithic Homotopy Continuation

In this section the original formulation of the monolithic homotopy continuation algorithm
presented previously by Brown and Zingg [6] is reviewed.

5.1. Continuous Form

The monolithic homotopy continuation algorithm is constructed based on the dynamic inver-
sion principle. Consider a regular homotopy

H (x, λ) = 0 (8)

H : RN × R → RN , (x, λ) (→ H (x, λ) with parameter λ ∈ R and solution curve xs (λ). The
idea behind dynamic inversion is that it may be possible to construct a dynamic inverse H ∗ :
RN × R → RN , (w, λ) (→ H ∗ (w, λ) such that the solution to the ordinary differential equation
(ODE)

ẋ (λ) +H ∗ (H (x, λ) , λ) = 0 (9)

is locally asymptotically convergent to xs (λ). The formal definition of the dynamic inverses in
the context of a homotopy with arbitrary parametrization is as follows.

Definition 1. Let xs (λ) be a regular homotopy defined implicitly byH (x, λ) = 0,H : RN ×R→
RN. LetH ∗ : RN × R→ RN be continuous on the ball

Br (xs) ≡
{

x ∈ RN | x = xs + ∆x, r > 0, ∥∆x∥ ≤ r
}

. (10)
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ThenH ∗ is called a forward dynamic inverse ofH on Br (xs) if there exists fixed β ∈ R, 0 < β <
∞, such that

∆xTH ∗ (H (xs + ∆x, λ) , λ) ≥ β ∥∆x∥2 (11)

for all x ∈ Br (xs).

Definition 2. Let xs (s) be a regular homotopy defined implicitly by H (x (s) , λ (s)) = 0, H :
RN×R→ RN. LetH ∗ : RN×R→ RN be continuous on the ballBr (xs) defined by equation (10).
Then H ∗ is called a reverse mode dynamic inverse of H on Br (xs) if there exists fixed β ∈ R,

0 < β < ∞, such that
∆xTH ∗ (H (xs + ∆x, λ) , λ) ≤ −β ∥∆x∥2 (12)

for all x ∈ Br (xs).

Remark 1. IfH ∗ is a dynamic inverse ofH with constant β, then for any γ ∈ R, γ > 0, γH ∗ is
a dynamic inverse ofH with constant γβ.

Remark 2. If H ∗ is a forward dynamic inverse of H , then −H ∗ is a reverse mode dynamic

inverse ofH .

In the context of homotopy, either the forward or reverse version of the dynamic inverse is
applied depending on which direction the curve is being traversed. The following two theorems
assert, for each case, convergence to the curve for an ODE constructed from the appropriate
dynamic inverse and an estimate of the tangent vector.

Theorem 1. Let xs (λ) be a regular homotopy defined implicitly by H (x (λ) , λ (λ)) = 0. Let

H ∗ : RN × R → RN; (w, λ) (→ H ∗ (w, λ) be a forward dynamic inverse of H (x, λ) on Br (xs).
Let E : RN × R → RN; (x, λ) (→ E (x, λ) be locally Lipschitz in x and λ such that for some fixed

ω ∈ (0,∞), E (x, λ) satisfies

−
1

2
ω ∥∆x (λ)∥2 ≤ ∆x (λ)T [E (xs (λ) + ∆x (λ) , λ) + ẋs (λ)] ≤

1

2
ω ∥∆x (λ)∥2 (13)

for all xs + ∆x ∈ Br (xs). Let x = xs + ∆x satisfy

−ẋ (λ) = −γH ∗ (H (x (λ) , λ) , λ) + E (x (λ) , λ) , (14)

where γ ∈ R, γ > 0 (see Remark 1). Consider now some λk ∈ R with corresponding x (λk) ∈
Br (xs (λ)). Then

∥x (λ) − xs (λ)∥ ≤ ∥x (λk) − xs (λk)∥ e−(γβ−ω)(λ−λk) (15)

for all λ > λk.

Proof. Getz [13] pp. 32-33.

Theorem 2. Let xs (λ) be a regular homotopy defined implicitly by H (x (λ) , λ (λ)) = 0. Let

H ∗ : RN × R → RN; (w, λ) (→ H ∗ (w, λ) be a reverse-mode dynamic inverse of H (x, λ) on
Br (xs). Let E : RN × R → RN; (x, λ) (→ E (x, λ) be locally Lipschitz in x and λ such that for

some fixed ω ∈ (0,∞), E (x, λ) satisfies equation (13) for all xs + ∆x ∈ Br (xs). Let x = xs + ∆x

satisfy
−ẋ (λ) = γH ∗ (H (x (λ) , λ) , λ) + E (x (λ) , λ) , (16)
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where γ ∈ R, γ > 0 (see Remark 1). Consider now some λk ∈ R with corresponding x (λk) ∈
Br (xs (λ)). Then

∥x (λ) − xs (λ)∥ ≤ ∥x (λk) − xs (λk)∥ e−(γβ−ω)(λk−λ) (17)

for all λ < λk.

Proof. Brown and Zingg [6] pp. 61-62.

5.2. Discrete Form

The monolithic homotopy continuation algorithm is developed by numerically integrating
either equation (14) or (16) in the forward or reverse direction, as appropriate. Integration of a
differential equation refers to its approximate numerical evaluation. In the present case this is
performed using forward Euler parameter integration. The following theorem will be important
in the analysis.

Theorem 3. Suppose that the ODE

ẋ (λ) +H (x (λ) , λ) = 0

with H : RN × R → RN and initial condition x = x0 has unique C2 solution. Define ∆λi ≡
λi+1 − λi. Then the forward Euler integration of this ODE, given by

xi+1 − xi + ∆λiH (x (λi) , λi) = 0,

converges to the solution of the ODE in the limit of ∆λi → 0.

Proof. This is established in numerous textbooks, including Lomax et al. [22], Chapter 6.

Application of forward Euler parameter integration to the forward dynamic inverse ODE (14)
in the direction of increasing λ yields

xi+1 = xi − ∆λiγH ∗ (H (x (λi) , λi) , λi) + ∆λiE (x (λi) , λi) (18)

where ∆λi > 0. Application of forward Euler parameter integration to the reverse-mode dynamic
inverse ODE (16) in the direction of decreasing λ yields

xi+1 = xi + ∆λiγH ∗ (H (x (λi) , λi) , λi) + ∆λiE (x (λi) , λi) (19)

where ∆λi < 0.

5.3. Nearby Inverse Jacobian as Dynamic Inverse

The inverse Jacobian forms a dynamic inverse [13]. Since points on the curve are approxi-
mated, rather than solved for exactly, it is important to establish that the Jacobian continues to
function as a dynamic inverse when evaluated at a point sufficiently near to the curve. This is
formalized in the following theorem.

Theorem 4. Let xs (λ) be a continuous isolated solution ofH (x, λ) = 0. Assume thatH (x, λ) is

C∞ in both x and λ on Br (xs) and that ∇xH (x, λ) is nonsingular at and near to xs. Then for any
0 < β < 1 there exists r such that

H ∗ (w, λ) =
[

∇xH (x, λ)
]−1 w (20)

is a dynamic inverse operating on w ∈ RN with parameter β ∈ R as defined in Theorem 1 for all

x ∈ Br (xs (λ)).
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Proof. Getz [13], page 23.

Remark 3. By Theorem 4 and Remark 2,

H ∗ (w, λ) = −
[

∇xH (x, λ)
]−1 w (21)

is a reverse-mode dynamic inverse ofH (x, λ).

6. The Augmented Monolithic Homotopy Continuation Algorithm

The monolithic homotopy continuation algorithm of Section 5 is augmented by including
higher curve derivative information in the update. The analysis of the augmented algorithm pro-
ceeds differently than the original formulation presented in Section 5. The inclusion of higher
curve derivatives does not improve convergence of the continuous case but improves the pre-
diction capabilities of the forward Euler integration. Therefore, we establish convergence by
studying the discrete form of the equations directly.

The analysis begins by showing that points near to the homotopy curve lie on neighbouring
homotopies which can be represented locally by Taylor series based on the original homotopy.
Furthermore, the difference between these homotopies and the original varies continuously as a
function of λ.

Theorem 5. Let xs (λ) be a continuous isolated solution to H (x, λ) = 0, H : RN × R → RN.
Let x′s (λ) satisfy

H ′ (x, λ) ≡ H (x, λ) −K = 0, (22)

where K : RN → RN, K = H (x0, λ0) for some fixed x0 ∈ RN, λ0 ∈ R, 0 < λ0 < 1. Assume
thatH : RN × R→ RN is continuous with nonsingular Jacobian along xs (λ) and x′s (λ). Define

∆x ≡ x′s (λ) − xs (λ) and let ε ∈ R, δ ∈ R. Then ∀ε > 0, ∃δ > 0 such that
∣

∣

∣∆x (λ + δ)T ∆x (λ + δ) − ∆x (λ)T ∆x (λ)
∣

∣

∣ < ε. (23)

Proof. By the definition of continuity:

∀ε > 0 ∃δ > 0 s.t.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∥

∥

∥x′s (λ + δ) − x′s (λ)
∥

∥

∥ <
√

1
2ε

∥xs (λ + δ) − xs (λ)∥ <
√

1
2
ε

⇒
∥

∥

∥x′s (λ + δ) − x′s (λ)
∥

∥

∥

2
+ ∥xs (λ + δ) − xs (λ)∥2 < ε

⇒
∥

∥

∥x′s (λ + δ) − x′s (λ) − xs (λ + δ) + xs (λ)
∥

∥

∥

2
< ε

⇒ ∥∆x (λ + δ) − ∆x (λ)∥2 < ε

⇒
∣

∣

∣∥∆x (λ + δ)∥2 − ∥∆x (λ)∥2
∣

∣

∣ < ε, (24)

which is equivalent to equation (23).

We now proceed to establish convergence for the augmented monolithic homotopy continu-
ation algorithm, where the tangent vector appearing in the original algorithm is replaced with
a Taylor expansion of degree n. The Taylor expansion comprises the tangent vector, curvature
vector, and, potentially, higher derivatives as well. The forward version of the algorithm with
λ̇ (s) = 1 parametrization is presented first.
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Theorem 6. Let xs (λ) be a continuous isolated solution of a regular homotopyH (x, λ) = 0,H :
RN×R→ RN. Assume thatH (x, λ) is C∞ in both x and λ. LetH ∗ (w, λ) =

[

∇xH (x, λ)
]−1

w be a
forward dynamic inverse ofH (x, λ) onBr (xs (λ)). Then for sufficiently small ∆λi ≡ λi+1−λi > 0
and for any 2

3 < γi∆λi ≤ 1 there exists Br (xs (λ)) such that the difference equation

xi+1 = xi − γi∆λiH ∗ (H (xi, λi) , λi) +

n
∑

k=1

1

k!
∆λk

i x(k) (λi) (25)

converges to xs (λ) for any n ≥ 1, where the bracketed superscript indicates differentiation.

Proof. Let x′ (λ) ≡ xs (λ) + xi − xs (λi) and denote x′i+1 ≡ x′s (λi + ∆λi), ∆xi+1 ≡ xi+1 − xs (λi+1),
∆x′i+1 ≡ x′i+1 − xs (λi+1). Notice that xi = x′i . Consider the Taylor expansion

x (λ + ∆λ) =

n
∑

j=0

1

j!
∆λ jx( j) (λ) + O

(

∆λn+1
)

. (26)

Several equations follow from the Taylor expansion which will be of use:

x′i+1 = xi +

n
∑

j=1

1

j!
∆λ jx( j) (λ) + O

(

∆λn+1
)

, (27)

∆x′i+1 = ∆xi +

n
∑

j=1

1

j!
∆λ jx( j) (λ) + O

(

∆λn+1
)

, (28)

n
∑

j=1

1

j!
∆λ jx( j) (λ) = x′i+1 − xi + O

(

∆λn+1
)

. (29)

Equation (29) can be used in equation (25) to obtain

xi+1 = xi − γi∆λiH ∗ (H (xi, λi) , λi) + x′i+1 − xi + O
(

∆λn+1
i

)

.

⇒ xi+1 = x′i+1 − γi∆λiH ∗ (H (xi, λi) , λi) + O
(

∆λn+1
i

)

⇒ ∆xi+1 = ∆x′i+1 − γi∆λiH ∗ (H (xi, λi) , λi) + O
(

∆λn+1
i

)

(30)

Pre-multiplying both sides by its transpose, this becomes

⇒ ∆xT
i+1∆xi+1 = ∆x′i+1

T
∆x′i+1 − 2γi∆λi∆x′i+1

TH ∗ (H (xi, λi) , λi)

+γ2
i ∆λ

2
i

[

H ∗ (H (xi, λi) , λi)
]T H ∗ (H (xi, λi) , λi) + O

(

∆λn+1
i

)

.
(31)

From the Taylor expansion (28), we see that

γi∆λi∆x′Ti+1 = γi∆λi

(

∆xT
i + O (∆λ)

)

= γi∆λi∆xT
i + O

(

∆λ2
)

. (32)

Substituting this into equation (31) gives

∆xT
i+1∆xi+1 = ∆x′i+1

T
∆x′i+1 − 2γi∆λi∆xT

i H
∗ (H (xi, λi) , λi)

+ γ2
i ∆λ

2
i

[

H ∗ (H (xi, λi) , λi)
]T H ∗ (H (xi, λi) , λi) + O

(

∆λ2
i

)

. (33)
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To proceed, consider the Taylor expansions

H (xi, λi) = H (xs, λi) + ∇xH (xs, λi)∆xi + O
(

∥∆xi∥2
)

, (34)

∇H (xs, λi) = ∇xH (xs + ∆xi, λi) + O (∥∆xi∥) . (35)

Since additionallyH (xs, λi) = 0,

[

∇H (xi, λi)
]−1H (xi, λi) = ∆xi + O

(

∥∆xi∥2
)

⇒
[

[

∇H (xi, λi)
]−1H (xi, λi)

]T [

∇H (xi, λi)
]−1H (xi, λi) = ∆xT

i ∆xi + O
(

∥∆xi∥3
)

, (36)

which can be used with equation (33) to get

∆xT
i+1∆xi+1 = ∆x′i+1

T
∆x′i+1 − 2γi∆λi∆xT

i H
∗ (H (xi, λi) , λi) + γ

2
i ∆λ

2
i ∆xT

i ∆xi

+ γ2
i ∆λ

2
i O

(

∥∆xi∥3
)

+ O
(

∆λ2
i

)

. (37)

Recall the definition of the forward dynamic inverse (11). Applying Theorems 1 and 5 to equa-
tion (37) produces the inequality

∆xT
i+1∆xi+1 < ∆xT

i ∆xi + ε − 2γi∆λiβ∆xT
i ∆xi + γ

2
i ∆λ

2
i ∆xT

i ∆xi + γ
2
i ∆λ

2
i O

(

∥∆xi∥3
)

+ O
(

∆λ2
i

)

⇒ ∆xT
i+1∆xi+1 <

(

1 + γ2
i ∆λ

2
i − 2γi∆λiβ

)

∆xT
i ∆xi + ε + γ

2
i ∆λ

2
i O

(

∥∆xi∥3
)

+ O
(

∆λ2
i

)

. (38)

It is ensured by Theorem 4 that there exist r, ∆λi, and 0 < β < 1
γi∆λi

such that

γ2
i ∆λ

2
iO

(

∥∆xi∥3
)

+ O
(

∆λ2
i

)

+ ε < β (1 − γi∆λiβ)∆xT
i ∆xi. (39)

Fixing k ≡ γi∆λi, k ∈ R, k ≤ 1 for all i and using the inequality (39) with equation (38) gives

∆xT
i+1∆xi+1 < (2 − 2kβ)∆xT

i ∆xi + β (1 − kβ)∆xT
i ∆xi

⇒ ∆xT
i+1∆xi+1 < (2 + β) (1 − kβ)∆xT

i ∆xi. (40)

The error is thus decreasing if
(2 + β) (1 − kβ) < 1, (41)

which leads to the condition

1

2k
− 1 +

√

1 +
1

4k2
< β <

1

k
. (42)

Recall, viz. Theorem 4, that when the nearby inverse Jacobian is used as the dynamic inverse the
convergence parameter satisfies 0 < β < 1. Under this condition, it is additionally necessary that

2

3
≤ k ≤ 1. (43)

In the special case of k = 1, the constraint on β is

√
5 − 1

2
< β < 1. (44)
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Remark 4. Theorem 6 also establishes convergence for the original monolithic homotopy con-

tinuation algorithm for the special case of γi∆λi = 1. Previously [6], we had only managed to
establish convergence for sufficiently small γi∆λi and had inferred convergence of the γi∆λi = 1
case based on comparison to the predictor-corrector algorithm.

Remark 5. The sufficient conditions for convergence (42) and (43) pose some additional re-

striction on the minimum radius required for the dynamic inverse, vis. Definition 1, and the
minimum allowable relaxation factor γi∆λi. However, many inequalities were imposed in the

proof which we expect drove the lower limits of both values up higher than necessary. Future
work may be targeted at attempting to adjust the proof to achieve less restrictive bounds on β

and γi∆λi.

Remark 6. In equation (33), high order of accuracy was lost due to the use of a second order

dynamic inverse. In fact, expanding ∆xT
i ∆xi in a Taylor expansion indicates that ε is actually

O (∆λi), so higher order accuracy is lost regardless of the order of both the dynamic inverse and

the predictor. Being limited to first order accuracy is however not crucial since the limiting case

of ∆λ → 0 is of little to no practical interest and we have already shown previously that higher
order predictors can be more accurate than lower order ones for practical values of ∆λ [5].

Similarly, convergence is established for the reverse-mode algorithm and is formalized in the
following theorem.

Theorem 7. Let xs (λ) be a continuous isolated solution of a regular homotopyH (x, λ) = 0,H :
RN × R → RN. Assume thatH (x, λ) is C∞ in both x and λ. LetH ∗ (w, λ) = −

[

∇xH (x, λ)
]−1

w
be a reverse-mode dynamic inverse of H (x, λ) on Br (xs (λ)). Then for sufficiently large ∆λi ≡
λi+1 − λi < 0 and for any −1 < γi∆λi ≤ − 2

3 there exists Br (xs (λ)) such that the difference
equation

xi+1 = xi − γi∆λiH ∗ (H (xi, λi) , λi) +

n
∑

k=1

1

k!
∆λk

i x(k) (λi) (45)

converges to xs (λ) for any n ≥ 1, where the bracketed superscript indicates differentiation.

Proof. The proof is identical to the proof of Theorem 6 until equation (37). Applying Theorems 2
and 5 to equation (37) produces the inequality

∆xT
i+1∆xi+1 < ∆xT

i ∆xi + ε + 2γi∆λiβ∆xT
i ∆xi + γ

2
i ∆λ

2
i ∆xT

i ∆xi + γ
2
i ∆λ

2
i O

(

∥∆xi∥3
)

+ O
(

∆λ2
i

)

⇒ ∆xT
i+1∆xi+1 <

(

1 + γ2
i ∆λ

2
i + 2γi∆λiβ

)

∆xT
i ∆xi + ε + γ

2
i ∆λ

2
i O

(

∥∆xi∥3
)

+ O
(

∆λ2
i

)

. (46)

It is ensured by Theorem 5 that there exist r, ∆λi, and 0 < β < − 1
γi∆λi

such that

γ2
i ∆λ

2
iO

(

∥∆xi∥3
)

+ O
(

∆λ2
i

)

+ ε < β (1 + γi∆λiβ)∆xT
i ∆xi. (47)

Fixing k ≡ −γi∆λi, k ∈ R, k ≤ 1 for all i and using the inequality (47) with equation (46) gives

∆xT
i+1∆xi+1 < (2 − 2kβ)∆xT

i ∆xi + β (1 − kβ)∆xT
i ∆xi

⇒ ∆xT
i+1∆xi+1 < (2 + β) (1 − kβ)∆xT

i ∆xi, (48)

thus proving convergence under identical conditions as Theorem 6.
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Finally, convergence is established for any general parametrization. First, a more general
version of Theorem 5 is needed.

Theorem 8. Let the solution pair xs (s), λ (s) be a continuous isolated solution toH (x, λ) = 0,
H : RN × R→ RN. Let the solution pair x′s (s), λ (s) satisfy

H ′ (x, λ) ≡ H (x, λ) −K = 0, (49)

where K : RN → RN, K = H (x0, λ0) for some fixed x0 ∈ RN, λ0 ∈ R, 0 < λ0 < 1. Assume
thatH : RN × R → RN is continuous with nonsingular Jacobian along xs (s) and x′s (s). Define

∆x ≡ x′s (s) − xs (s) and let ε ∈ R, δ ∈ R. Then ∀ε > 0, ∃δ > 0 such that
∣

∣

∣∆x (s + δ)T ∆x (s + δ) − ∆x (s)T ∆x (s)
∣

∣

∣ < ε. (50)

Proof. This is analogous to the proof of Theorem 5, replacing x (λ) with c (s).

We now state our convergence result for the most general case.

Theorem 9. Let the solution pair xs (s), λ (s) be a continuous isolated solution of a regular
homotopy H (x, λ) = 0, H : RN × R → RN. Assume that H (x, λ) is C∞ in both x and λ. Let

H ∗ (w, λ) =
[

∇xH (x, λ)
]−1 w be a forward dynamic inverse of H (x, λ) on Br (xs (s)). Then for

sufficiently small ∆si ≡ si+1 − si > 0 and for any 2
3
< γi∆si ≤ 1 there exists Br (xs (s)) such that

the difference equation

xi+1 = xi − γi∆siH ∗ (H (xi, λi) , λi) +

n
∑

k=1

1

k!
∆sk

i x(k) (λi) (51)

converges to xs (s) for any n ≥ 1, where the bracketed superscript indicates differentiation.

Proof. Consider the Taylor expansion

x (s + ∆s) =

n
∑

j=0

1

j!
∆s jx( j) (s) + O

(

∆sn+1
)

. (52)

Let x′s (s) be the (presumably) continuous solution to

H ′ (x, λ) = H (x, λ) −H (xi, λi) = 0. (53)

Denote x′
i+1 ≡ x′s (si + ∆si). Then equation (51) can be written as

xi+1 = xi − γi∆siH ∗ (H (xi, λi) , λi) + x′i+1 − x′s (si) + O
(

∆sn+1
i

)

. (54)

Further denote ∆xi+1 ≡ xi+1 − xs (si+1), ∆x′i+1 ≡ x′i+1 − xs (si+1). Since x′s (si) = xi, equation (54)
becomes

xi+1 = x′i+1 − γi∆siH ∗ (H (xi, λi) , λi) + O
(

∆sn+1
i

)

⇒ ∆xi+1 = ∆x′i+1 − γi∆siH ∗ (H (xi, λi) , λi) + O
(

∆sn+1
i

)

⇒ ∆xT
i+1∆xi+1 = ∆x′i+1

T
∆x′i+1 − 2γi∆si∆x′i+1

TH ∗ (H (xi, λi) , λi)

+γ2
i ∆s2

i

[

H ∗ (H (xi, λi) , λi)
]T H ∗ (H (xi, λi) , λi) + O

(

∆sn+1
i

)

.
(55)

From this point forward, the proof is identical to the proof of Theorem 6 with the following
modifications: ∆λ is replaced with ∆s in all occurences, and the reference to Theorem 5 is
replaced with a reference to Theorem 8.
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Remark 7. An estimate of λ (si+1) can be obtained using the Taylor expansion

λ (si + ∆si) =

n
∑

j=0

1

j!
∆s

j
i λ

( j) (si) . (56)

Remark 8. Theorem 6 follows from Theorem 9 using the parametrization λ̇ (s) = 1. Theorem 7
follows from Theorem 9 using the parametrization λ̇ (s) = −1.

7. Differentiation of Implicitly-Defined Curves

We have recently studied techniques for the efficient differentiation of implicitly-defined cur-
ves [5], extending the work of Refs. [24, 28, 31, 33] for efficient application to sparse systems of
equations. In this section, define the curve c (s) ∈ RN+1:

c (s) ≡ (x (s) ; λ (s)) . (57)

7.1. n-th Curve Derivative with Arc-Length Parametrization

The derivation is provided by Brown and Zingg [5]. The first derivative pair ẋ (s) and λ̇ (s) is
given by

ẋ = −λ̇z (58)

λ̇ =
−1

√
z · z + 1

, (59)

where z is obtained by solving

∇xH (c (s)) z =
∂

∂λ
H (c (s)) . (60)

The nth derivative is calculated from the n − 1st derivative using the equation

x(n) = zn − λ(n)z, (61)

where zn is obtained by solving
∇xH (c (s)) zn = −wn (62)

and wn is computed from

wn ≡
∑

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n!
∏n

j=1 j!mj m j!
∇

∑n
j=1 mjH (c (s))

n
∏

j=1

[

c( j) (s)
]mj

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

− ∇H (c (s)) c(n) (s) , (63)

where the outer summation is taken over all n-tuples of non-negative integers {m1, . . . ,mn} such
that

n
∑

j=1

jm j = n (64)
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and the notation which seems to indicate the product
[

c( j) (s)
]mj

for all j is intended to indi-

cate that c( j) (s) appears with multiplicity m j as input to ∇
∑n

j=1 mjH (c (s)). Furthermore, λ(n) is
computed directly from

λ(n) =
zn · ẋ − c(n) · ċ
√

z · z + 1
, (65)

where

c(n) · ċ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
∑

n−3
2

k=1

(

n−1
k

)

c(k+1) · c(n−k) − 1
2

(

n−1
n−1

2

)

c((n+1)/2) · c((n+1)/2) n is odd

−
∑

n
2−1

k=1

(

n−1
k

)

c(k+1) · c(n−k) n is even
(66)

is also a direct calculation.

7.2. n-th Curve Derivative with Parametrization λ̇ (s) = −1

The derivation is provided by Brown and Zingg [5]. The first derivative pair is given by

ẋ = z (67)

λ̇ = −1, (68)

where z is again given by solving the linear system in equation (60). The nth derivative is
calculated from the n − 1st derivative using the equation

∇xH (c (s)) x(n) (s) = −w′n, (69)

w′n =
d

ds
H (c (s)) − ∇H (c (s)) x(n) (s) , (70)

w′n ∈ RN , where the prime distinguishes w′n from wn and d
ds
H (c (s)) is again calculated from

equation (63). By equation (68),
λ(k) (s) = 0 (71)

for all k > 1.

7.3. Tensor-Vector Product Estimation

The current method used to approximate the tensor-vector products is to use a finite-differencing
approach. While practical and inexpensive, it has been found that this estimate is not always
accurate, and is especially unreliable for larger or more complex cases [5]. As the need to esti-
mate tensor-vector products for large sparse systems of equations is seldom a problem of practical
significance, this is a problem which has yet to be thoroughly explored.

While automatic differentiation [2] may be an option, this would add significant overhead
cost to the primal equations. The complex step method [23, 32] is a useful way to accurately
approximate first derivatives but for higher derivatives it provides no advantage over ordinary
finite-differencing. Using higher precision is of course possible but is too computationally ex-
pensive [5]. A possible solution may be to use hyper-dual numbers [11] or hyper-complex num-
bers. To our knowledge, this has yet to be investigated due to lack of applications prior to this
paper.
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8. Practical Application of the Algorithm

Brown and Zingg [4, 6] developed the monolithic homotopy continuation algorithm in part
for the efficiency gains in being able to combine the linear solves required in the predictor and
corrector stages of the algorithm. This linear solve gives an update including both a predictor and
corrector component. However, the tangent calculation cannot be combined with the corrector
if higher degree curve derivatives are needed because the tangent itself is needed in subsequent
derivative evaluations. Since the tangent vector is needed for the higher derivative calculations,
the corrector (dynamic inverse) and tangent calculations should be separated into two linear
solves. However, we will see in this section that it can still be possible to combine the linear
solve for the corrector with the linear solve needed for the nth curve derivative calculation.

8.1. Arc-Length Parametrization

The algorithm is applied using equation (51). The first derivative pair is calculated using
equations (58) and (59), and each consecutive derivative up to order n − 1 is calculated from
equation (61). Let

S n−1 =

n−1
∑

k=1

1

k!
∆sk

i x(k) (si) . (72)

Then

xi+1 = xi − γi∆si
[

∇xH (xi, λi)
]−1H (xi, λi) +

1

n!
∆sn

i x(n) (si) + S n−1

= xi − γi∆si
[

∇xH (xi, λi)
]−1H (xi, λi) +

1

n!
∆sn

i

(

zn − λ(n)z
)

+ S n−1

= xi − γi∆si
[

∇xH (xi, λi)
]−1H (xi, λi) −

1

n!
∆sn

i

[

∇xH (xi, λi)
]−1

wn

+
∆sn

i

n!
√

z · z + 1

[

zn · ẋi − c(n) · ċ
]

z + S n−1

= xi −
[

∇xH (xi, λi)
]−1

[

γi∆siH (xi, λi) −
1

n!
∆sn

i wn

]

−
∆sn

i

n!
√

z · z + 1

[(

[

∇xH (xi, λi)
]−1 wn

)

· ẋ + c(n) · ċ
]

z + S n−1,

(73)

where c(n) · ċ can be evaluated using equation (66).

8.2. λ̇ (s) = −1 Parametrization

The algorithm is applied using equation (51). The first derivative pair is calculated using
equations (67) and (68), and each consecutive derivative up to order n − 1 is calculated from
equation (69). Let

S n−1 =

n−1
∑

k=1

1

k!
∆sk

i x(k) (si) . (74)
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Then

xi+1 = xi − γi∆si
[

∇xH (xi, λi)
]−1H (xi, λi) +

1

n!
∆sn

i x(n)
i

(si) + S n−1

= xi − γi∆si
[

∇xH (xi, λi)
]−1H (xi, λi) −

1

n!
∆sn

i

[

∇xH (c (s))
]−1 w′n + S n−1

= xi −
[

∇xH (xi, λi)
]−1

(

γi∆siH (xi, λi) +
1

n!
∆sn

i w′n

)

+ S n−1 (75)

where c(n) · ċ can be evaluated using equation (66).

8.3. The Monolithic Homotopy Continuation Algorithm with Degree n Derivative

A high-level pseudo-code for the calculation is summarized in Algorithm 2, which can be
compared to the original algorithm shown as Algorithm 1.

Algorithm 1: Original Monolithic homotopy continuation algorithm

Set λ = 1 and solve G (x) = 0 if necessary
while λ > 0 do

Get γ,H , ∥H∥, and −γH + G − R
Form and factor the preconditioner approximating the matrix ∇xH
Solve the linear system ∇xH∆x =

[

−γH + G − R
]

for ∆x
Choose ∆s

Update λ and x

end

Algorithm 2: Monolithic homotopy continuation algorithm including derivatives up to
degree n

Set λ = 1 and solve G (x) = 0 if necessary
while λ > 0 do

Get γ, G, R,H , and ∥H∥
Form and factor the preconditioner approximating the matrix ∇xH
for i = 0 : n − 1 do

Form wi and calculate x(i) based on Section 7.1 or 7.2
end

Choose ∆s
Calculate wn and the combined final stage of the update based on Section 8.1 or 8.2.
Update λ and x

end

8.4. Choice of Parametrization Based on the Analysis

We see from equations (73) and (75) that the calculation requires an additional linear solve
when using an arclength parametrization because the inverse Jacobian appears in the inner pro-
duct in equation (73) and cannot be factored out. This constitutes considerable extra cost which
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we do not anticipate can be recovered by any benefits from potentially superior step-length adap-
tation capabilities. Hence, we choose to take the λ̇ (s) = −1 parametrization approach through
the rest of this study.

To perform one step of the algorithm using the nth derivative, n − 1 linear systems must be
solved. Each of these linear systems has the same left-hand side but a different right-hand side.
Currently, the approach taken is to use ILU(p)-preconditioned GMRES, where the ILU factori-
zation is performed only once per iteration of the algorithm (e.g. once for each value of λ).

Since ∆λ is built into the sum S n−1, step-length adaptation, if applied, must be performed
prior to forming S n−1. It is, however, possible to calculate each curve derivative vector prior to
selecting ∆λ. We propose adapting ∆λ to attempt to achieve consistent ∥S n−1∥, recognizing that
S n−1 is the predictor-component of the update up to the n − 1st term. As with our previous work
with the original monolithic homotopy continuation algorithm [6], the target value of S n−1 can
be based on the first iteration. We do not however investigate this approach in this paper as we
are deferring comprehensive performance studies until the tensor-vector product accuracy issue
is resolved.

9. Results

Since the accuracy of the finite-differencing method used to form the tensor-vector products
can be unreliable, particularly for larger cases and especially for higher derivatives [5], we restrict
the study to inviscid subsonic flow over the NACA 0012 geometry. Though this is a practical
test case of scientific interest, it is far smaller and easier than the test cases that we are ultimately
interested in and which have motivated the development of the new algorithm, and so we regard
these results as preliminary.

9.1. Governing Equations

The test cases presented in this paper are all inviscid external compressible aerodynamic
flows. The discretized Euler equations which are being solved for these test cases are given, for
example, by Hicken and Zingg [16]. In this context, the state vector x consists of four variables
per node. For node index i:

x[i] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ρi

ρiui

ρivi

ei

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (76)

where ρ is the air density, u and v are Cartesian velocity components, and e is the energy, which,
under the ideal gas assumption, is related to pressure p and velocities u and v through the formula

p = (γa − 1)

(

e −
1

2
ρ
(

u2 + v2
)

)

, (77)

where γa ∈ R is the heat capacity ratio for air and is taken as 1.4.
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9.2. Geometry

The NACA 0012 geometry is a well-known two-dimensional airfoil geometry often used for
CFD testing and benchmarking and for which a large amount of experimental data exists. See
McCroskey [25] for a summary and assessment of experimental data collected for this geometry
prior to 1987. The grid used to represent the region surrounding the NACA 0012 airfoil in
our study has an H topology and consists of 15390 nodes divided evenly into 18 blocks for
parallelization on 18 processors. The Mach number is 0.3 and the angle of attack is 1◦. Detailed
accuracy studies on the derivative calculation have previously been performed for this test case
by Brown and Zingg [5].

9.3. Accuracy Study

The purpose of this study is to develop a comparison between the augmented monolithic
homotopy continuation algorithm and the original algorithm. Since no step-length adaptation
is applied, ∆λ is maintained constant for each test case. Setting the finite-difference step size to
δ = 10−12 in the tensor-vector product estimates (see Brown and Zingg [5]) was found to be fairly
optimal for the n = 2 case but changing this value to δ = 10−8 affected the predicted residual by
around 25%, performing better in some areas and worse in others, indicating that the error in the
estimate remains significant.

The residual ∥H (x, λ)∥ gives an indication of curve-tracing accuracy and is recorded as a
function of λ for several applications of the algorithm based on equation (75) with different
values of n, where n is the degree of the Taylor polynomial used to build the predictor, viz.
equation (25). The effect of the linear solver tolerance on the accuracy of the update is also in-
vestigated by comparing plots of ∥H (x, λ)∥ as a function of λ for τl = 10−4 and τl = 10−2, where
τl is the linear solver tolerance as it appears in equation (4). The value τl = 10−4 is expected,
based on experience, to give a very accurate update, whereas τl = 10−2 is a value more typical of
what we have typically used in practice [6, 16] as over-solving the linear system is computatio-
nally inefficient.

The residual history is presented in Figure 1. It can be seen that when the linear system is
solved accurately, the n = 2 algorithm predicts the curve significantly more accurately than the
n = 1 algorithm. From Figure 1a, this advantage can clearly be lost if the linear solver tolerance
is relaxed, highlighting the importance of accurately forming the higher derivatives.

It seems apparent from Figure 1a that there is no benefit to augmenting the algorithm to
n = 3. However, we suspect that this is due to inaccuracy in forming the tensor-vector products
for this case. This is supported by our previous studies of the accuracy of the n = 3 derivative
calculation for this case [5], where we found that the error could be on the order of 30% at some
values of λ. We thus regard these results as inconclusive and the n = 3 option is thus omitted
from further studies in this paper.

9.4. Preliminary Efficiency Study

Since the tensor-vector product accuracy issue has yet to be solved, the results in this study
should be regarded as preliminary.

Since the continuation algorithm based on the second derivative requires twice as many li-
near solves as the n = 1 algorithm, and the linear solver is normally at least 90% of the cost for
our applications, we assume that the algorithm is approximately twice as expensive per iteration.
Hence, traversing can be obtained in approximately the same CPU time for the n = 2 case if the
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Figure 1: Comparison of continuation algorithms based on the nth derivative

18



λ

00.10.20.30.40.50.60.70.80.91

∥H
(x
,
λ
)∥

×10 -4

0

0.5

1

1.5
n = 1, |∆λ| = 0.025
n = 2, |∆λ| = 0.05

λ

00.10.20.30.40.50.60.70.80.91

∥H
(x
,
λ
)∥

×10 -4

0

1

2

3

4
n = 1, |∆λ| = 0.05
n = 2, |∆λ| = 0.1

Figure 2: Cost-equal comparison of continuation algorithms based on the nth derivative with τl = 10−4

step size is doubled. To get an idea of how the relative efficiency of the n = 2 algorithm compares
to the n = 1 algorithm, we compare the accuracy of the two algorithms using double the step size
for the n = 2 algorithm.

Two comparisons are shown in Figure 2. From the figures, it appears that similar curve tra-
cing accuracy can be achieved in either case, indicating no clear gain or loss in efficiency. It is
our expectation that these results will improve when the accuracy of the tensor-vector product
estimate is improved.

9.5. Assessment

The results of Section 9.4 are actually very promising. Due to the considerable extra cost
in forming the higher derivatives, it was not expected that the efficiency of the original algo-
rithm could be surpassed, and perhaps doubtful if it could even be matched. As stated in the
introduction, the primary motivation for developing this algorithm class was for the potential
robustness gains in being able to better predict the curve. While such benefits are not apparent
from this simple test case, they are anticipated for some cases which have proved challenging for
the original algorithm [6] and so this study has certainly motivated further work in developing
these methods.

19



10. Conclusions

The contributions of this work are the formulation, analysis, and numerical study of incor-
porating higher-order accurate predictors into the monolithic homotopy continuation algorithm.
Some important analytical results concerning convergence of the algorithm were established, in-
cluding convergence for 0 ≤ |γ∆λ| ≤ 1 (Remark 4) and that the overall order of accuracy may
be limited to first order regardless of the order of accuracy of the predictor (Remark 6). These
results also contribute to our understanding of the original monolithic homotopy continuation
algorithm as they had previously not been established.

While forming the update based on data near to the curve, as opposed to directly lying on the
curve, ultimately restricts the order of accuracy of the update to first order, it was shown numeri-
cally that augmenting the continuation algorithm with a second-derivative term can dramatically
improve the accuracy of the update for practical applications. This conclusion is consistent with
our previous findings [5].

11. Future Work

Additional work should target efficient and reliable application of the algorithm. Most im-
portantly, an efficient and accurate method for estimating the tensor-vector products required for
the derivative calculations must be developed and implemented. Once this is accomplished, more
difficult test cases can be carried out, such as cases on finer grids and turbulent flows.

Additional considerations regarding the efficiency of the new algorithm for our applications
include step-length adaptation algorithms and considerations for the linear solver.
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