
Efficient Numerical Differentiation of Implicitly-Defined Curves

for Sparse Systems

David A. Brown and David W. Zingg

University of Toronto Institute for Aerospace Studies, Toronto, Ontario, M3H 5T6, Canada

Abstract

A numerical technique is developed for the efficient numerical differentiation of regular implicitly-
defined curves existing in high-dimensional real space such as those representing homotopies,
where the system of equations which defines the curve implicitly is assumed to be sparse. The
calculation is verified numerically through its application to the curve defined implicitly by a
homotopy constructed based on a discretization of the equations governing compressible aero-
dynamic fluid flow. Consideration is given to computational cost, data storage, and accuracy.
This method is applicable to any implicitly-defined curves or trajectories which can occur, for
example, in dynamical systems analysis or control. Applications also exist in the area of homo-
topy continuation where implicitly-defined curves are approximately traced numerically. Such
applications include the analysis of curve traceability and the construction of higher order pre-
dictors. The latter is investigated numerically and it is found that increasing the order of accuracy
of the predictor can significantly improve the curve-tracing accuracy within a limited radius.

Keywords: numerical differentiation, implicitly-defined curves, homotopy, continuation,
high-order predictor, sparse systems

1. Introduction

Consider a curve segment defined implicitly by the system of equations

H (q (λ) , λ) = 0, (1)

H : RN × R → RN , q ∈ RN , λ ∈ R on some interval λ ∈ Λ, Λ ⊂ R. Without loss of gener-
ality, let Λ = {[0, 1]}, and assume that the curve is oriented in the direction of decreasing λ. In
this paper we assume that H is at least C1 differentiable, invertible, and that the curve is regu-
lar on Λ. As such, the curve derivatives cannot vanish and no bifurcations are present. Hence,
equation (1) is said to describe a regular homotopy [1] in RN . While homotopies including
bifurcations have garnered much interest for the study of systems of equations of multiple solu-
tions [19, 31, 33, 38, 39, 40, 41], and we do recognize the importance of including consideration
for such points, they fall outside the scope of our particular applications and hence the scope of
this paper.

It may be of practical interest to calculate higher derivatives of the curve, either for anal-
ysis or for application to numerical algorithms. While such calculations have been performed
previously [29, 34, 36], the authors have not included special consideration for sparsity and the

Preprint submitted to Journal of Computational and Applied Mathematics April 10, 2016

calculations can become prohibitively expensive ifH is large and sparse. It is also important that
the calculations be efficient if the calculation is to be used as part of a cost-competitive continua-
tion algorithm. An example where this is important is homotopy continuation [1], which we have
been developing as an efficient continuation strategy for solving the sparse algebraic systems of
equations arising in computational fluid dynamics (CFD) problems [5, 3, 4]. These systems of
equations are sparse and it is not uncommon for the equations to number in the tens of millions,
or even higher in some applications.

The calculations in this paper are developed in a Jacobian-free Krylov framework using the
flexible generalized minimal residual (FGMRES) [32] method, though any linear solver suitable
for solving linear systems of the form

∇qHx = b (2)

could be used, where x, b ∈ RN and ∇H indicates the Jacobian1 of H . The distinction that we
are making with equation (2) is that the linear system is represented by a Jacobian matrix. Some
linear solvers can make use of approximate Jacobian-vector products to avoid forming the Jaco-
bian matrix explicitly.

2. Tangent Vector

Consider the curve defined implicitly by a regular homotopy

H (c (s)) = 0, (3)

where the curve c (s) = (q (s) ; λ (s)), c : R → RN × R has an arclength parametrization [17]
defined implicitly by

ċ (s) · ċ (s) = 1, (4)

s ∈ S, S ⊂ R, S = {[0, stot]}. Differentiating both sides of equation (3) with respect to the
arclength parameter s gives:

∇H (c (s)) ċ (s) = 0, (5)

which can also be written:

∇qH (c (s)) q̇ (s) + λ̇ (s)
∂

∂λ
H (c (s)) = 0, (6)

or, after rearranging:

∇qH (c (s))

[

−1

λ̇ (s)
q̇ (s)

]

=
∂

∂λ
H (c (s)) . (7)

Define the vector z ∈ RN such that

∇qH (c (s)) z =
∂

∂λ
H (c (s)) . (8)

1When ∇ appears without subscript, differentiation is performed with respect to all variables including λ. The notation
∇q means that differentiation is with respect to the vector q only.

2

Then
q̇ = −λ̇z (9)

and
ċ (s) · ċ (s) = q̇ (s) · q̇ (s) + λ̇ (s) λ̇ (s) = λ̇2 [z · z + 1] . (10)

Since ċ (s) · ċ (s) = 1, equation (10) can be used to obtain an equation for λ̇ (s):

λ̇ (s) =
−1

√
z · z + 1

, (11)

where the negative sign has been included to force a negative orientation for λ̇ (s), which is the
convention that we have adopted. Substituting this back into equation (7) gives the expression
for q̇ (s):

q̇ (s) = −λ̇z. (12)

The tangent vector can thus be calculated from equations (11) and (12), where z is defined by
equation (8) and requires the solution to a sparse linear system of equations.

3. Curvature Vector

As with the tangent vector, the curvature vector will depend on the parametrization. Carrying
over from the tangent calculation, an arclength parametrization is assumed. The derivation begins
by differentiating both sides of equation (5), which gives

∇H (c (s)) c̈ (s) + ∇2H (c (s)) [ċ (s) , ċ (s)] = 0. (13)

For clarity of presentation, let w2 = ∇2H (c (s)) [ċ (s) , ċ (s)], w2 ∈ RN . Methods for approx-
imating tensor-vector products are discussed in Section 5. Equation (13) can be expanded to

∇qH (c (s)) q̈ (s) + λ̈
∂

∂λ
H (c (s)) = −w2. (14)

Equation (8) can be used to simplify:

∇qH (c (s))
[

q̈ + λ̈z
]

= −w2. (15)

Let
z2 = q̈ + λ̈z, (16)

z2 ∈ RN . It is possible to solve the linear system (15) for z2. However, an additional equation
is needed to retrieve all N + 1 initial unknowns. As with the tangent calculation, this equation
comes from the parametrization. Differentiating both sides of the arclength definition given by
equation (4) gives the new equation

c̈ (s) · ċ (s) = 0 (17)

which, when expanded, can be written in terms of q̈, λ̈, and the vector z previously calculated
during the tangent calculation:

q̈ · z − λ̈ = 0. (18)

3

To solve for λ̈, take the dot product z2 · z and use equations (16) and (18):

z2 · z = q̈ · z + λ̈z · z = λ̈ (z · z + 1) . (19)

This expression is rearranged to obtain

λ̈ =
z2 · z

z · z + 1
. (20)

Finally, equation (16) is used to retrieve the vector q̈:

q̈ = z2 − λ̈z. (21)

4. Curve Derivatives of Order n

The derivative of order n can be derived from the derivatives up to order n − 1 in much the
same way as the second derivative is derived from the first. The first step is to approximate the
nth derivative ofH (c (s)). This is given by Faá de Bruno’s formula [30]:

d

ds
H (c (s)) =

∑ n!
∏n

j=1 j!mj m j!
∇

∑n
j=1 mjH (c (s))

n
∏

j=1

[

c(j) (s)
]mj

, (22)

where the outer summation is taken over all n-tuples of non-negative integers {m1, . . . ,mn} such
that

n
∑

j=1

jm j = n (23)

and the notation which seems to indicate the product
[

c(j) (s)
]mj

for all j is intended to indicate

that c(j) (s) appears with multiplicity m j as input to ∇
∑n

j=1 mjH (c (s)).
SinceH (c (s)) = 0, therefore we have d

ds
H (c (s)) = 0. Define wn ∈ RN as

wn ≡
d

ds
H (c (s)) − ∇H (c (s)) c(n) (s) . (24)

Then we obtain
∇H (c (s)) c(n) (s) = −wn. (25)

Note that wn is not a function of c(n) (s), so it is possible to approximate it using a generalized

algorithm for the discrete directional derivative operators on
(

ċ (s) , . . . , c(n−1) (s)
)

. A framework
for approximating directional derivatives of any order is described in Section 5.

Using equation (8), the under-determined system (25) can be compacted to the fully deter-
mined system

∇qH (c (s)) zn = −wn, (26)

where
zn = q(n)

+ λ(n)z, (27)

zn ∈ RN . The linear system (26) can be solved numerically for zn.
The additional equation needed to solve for q(n) and λ(n) comes from differentiating the ar-

clength definition given by equation (4) n−1 times. This expression is obtained using the general
Leibniz rule:

0 =
dn−1

dsn−1
ċ · ċ =

n−1
∑

k=0

(

n − 1

k

)

c(k+1) · c(n−k). (28)

4

Algorithm 1: High-order curve derivative calculation with arclength parametrization for
curve derivative of order n

Data: n, q, λ,H (q, λ), ∂
∂λ
H (q, λ), ∇qH (q, λ)

Result: q̇ (s), . . . , q(n) (s), λ̇ (s), . . . , λ(n) (s)

Calculate ċ (s)
for d = 2 : n do

Calculate ϵ for c(d−1) (s)

Calculate wn from equations (24) and (22)
Solve ∇qHzn = −wn

Calculate λ(d) (s) from equation (31)
Calculate q(d) (s) from equation (32)

end

Solving for c(n) · ċ gives

c(n) · ċ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
∑

n−3
2

k=1

(

n−1
k

)

c(k+1) · c(n−k) − 1
2

(

n−1
n−1

2

)

c((n+1)/2) · c((n+1)/2) n is odd

−
∑

n
2−1

k=1

(

n−1
k

)

c(k+1) · c(n−k) n is even,
(29)

which can be evaluated numerically.
Taking the dot product of both sides of equation (27) with q̇ gives

znq̇ = q(n) · q̇ + λ(n)z · q̇ = c(n) · ċ − λ(n)λ̇ + λ(n)z · q̇. (30)

This can be rearranged and simplified using equations (11) and (12) to give:

λ(n)
=

zn · q̇ − c(n) · ċ
√

z · z + 1
. (31)

This is substituted into equation (27) to calculate q(n):

q(n)
= zn − λ(n)z. (32)

The higher order derivative calculation is summarized as Algorithm 1. The calculation can
alternatively be represented as an N + 1 by N + 1 system of equations:

(

∇qH (c (s)) z
q̇ (s) λ̇ (s)

) (

q(n) (s)
λ(n) (s)

)

=

(

−wn

xn

)

, (33)

where xn ∈ R is calculated from the right-hand side of equation (29). Notice that the N + 1st
column and N + 1st row are both dense. A procedure for solving a sparse linear system with a
dense row and column appended is presented in Appendix A. This procedure involves two linear
solves using the sparse sub-matrix ∇qH (c (s)), whereas the procedure presented in this section
requires only one linear solve because it has been possible to recycle the solution to the linear
solve from the tangent calculation.

5

5. Approximations to Directional Derivatives

While the Jacobian is usually represented by a matrix, it is more convenient in the current
context to define the Jacobian by interpreting it as a directional derivative, as in the approach
taken by Pönisch and Schwetlick [29].

Definition 1. Let u ∈ RN1 , v ∈ RN1 , and let H : RN1 → RN2 be at least C1 differentiable. The

Jacobian ofH (u) is an operator ∇H (u) : RN1 → RN2 such that

(∇H (u) v)[i] =

∑

j

∂

∂u[j]
H[i] (u) v[j]. (34)

where the notation v[j] indicates the jth element of the vector v.

Clearly the Jacobian is a linear operator with respect to v. It can be seen from equation (34)
that the mapping ∇H (u) v can be interpreted as the directional derivative of H (u) in the direc-
tion of v and with “speed” ∥v∥. Hence the mapping ∇H (u) v can be written in the Fréchet sense
using forward-differencing:

∇H (u) v = lim
ϵ→0

H (u + ϵv) −H (u)

ϵ
, (35)

ϵ ∈ R, or centred-differencing:

∇H (u) v = lim
ϵ→0

H (u + ϵv) −H (u − ϵv)

2ϵ
. (36)

Approximations to the directional derivatives can be formed using either equation (35) or
equation (36) without the limit and choosing a finite value of ϵ. The parameter ϵ should be
chosen to balance between the truncation error from the finite-differencing approximation and
rounding error. Taking the approach of Nielsen et al. [27], the following expression is used:

ϵ =

√

Nδ

vT v
, (37)

where δ ∈ R is typically taken around 10−12, which is about 103 times machine precision when
using double precision arithmetic. The intention in applying this formula is to acquire an ϵ such
that the elements of ϵv are approximately the size of the corresponding elements of δu. The
vector u does not appear in the formula because it is assumed that the elements of u are of order
unity. If this is not the case, then the elements of v can be divided by some benchmark value as
appropriate. For example, if some elements of u are of order 103, the corresponding elements
of v can be temporarily scaled by dividing by 103 before applying equation (37) and then scaled
back to their original values.

The Hessian operator can also be interpreted as a directional derivative.

Definition 2. Let u ∈ RN1 , v1 ∈ RN1 , v2 ∈ RN1 , and let H : RN1 → RN2 be at least C2

differentiable. The Hessian ofH (u) is an operator ∇2H (u) : RN1 × RN1 → RN2 such that

(

∇2H (u) [v1, v2]
)

[i]
=

∑

k

∑

j

∂2

∂u[j]∂u[k]
H[i] (u) v1[j]v2[k], (38)

where the notation ∇2H (u) [v1, v2] indicates that ∇2H (u) operates on the vector pair [v1, v2].
6

The Hessian is easily verified to be a bilinear operator with the property

∇2H (u) [v1, v2] = ∇2H (u) [v2, v1] . (39)

In addition, the following remark is easily verified by applying Definition 1 twice.

Remark 1. Let u ∈ RN1 , v1 ∈ RN1 , v2 ∈ RN1 , and let H : RN1 → RN2 be at least C2 differen-

tiable. Then

∇2H (u) [v1, v2] = ∇
[

∇H (u) v1
]

v2. (40)

Like the Jacobian, the Hessian also represents a directional derivative [29]; it can be inter-
preted as the directional derivative ofH (u) in the direction of v1 differentiated for a second time
in the direction of v2. As such, it can also be approximated by successively applying the Fréchet
definition of the directional derivative. In accordance with Remark 1, the following approxima-
tion can be constructed by successively applying first-order approximations to the first derivative:

∇2H (u) [v1, v2] ≈
H (u + ϵ2v2) −H (u − ϵ1v1 + ϵ2v2) −H (u) +H (u − ϵ1v1)

ϵ1ϵ2
. (41)

Similarly, the second-order approximation to the first derivative can be used:

∇2H (u) [v1, v2]

≈
H (u + ϵ1v1 + ϵ2v2) −H (u − ϵ1v1 + ϵ2v2) −H (u + ϵ1v1 − ϵ2v2) +H (u − ϵ1v1 − ϵ2v2)

22ϵ1ϵ2
.

(42)

This method for calculating second-order directional derivatives can easily be extended to
directional derivatives of any order. Algorithms 4 or 6 in Appendix B can be used to approxi-
mate directional derivatives of any order for the general case. If all directions of the directional
derivative are the same (that is, all input vectors in the tensor-vector product are the same) then
Algorithms 5 or 7, also in Appendix B, can be used to reduce the number of residual evaluations
needed.

6. Curve Derivatives with λ Parametrization

The curve derivatives can also be calculated with a λ parametrization. Our convention is to
define a λ parametrization implicitly by

λ̇ (r) = −1, (43)

r ∈ S, S ⊂ R, R = {[0, 1]}. Successively differentiating both sides of this equation yields the
additional conditions:

λ(n) (r) = 0 (44)

for all n > 1. DifferentiatingH (c (r)) = 0 and using condition (43) gives the expression for the
first derivative:

∇qH (c (r)) q̇ (r) =
∂

∂λ
H (c (r)) . (45)

7

Note the useful property

q̇ (r) =
√

z · z + 1 q̇ (s) (46)

which allows for easy conversion between q̇ (s) and q̇ (r).
The derivation for the higher derivatives for this parametrization proceeds in much the same

way as the derivation for the higher derivatives with respect to the arclength parametrization. Dif-
ferentiatingH (c (r)) = 0 n times gives an expression for d

dr
H (c (r)) analogous to equation (22).

Define

w′n =
d

dr
H (c (r)) − ∇H (c (r)) q(n) (r) , (47)

w′n ∈ RN , where the prime distinguishes w′n from wn. Since d
dr
H (c (r)) = 0, the expression for

the nth derivative of q (r) is given by

∇H (c (r)) q(n) (r) = −w′n. (48)

The q(n) (r) calculation is summarized as Algorithm 2, where the vector w′n can be evaluated by
applying Algorithms 4 through 7 in Appendix B without modification.

Algorithm 2: High order curve derivative calculation with λ parametrization for curve
derivative of order n

Data: n, q, λ,H (q, λ), ∂
∂λ
H (q, λ), ∇qH (q, λ)

Result: q̇ (r), . . . , q(n) (r), λ̇ (r), . . . , λ(n) (r)
Calculate ċ (r)

for d = 2 : n do

Calculate ϵ for c(d−1) (r)
Calculate w′n from equations (47) and (22)
Solve ∇qHq(n) (r) = −w′n

end

7. Practical Considerations for Calculating High Derivatives of Curves

The primary cost in terms of CPU time is in forming the wn vector and solving the linear
system given by equation (25). A consideration which can reduce CPU time is that the matrix on
the left-hand side of the equation is the same for any n. This can lead to efficiency improvement
depending on the linear solver used. For example, an LU or ILU factorization need only be
performed once and can be reused for the linear solve for each derivative.

The wn calculation potentially requires numerous directional derivatives and their coefficients
to be computed. The directional derivatives are identified and the coefficients are calculated using
equation (22) with condition (23) and ignoring the ∇H (c (s)) c(n) (s) term. While this is relatively
straightforward, the complexity of the summation in equation (22) provides some challenges in
terms of data allocation and establishing a logical indexing. The indexing system that we have
developed comes from noticing that the sum of the orders of the derivatives is always equal
to n and recalling that the input vectors to the directional derivatives commute (equation (39)).
This means that the total number of directional derivatives needed to construct wn is equal to

8

the number of different integer combinations which can be summed to make n, the order of the
summands being irrelevant. This value, denoted P (n), is called the partition function and any
non-ordered integer set whose sum equals n is called a partition [2]. The partition function can
be evaluated using the recursive equation:

P (n) =
∑

k>0

(−1)k−1
[

P
(

n − g−k

)

+ P
(

n − g+k

)]

, (49)

g−k =
k (3k − 1)

2
, g+k =

k (3k + 1)

2
,

P(1) = 0, P(0) = 0, P(k) = 0 for k < 0,

P : Z→ Z, g−k ∈ Z, g+k ∈ Z,

where the summation is terminated when the condition n > g−k is met.
The partitions are arranged anti-lexicographically using algorithm ZS1 of Zoghbi and Stoj-

menović [42], the parts of the partition representing the multiplicity of each derivative. As an
example, the indexing matrix generated from the partitioning algorithm is shown paired with the
coefficient vector generated from equation (22) for n = 4:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4 0 0 0
3 1 0 0
2 2 0 0
2 1 1 0
1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
4
3
6
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (50)

Since the order of the tensor for the jth term is equal to the number of non-zero entries in the jth
row, this matrix and vector combination contains enough information to construct w4. Ignoring
the top line, which corresponds to ∇H (c (s)) c(n) (s), the expression for w4 is

w4 = 4∇2H [
...
c , ċ] + 3∇2H [c̈, c̈] + 6∇3H [c̈, ċ, ċ] + ∇4H [ċ, ċ, ċ, ċ] . (51)

The number of integers needed to be stored using the partition-based method is only (n + 1)P (n),
whereas a more naive scheme which allocates for every combination of j ≤ n would allocate for
nn. Table 1 shows that partition-based memory allocation and indexing becomes necessary as n

becomes large.

n 5 10 15

(n + 1)P (n) 42 462 2816
nn 3125 1010 4.38 × 1017

Table 1: Number of integer values stored for the partition-based storage scheme compared to a
simple index-based storage scheme for calculating wn

While the number of residual evaluations required to evaluate equation (24) grows at a rapid
rate, the cost is still quite low for practical values of n. Mackens [23] investigated a method
for reducing this cost and also the complexity of the calculation. The method comes from the
observation that

(

d

ds

)n

H

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c (s) +

n−1
∑

j=1

∆s j

j!
c(j) (s)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

|∆s=0

= −wn. (52)

9

The cost benefit of using equation (52) in place of equation (24) is that only a single directional
derivative with a single direction must be computed for each derivative, resulting in much fewer
residual evaluations.

As will be shown in Section 8.6, accuracy is currently of greater concern to the calculation
than cost, and this method does not provide a solution to the accuracy problems encountered.
Mackens [23] presented2 error estimations for directional derivative calculations up to n = 4
using this method for a very low-dimensional homotopy in R2 and found that the numerical
approximation error grew significantly as n was increased. Syam and Siyyam [36] performed a
similar study and the same trend is seen in their second test case, their first case being a simple
scalar case. Since the direction vectors in the directional derivatives can vary by 8 orders of
magnitude or more for our applications it seems unlikely that the directional derivatives can be
constructed with sufficient accuracy using this method.

The next topic that will be addressed is whether second-order or first-order first derivative
approximations should be used to construct the tensor-vector products. From experimentation
with both we have not observed any measurable accuracy improvement for the second-order
approximation relative to the first-order approximation when calculating curve derivatives of up
to the third derivative, at least not for ϵ values around 10−8. However, some slight improvement
seems apparent at higher derivatives. The cost measured in number of residual evaluations of
forming the tensor-vector products for ∇nH is 2n when using the second-order accurate method
and 2n − 1 when using the first-order accurate method. Since the additional cost of using the
second-order approximation is between modest and negligible, especially when considering the
cost of solving the linear system, we opt to use the second-order accurate tensor-vector product
estimates.

Another consideration which is important for efficiency is special consideration for the case
where all direction vectors to the directional derivative are in the same direction. Though the
generalized Algorithm 6 could be used for all directional derivatives, the number of residual
evaluations needed to evaluate the tensor-vector product in this way is 2n, whereas Algorithm 7,
which takes advantage of all directions being the same, requires only n + mod (n, 2) residual
evaluations. This is particularly significant when calculating the high curve derivatives because
the highest order tensor-vector product appearing in the wn calculation is always of this form.

The cost measured in number of residual evaluations needed to calculate wn is shown in
Table 2 for the various methods. The data in this table reinforce the recommendations made in
this section. If high derivatives are desired then clearly there is cost benefit to Mackens’ method
if the accuracy issues can be overcome. There is also room for significant cost reduction if the
tensor-vector product is fully generalized to account for any common direction vectors. For
example, ∇3H (c) [c̈, ċ, ċ] could be made more efficient by considering that two of the direction
vectors are the same, reducing the cost from 8 residual evaluations to 6. While the cost reduction
is modest for this example, it becomes very significant for higher order tensors and occurs often
in the wn calculation.

8. Validation

8.1. Flow Solver

The validation is performed using a Newton-Krylov-Schur parallel implicit flow solver based
on a finite-difference [20] discretization applicable to multi-block structured grids. The finite-

2See the tables on pages 247, 248, and 250 of Mackens [23]

10

Method n

2 3 4 5 6 7 8 9

1a 3 10 28 66 154 334 723 1515
1b 2 6 16 40 92 214 473 1009
2a 4 12 32 72 164 348 744 1544
2b 2 8 18 46 100 228 492 1038

Mackens 2 3 4 5 6 7 8 9

Table 2: Cost of evaluating wn using various methods, where cost is measured in number of
residual evaluations; the methods are:
1a) First-order accurate, general tensor-vector products only (Algorithm 4);
1b) First-order accurate, making use of single-direction directional derivatives (Algorithms 4
and 5);
2a) Second-order accurate, general tensor-vector products only (Algorithm 6);
2b) Second-order accurate, making use of single-direction directional derivatives (Algorithms 6
and 7)

difference discretization is based on the SBP-SAT [6, 9, 12, 16] approach, which uses Summation-
By-Parts (SBP) operators to represent the discrete derivatives and Simultaneous Approximation
Terms (SATs) to enforce the boundary conditions and couple the flow equations at block inter-
faces. The original inviscid flow solver flow of Hicken and Zingg [13] is used for all calculations
in this paper though the flow solver has since been extended to viscous flows by Osusky and
Zingg [28]. The flow solver can be used for both subsonic and transonic operating conditions.
For transonic cases, a first-order dissipation operator is included with a pressure sensor [15] for
shock capturing.

To parallelize the flow solver, the physical domain is decomposed into blocks. Parallel pre-
conditioning of the Krylov solver is performed using the Schur complement method [32] with
block incomplete lower-upper (ILU) preconditioning applied to the domain blocks. The specific
type of ILU factorization used in the current study is known as ILU(p) [32], where p is the fill
level. The ILU(p) factorization is constructed based on an approximate Jacobian matrix using
nearest neighbour nodes only. Since the Schur preconditioner can vary slightly throughout the
Krylov solution process, a flexible variant of the Krylov solver GMRES is used, which is termed
Flexible Generalized Minimal Residual, or FGMRES [32].

8.2. Test Cases

The test cases presented in this paper are all inviscid external compressible aerodynamic
flows. The discrete inviscid Euler equations which are being solved for these test cases are
given, for example, by Hicken and Zingg [13]. In this context, the state vector q consists of four
elements per node. For node index i:

q[i] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ρi

ρiui

ρivi

ei

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (53)

11

where ρ is the air density, u and v are Cartesian velocity components, a is the speed of sound,
and e is the energy, which, under the ideal gas assumption, is related to pressure p and velocities
u and v through the formula

p = (γ − 1)

(

e −
1

2
ρ
(

u2
+ v2

)

)

, (54)

where γ ∈ R is the heat capacity ratio and is taken as 1.4 for air.
The NACA 0012 geometry is a well-known two-dimensional airfoil geometry often used for

CFD testing and benchmarking and for which a large amount of experimental data exists. See
McCroskey [25] for a summary and assessment of experimental data collected for this geometry
prior to 1987. The grid used to represent the region surrounding the NACA 0012 airfoil in our
study has an H topology and consists of 15390 nodes divided evenly into 18 blocks.

8.3. Homotopy Continuation

The application considered is the convex homotopy [1]

H (q, λ) = (1 − λ)R (q) + λG (q) = 0, (55)

H : RN × R→ R
N , G : RN → R

N , R : RN → R
N , λ ∈ R.

This is developed into a homotopy continuation algorithm by considering the discrete form:

H (q, λk) = (1 − λk)R (q) + λkG (q) = 0, (56)

k ∈ [0,m] , λk ∈ R, λ0 = 1, λm = 0, λk+1 < λk.

Assume that equation (56) defines a regular homotopy between the solutions to G (q) = 0 and
R (q) = 0. If R (q) = 0 is difficult to solve and G (q) = 0 is easy to solve, then tracing the
curve defined implicitly by equation (56) with the conditions accompanying the equation leads
to an approximation to the solution to R (q) = 0, which can be used as a starting point for a
locally convergent method with a higher convergence rate, such as a quasi-Newton method. For
the numerical studies in this paper, R is the discrete flow residual and G the second-difference
dissipation operator with far-field boundary conditions used previously for homotopy continua-
tion by Brown and Zingg [3, 5]. The curve can be traced numerically using either a predictor-
corrector [1] or monolithic [4, 5] continuation algorithm.

8.4. Tangent

The validation of the tangent vector calculation is performed for inviscid flow over the two-
dimensional NACA 0012 airfoil at Mach 0.3 and an angle of attack of 1◦. Since the tangent vector
cannot be calculated analytically, finite-differencing is used for the validation. The solution
is needed at two consecutive points along the curve, which are obtained using the predictor-
corrector method [1, 3]. The change in the arclength ∆s is estimated by taking the standard norm
of the difference in solution between these points:

∆si ≈ ∆s∗i =

√

(qi+1 − qi) · (qi+1 − qi) + (λi+1 − λi)
2. (57)

12

00.10.20.30.40.50.60.70.80.910.99

0.995

1

1.005

ω

λ

Direct
|∆λ| = 0.20
|∆λ| = 0.10
|∆λ| = 0.05
|∆λ| = 0.01

00.10.20.30.40.50.60.70.80.910

0.1

0.2

0.3

0.4

E
rr
or

(%
)

λ

Figure 1: Comparison of ω calculated using the direct and finite-difference (FD) method with
varying step size |∆λ| on the inviscid NACA 0012 airfoil at Mach 0.3 and an angle of attack of 1◦

A centred-difference estimate of the tangent vector is constructed by the equation

ċ
(

si+ 1
2

)

≈ ċ∗
(

si+ 1
2

)

=
1

∆s∗i
(c (si+1) − c (si)) . (58)

Since ċ (s) · ċ (s) = 1, this check is analogous to comparing
∣

∣

∣λ̇ (s)
∣

∣

∣ using the direct or finite-
differencing method.

The validation is performed by determining whether the finite-difference estimates of ω ≡
√

q̇ (s) · q̇ (s) converge to the ω values obtained from the direct method in the limit of the finite-
difference step size |∆λ| going to 0. The finite-difference approximation is interpreted as rep-
resenting the derivative at si+ 1

2
≈ 1

2
(si+1 + si), so when the error is calculated the values of ω

calculated from the direct method are interpolated to these points.
To ensure that the effects of numerical error are not prevalent in the direct calculation,

the points on the curve are solved for quite accurately by enforcing an absolute tolerance of
∥H (c (s))∥ < 10−8 in the corrector phase of the predictor-corrector method and by solving the
linear systems appearing in the tangent calculation to a relative tolerance of 10−8 using a flex-
ible variant of GCROT [8], denoted GCROT(m,k) [14]. However, forward-differencing is used
to form all Jacobian-vector products in the linear solver, so that the effective tolerance to which
the linear systems are solved is actually larger than 10−8. The comparison is shown in Figure 1,
which demonstrates that the finite-difference estimates do converge to the direct tangent estimate
in the limit of |∆λ| vanishing.

8.5. Curvature

As with the validation for the tangent calculation, the test case is inviscid flow over the two-
dimensional NACA 0012 airfoil on the same grid. Two cases are investigated: the first is a

13

00.20.40.60.810

1

2

3

κ
q

λ

Direct
FD: |∆λ| = 0.20
FD: |∆λ| = 0.10
FD: |∆λ| = 0.05
FD: |∆λ| = 0.01

00.20.40.60.810

5

10

15

E
rr
or

(%
)

λ

(a) Subsonic: Mach 0.3, angle of attack 1◦

00.20.40.60.810

0.5

1

κ
q

λ

Direct
FD: |∆λ| = 0.20
FD: |∆λ| = 0.10
FD: |∆λ| = 0.05
FD: |∆λ| = 0.01

00.20.40.60.810

20

40

60

E
rr
or

(%
)

λ

(b) Transonic: Mach 0.8, angle of attack 3◦

Figure 2: Comparison of κq calculated using the direct and finite-difference (FD) method with
varying step size |∆λ| on the inviscid NACA 0012 airfoil at subsonic and transonic conditions

subsonic case at Mach 0.3 and an angle of attack of 1◦, the second is a transonic case at Mach
0.8 and an angle of attack of 3◦.

The backwards-difference estimate of the second derivative is obtained by dividing the differ-
ence in the tangent vector calculated at the current point and immediately previous point along
the curve by ∆s∗:

c̈
(

si+ 1
2

)

≈ c̈∗
(

si+ 1
2

)

=
1

∆s∗i
(ċ (si+1) − ċ (si)) . (59)

The validation is performed by determining whether the finite-difference estimates of κq con-
verge to the κq values obtained from the direct method in the limit of the finite-difference step
size |∆λ| going to 0. From Figure 2, it is apparently the case. To explain the smaller κq values
for the transonic case, it is because the arclength parametrization causes κq to be proportional to
1/
√

q · q and this case is at a higher Mach number.
Note that once the finite-difference step size |∆λ| becomes sufficiently small, the error in the

finite-difference approximation to κq will begin to increase with decreasing step size. This can
be explained by considering the error vectors e (si) , e (si+1) ∈ RN associated with the tangent
vectors estimated from the direct method. These error vectors are independent of the estimated
step size ∆s∗ = si+1 − si. Then the curvature approximation can be written as

c̈∗ (s) =
1

∆s∗
(ċ (si+1) + e (si+1) − ċ (si) − e (si)) . (60)

As ∆s∗ goes to 0, 1
∆s∗

(ċ (si+1) − ċ (si)) approaches c̈ (s) but, since e (s) does not decrease with ∆s,
1
∆s∗
|e (si+1) − e (si)| will grow as ∆s∗ decreases and will eventually dominate the calculation.

8.6. Higher Derivatives

The test case is again inviscid flow over the two-dimensional NACA 0012 airfoil at Mach 0.3
and angle of attack of 1◦. The backwards-difference estimate of the nth derivative is obtained

14

using the n − 1st derivative:

c(n)
(

si+ 1
2

)

≈ c(n)∗
(

si+ 1
2

)

=
1

∆s∗i

(

c(n−1) (si+1) − c(n−1) (si)
)

. (61)

Defining

κ
(n)
q ≡

√

q(n) · q(n), (62)

κ
(n)
q ∈ R, the validation is performed by determining whether the backwards-difference estimates

of κ(n)
q converge to the κ(n)

q values obtained from the direct method in the limit of the finite-
difference step size |∆λ| going to 0.

It is apparent from Figures 3a, c, and e that the higher order derivative calculations have been
implemented correctly. However, it is also observed that the calculation is sensitive to the value
of δ. Figure 3 shows the κ(n)

q values for both δ = 10−6 and δ = 10−8, where δ refers to the δ value
used in the wn calculations only; δ = 10−12 is used for the matrix-vector products in all linear
solves in both cases.

It is clear that the accuracy of the κ(n)
q calculations is sensitive to δ. When estimating direc-

tional derivatives with finite-difference approximations such as equation (42), it is expected that
the estimate will be accurate for a certain range of δ. When δ is too large, truncation error will
dominate and when δ is too small, rounding error will dominate. When plotting error versus δ,
a “V” pattern is thus expected. One might infer then from Figure 3, for which the κ(n)

q calcula-
tion has been performed using double precision arithmetic, that δ = 10−8 is too small and that
rounding error is dominating the calculation for this value of δ. However, when increasing the
arithmetic precision from double precision (64 bit) to quadruple precision (128 bit), this is re-
vealed not to be the case. A comparison of the error in the curvature calculation using double and
quadruple precision arithmetic for several values of δ is shown in Figure 4. It is apparent from
the figure that the higher derivative calculations for δ values as small as 10−12 are in very close
agreement for the same calculation performed in double and quadruple precision, indicating that
rounding error for the double precision calculations is not very significant for these values of
δ. While the calculation seems accurate for δ = 10−6, it becomes inaccurate for smaller δ in
the range 10−8 ≥ δ ≥ 10−12. As δ is decreased beyond 10−12, the accuracy of the calculation
improves for the quadruple precision calculation but rounding error begins to dominate for the
double precision calculation. For the quadruple precision calculation, the error eventually begins
to increase again around 10−20.

We have observed so far that the curvature calculation is sensitive to the value of δ used
in the tensor-vector product estimation. We now investigate whether the tensor-vector product
error is high or is being amplified in the curvature calculation. To perform this investigation, the
relative error is estimated for wn for each δ by comparing to the wn corresponding to the value
of δ which appears to give the most accurate κq. For n = 3 and n = 4, δ = 10−18 corresponds to
the benchmark value of wn and for n = 5, δ = 10−16 is used. Quadruple precision arithmetic is
used for the calculations.

For consistency with the κq error estimates, the relative error in wn is estimated according to
the following formula:

ewn
≈
√

wn · wn −
√

wn,b · wn,b
√

wn,b · wn,b
, (63)

where wn,b is the benchmark value of wn. The error estimate for κ(n)
q is compared to the error

estimate for wn in Figure 4, from which we see that the two quantities are correlated. This
15

00.20.40.60.810

10

20

30

κ
(3
)

q

λ

Direct
|∆λ| = 0.10
|∆λ| = 0.04
|∆λ| = 0.01

00.20.40.60.810

5

10

E
rr
or

(%
)

λ

(a) n = 3, δ = 10−6

00.20.40.60.810

10

20

30

κ
(3
)

q

λ

Direct
|∆λ| = 0.10
|∆λ| = 0.04
|∆λ| = 0.01

00.20.40.60.810

5

10

15

E
rr
or

(%
)

λ

(b) n = 3, δ = 10−8

00.20.40.60.810

50

100

κ
(4
)

q

λ

Direct
|∆λ| = 0.10
|∆λ| = 0.04
|∆λ| = 0.01

00.20.40.60.810

10

20

E
rr
or

(%
)

λ

(c) n = 4, δ = 10−6

00.20.40.60.810

50

100
κ
(4
)

q

λ

Direct
|∆λ| = 0.10
|∆λ| = 0.04
|∆λ| = 0.01
|∆λ| = 0.003

00.20.40.60.810

100

200

E
rr
or

(%
)

λ

(d) n = 4, δ = 10−8

00.20.40.60.810

100

200

300

κ
(5
)

q

λ

Direct
|∆λ| = 0.10
|∆λ| = 0.04
|∆λ| = 0.01

00.20.40.60.810

10

20

E
rr
or

(%
)

λ

(e) n = 5, δ = 10−6

00.20.40.60.810

100

200

300

κ
(5
)

q

λ

Direct
|∆λ| = 0.10
|∆λ| = 0.04
|∆λ| = 0.01
|∆λ| = 0.003

00.20.40.60.810

200

400

E
rr
or

(%
)

λ

(f) n = 5, δ = 10−8

Figure 3: Comparison of κ(n)
q for n = 3, n = 4, and n = 5 calculated using the direct and finite-

difference (FD) method with different step size |∆λ| on the inviscid NACA 0012 airfoil at Mach
0.3 and angle of attack of 1◦

16

00.51
0

50

100

E
rr
o
r
(%

)

δ = 10−8

00.51
0

50

100

E
rr
o
r
(%

)

δ = 10−10

00.51
0

50

100

E
rr
o
r
(%

)

δ = 10−12

00.51
0

50

100

E
rr
o
r
(%

)

δ = 10−14

00.51
0

50

100

E
rr
o
r
(%

)

δ = 10−16

00.51
0

50

100

E
rr
o
r
(%

)

λ

δ = 10−18

(a) n = 3

00.51
0

50

100 δ = 10−8

00.51
0

50

100 δ = 10−10

00.51
0

50

100 δ = 10−12

00.51
0

50

100 δ = 10−14

00.51
0

50

100 δ = 10−16

00.51
0

50

100

λ

δ = 10−18

(b) n = 4

00.51
0

50

100 δ = 10−8

00.51
0

50

100 δ = 10−10

00.51
0

50

100 δ = 10−12

00.51
0

50

100 δ = 10−14

00.51
0

50

100 δ = 10−16

00.51
0

50

100

λ

δ = 10−18

(c) n = 5

Figure 4: Comparison of the error in the direct and finite-difference estimates of κ(n)
q calculated

using double precision (solid line) and quadruple precision (dashed line) at |∆λ| = 0.01 for an
inviscid NACA 0012 airfoil at Mach 0.3 and angle of attack of 1◦; if only the solid line is visible
it is because the two lines overlap; otherwise, if a line is not visible it is because the error is in
excess of 100%

17

observation indicates that the high error which can appear in the curvature calculations can only
be reduced by reducing the error in the tensor-vector product estimates.

One method to accurately estimate Jacobian-vector products is the complex step method [22,
24, 26, 35] because subtractive cancellation errors can be avoided. However, this method loses
its usefulness when applied to tensor-vector products because subtractive cancellation errors are
reintroduced at higher derivatives. It may be possible to instead use hyper-dual numbers [11] or
hyper-complex numbers. This is recommended as a future research direction.

9. Higher Order Predictors

The development of higher order derivatives for implicitly-defined curves has applications
to homotopy continuation. There are several ways in which higher order predictors can be con-
structed for implicitly-defined curves. It is possible to use polynomial extrapolation [1] such as
Newton or Lagrange extrapolation, which use previous solution points, or Hermite extrapolation,
which additionally requires previous tangent calculations, and can include higher derivatives as
well. Lundberg and Poore [21] have advocated the use of a variable-order Adams-Bashforth
method for certain applications. Another class of predictors which have appeared in the litera-
ture, most commonly in the field of computational structural mechanics but also for simple fluid
mechanics problems, are known as asymptotic numerical methods [7, 18, 37]. This formula-
tion requires that the system H can be written in terms of polynomial operators such as linear,
quadratic, and possibly higher order, which poses a restriction on the problems to which asymp-
totic numerical methods can be applied.

9.1. Predictors Based on Taylor Polynomials

The higher order predictors investigated in this study are those built on Taylor polynomials.
Since these predictors use only current information, they are generally expected to be more ac-
curate and more stable than polynomial extrapolation or Adams-Bashforth methods, or Hermite
extrapolation if limited to the first derivative, and, unlike asymptotic numerical methods, they
are applicable to any continuous regular implicitly-defined curve. The disadvantage is the higher
computational cost due to the higher derivatives which must be constructed. The higher order
predictors studied in this section are constructed using the Taylor polynomial

c (s + ∆s) = c (s) +

n
∑

j=1

(∆s) j

j!
c(j) (s) (64)

centred at the current approximation to c (s), presented here with arclength parametrization.
Parametrizing by arclength is convenient for applying steplength adaptation but introduces

additional implementation complexity when relating ∆s to ∆λ, which must be performed when
adjusting ∆λ based on user-imposed minimum and maximum values or when the λ = 0 condition
has been reached. Calculating ∆s for a given ∆λ can be performed numerically by applying the
bisection method to equation (64).

The bisection method is a bracketing method requiring for an interval to be specified in which
a solution is known to exist. To get left and right endpoints of this interval, we start by using

18

00.51
0

50

100

E
rr
o
r
(%

)

δ = 10−8

00.51
0

50

100

E
rr
o
r
(%

)

δ = 10−10

00.51
0

50

100

E
rr
o
r
(%

)

δ = 10−12

00.51
0

50

100

E
rr
o
r
(%

)

δ = 10−14

00.51
0

50

100

λ

E
rr
o
r
(%

)

δ = 10−16

(a) n = 3

00.51
0

50

100 δ = 10−8

00.51
0

50

100 δ = 10−10

00.51
0

50

100 δ = 10−12

00.51
0

50

100 δ = 10−14

00.51
0

50

100

λ

δ = 10−16

(b) n = 4

00.51
0

50

100 δ = 10−8

00.51
0

50

100 δ = 10−10

00.51
0

50

100 δ = 10−12

00.51
0

50

100

λ

δ = 10−14

(c) n = 5

Figure 5: Error estimate for wn (dashed line) compared to the error estimate for κ(n)
q (solid line)

19

equation (64) with n = 1 to get an approximation to the arclength:

∆s ≈ ∆s∗ =
∥c (s + ∆s) − c (s)∥

ċ (s)
. (65)

We then check if the value of λ produced by equation (64) is greater or less than the target value
of λ and set it to either the right or left endpoint of the interval for the bisection method. The
other side of the interval is determined by incrementally increasing or decreasing ∆s, as appro-
priate, until equation (64) gives a value for λ which is either less or greater, as appropriate, than
the target value. Since we are solving for the roots of a higher order polynomial, it is possible
that multiple ∆λ exist for a given ∆s or that no ∆λ exist, in which case this procedure will fail.
In such a case, the order of the polynomial can be reduced and the process repeated. The details
of the calculation are presented in Algorithm 8 in Appendix B.

9.2. Accuracy of High Order Predictors

The effectiveness of the higher order predictor is investigated by considering the convex ho-
motopy with dissipation operator applied to inviscid flow over the two-dimensional NACA 0012
airfoil at Mach 0.3 and angle of attack of 1◦ using the same grid as was used in the validation
studies. Derivatives of up to order 9 are generated at λ = 0.9, 0.7, and 0.4, and the residual is
calculated along the trajectory predicted by the Taylor polynomial. To ensure that the derivatives
are calculated as accurately as possible, GCROT(m,k) is used to solve the linear systems which
appear in the tangent and curvature calculations to a relative tolerance of 10−10. However, the
relative residual at the end of the linear solve is not actually this low due to the use of finite-
difference estimates to form the Jacobian-vector products in the linear solvers.

As shown in Figure 6a, the higher order predictors predict the curve extremely well in a small
radius ∆s around s0, usually corresponding to |∆λ| values between 0.1 and 0.2, but the benefit of
the higher order predictor quickly diminishes outside of this radius. When the predictor step is
large, the higher order predictor can often be seen to give a worse prediction than even the tangent
(n = 1) predictor. This is expected behaviour for a Taylor polynomial since the approximation
is only valid within some radius. However, the various sources of rounding and truncation error
from the derivative calculations may also be inhibiting performance.

A second study has also been performed to investigate how sensitive the predictor is to error.
This study is analogous to the previous one, but the linear systems were only solved to a relative
residual of 10−2. The predicted trajectory is compared to that of the previous study in Figure 6b.
This study is necessary for assessing the viability of the predictor as part of a continuation algo-
rithm since solving each linear system to a relative residual of 10−10 is too expensive to be used
in a cost-competitive algorithm.

While ∥H (q, λ)∥ < 10−6 can no longer be maintained near s0 when the accuracy of the deriva-
tive approximations is relaxed, the curve is still predicted quite well. Comparing the predictions
of the lift coefficient Cl and drag coefficient Cd surrogate curves, also shown in Figure 6b, the
performance degradation of the predictor when relaxing the accuracy of the curve derivatives is
not as severe as it would appear when only considering the residual. While being able to maintain
∥H (q, λ)∥ < 10−6 along the predicted trajectory is remarkable, this level of accuracy is unnec-
essary for effective continuation, and the high-order polynomial predictor is still effective when
the linear solver tolerance is relaxed.

It is apparent from the Cl and Cd values calculated along the predicted trajectories as shown

20

in Figure 6b that the curve can be predicted reasonably well within a larger radius with higher
order predictors than with a tangent predictor and at a reasonable cost increase. However, the
radius for which the higher order predictor is valid remains unpredictable. When considering the
suitability of these predictors as part of a continuation algorithm, robustness and accuracy are
both of concern at the current state of development.

9.3. Performance Investigation for Predictors Based on Second-Degree Polynomials

We conduct only a preliminary investigation of the cost-effectiveness of incorporating higher
derivatives into a curve-tracing algorithm, since a proper assessment would require many test
cases and should include consideration for step-length adaptation, which goes beyond the scope
of this paper. To conduct our comparison, we select the subsonic NACA 0012 case previously
described and fix the step size at ∆λ = −0.05. To reduce dependence of the results on the
computational hardware, timing data is presented using TauBench [10] work units (wu), which
is the total wall time divided by one TauBench unit. The TauBench program emulates the time
taken by the DLR Tau code under certain input parameters and one TauBench unit is the time
taken to run the TauBench codes under these parameters. The benchmark that was used in this
paper is 2.50 × 105 nodes on 1 processor with 10 iterative steps, from which we have measured
one TauBench unit as 9.571s on the SciNet general purpose cluster where the cases were run.

The performance when including the curvature vector in the predictor is compared to the
performance when predictor information is limited to the tangent vector. For both cases, the
corrector phase is terminated when the residual ∥H (q, λ)∥ drops one order of magnitude relative
to the embedded value3. The linear systems are solved two orders of magnitude using a Schur-
block ILU(p) preconditioner with p = 1.

The performance of the two algorithms is compared using several figures. Figure 7 shows
the algorithm progress as a function of time, expressed in TauBench work units, from which we
see that the algorithm using the second-derivative lags behind the tangent-predictor algorithm
slightly throughout. Figure 8 shows why this is the case. The second-derivative predictor gives
a better prediction than the tangent predictor, which is apparent from the lower starting residual
at each corrector phase. Though the improvement does not appear significant on the logarithmic
scale of the plot, it is substantial enough that the corrector phase is generally completed in 4
iterations rather than 3. As shown by Figure 9, the cost benefit of this is essentially nullified by
the additional cost incurred from the additional linear solve required for the curvature calculation.
However, having a better initial iterate in the corrector phase can also improve the robustness, a
benefit which is not quantified by this test case since both test cases converged.

10. Conclusions

A method for calculating the higher derivatives of regular implicitly defined curves has been
developed which is suitable for application to curves defined implicitly by large sparse systems
of nonlinear equations. The method was validated using a parallel implicit CFD flow solver and

3The embedded value of H is the predicted H where λ is updated but q is copied over from the previous corrector
phase without predictor

21

00.20.40.60.81
10−10

10−8

10−6

10−4

10−2

100

P
re
d
ic
te
d
∥H

(q
,
λ
)∥

λ

00.20.40.60.81
10−10

10−8

10−6

10−4

10−2

100

P
re
d
ic
te
d
∥H

(q
,
λ
)∥

λ

00.20.40.60.81
10−10

10−8

10−6

10−4

10−2

P
re
d
ic
te
d
∥H

(q
,
λ
)∥

λ

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9

(a) τl = 10−10

00.20.40.60.81
10−10

10−8

10−6

10−4

10−2

100

P
re
d
ic
te
d
∥H

(q
,
λ
)∥

λ

00.20.40.60.81
−0.4

−0.2

0

0.2

0.4

P
re
d
ic
te
d
C

d

λ

00.20.40.60.81
−0.05

0

0.05

0.1

0.15

0.2

λ

P
re
d
ic
te
d
C

l

Exact
n = 1
n = 2
n = 3
n = 6

(b) τl = 10−10 (solid) and τl = 10−2 (dashed)

Figure 6: Residual at the predicted state from Taylor polynomials of order n calculated at λ = 0.9,
0.7, and 0.4 for the inviscid subsonic NACA 0012 case; the effect of the linear solver tolerance
τl is investigated

22

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.2

0.4

0.6

0.8

1

Time (wu)

λ

n = 1
n = 2

Figure 7: Convergence progress using two predictors; the dashed line indicates that globalization
has been achieved and the solid line indicates that convergence has been achieved

00.10.20.30.40.50.60.70.80.9110−7

10−6

10−5

10−4

10−3

λ

∥H
(q
,
λ
)∥

n = 1
n = 2

Figure 8: Tracking residual history using two predictors; the number of corrector iterations taken
in each corrector phase is also visible

00.10.20.30.40.50.60.70.80.910

20

40

60

80

100

120

140

160

R
es
id
u
al

E
va
lu
at
io
n
s

λ

n = 1, corrector
n = 2, corrector
n = 1, total
n = 2, total

Figure 9: Number of residual evaluations taken at each value of λ; the ‘o’ symbols indicate the
residual evaluations from corrector iterations only and the ‘x’ symbols indicate total residual
evaluations from both corrector and predictor phases

23

was found to be efficient and exhibited the expected accuracy trend when compared with a finite-
difference approximation. However, the method used to approximate the tensor-vector products
required for part of the calculation was found to be unreliable and further work should be aimed
at developing new methods to approximate these quantities reliably using double precision arith-
metic and without forming the tensors explicitly.

A potential application of the methodology is the construction of accurate predictors for ho-
motopy continuation algorithms. A preliminary study was performed for a homotopy of practical
interest to computational aerodynamics. Two algorithms were compared, which were identical
except that one used a tangent predictor and the other used a predictor based on a second-degree
Taylor polynomial. It was observed that similar convergence time but superior curve-tracing
accuracy could be achieved using the predictor based on the second-degree polynomial.

Acknowledgments

The authors gratefully acknowledge financial assistance from the Natural Science and Engi-
neering Research Council (NSERC), the Canada Research Chairs program, and the University of
Toronto. Computations were performed on the GPC supercomputer at the SciNet HPC Consor-
tium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute
Canada; the Government of Ontario; Ontario Research Fund - Research Excellence; and the
University of Toronto. The authors also acknowledge the contribution of SciNet applications an-
alyst Dr. Scott Northrup who assisted in some of the technical aspects of the quadruple precision
calculations.

References

[1] Allgower, E. L., Georg, K., 1990. Introduction to Numerical Continuation Methods. Society for Industrial and
Applied Mathematics.

[2] Andrews, G. E., 1984. The Theory of Partitions. Cambridge University Press.
[3] Brown, D. A., Zingg, D. W., June 2013. Advances in homotopy-based globalization strategies in computational

fluid dynamics. AIAA-2013-2944.
[4] Brown, D. A., Zingg, D. W., July 2014. A new monolithic homotopy continuation algorithm with CFD applications.

In: Eighth International Conference on Computational Fluid Dynamics. Chengdu, China.
[5] Brown, D. A., Zingg, D. W., 2016. A monolithic homotopy continuation algorithm with application to computa-

tional fluid dynamics. J. Comp. Phys. Submitted.
[6] Carpenter, M. H., Gottlieb, D., Abarbanel, S., 1994. Time-stable boundary conditions for finite-difference schemes

solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys.
111 (2), 220–236.

[7] Cochelin, B., 1994. A path-following technique via an asymptotic-numerical method. Comput. Struct. 53 (3),
1181–1192.

[8] de Sturler, E., 1999. Truncation strategies for Krylov subspace methods. SIAM J. Numer. Anal. 36, 864–889.
[9] Del Rey Fernández, D. C., Hicken, J. E., Zingg, D. W., 2014. Review of summation-by-parts operators with

simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95,
171–196.

[10] DLR Germany, 2014. Taubench version 1.1, IPACS. http://www.ipacs-benchmark.org , accessed: 2014-09-
20.

[11] Fike, J. A., Alonso, J. J., 2011. The development of hyper-dual numbers for exact second-derivative calculations.
AIAA 2011-866.

[12] Funaro, D., Gottlieb, D., 1988. A new method of imposing boundary conditions in pseudospectral approximations
of hyperbolic equations. Math. Comput. 51, 599–613.

[13] Hicken, J. E., Zingg, D. W., 2008. A parallel Newton-Krylov solver for the Euler equations discretized using
simultaneous approximation terms. AIAA J. 46 (11), 2773–2786.

24

http://www.ipacs-benchmark.org

[14] Hicken, J. E., Zingg, D. W., 2010. A simplified and flexible variant of GCROT for solving nonsymmetric linear
systems. SIAM J. Sci. Comput. 32 (3), 1672–1694.

[15] Jameson, A., Schmidt, W., Turkel, E., June 1981. Numerical solution of the Euler equations by finite-volume
methods using Runge-Kutta time-stepping schemes. AIAA-1981-1259.

[16] Kreiss, H., Scherer, G., 1974. Finite element and finite difference methods for hyperbolic partial differential equa-
tions. In: de Boor, C. (Ed.), Mathematical Aspects of Finite Elements in Partial Differential Equations: proceedings
of a symposium conducted by the Mathematics Research Center, the University of Wisconsin. Mathematics Re-
search Centre, the University of Wisconsin, Academic Press, pp. 195–212.

[17] Kreyszig, E., 1959. Differential Geometry. University of Toronto Press, Toronto, Ontario, Canada.
[18] Lahmam, H., Cadou, J. M., Zahrouni, H., Damil, N., Potier-Ferry, M., 2002. High-order predictor-corrector algo-

rithms. Int. J. Numer. Meth. Eng. 55, 685–704.
[19] Lee, J., Chiang, H.-D., 2001. Constructive homotopy methods for finding all or multiple DC operating points of

nonlinear circuits and systems. IEEE T. Circuits-I 48 (1), 35–50.
[20] Lomax, H., Pulliam, T. H., Zingg, D. W., 2001. Fundamentals of Computational Fluid Dynamics. Springer-Verlag.
[21] Lundberg, B. N., Poore, A. B., 1991. Variable order Adams-Bashforth predictors with an error stepsize control for

continuation methods. SIAM J. Sci. Stat. Comp. 12 (3), 695–723.
[22] Lyness, J. N., Moler, C. B., 1967. Numerical differentiation of analytic functions. SIAM J. Numer. Anal. 4 (2),

202–210.
[23] Mackens, W., 1989. Numerical differentiation of implicitly defined space curves. Computing 41, 237–260.
[24] Martins, J. R. R. A., Sturdza, P., Alonso, J. J., 2003. The complex-step derivative approximation. ACM Transactions

on Mathematical Software 29 (3), 245–262.
[25] McCroskey, W. J., October 1987. A critical assessment of wind tunnel results for the NACA 0012 airfoil. Tech.

rep., Ames Research Center, Moffett Field, California, nASA TM 100019.
[26] Newman III, J. C., Whitfield, D. L., Anderson, W. K., 2003. Step-size independent approach for multidisciplinary

sensitivity analysis. J. Aircraft 40 (3), 566–573.
[27] Nielsen, E. J., Anderson, W. K., Walters, R. W., Keyes, D. E., June 1995. Application of Newton-Krylov method-

ology to a three-dimensional unstructured Euler code. AIAA-95-1733.
[28] Osusky, M., Zingg, D. W., 2013. A parallel Newton-Krylov-Schur flow solver for the Navier-Stokes equations

discretized using summation-by-parts operators. AIAA J. 51 (12), 2833–2851.
[29] Pönisch, G., Schwetlick, H., 1981. Computing turning points of curves implicitly defined by nonlinear equations

depending on a parameter. Computing 26, 107–121.
[30] Porteous, I. R., 2001. Geometric Differentiation: For the Intelligence of Curves and Surfaces, 2nd Edition. Cam-

bridge University Press.
[31] Riley, D. S., Winters, K. H., 1990. A numerical bifurcation of natural convection in a tilted two-dimensional porous

cavity. J. Fluid Mech. 215, 309–329.
[32] Saad, Y., 2003. Iterative Methods for Sparse Linear Systems, 2nd Edition. SIAM, Philadelphia, PA.
[33] Sanchez, J., Marques, F., Lopez, J. M., 2002. A continuation and bifurcation technique for Navier-Stokes flows. J.

Comput. Phys. 180, 78–98.
[34] Schwetlick, H., Cleve, J., 1987. Higher order predictors and adaptive steplength control in path following algo-

rithms. SIAM J. Numer. Anal. 24 (6), 1382–1393.
[35] Squire, W., Trapp, G., 1998. Using complex variables to estimate the derivatives of real functions. SIAM Rev. 40,

110–112.
[36] Syam, M. I., Siyyam, H. I., 1999. Numerical differentiation of implicitly defined curves. J. Comput. Appl. Math.

108, 131–144.
[37] Thompson, J. M. T., 1968. The non-linear perturbation analysis of discrete structural systems. Int. J. Solids Struct.

4, 757–768.
[38] Ushida, A., Yamagami, Y., Nishio, Y., Kinouchi, I., Inoue, Y., 2002. An efficient algorithm for finding multiple DC

solutions based on the SPICE-oriented Newton homotopy method. IEEE T. Comput. Aid. D. 21 (3), 337–348.
[39] Wales, C., Gaitonde, A. L., Jones, D. P., Avitabile, D., Champneys, A. R., 2012. Numerical continuation of high

Reynolds number external flows. International Journal for Numerical Methods in Fluids 68 (2), 135–159.
[40] Winters, K. H., 1987. A bifurcation study of laminar flow in a curved rectangular cross-section. J. Fluid Mech. 180,

343–369.
[41] Winters, K. H., Cliffe, K. A., 1985. The prediction of critical points for thermal explosions in a finite volume.

Combust. Flame 62 (1), 13–20.
[42] Zoghbi, A., Stojmenović, I., 1998. Fast algorithms for generating integer partitions. Int. J. Comput. Math. 70,

319–332.

25

Appendix A. Inversion of a Sparse Matrix with a Dense Row and a Dense Column

A method is derived for solving a linear system of the form
(

A v1

vT
2 C

) (

x1

x2

)

=

(

y1

y2

)

, (A.1)

where
A ∈ RN×N , v1, v2, y1, y2 ∈ RN , C, x2, y2 ∈ R.

It is assumed thatA is sparse and invertible, whereas v1 and v2 are dense, making direct inversion
of the augmented matrix expensive.

Expanding the first N rows of the linear system (A.1) gives the equation

Ax1 + x2v1 = y1, (A.2)

which can alternatively be written as

A (x1 + x2ṽ1) = y1, (A.3)

where ṽ1 ∈ RN is defined implicitly by

Aṽ1 = v1. (A.4)

Let
x̃1 = x1 + x2ṽ1. (A.5)

Then, taking the inner product of both sides with ṽ2:

v2 · x̃1 = v2 · (x1 + x2ṽ1) . (A.6)

An additional equation is extracted from the n + 1st row of the linear system (A.1):

ṽ2 · x1 +Cx2 = y2, (A.7)

which is used with equation (A.6) to obtain:

v2 · x̃ = y2 −Cx2 + x2v2 · ṽ1. (A.8)

This can be solved for x2:

x2 =
v2 · x̃1 − y2

v2 · ṽ1 −C
. (A.9)

Substituting this back into equation (A.5):

x1 = x̃1 − x2ṽ1, (A.10)

which completes the derivation. The calculation is summarized in Algorithm 3.

Algorithm 3: An algorithm for the inversion of a sparse matrix with a dense row and a
dense column; the linear system is assumed to be of the form of equation (A.1)

Solve the linear systemAṽ1 = v1 for ṽ1

Solve the linear systemAx̃1 = y1 for x̃1

x2 ← v2·x̃1−y2

v2·ṽ1−C

x1 ← x̃1 − x2ṽ1

26

Appendix B. Detailed Pseudo-Codes

Algorithm 4: First-order accurate nth directional derivative calculation with direction vec-
tors specific to the order n curve derivative calculation; the variable nt is the order of the
tensor and the integer-valued vector iv ∈ Znt contains the orders of derivatives as input; for
example, ∇3H (q, λ) [c̈, ċ, ċ] is characterized by nt = 3, iv = (2, 1, 1)

Data: nt, iv, ϵ1, . . . , ϵn−1, q, q̇, . . . , q(n−1), λ, λ̇, . . . , λ(n)

Result: wn

w← 0
for j = 1 : 2nt do

np ← 0
for d = 1 : nt do

/* The following logic ensures that every combination of input
vectors is constructed */

if mod
(

j − 1, 2d
)

+ 1 > 2d−1 then

q← q + (−1)d ϵiv(d)q
(iv(d)) and λ← λ + (−1)d ϵiv(d)λ

(iv(d))

np ← np + 1

end

end
EvaluateH at the perturbed q and λ
if mod (nt, 4) ≤ 1 then

w← w + (−1)np H
else

w← w + (−1)np+1H
end
Reset q and λ back to their initial values

end

w← 1
ϵv(1)···ϵiv(nt)

w

27

Algorithm 5: First-order accurate nth directional derivative calculation with direction vec-
tors specific to the order n curve derivative calculation in the special case where all direction
vectors are the same; the variable nt is the order of the tensor

Data: nt, i, ϵi, q, q(i), λ, λ(i)

Result: wn

w← 0

CH ,: ← 0
for j = 1 : 2nt do

np ← 0
Cϵ ← 0
/* Get the coefficients in front of ϵi and H, denoted Cϵ and CH ,:

respectively, for this term */
for d = 1 : nt do

if mod
(

j − 1, 2d
)

+ 1 > 2d−1 then

Cϵ ← Cϵ + (−1)nt+d

np ← np + 1

end

end
k ← Cϵ + nt + 1

CH ,k ← CH ,k + (−1)np+1

end

for k = 1 : 2nt + 1 do

if CH ,k ! 0 then
Cϵ ← k − nt − 1
q← q + Cϵϵiq

(i) and λ← λ +Cϵ ϵiλ
(i)

EvaluateH at the perturbed q and λ
w← w +CH ,kH
Reset q and λ back to their initial values

end

end

w← 1
ϵ

nt
i

w

28

Algorithm 6: Second-order accurate nth directional derivative calculation with direction
vectors specific to the order n curve derivative calculation; the variable nt is the order of the
tensor and the integer-valued vector iv ∈ Znt contains the orders of derivatives as input; for
example, ∇3H (q, λ) [c̈, ċ, ċ] is characterized by nt = 3, iv = (2, 1, 1)

Data: nt, iv, ϵ1, . . . , ϵn−1, q, q̇, . . . , q(n−1), λ, λ̇, . . . , λ(n)

Result: wn

w← 0
for j = 1 : 2nt do

Ci ← 1
for d = 1 : nt do

/* The following logic ensures that every combination of input
vectors is constructed */

if mod
(

j − 1, 2d
)

+ 1 > 2d−1 then

Cϵ ← −1
Ci ← −Ci

else

Cϵ ← 1
end

q← q + Cϵϵiv(d)q
(iv(d)) and λ← λ +Cϵ ϵiv(d)λ

(iv(d))

end

EvaluateH at the perturbed q and λ
w← w +CiH
Reset q and λ back to their initial values

end

w← 1
2nt (ϵv(1)···ϵiv(nt))

w

29

Algorithm 7: Second-order accurate nth directional derivative calculation with direction
vectors specific to the order n curve derivative calculation in the special case where all
direction vectors are the same; the variable nt is the order of the tensor

Data: nt, i, ϵi, q, q(i), λ, λ(i)

Result: wn

w← 0

CH ,: ← 0
for j = 1 : 2nt do

Cϵ ← 0
Ci ← 1
/* Get the coefficients in front of ϵi and H, denoted Cϵ and CH ,:

respectively, for this term */
for d = 1 : nt do

if mod
(

j − 1, 2d
)

+ 1 > 2d−1 then

Cϵ ← Cϵ − 1
Ci ← −Ci

else

Cϵ ← Cϵ + 1
end

end

k ← Cϵ + nt + 1
CH ,k ← CH ,k +Ci

end
for k = 1 : 2nt + 1 do

if CH ,k ! 0 then
Cϵ ← k − nt − 1
q← q + Cϵϵiq

(i) and λ← λ +Cϵ ϵiλ
(i)

EvaluateH at the perturbed q and λ
w← w +CH ,kH
Reset q and λ back to their initial values

end

end

w← 1
2nt ϵ

nt
i

w

30

Algorithm 8: An algorithm for calculating ∆s for given λ and ∆λ

Data: λ, λ̇, . . ., λ(n), ∆λ, n, f∆s, imax

Result: ∆s

/* Initialize */
λ0 ← λ, λt ← λ + ∆λ, d ← n, success← 1
∆s← equation (65)
/* Attempt to solve for ∆s; reduce order if unsuccessful */
while d > 1 && success = 1 do

λp ← equation (64)
success← 0
/* Find bisection interval [∆sL,∆sU] */
i← 0
∆sL ← ∆s, ∆sU ← ∆s

if λp > λt then

/* Get the upper endpoint ∆sU */
while λ > λt && i < imax do

i← i + 1
λ← equation (64)
∆sU ← ∆sU + f∆s∆sU

if i = imax || λ > λp then
success← 0

end

end

else if λp < λt then
/* Get the lower endpoint ∆sL */
while λ < λt && i < imax do

i← i + 1
λ← equation (64)
∆sL ← ∆sL − f∆s∆sL

if i = imax || λ < λp then
success← 0

end

end

end
if success = 0 then

/* Reduce the degree by one and cycle the loop */
d ← d − 1

end

end

Solve for ∆s using the bisection method on the interval [∆sL,∆sU]

31

	Introduction
	Tangent Vector
	Curvature Vector
	Curve Derivatives of Order n
	Approximations to Directional Derivatives
	Curve Derivatives with Parametrization
	Practical Considerations for Calculating High Derivatives of Curves
	Validation
	Flow Solver
	Test Cases
	Homotopy Continuation
	Tangent
	Curvature
	Higher Derivatives

	Higher Order Predictors
	Predictors Based on Taylor Polynomials
	Accuracy of High Order Predictors
	Performance Investigation for Predictors Based on Second-Degree Polynomials

	Conclusions
	Inversion of a Sparse Matrix with a Dense Row and a Dense Column
	Detailed Pseudo-Codes

