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Abstract

A generalized framework is presented that extends the classical theory of
finite-difference summation-by-parts (SBP) operators to include a wide range
of operators, where the main extensions are i) non-repeating interior point
operators, ii) nonuniform nodal distribution in the computational domain,
iii) operators that do not include one or both boundary nodes. Necessary
and sufficient conditions are proven for the existence of nodal approximations
to the first derivative with the SBP property. It is proven that the positive-
definite norm matrix of each SBP operator must be associated with a quadra-
ture rule; moreover, given a quadrature rule there exists a corresponding SBP
operator, where for diagonal-norm SBP operators the weights of the quadra-
ture rule must be positive. The generalized framework gives a straightforward
means of posing many known approximations to the first derivative as SBP
operators; several are surveyed, such as discontinuous Galerkin discretiza-
tions based on the Legendre-Gauss quadrature points, and shown to be SBP
operators. Moreover, the new framework provides a method for constructing
SBP operators by starting from quadrature rules; this is illustrated by con-
structing novel SBP operators from known quadrature rules. To demonstrate
the utility of the generalization, the Legendre-Gauss and Legendre-Gauss-
Radau quadrature points are used to construct SBP operators that do not
include one or both boundary nodes.
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1. Introduction

The use of computers to solve partial differential equations (PDEs) nu-
merically has reached a sufficient level of maturity where both academic and
industrial codes are routinely applied to real-world problems, for example in
computational fluid dynamics (CFD) [31]. However, despite exponential im-
provements in computational power, solution of industrially-relevant PDEs
remains a time intensive endeavour. In most settings turnaround time is
of paramount importance; thus computational efficiency remains a primary
concern. In the early 1970s, Kreiss and Oliger [29] and Swartz and Wendroff
[50] demonstrated that substantial efficiency gains can be made by use of
higher-order (HO) methods. In the asymptotic region, HO methods have a
local truncation error of order O([∆x]p), where p ≥ 3, and ∆x is the mesh
spacing. Thus, for a given accuracy, HO methods require coarser mesh spac-
ing relative to lower-order methods. Nevertheless, in many fields, such as
CFD, second-order methods are prevalent. The potential of HO methods to
provide substantial gains in computational efficiency motivate their further
study and development.

One of the difficulties in constructing a well-posed mathematical model for
a physical process is determining appropriate boundary and initial condi-
tions. Loosely speaking, a well-posed mathematical model is one for which
a unique solution exists and small perturbations to the data, including the
initial and boundary conditions and forcing function, lead to small pertur-
bations in the solution, or alternatively, the solution depends continuously
on the data, see [28, 16, 15]. Similarly, a discrete model is stable if small
perturbations in the data lead to small perturbations in the solution [14].
Convergence to the true solution of the PDE requires a well-posed mathe-
matical model as well as a stable and consistent numerical scheme. The main
difficulty in developing HO methods is associated with developing numerical
schemes for the implementation of boundary conditions and inter-element
coupling that are efficient and stable. For finite-difference (FD) methods
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this has been addressed through the use of summation-by-parts (SBP) op-
erators [30, 45, 36, 7, 35, 37, 33] with boundary conditions and inter-block
coupling weakly imposed using simultaneous-approximation-terms (SATs)
[10, 4, 18, 5, 39, 47, 49, 32, 41]. There are several attractive properties to the
SBP-SAT approach: they lead to provably stable discretizations for linearized
problems, for example the linearized Navier-Stokes equations [47, 49, 41];
they lead naturally to multi-block schemes that have constant and, more im-
portantly, low communication overhead, which is advantageous for parallel
computations. This results from the fact that only C0 continuity needs to
be maintained between blocks and, regardless of the order of the scheme,
the same amount of information is passed between blocks. Moreover, Hicken
and Zingg have shown that if the formulation is dual consistent [24], then
HO-FD SBP-SAT discretizations benefit from superconvergence of function-
als [22]. Other recent areas of exploration for the FD-SBP-SAT framework
include ENO/WENO SBP-SAT formulations [52, 53, 8, 2]. In addition, Kit-
son, McLachlan and Robidoux [25] examined the existence and properties of
diagonal normed SBP operators on periodic one-dimensional domains.

Despite these advantageous properties, the SBP-SAT approach has been pri-
marily developed in the context of FD schemes, with some notable exceptions.
There has been work on constructing SBP-SAT methods for finite-volume
discretizations [38, 40, 48, 17] and collocated-pseudo-spectral implementa-
tions [3, 20, 19, 18]. Chiu, Hu and Jameson [6] developed an algorithm for
constructing SBP operators for mesh-free schemes where meshes are replaced
with point clouds on the interior of the domain and point distributions at the
boundaries of the domain. Also of interest is the extension of the FD-SBP-
SAT method by Reichert, Heath and Bodony [44] to overset grid methods.

The purpose of this paper is to construct a framework that explicitly lays
out the necessary and the sufficient conditions for the existence of nodal SBP
operators (i.e. the unknowns exist at nodes in physical space in contrast with
modal methods where the expansion coefficients exist in the frequency do-
main). We extend the FD-SBP theory of Kreiss and Scherer [30] to include
operators that 1) do not have a repeated interior point operator, 2) have a
nonuniform nodal distribution in the computational domain, and 3) do not
include one or both boundary nodes. By doing so it is possible to unify a
wide array of operators as SBP operators, enabling the reinterpretation of
various discretization methods under one cohesive framework and providing

3



a natural and advantageous means of constructing numerical schemes for
boundary conditions and inter-element/block coupling that lead to provably
stable semi-discrete forms. For example, Gassner [11] has shown that a class
of DG methods are SBP operators and the imposition of boundary condi-
tions can be seen as SATs. Here we prove that a wider array of DG methods
can be seen as SBP operators. Moreover, our framework enables FD opera-
tors without a repeated interior point operator to be interpreted as operators
with subcell resolution similar to DG schemes. In contrast to classical FD
schemes, this leads to the notion of elements with a prescribed internal node
distribution such that h refinement is carried out by increasing the number
of elements rather than the number of nodes within an element.

The focus in this paper is on one-dimensional nodal first-derivative SBP oper-
ators that can be extended to multiple dimensions using Kronecker products.
The framework developed in this paper follows the seminal papers on FD-
SBP operators by Kreiss and Scherer [30] and the extension to block norms
by Strand [45]. We generalize the ideas of Hicken and Zingg [23], who proved
that the norms of classical FD-SBP operators are associated with Gregory
type quadrature rules. We are thus not the first to note the deep link between
SBP operators, their norms, and quadrature rules. This insight was implicit
in using SATs and collocated-pseudo-spectral methods in [3, 20, 19, 18], since
these methods have implicit quadrature rules associated with the nodal dis-
tributions. One of the main contributions of this paper is making this link
explicit, proving that the norm must be associated with a quadrature for
nodal SBP operators, and conversely that given a quadrature rule, an SBP
operator can be constructed. A second important contribution consists of re-
laxing the need to include boundary nodes. This allows us to recast a wider
array of known methods, such as collocated-pseudo-spectral and DG meth-
ods on Legendre-Gauss quadrature points, as SBP operators. The objective
of the new framework is to provide a unification that facilitates an improved
understanding of a range of methods as well as a generalization that enables
the development of new operators.

2. Notation and definitions

We extend the concept of SBP operators to nodal distributions with vari-
able node spacing that may or may not include the boundary nodes. The
general nodal distribution for the domain [α, β] is given as x = [x1, . . . , x2]

T ,
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where the node locations xi are required only to obey the ordering property
α ≤ x1 < x2 < · · · < xn ≤ β. In other words, the nodal distribution may
or may not include the boundary points; the only restrictions are that nodes
do not overlap and a natural ordering with increasing x coordinate.

Given that the nodal distribution is non-uniform, it is more natural to discuss
the accuracy of the SBP operators in terms of the degree of the polynomial for
which they are exact. Throughout the paper monomials are used in proving
the degree of various operators. These are represented by xi = [xi

1, . . . , x
i

n
]
T
,

with the convention that x−1 = 0.

Capital letters with script type are used to denote continuous functions on
a specified domain x ∈ [α, β]. As an example, U(x) ∈ C∞[α, β] denotes a
function that is infinitely differentiable over the domain x ∈ [α, β]. Lower
case bold font is used to denote the restriction of such functions onto the
nodes; for example the restriction of U onto the nodes x is given by:

u = [U(x1), . . . ,U(xn)]
T .

Vectors with a subscript d, for example ud ∈ Rn×1, represent the solution to
a system of discrete or semi-discrete equations.

3. Preliminaries

In this paper we extend the FD-SBP theory in three directions. First,
classical FD-SBP operators are constructed around centred-difference ap-
proximations that are repeated on the interior of the operator, with the SBP
property enforced through special treatment at nodes close to the bound-
aries. The theory is extended to accommodate operators that do not have
this property. The resultant subset of SBP operators now have a fixed num-
ber of nodes; it therefore makes sense to interpret the operators as being cell
based with the interior nodes providing subcell resolution. Secondly, FD-SBP
operators have traditionally been defined on equi-spaced nodal distributions
in the computational domain. Other SBP operators exist, collocated-pseudo-
spectral and DG methods being prime examples. Our objective is to con-
struct a framework that captures a broad class of SBP operators that includes
FD operators as well as some collocated-pseudo-spectral and DG methods.
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Hence we include nonuniform nodal distributions within cells. The final ex-
tension is accommodating operators that have nodal distributions that do
not include nodes at the cell or element boundary. This extension allows, for
example, framing DG operators based on Legendre-Gauss quadrature points
as SBP operators. To make the presentation cleaner, the theory is initially
developed with only the first two extensions. Subsequently it is proven that
the theory applies to operators where one or both boundary nodes are not
included.

One means of determining well-posed boundary and initial conditions is
through the use of the energy method. In the energy method the PDE is
multiplied by the solution and integrated in space. Then integration by parts
is used to convert volume integrals to surface integrals, thereby allowing the
introduction of boundary conditions. If the boundary conditions are homo-
geneous, this is usually sufficient to draw conclusions by showing that the
time rate of change of the norm of the solution is zero or negative, thereby
bounding the solution. For more general boundary conditions, a further inte-
gration in time is carried out. The challenge is to determine the restrictions
on the boundary conditions such that an estimate on the solution, called an
energy estimate, in terms of the data exists. For more information regarding
the energy method see [28, 16, 15].

The key component of the energy method is integration by parts:

�
β

α

V ∂U
∂x

dx = UV|β
α
−
�

β

α

U ∂V
∂x

dx. (1)

Our interest is in being able to apply the energy method to determine suit-
able boundary conditions that lead to schemes that are stable when applied
to well-posed problems. To apply the energy method in the continuous case
the following definitions of the inner product and norm are useful:

(U ,V) =
�

β

α
UVdx, �U�2 =

�
β

α
U2dx. (2)

With these definitions, (1) can be written as

�
V , ∂U

∂x

�
= UV|β

α
−

�
U , ∂V

∂x

�
. (3)
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SBP operators are constructed to mimic (3) discretely. To construct a
discrete analogue to (3), consider a nodal distribution defined by xT =
[x1, . . . , xn]. Suppose that the domain of interest is x ∈ [α, β], where ad-
missible nodal distributions are limited to having the following ordering
α = x1 <, . . . , < xn = β, where the assumption that x1 = α and xn = β
is temporary and will be removed in Section 5. A discrete analogue to (3)
requires a first derivative operator, D1, which is defined here by its degree,
q, the maximum degree of the polynomial for which it is exact, i.e.

D1xj = jxj−1, j ∈ [0, q]. (4)

For vector spaces, a general inner product and norm have the form:

(u,v)H = uTHv, ||u||2
H
= uTHu, (5)

where H must be symmetric and positive definite (PD). The discrete ana-
logue of integration by parts, summation by parts, has the form:

vTHD1u = vT Ẽu− uTHD1v, (6)

where, for now Ẽ = diag [−1, 0, . . . , 0, 1]1. Not all D1 satisfy (6), and the
conditions under which D1 can satisfy (6) need to be determined. To do so,
taking the transpose of (6), adding it to (6), and rearranging gives

vT
�
HD1 +DT

1 H
�
u+ uT

�
DT

1 H +HD1

�
v = vT Ẽu+ uT Ẽv. (7)

Let Θ = HD1 (since H is invertible, D1 = H−1Θ); (7) becomes

vT
�
Θ+ΘT

�
u+ uT

�
ΘT +Θ

�
v = vT Ẽu+ uT Ẽv, (8)

and it is concluded that

1In Section 5 nodal distributions that do not include one or both boundary nodes are
considered, and Ẽ has a more general form.
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Θ+ΘT = Ẽ. (9)

To summarize, the following classical definition is given:

Definition 1. Summation-by-parts operator: An operator is an approx-
imation to the first derivative of degree q with the SBP property if

i) D1xj = H−1Θxj = jxj−1, j ∈ [0, q],

ii) H is a PD symmetric matrix,

iii) Θ+ΘT = Ẽ, where for now Ẽ = diag [−1, 0, . . . , 0, 1], and a more general
form is given in Section 5.

4. A generalized theory for SBP operators

In this section necessary and sufficient conditions for the existence of op-
erators satisfying Definition 1 are proven. Before proceeding let us clarify
the intent: the approach will be to determine the conditions on the norm
H, given that Θ + ΘT = Ẽ, such that the resultant derivative operator
D1 = H−1Θ is an SBP operator exact for polynomials of up to degree q.
It is proven that a necessary condition is that the norm matrix of an SBP
operator must be associated with a quadrature of at least degree q−1. Then,
H is temporarily restricted to be diagonal. Under this restriction it is proven
that given a quadrature rule of degree τ with positive weights, an associated
SBP operator of degree q = min

�
� τ

2�, n− 1
�
with diagonal norm having the

quadrature weights along its diagonal is guaranteed to exist2. For dense-
norm SBP operators, we first prove that they exist up to degree n − 1 and
then that they can be constructed from known quadrature rules, even if the
weights are negative. In Section 5, it is proven that the theory presented in
the current section can be applied to operators that do not include one or
both boundary nodes.

2The ceiling operator �a� gives the smallest integer greater than or equal to a.
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Now that we have a road map, the first step is to derive the necessary con-
ditions on H to ensure that D1 satisfies Definition 1. The accuracy require-
ments are:

D1x
j = H−1Θxj = jxj−1, j ∈ [0, q] (10)

Multiplying (10) by H we find

Θxj = jHxj−1, j ∈ [0, q]. (11)

Multiplying (11) by (xi)
T
gives

�
xi
�T

Θxj = j
�
xi
�T

Hxj−1, i, j ∈ [0, q]. (12)

Swapping indices in (12) gives

�
xj
�T

Θxi = i
�
xj
�T

Hxi−1, i, j ∈ [0, q]. (13)

Adding (12) and (13) results in

�
xi
�T

Θxj +
�
xj
�T

Θxi = j
�
xi
�T

Hxj−1 + i
�
xj
�T

Hxi−1, i, j ∈ [0, q]. (14)

However, all terms in (14) are scalars so we find

�
xj
�T

Θxi =
��

xj
�T

Θxi

�T

=
�
xi
�T

ΘTxj. (15)

Substitution into (14) gives

�
xi
�T �

Θ+ΘT
�
xj = j

�
xi
�T

Hxj−1 + i
�
xj
�T

Hxi−1, i, j ∈ [0, q]. (16)

Using the condition that Θ + ΘT = Ẽ = diag [−1, 0, . . . , 0, 1], this results in
the necessary equations that H must satisfy such that D1 is an SBP operator
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of degree q; referred to here as the compatibility equations:

j (xi)
T
Hxj−1 + i (xj)

T
Hxi−1 = (xi)

T
Ẽxj = βi+j − αi+j i, j ∈ [0, q].

(17)

The implication of (17) is that the degree of D1, q, depends on the number
of compatibility equations that are satisfied, which in turn depends on H.

The following Theorem can now be proven:

Theorem 1. The norm matrix, H, of an SBP operator of degree q that
satisfies Definition 1 must be associated with a quadrature rule of at least
degree q − 1.

Proof. Taking i = 0 in (17) results in

j (1)T Hxj−1 = (1)T Ẽxj j ∈ [0, q]. (18)

where 1 = [1, . . . , 1]T . Expanding and using the definition of Ẽ gives

�
n

k=1 jx
j−1
k

�
n

p=1 Hk,p = βj − αj, j ∈ [0, q], (19)

taking H̃k =
�

n

p=1 Hk,p, noting that the j = 0 condition is automatically
satisfied, and rearranging gives

�
n

k=1 H̃kx
j−1
k

= β
j−α

j

j
, j ∈ [1, q], (20)

which are the conditions on a quadrature,
�

β

α
f(x)dx ≈

�
n

k=1 H̃kf(xk), of at
least degree q − 1.

4.1. Diagonal-norm SBP operators

Theorem 1 states that a necessary condition forD1 = H−1Θ to be an SBP
operator is that H be associated with a quadrature rule of at least degree
q−1. Now the question is whether such operators exist and if so what degree
can be achieved. We first examine the case where H is diagonal. Expanding
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(17) for a diagonal H

�
n

v=1 jx
i

v
Hvvxj−1

v
+ ixj

v
Hvvxi−1

v
= (xj)

T
Ẽxi, i, j ∈ [0, q]. (21)

Using the definition of Ẽ and simplifying

(i+ j)
�

n

v=1 Hvvxi+j−1
v

= βi+j − αi+j, i, j ∈ [0, q]. (22)

Finally, noting that the condition i = j = 0 is automatically satisfied, we
substitute σ = i+ j and rearrange to find

�
n

v=1 Hvvxσ−1
v

= β
σ−α

σ

σ
, σ ∈ [1, 2q]. (23)

The system of equations (23) are the accuracy equations for a quadrature of
at least degree τ = 2q − 1.

Furthermore, an upper bound on the degree of the first derivative exists with
respect to the number of nodes. To determine the upper bound, consider the
accuracy equations (10), which can be recast as

D1X = G (24)

where G = [0,x0, . . . , (n − 1)xn−2]. The matrix X = [x0, . . . ,xn−1] is the
Vandermonde matrix and is invertible, therefore D1 has a unique solution:

D1 = GX−1. (25)

The implication of (25) is that the system of equations is fully determined
and therefore it is not possible to construct a D1 of greater degree since the
system would then become over determined, and therefore the upper bound
on the degree of the first derivative is n− 1.

The following theorem is now proven:

Theorem 2. A quadrature rule of degree τ with positive weights for a nodal
distribution x is necessary and sufficient for the existence of a diagonal-
norm SBP approximation to the first derivative, D1 = H−1Θ, that is exact
for polynomials of degree q ≤ min

�
� τ

2�, n− 1
�
, where n ≥ 2 is the size of

D1.
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Proof. A necessary condition on an SBP operator D1 with a diagonal-norm
H is that it satisfy the compatibility equations (22). By (23) this means
that H must be associated with a quadrature rule of at least degree 2q − 1.
Therefore, q ≤ τ+1

2 , but since q must be an integer, q ≤ � τ

2�. Such an H is
readily constructed from the given quadrature rule with positive weights by
putting the weights along its diagonal. Now we need to prove that there exist
Θ matrices that lead to first derivative operators of degree q, that is they
satisfy (11). First decompose Θ into its symmetric ΘS and anti-symmetric
ΘA components:

Θ = ΘS +ΘA. (26)

We obtain Θ+ΘT = 2ΘS = Ẽ; therefore,

Θ =
1

2
Ẽ +ΘA. (27)

Now (11) becomes,

ΘAx
j = jHxj−1 − 1

2
Ẽxj = rj, j ∈ [0, q]. (28)

It is sufficient to prove that ΘA exist for q = n − 1, the maximum degree
attainable for D1. For q = n− 1, (28) can be compactly written as

ΘAX = R, (29)

where X is the Vandermonde matrix, and R = [r0, r1, . . . , rn−1]. Therefore,
ΘA has solution

ΘA = RX−1. (30)

To complete the proof we must show that RX−1 is anti-symmetric. To do
this we use the properties of the compatibility equations. Consider the ex-
pansion

RX−1 =
�
X−1

�T
XTRX−1, (31)
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if XTR is anti-symmetric then so too is (X−1)T XTRX−1 and hence RX−1;
this follows since if the matrix S is anti-symmetric so is BTSB. Rearranging
the compatibility equations (17) results in

j
�
xi
�T

Hxj−1 − 1

2
xiẼxj = −

�
i
�
xj
�T

Hxi−1 − 1

2
xjẼxi

�
i, j ∈ [0, q], (32)

which can be recast in terms of the right-hand-side of (28) as

�
xi, rj

�
= −

�
xj, ri

�
, (33)

where (u,v) = uTv is the usual dot product. Expanding XTR results in

XTR =





(x0, r0) (x0, r1) . . . (x0, rn−1)
(x1, r0) (x1, r1) . . . (x1, rn−1)

...
... . . .

...
(xn−1, r0) (xn−1, r1) . . . (xn−1, rn−1)




. (34)

Using (33) gives

XTR =





0 (x0, r1) . . . (x0, rn−1)
− (x0, r1) 0 . . . (x1, rn−1)

...
... . . .

...
− (x0, rn−1) − (x1, rn−1) . . . 0




, (35)

and we conclude that ΘA = RX−1 is anti-symmetric, as required.

As a simple example, consider the Newton-Cotes quadrature rule on four
equally spaced nodes which has positive weights and is of degree 3. By The-
orem 2 an SBP operators exists with maximal degree 2 and a PD norm:

H = h





3
8 0 0 0

0 9
8 0 0

0 0 9
8 0

0 0 0 3
8




, (36)
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where h is the spacing between nodes. Setting up the accuracy equations
(11) and solving gives an SBP operator of degree 2:

D1 =
1
h





−4
3

3
2 0 −1

6

−1
2 0 1

2 0

0 −1
2 0 1

2

1
6 0 −3

2
4
3




, (37)

where

Θ =





−1
2

9
16 0 − 1

16

− 9
16 0 9

16 0

0 − 9
16 0 9

16

1
16 0 − 9

16
1
2




. (38)

Using the classical FD-SBP approach on four nodes it is only possible to
obtain the second-order operator, which is

D1 =
1

h





−1 1 0 0
−1

2 0 1
2 0

0 −1
2 0 1

2
0 0 −1 1



 . (39)

The quadrature rule associated with (39) is the composite trapezoidal rule,
which is of degree one and leads to

H = h





1
2

1
1

1
2



 . (40)

In contrast with (37), the operator (39), is of degree one. The implications
of this will be further discussed in Section 8.

4.2. Dense-norm SBP operators
For classical FD-SBP operators, using block-norm H leads to increased

degree relative to diagonal-norm operators. It is therefore natural to ask
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whether using dense H, constructed with the the same quadrature rule of
degree τ as the diagonal-norm case treated in Theorem 2, the resultant D1

can be of degree higher than the diagonal-norm operator. Moreover, the
diagonal-norm case was restricted to quadrature rules with positive weights,
otherwise H is no longer a norm. In the dense-norm case we will show that
that restriction can be lifted while still retaining a PD H. In this paper we
take dense to mean any H that is not strictly diagonal, with the exception
of classical FD-SBP operators where we will continue to use the terminology
of block-norm, so that it is clear that we are referring those operators.

For dense norms there is no reduction in the compatibility equations as
for diagonal norms. Instead the full compatibility equations (17) must be
dealt with. One can visualize the difference between associated diagonal and
dense-norm operators by setting up a matrix, Pij, where × is inserted for i, j
combinations of the compatibility equations that are satisfied. The diagonal-
norm operator presented in the previous subsection based on a quadrature
rule of degree 3 (τ = 3) has the following P :

P =

× × × × ×
× × × ×
× × ×
× ×
×









0 1 2 3 4

0
1
2
3
4

i/j

.

The above form of the P matrix arises from the reduction in independent
compatibility equations for diagonal-norm operators. The reduction is such
that all i + j = g combinations lead to identical equations for a given g. In
the present example, the compatibility equations associated with i, j = [0, 2]
must be satisfied for an SBP operator of degree 2, so the maximum value of
i+ j is 4.

Again for τ = 3, in order to achieve an SBP operator of degree 3 a dense
norm must be used that satisfies a greater number of compatibility relations,
with a P matrix of the following form:
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P =

× × × × ×
× × × ×
× × × ×
× × × ×
×









0 1 2 3 4

0
1
2
3
4

i/j

.

The entries highlighted in white are the compatibility equations that are
satisfied by restricting H such that

�
1TH

�
i
= (Hdiag)ii, where Hdiag is the

diagonal norm (36). The entries highlighted in gray are the remaining com-
patibility equations that H must satisfy such that the resultant operator is
of degree 3.

We show below that such a dense norm can be found, and it is thus possible
to satisfy a greater number of compatibility equations without increasing the
degree of the associated quadrature rule.

In contrast to the diagonal-norm case we first start by proving that dense-
norm operators exist, and then we show how to construct them from specific
quadrature rules. We state and prove the following theorem:

Theorem 3. Given a nodal distribution x, there exists an SBP operator
D1 = H−1Θ of degree q ≤ n − 1, with a dense-norm H and an associated
quadrature rule W = [w1, . . . , wn] of degree τ ≥ q − 1 such that

�
xn

x1
Fdx ≈�

n

k=1 wkfk, for n ≥ 2.

Proof. We start with the case q = n − 1 and so τ ≥ n − 2 per Theorem
1. Using the definition of the discrete inner product, (v,u)

H
= vTHu, the

compatibility equations (17) can be recast as

j (xi,xj−1)
H
+ i (xj,xi−1)

H
= (xi)

T
Ẽxj = βi+j − αi+j i, j ∈ [0, q]. (41)

The compatibility equations are satisfied if the following equations, referred
to as the norm equations, are satisfied:

�
xj,xi

�
H
=

�
xj
�T

Hxi =
βi+j+1 − αi+j+1

i+ j + 1
= Mij, i, j ∈ [0, q]. (42)
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To prove this, substitute (42) into (41) to obtain

j
(βi+j − αi+j)

i+ j
+ i

(βi+j − αi+j)

i+ j
= βi+j − αi+j, i, j ∈ [0, q], (43)

which is an identity; therefore H that satisfy (42) satisfy the compatibility
equations (41). The norm equations for q = n− 1 are given as

XTHX = M, (44)

where X = [x0, . . . ,xn−1]. Since X is a Vandermonde matrix, it is invertible
and therefore

H = (X−1)TMX−1. (45)

Thus we have constructed an H that satisfies the compatibility equations for
an SBP operator of degree q = n− 1 and have also satisfied sufficient norm
equations such that the associated quadrature rule is of degree n−1. Shortly
we will show that this is not necessary, in line with Theorem 1. By the above
form, if M is PD, then so too is H. To prove that M is PD, we adapt the
classical proof that a Hilbert matrix is PD; we must show that

vTMv > 0. (46)

Expanding the left-hand side of (46) (notice that for convenience we have
shifted the indexes) gives

n�

p=1

n�

m=1

vpvm
βp+m−1 − αp+m−1

p+m− 1
. (47)

We also have that

βp+m−1 − αp+m−1

p+m− 1
=

�
β

α

yp+m−2dy. (48)

Substituting (48) into (47) gives
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n�

p=1

n�

m=1

vpvm

�
β

α

yp+m−2dy, (49)

and thus

�
β

α

n�

p=1

n�

m=1

vpvmy
p+m−2dy. (50)

This can be recast as

�
β

α

vTyyTvdy, (51)

where yT = [y0, . . . , yn−1]. Making the substitution p(y) = yTv results in

�
β

α

p2(y)dy. (52)

However, the integral of a nonnegative function must be nonnegative; there-
fore:

�
β

α

p2(y)dy ≥ 0. (53)

The equality in (53) implies that p(y) = 0, which cannot be the case, un-
less the monomials, [y0, . . . , yn−1] are linearly dependent. However, on a fi-
nite interval, the monomials are linearly independent, and we conclude that
p2(y) > 0 if v �= 0 and finally that M is PD.

To summarize, we have proven that there exists a PD H that satisfies the
compatibility equations for i, j ∈ [0, n − 1]. Moreover, by the norm equa-
tions (42), H is associated with a quadrature rule wi =

�
1TH

�
i
of degree

q = n−1. This is one degree greater than required by Theorem 1. In setting
up M we are effectively solving more norm equations than necessary to solve
the required compatibility equations, namely the last column and row of M .

We would like to show that instead of the above, it is possible to construct H
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associated with a quadrature rule of degree τ = q − 1. To do so we examine
the case of q = n − 1 but set τ = n − 2, that is we only satisfy the norm
equations associated with i, j ∈ [0, q − 1]. This same procedure can then be
used to prove the case for q < n− 1. Consider the following system

XTHX =




M b

bT c



 , (54)

whereM is an (n−1)×(n−1) matrix constructed from (42) for i, j ∈ [0, n−2].
We now prove that it is always possible to choose b and c such that the RHS
of (54) is PD, if M > 0. The trivial case is b = 0 and c > 0. The PD
condition is

[ṽT , vn]




M b

bT c








ṽ

vn



 > 0, (55)

where ṽT = [v1, . . . , vn−1]. Expanding gives,

ṽTM ṽ + 2vnb
T ṽ + cv2

n
> 0. (56)

The matrix M is PD and has decomposition M = LTΛL, where L is uni-
triangular and therefore invertible and Λ > 0 is a diagonal matrix with the
eigenvalues of M . With these definitions we get

ṽTLTΛLṽ + 2vnb
T ṽ + cv2

n
> 0. (57)

With v̂ = Lṽ, which gives ṽ = L−1v̂, we get

v̂TΛv̂ + 2vnb
TL−1v̂ + cv2

n
> 0. (58)

Taking b̂ = bTL−1 and expanding (58) gives

n�

i=1

λiv̂
2
i
+ 2ṽb̂iv̂i + cv2

n
> 0. (59)
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Now we complete the square using λi (v̂i + Γivn)
2, with Γi =

b̂i
λi
, to obtain

n�

i=1

λi (v̂i + Γivn)
2 +

�
c−

n�

i=1

λiΓ
2
i

�
v2
n
> 0. (60)

Therefore, a sufficient condition is that bi and c satisfy
�
c−

�
n

i=1
b̂
2
i
λi

�
≥ 0, or

more specifically that c ≥
�

n

i=1
b̂
2
i
λi
. This process can be applied one row and

column at a time to construct a PD H for q < n − 1, where the restriction
n ≥ 2 comes from requiring the SBP operator be of at least degree 1.

By the arguments in the proof of Theorem 2 there exist Θ such that an op-
erator of degree q exists, and again the associated quadrature is constructed
by wi =

�
1TH

�
i
and is of degree ≥ q − 1.

Now we are in a position to prove the following:

Theorem 4. A quadrature rule W = [w1, . . . , wn]T of degree τ on a nodal
distribution x, such that

�
xn

x1
Fdx ≈

�
n

k=1 wkfk, is necessary and sufficient

for the existence of a dense PD norm H that satisfies 1THf = WT f and an
associated SBP operator, D1 = H−1Θ of degree q = min (τ + 1, n− 1).

Proof. We have already proven that each dense-norm SBP operator has a
norm H associated with some quadrature rule and so a quadrature rule is
a necessary condition; now we prove that a quadrature rule is a sufficient
condition for the existence of a dense-norm SBP operator. We consider the
case where q = n − 1 and τ = q − 1 = n − 2. By the arguments in the
previous theorem we have

XTHX =




M b

bT c



 , (61)

where b and c are to be determined. We need to show that we can choose b
and c such that H is associated with the quadrature rule W and is PD. The
first requirement means that

H1 = W. (62)
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Solving for H in (61) and inserting into (62) results in

H1 =
�
X−1

�T



M b

bT c



X−11 = W. (63)

Pre multiplying by XT gives



M b

bT c



X−11 = XTW. (64)

Now X−11 = e0 and by definition

XTW =





β
1−α

1

1

...

β
n−1−α

n−1

n−1

(xn−1)T W





. (65)

On the other hand we have that




M b

bT c



 e0 =





M0,0

...

Mn−2,0

b1





=





β
1−α

1

1

...

β
n−1−α

n−1

n−1

b1





(66)

and we conclude that for H to be associated with the quadrature rule W we
must have b1 = (xn−1)T W. The remaining free parameters in b and c are
chosen so that the resultant matrix is PD; for example, a sufficient condition

is that c ≥
�

n

i=1
b̂
2
i
λi
, where the various quantities are defined in the proof of

Theorem 3.

For dense-norm SBP operators, stability cannot be proven on curvilinear
grids [46]. However, recently, Mattsson [34] introduced a boundary stabiliza-
tion operator that has been numerically shown to lead to stable discretiza-
tions. Theorem 4 provides a means of increasing the degree of the resultant
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SBP operator constructed from a given quadrature rule beyond that achiev-
able with a diagonal H by using the degrees of freedom from a dense H so
as to satisfy more of the compatibility equations. For example, consider the
diagonal-norm case given in (36) and (37), where τ = 3 and q = 2, using the
Newton-Cotes quadrature rule on four equally spaced nodes. The diagonal
norm can be converted to a dense norm (see Section 7 for more details) and
the accuracy equations solved, giving an operator with degree 3, consistent
with Theorem 4 . The following operator is obtained:

H =





1
4

1
8 0 0

1
8

5
4 − 1

4 0

0 − 1
4

5
4

1
8

0 0 1
8

1
4



 , (67)

D1 =





− 11
6 3 − 3

2
1
3

− 1
3 − 1

2 1 − 1
6

1
6 −1 1

2
1
3

− 1
3

3
2 −3 11

6



 , (68)

with

Θ =





− 1
2

11
16 − 1

4
1
16

− 11
16 0 15

16 − 1
4

1
4 − 15

16 0 11
16

− 1
16

1
4 − 11

16
1
2



 . (69)

5. Generalization to nodal distributions that do not include one or
both boundary nodes

In this section the theory is proven to hold for nodal distributions that
do not include one or both boundary nodes of the domain. In the classical
description [30], the nodal distribution contains the endpoints of the domain
and Ẽ = diag[−1, 0, . . . , 0, 1]. Thus

vT Ẽu = V(xn)U(xn)− V(x1)U(x1). (70)

However, if one or both boundary nodes are not included in the nodal dis-
tribution, then it is not possible to satisfy (70). To extend the SBP concept
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requires a generalization of (70). Consider two functions U(x) and V(x) on
the domain x ∈ [α, β], and a nodal distribution x = [x1, . . . , xn]

T that has
the following ordering property α < x1 < · · · < xn < β. The restriction of
the two functions onto the nodes is given by u = [U(x1), . . . ,U(xn)]

T and
v = [V(x1), . . . ,V(xn)]

T . Instead of requiring (70), the SBP property is ex-
tended by requiring

vT Ẽu ≈ VU|β
α
, (71)

which is quantified by

(xi)
T
Ẽxj = (βi+j − αi+j) , i, j ∈ [0, r]. (72)

We restrict the theory to SBP operators for which r ≥ q. SBP operators that
have r < q can be constructed; however, as will be demonstrated in Section
6 on imposition of boundary and interface conditions, the degree of the SAT
term is r. If the boundary conditions are enforced with terms of degree r,
and r < q, then the imposition of the boundary conditions represents the
largest error in the discretization. In fact, we face a further problem; for
operators constructed such that r < q we are unsure how to construct SATs
that lead to consistent, conservative and stable discretizations.

In order to prove that Theorems 1 through 4 hold for nodal distributions
that exclude boundary nodes, under the restriction that r ≥ q, one must
prove that Ẽ matrices exist that satisfy (72). For n distinct nodes it is pos-
sible to construct a one-dimensional interpolant of degree n− 1. Evaluating
the interpolant of U at the boundaries yields

tT
α
u = ũα ≈ U(α), tT

β
u = ũβ ≈ U(α), (73)

where tα and tβ have properties,

tT
α
xj = αj, tT

β
xj = βj, j ∈ [0, n− 1]. (74)

which can be combined to form the matrix operator

T = e1tTα + entTβ (75)
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where e1 = [1, 0, . . . , 0]T and en = [0, . . . , 0, 1]T . Taking Ẽ = T TET , where
E = diag [−1, 0, . . . , 0, 1], gives the required property. The case where only
one boundary node is excluded follows identical logic. Now we state an ex-
tended definition of an SBP operator:

Definition 2. Summation-by-parts operator: An operator D1 is an ap-
proximation to the first derivative of degree q with the SBP property if

i) D1xj = H−1Θxj = jxj−1, j ∈ [0, q],

ii) H is a PD symmetric matrix,

iii) Θ+ΘT = Ẽ, where (xi)
T
Ẽxj = βi+j − αi+j, i, j ∈ [0, r], r ≥ q.

This definition includes the case where Ẽ = diag [−1, 0, . . . , 0, 1] for r = ∞.

6. Time stability of generalized SBP/SAT discretizations

SBP operators do not include boundary conditions, and in fact are singu-
lar, mimetic of the continuous case where in the absence of boundary condi-
tions systems of PDEs are ill-posed. Here SATs are used to impose boundary
conditions weakly. In this section SATs are derived for the one-dimensional
convection equation for the generalized definition of SBP operators. The
PDE is

∂U
∂t

= −a∂U
∂x
, x ∈ [α, β], t > 0 (76)

with real a > 0, initial condition U(x, 0) = f(x), and homogeneous boundary
condition U(α, t) = gα(t) = 0. To gain insight in to what needs to be done to
construct SATs for the semi-discrete case it is instructive to first analyze the
continuous case. The objective is to show that the chosen boundary condi-
tions lead to a well-posed problem, specifically, that the solution is bounded,
where it is assumed that the solution exists and is unique. To do so the en-
ergy method is employed, see [15]: multiply (76) by U and integrate in space,

�
β

α

U ∂U
∂t

dx = −a

�
β

α

U ∂U
∂x

dx, (77)
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using the fact that U ∂U
∂ξ

= 1
2
∂U2

∂ξ
with Leibniz’s rule on the LHS gives

d||U(·, t)||2

dt
= −a

�
U2(β, t)− U2(α, t)

�
. (78)

Inserting the boundary conditions we find

d||U(·, t)||2

dt
= −aU2(β, t). (79)

Integrating in time, inserting the initial condition, and rearranging gives

||U(·, t)||2
x
+ a�U(β, ·)�2

t
= �f(·)�2

x
, (80)

where �U(·, t)�2
x
=

�
β

α
U2(x, t)dx and �U(x, ·)�2

t
=

�
t

0 U
2(x, τ)dτ . Equation

(80) demonstrates that the solution is bounded by the data, so the continu-
ous problem is well-posed.

We have shown in (75) that a decomposition in the form Ẽ = T TET al-
ways exists; there may be other possibilities, but here we restrict our interest
to such a decomposition. This allows us to construct consistent, conser-
vative, stable schemes with SATs. Application of a spatial discretization to
(76) using SBP operators with boundary conditions enforced with SATs gives

d

dt
ud = −aD1ud + σαH

−1tα(t
T

α
ud − gα(t)), (81)

We need to prove that the semi-discrete equations are consistent and stable.
Definition 2 ensures that in the absence of the SATs (81) is consistent. What
remains is to prove that the SATs are consistent. Rearrange (81) to obtain

σαH
−1tα(t

T

α
ud − gα(t)) =

d

dt
ud + aD1ud. (82)

Multiplying both sides by 1
σα
H gives

tα(t
t

α
ud − gα(t)) =

1

σα

H

�
d

dt
ud + aD1ud

�
. (83)
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Taking the limit h → 0, the RHS of (83) goes to zero because H is an order
one function of h, resulting in,

lim
h→0

tα(t
T

α
ud − gα(t)) = 0. (84)

Since tα �= 0, we obtain

lim
h→0

(tT
α
ud − gα(t)) = 0. (85)

By definition limh→0 tTαu = U(α, t) resulting in

U(α, t)− gα(t) = 0, (86)

which is the boundary condition in the continuous case.

Now the energy method is used to determine the conditions for which the
proposed SATs lead to stable a scheme. Multiply (81) by uT

dH to obtain

uT

dH
d

dt
ud = −auT

dΘud + σαu
T

d tα(t
T

α
ud − gα(t)). (87)

Adding (87) to its transpose gives,

uT

dH
dud

dt
+ uT

dH
dud

dt
= −auT

d

�
Θ+ΘT

�
ud

+ 2σαu
T

d tαt
T

α
ud − 2σαu

T

d tαgα(t). (88)

With uT

d

�
Θ+ΘT

�
ud = ũ2

β
− ũ2

α
and tT

α
ud = ũα, we find

d||ud||H
dt

= −a(ũ2
β
− ũ2

α
) + 2σαũ

2
α
− 2σαũagα(t). (89)

Rearranging, and considering the homogenous case gα(t) = 0, we obtain

d||ud||H
dt

+ aũ2
β
= (a+ 2σα)ũ

2
α
. (90)
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For a stable scheme we require (a + 2σα) ≤ 0 or σα ≤ −a

2 . To retain the
same energy estimate as the continuous case we set σα = −a

2 . Integrating in
time, inserting the initial condition and rearranging gives

�ud�H + a�ũβ�2t = �f�2
H
. (91)

Thus an energy estimate exists, and the scheme is stable with the proposed
SATs.

Next we consider the interface between two elements or blocks. The other
boundaries are neglected assuming without loss of generality that suitable
SATs have been specified. The goal is to determine the SAT parameters
such that the resultant scheme is stable and conservative. The solution in
the left and right domain are denoted with subscript L and R giving

dud,L

dt
= −aDud,L + σLtL

�
tT
L
ud,L − tT

R
ud,R

�
, (92)

dud,R

dt
= −aDud,R + σRtR

�
tT
R
ud,R − tT

L
ud,L

�
. (93)

where

tT
L
ud,L = ũL,δ, tT

R
ud,R = ũR,δ, (94)

and x = δ is the location of the interface between the two elements. Premul-
tiply (92) by 1THL, to obtain

1THL

dud,L

dt
= −a1TΘLud,L + σL1

T tL
�
tT
L
ud,L − tT

R
ud,R

�
. (95)

The extended SBP property is Θ+ΘT = Ẽ; thus Θ = Ẽ−ΘT . Substituting
gives

1THL

dud,L

dt
= −a1T

�
ẼL −ΘT

L

�
ud,L + σL1

T tL
�
tT
L
uL − tT

R
ud,R

�
. (96)
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Furthermore 1 is in the null space of Θ; thus

1THL

dud,L

dt
= −a1T

�
ẼL

�
ud,L + σL1

T tL
�
tT
L
ud,L − tRud,R

�
(97)

Finally, because we are ignoring the left boundary of the left element and the
right boundary of the right element, and tT

L
1 = 1, we get for the left element

1THL

dud,R

dt
= −aũL,δ + σL (ũL,δ − ũR,δ) , (98)

and similarly for the right element

1THR

dud,L

dt
= aũR,δ + σR (ũR,δ − ũL,δ) . (99)

Adding (98) to (99) gives

d
�
1THLud,L + 1THRud,R

�

dt
= ũL,δ [−a+ σL − σR] + ũR,δ [σR − σL + a] .

(100)

For conservation the RHS of (100) must be zero, and we conclude that we
must have σR = σL− a, again an identical result to the classical SBP deriva-
tion [13].

Now we consider the stability of the semi-discrete form. Left multiplying
(92) by UT

L
HL and (93) by UT

R
HR gives

uT

d,LHL

dud,L

dt
= −auT

d,LΘLud,L + σLu
T

d,LtL
�
tT
L
ud,L − tT

R
ud,R

�
(101)

uT

d,RHR

dud,R

dt
= −auT

d,RΘRud,R + σRu
T

d,RtR
�
tT
R
ud,R − tT

L
ud,L

�
. (102)

Adding the transpose, using the SBP property, simplifying, and ignoring the
boundary conditions, we find
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d
�
uT

d,LHLud,L

�

dt
= −aũ2

L,δ
+ 2σL

�
ũ2
L,δ

− ũL,δũR,δ

�
, (103)

d
�
uT

d,RHRud,R

�

dt
= aũ2

R,δ
+ 2σR

�
ũ2
R,δ

− ũR,δũL,δ

�
. (104)

Adding (103) to (104) and using the condition on the penalty parameters so
that the discretization is conservative, σR = σL − a, gives

d
�
2uT

d,LHLud,L + uT

d,RHRud,R

�

dt
= (2σL − a) (ũL,δ − ũR,δ)

2 . (105)

To have stability, the RHS of (105) must be ≤ 0 thus, σL ≤ a

2 , as in the
classical SBP case [13].

7. Derivation of SBP operators

We begin this section with a brief review of what we have shown thus
far. Theorem 1 states that the norm matrix of an SBP operator of degree
q must correspond to a quadrature rule of at least degree q − 1. Such a
quadrature is necessary but not sufficient. Theorem 2 states that given a
quadrature rule of degree τ with positive weights for a nodal distribution x,
we can find a diagonal-norm SBP operator for the first derivative of degree
q = min

�
� τ

2�, n− 1
�
. Theorem 3 proves the existence of dense-norm SBP

operators up to degree n − 1. Theorem 4 proves that a quadrature rule of
degree τ is necessary and sufficient for the existence of a dense-norm SBP
operator of degree min (τ + 1, n− 1), relaxing the requirement for positive
quadrature weights. In contrast to the classical FD-SBP approach, the op-
erator need not have a repeating interior point operator nor a uniform nodal
distribution, though the nodal distribution is assumed to include the bound-
ary nodes. The generalization of Theorems 2 and 4 to nodal distributions
that do not include the boundary nodes is presented in Section 5. The sig-
nificance of these Theorems is that the existence of a quadrature is necessary
and sufficient for the existence of an SBP operator, and that the degree of
the resulting operator is linked to the degree of the underlying quadrature.
Furthermore, this extends the theory of the classical FD-SBP approach to a
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much broader class of first-derivative operators.

Next we consider some examples of how the theory in this article can be
applied in the derivation of SBP operators. Classical FD-SBP operators are
briefly discussed, followed by collocated-pseudo-spectral operators, which are
used in some Discontinuous-Galerkin approaches, and ending with the deriva-
tion of novel SBP schemes based on Newton-Cotes quadrature, Chebyshev-
polynomial-based quadratures, and barycentric rational interpolation.

7.1. Classical finite-difference SBP operators

Classical FD-SBP operators were originally constructed without any knowl-
edge of an underlying quadrature. The form of the individual operators is
set a priori to have a uniform nodal distribution in the computational do-
main including the boundary nodes and a repeating interior point operator.
Boundary closures are derived in order to satisfy Definition 1. The inte-
rior point operators are centered-difference formulae of degree 2p and the
boundary closures are formed by a minimum of 2p biased-difference formulae
[45]. As an example, consider the case where p = 2. The block norm has form

H = h





H11 H12 H13 H14

H12 H22 H23 H24

H13 H23 H33 H34

H14 H24 H34 H44

1
. . .




, (106)

while Θ has the form

Θ =





− 1
2 θ12 θ13 θ14

−θ12 0 θ23 θ24

−θ13 −θ23 0 θ34 − 1
12

−θ14 −θ24 −θ34 0 2
3 − 1

12

1
12 − 2

3 0 2
3 − 1

12

. . .
. . .

. . .
. . .

. . .





. (107)

Note that these operators are constructed to be invariant under the trans-
formation from x → −x implying that H is bisymmetric and Θ is nearly

30



anti-bisymmetric, such that Θ + ΘT = E = diag[−1, 0, . . . , 0, 1]. Bisymmet-
ric matrices have the following two forms:

(n even) :

�
M B
BT PMP

�
, (n odd) :





M C B
CT d CTP

BT PC PMP



 , (108)

where M is a symmetric matrix. Anti-bisymmetric matrices have the follow-
ing two forms:

(neven) :




M B

−BT −PMP



 , (nodd) :





M C B
−CT d CTP

−BT −PC −PMP



 , (109)

where M is anti-symmetric. Thus, we present only the left boundary closure
with the understanding that the right boundary closure follows immediately.
The coefficients are determined from the accuracy equations given by

D1x
j = H−1Θxj = jxj−1, j ∈ [0, p]. (110)

However, to avoid solving nonlinear equations, it is easier to multiply through
by H and solve the following

Θxj = jHxj−1, j ∈ [0, p]. (111)

7.2. Pseudo-spectral collocation SBP operators

This section highlights how the theory presented can be applied to derive
a wide array of pseudo-spectral SBP operators based on Legendre polynomi-
als, as well as the associated SATs that lead to consistent, conservative and
stable discretizations. This is not a new idea; recently, Gassner [11] exam-
ined the Legendre-Gauss-Lobatto (LGL) quadrature points and showed that
one can construct the various portions of an SBP operator with a diagonal
norm. In an earlier paper, Carpenter and Gottlieb [3], dealt more generally
with collocated-pseudo-spectral methods on the LGL quadrature points and
defined a dense norm. Despite the norms being different, the Θ and D1 op-
erators are identical. Here, we present a different approach starting from the
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quadrature rule itself. Furthermore, we demonstrate how the theory applies
to quadratures that do not include the end-points of the domain, which is the
case with Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) quadra-
tures.

The following is an outline of the approach taken here to derive SBP op-
erators. Given a quadrature rule W = [w1, w2, . . . , wn] of degree τ defined
on the nodal distribution x with xi ∈ [α, β]:

• Restrict the coefficients of H such that 1TH = W ;

• Construct tα, tβ, T and Ẽ from the nodal distribution x using equations
(74);

• Restrict the coefficients of Θ such that Θ+ΘT = Ẽ; and

• Solve accuracy equations (10) or (11) for the remaining free coefficients
in H and Θ.

To demonstrate these steps, we will apply them to the construction of SBP
operators on the LGR quadrature points. These points were chosen since
they are asymmetric in the domain [α, β] = [−1, 1], including one boundary
point, but not the other.

Consider the three-point LGR quadrature of degree τ = 4 with nodal dis-
tribution xT =

�
−1, 15 −

1
5

√
6, 15 +

1
5

√
6
�
and associated quadrature weights

W =

�
2
9 ,−

5
18

√
6(−2+3

√
6)

−6+
√
6

, 5
18

√
6(2+3

√
6)

6+
√
6

�
. Since all of the quadrature weights

are positive, a diagonal H can be constructed as (H)
ii
= wi. Alternatively,

one must satisfy
�
1TH

�
i
= wi for a dense H.

The simplest means of constructing tα and tβ is to use the Lagrange in-
terpolant through x, which is unique and of degree n− 1, and evaluate it at
α and β, which gives

tT
α
= [l0(α), . . . , ln−1(α)] , and

tT
β
= [l0(β), . . . , ln−1(β)] ,

(112)

where lj(x) are the Lagrangian basis functions and are defined by
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lj(x) =
�

0≤m≤n−1
m �=j

x− xm

xj − xm

. (113)

T is then constructed as T = e1tTα+entTβ and Ẽ = T TET . In the present case

tT
α
= [1, 0, . . . , 0] , and

tT
β
=

�
1
3 ,

5
3

2
√
6−3

−6+
√
6
, 53

2
√
6+3

6+
√
6

�
,

(114)

from which T and Ẽ can be constructed. The SBP property is enforced by
solving the equations Θ+ΘT = Ẽ. Finally, the accuracy equations (11) are
solved, giving a D1 of degree 2:

D1 =





−2 1 + 7
12

√
6 1− 7

12

√
6

−3/5
√
6(−6+

√
6)(−1/9− 8

27

√
6)

−2+3
√
6

−3/5
√
6(−6+

√
6)( 29

36−1/6
√
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√
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√
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√
6)(− 25
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√
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√
6
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√
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√
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√
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√
6(6+

√
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√
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√
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√
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with

Θ =





−4
9

2
9 +

7
54

√
6 2

9 −
7
54

√
6

−1
9 −

8
27

√
6 29

36 −
1
6

√
6 −25

36 +
25
54

√
6
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9 +

8
27

√
6 −25

36 −
25
54

√
6 29

36 +
1
6

√
6



 . (116)

Section 8 presents some simple numerical results obtained with SBP opera-
tors derived from the LGL, LGR, and LG quadratures.

7.3. SBP operators based on Newton-Cotes quadrature

Theorem 2 states that positive quadrature weights are required for the
construction of diagonal-norm operators. However, it is well known that the
quadrature weights of closed Newton-Cotes formulae are only positive up to
10 points with the exception of the 9-point quadrature rule [43]. In the case
of negative weights, the degree of the quadrature can be reduced, freeing co-
efficients which can then be used to satisfy the PD requirement of the norm.
The resulting quadrature is no longer a Newton-Cotes rule, but extends this
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form of evenly spaced quadrature rules for diagonal norms beyond 10 points
and degree τ = 9.

For example, consider a quadrature of degree τ = 11. This can be achieved
with an 11-point Newton-Cotes quadrature; however, it has negative weights.
Noting that the quadrature is invariant under the transformation from x →
−x, we only show the first �n

2 � weights:

W1...6 = [ 16067
299376

26575
74844 − 16175

99792
5675
6237 − 4825

5544
17807
12474 ] . (117)

To obtain a positive quadrature of degree τ = 11 on an equally spaced nodal
distribution requires at least 14 points, 3 more than the classical Newton-
Cotes quadrature. An example of such a quadrature, where only the first
�n

2 � weights are shown, is as follows:

W1...7 = [ 834231029
18968463360

2098059869
8622028800

20497297
878169600

573325999
2155507200

269917811
1724405760

14097547
319334400

12500
56133 ] .

(118)

This yields an SBP operator of degree q = 6. Such operators are not unique,
containing free parameters in both H and Θ that can be used for a particular
purpose, such as, reducing the truncation error, or optimizing the spectral
properties of the scheme. Here we present one such possible scheme. The
resulting nearly anti-bisymmetric Θ, using (109), can be defined to 5 decimal
places by

MΘ =





−1/2 0.72588 −0.15737 −0.42132 1.23717 −1.84246 0.97891

−0.72588 0 0.15104 3.45601 −10.52502 16.19056 −8.93953

0.15737 −0.15104 0 −8.41563 35.24034 −59.48605 34.91258

0.42132 −3.45601 8.41563 0 −50.66990 112.70838 −73.99512

−1.23717 10.52502 −35.24034 50.66990 0 −99.88748 86.51115

1.84246 −16.19056 59.48605 −112.70838 99.88748 0 −44.01227

−0.97891 8.93953 −34.91258 73.99512 −86.51115 44.012268 0





,

(119)
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BΘ =





1.18785 −2.99269 2.79045 −0.70437 −0.89422 0.77656 −0.18440

−11.23900 28.84350 −28.24144 12.15592 1.02788 −2.93059 0.77656

46.21080 −121.60357 124.80838 −67.78605 15.97922 1.02788 −0.89422

−106.27225 289.87817 −312.23200 191.53628 −67.78605 12.15592 −0.70437

144.40016 −416.38168 473.51506 −312.23200 124.80838 −28.24144 2.79045

−107.61800 341.56949 −416.38168 289.87817 −121.60357 28.84350 −2.99269

28.78616 −107.61800 144.40016 −106.27225 46.21080 −11.23900 1.18785





.

(120)

An alternative approach is to use a dense norm. Theorem 4 guarantees the
existence of a dense-norm SBP operator given any quadrature rule, indepen-
dent of the sign of the quadrature weights. This can indeed be done in the
case of Newton-Cotes formulae with negative quadrature weights. Continu-
ing with the example, an 11-point dense bisymmetric norm of degree τ = 11
can be derived and, using (108), is defined by the following matrices:

MH =





9306678962671
299360989287360

3749461876015
59872197857472 − 90050785535

782643109248
958663149805
4989349821456 − 695541722335

2851057040832

3749461876015
59872197857472

28401948875
62890964136 − 3438675839125

6652466428608
545920266625
623668727682 − 1612158311125

1425528520416

− 90050785535
782643109248 − 3438675839125

6652466428608
9684135875
8122669632 − 928686293875

554372202384
53761503625
24368008896

958663149805
4989349821456

545920266625
623668727682 − 928686293875

554372202384
321998785250
103944787947 − 469112800375

118794043368

− 695541722335
2851057040832 − 1612158311125

1425528520416
53761503625
24368008896 − 469112800375

118794043368
49210500875
8485288812




,

(121)

CH =





542627709523
2375880867360

64770208025
59397021684

− 116196053525
52797352608

20356362725
4949751807

− 9861191675
1616245488




, dH =

16897031273

2357024670
, (122)

and
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BH =





− 440685034315
2851057040832

28025138965
383796140112 − 73892199595

3326233214304
186312802135

59872197857472 − 542627709523
598721978574720

− 1105351670125
1425528520416

14695762625
36686395746 − 20188214125

135764620992
323851040125
7484024732184

186312802135
59872197857472

522020627875
316784115648 − 511439062375

554372202384
580980267625
1478325873024 − 20188214125

135764620992 − 73892199595
3326233214304

− 386465405875
118794043368

203563627250
103944787947 − 511439062375

554372202384
14695762625
36686395746

28025138965
383796140112

49305958375
9697472928 − 386465405875

118794043368
522020627875
316784115648 − 1105351670125

1425528520416 − 440685034315
2851057040832




,

(123)

which yields an SBP operator of degree q = 10, with nearly anti-bisymmetric
Θ, defined by:

MΘ =





−1/2 1500841000535
1247337455364 − 6118774216495

2956651746048
168786631855
48915194328 − 309925589065

70396470144

− 1500841000535
1247337455364 0 1167290099375

369581468256 − 1020412823125
207889575894

2969081958125
475176173472

6118774216495
2956651746048 − 1167290099375

369581468256 0 28600922500
11549420883 − 4647044375

1552863312

− 168786631855
48915194328

1020412823125
207889575894 − 28600922500

11549420883 0 6375383125
3046001112

309925589065
70396470144 − 2969081958125

475176173472
4647044375
1552863312 − 6375383125

3046001112 0




,

(124)

CΘ =





54906115193
13199338152

− 2794260905
471404934

3724177855
1257079824

− 3493410145
1649917269

6890202535
3771239472




, dΘ = 0, (125)

and

BΘ =





− 2718536777135
950352346944

165568121195
118794043368 − 4438316555

9662260608
83679973235
831558303576 − 1277065708991

79829597143296

650128240625
158392057824 − 422385469375

207889575894
4189781875
5866372512 − 12243513125

47974517514
83679973235
831558303576

− 463398116875
211189410432

57651340625
46197683532 − 656406923125

985550582016
4189781875
5866372512 − 4438316555

9662260608

73541879375
39598014456 − 967607500

679377699
57651340625
46197683532 − 422385469375

207889575894
165568121195
118794043368

− 80903830625
45254873664

73541879375
39598014456 − 463398116875

211189410432
650128240625
158392057824 − 2718536777135

950352346944




.

(126)

The degree of the quadrature is the same as the diagonal norm (118); how-
ever, three fewer nodes are required and the resulting operator is exact for
polynomials 4 degrees higher.
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As seen from the example, besides enabling the use of quadrature rules with
negative weights, a further advantage of using dense norms with Newton-
Cotes quadratures is the increased degree that is possible for the derivative
operators, where for the diagonal-norm case q = �n−1

2 �, the dense-norm op-
erators achieve q = n− 1.

Some simple numerical results of Newton-Cotes based SBP operators are
presented in Section 8.

7.4. Chebyshev-polynomial-based SBP operators

Chebyshev-polynomial-based quadrature rules have many attractive char-
acteristics. Firstly, Chebyshev polynomials have been shown to be particu-
larly well suited for approximating functions on finite domains, minimizing
the Runge phenomenon and providing an efficient alternative to the optimal
minmax polynomial approximation [12]. Furthermore, despite being lower
order than LG quadrature rules, they often exhibit similar convergence rates
for certain classes of problems [42, 51].

Clenshaw-Curtis quadrature points are the extrema of the Chebyshev poly-
nomials, which include the boundary nodes. The related Fejér quadratures
of the first and second kind use the roots of the Chebyshev polynomial of the
first and second kind which do not include the boundary nodes. All three
quadratures have degree τ = n− 1 for even n and τ = n for odd n.

Similar to Newton-Cotes rules, both dense and diagonal-norm operators can
be derived for each of the above mentioned quadrature rules, with a similar
reduction in the degree for the diagonal-norm operators. Numerical results
are presented for all three quadratures with both dense and diagonal norms
in Section 8.

7.5. SBP operators based on barycentric rational interpolation

There exists a vast literature on construction of interpolants and quadra-
tures. In this section we highlight the ease of constructing SBP operators
given an interpolant or a quadrature rule. We discuss the barycentric ra-
tional interpolants first proposed by Floater and Hormann [9]. These have
been investigated for application to quadrature as well as the construction of
approximations to the derivative, see for example [1, 26, 27]. Our purpose is
not to investigate the practical aspects of these methods as applied to PDEs
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but rather to demonstrate how one constructs an SBP operator starting from
either a quadrature rule or an interpolant. Floater and Hormann [9] give the
following prescription for constructing their barycentric rational interpolant
on an n point nodal distribution:

f(x) ≈ r(x) =

�
n−1−d

i=0 λi(x)pi(x)�
n−1−d

i=0 λi(x)
, (127)

where

λi(x) =
(−1)i

(x− xi) . . . (x− xi+d)
, (128)

and the pi(x) are the unique Lagrange interpolants of degree at most d of f
at the d+ 1 points x ∈ [xi, xi+d].

For the purpose of this demonstration d is chosen to be 3 and the nodal
distribution equally spaced. These parameters are not necessary, but chosen
to minimize the size of the family of methods generated. The operators are
generated with dense norms and satisfy Θ+ΘT = Ẽ = diag[−1, 0, . . . , 0, 1].

As an example, consider the six node case (n = 6). First, the Lagrange
basis functions are defined using sets of d + 1 = 4 points, namely x̃0 =�
−1,−3

5 ,−
1
5 ,

1
5

�
, x̃1 =

�
−3

5 ,−
1
5 ,

1
5 ,

3
5

�
, and x̃2 =

�
−1

5 ,
1
5 ,

3
5 , 1

�
for the domain

[−1, 1]. These basis functions are then used to construct the Lagrange inter-
polants p0(x), p1(x), and p2(x), respectively. For example

p0(x) =
�

d+1=4
j=1 l0,j(x)fj

= − 1
48 (5 x+ 3) (25 x2 − 1) f1

+ 5
16 (x+ 1) (25 x2 − 1) f2

− 5
16 (5 x− 1) (5 x+ 3) (x+ 1) f3

+ 5
48 (5 x+ 1) (5 x+ 3) (x+ 1) f4

(129)

where fj = f(x̃0,j). Now the global interpolant r(x) is constructed and inte-
grated to obtain the quadrature rule of degree τ = 3; in the present case (to
five decimal places):
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W = [ 0.13917 0.49914 0.36168 0.36168 0.49914 0.13917 ] . (130)

Now, with the quadrature known, the rest of the operator can be formed
following the process described in Section 7.2. With a dense-norm H, an op-
erator of degree q = 3 can be constructed. One instance of such an operator is

D1 =





− 61
12 10 − 35

4
35
6 − 5

2
1
2

− 5
8 − 215

96
35
8 − 35

16
5
6 − 5

32

5
28 − 10

7 − 55
84

5
2 − 5

7
5
42

− 5
42

5
7 − 5

2
55
84

10
7 − 5

28

5
32 − 5

6
35
16 − 35

8
215
96

5
8

− 1
2

5
2 − 35

6
35
4 −10 61

12





(131)

with bisymmetric norm, evaluated to 5 decimal places,

M =




0.08330 0.08675 −0.06173

0.08675 0.50214 −0.11338

−0.06173 −0.11338 0.53056



 , (132)

and

B =




0.03543 −0.01114 0.00656

0.09105 −0.05629 −0.01114

−0.12025 0.09105 0.03543



 . (133)

8. Numerical simulations

This section presents numerical results that illustrate the concepts set
forth in this paper. No attempt is made to quantify the relative efficiency of
the different schemes. Results for classical FD-SBP schemes are included for
comparison.

8.1. Governing equation

Consider the one-dimensional linear advection equation with unit wave
speed. Using the method of manufactured solutions, a source term is added
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such that a steady-state solution exists:

∂U
∂t

+
∂U
∂x

= S(x), (134)

with

x ∈ [α, β], t ∈ [0,∞), U(x, 0) = I(x), U(α, t) = Gα(t). (135)

The source term is

S(x) = 1024 e−4 (2x−1)2
�
− 25

256
π2 +

7

32
+ x2 − x

�
sin (10π x)

(136)

− 320 e−4 (2x−1)2 (2 x− 1) cos (10 π x) π,

giving the following steady-state solution:

U(x) = 1 + ((−32 x+ 16) sin (10 π x) + 10 cos (10 π x) π) e−4 (2x−1)2 . (137)

The steady-state discrete form of (134) is

D1ud + SATBC + SATI = s (138)

where D1 is the SBP derivative operator, ud is the solution vector, SATBC

and SATI are the boundary and interface SATs respectively, and s is the
forcing function projected onto the nodes. The solution domain chosen for
this exercise is [α, β] = [0, 1], and the SAT coefficients are chosen such that
the discretizations are equivalent to characteristic boundary conditions and
are dual consistent [24].

The primary results are convergence rates based on the solution error

eU = �ud − u�H =
�

(ud − u)TH(ud − u), (139)
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where H is the norm consistent with the discretization and u is the exact
solution projected onto the nodes. In addition, the convergence of a lin-
ear functional is investigated. Here, the integral of the solution is used as
the linear functional, and convergence rates are based on the functional error:

eF =
��1THud − F(U)

�� , (140)

whereH is the norm consistent with the discretization and F(U) =
�

β

α
U(x)dx =

sin (10π x) e−16 (x−1/2)2 + x+ 1
��1
0
= 1.

8.2. Results

In this section we present the solution and functional errors using exam-
ples of several of the operators discussed. In particular, results are presented
for

• FD-SBP operators applied both in the traditional manner with repeat-
ing interior point operators or as elements;

• Operators based on LGL, LG, and LGR quadratures;

• Operators based on Newton-Cotes quadratures;

• Operators based on Clenshaw-Curtis and Fejér quadratures;

• Barycentric rational interpolation SBP operators.

To make the presentation concise, Table 1 lists the various SBP operators,
their abbreviations, and their general properties.

The convergence of the solution error, eU , is summarized in Table 2. It can
be seen that all operators have convergence rates of q + 1, which is in line
with the arguments made by Gustaffsson [14]. In particular, we numerically
demonstrate that the generalized definition presented in this paper for SBP
operators, in conjunction with the proposed SATs, leads to valid discretiza-
tions. For example, the SBP operators based on LG and LGR quadrature
nodes obtain the expected rate of convergence. Table 2 also summarizes the
convergence rates of the error in the computed functional, eF , which are ap-
proximately τ + 1, the degree of the quadrature plus one.
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SBP Scheme Abbreviation q τ

Classical Finite-Difference
→ Traditional single-block T-FDDiag. - -

T-FDBlock - -

→ Traditional 5-block T5-FDDiag. - -

T5-FDBlock - -

→ Element–based EB-FDDiag.
n−1
4

n−1
2

EB-FDBlock
n−1
2

n−1
2

Legendre-Gauss-Lobatto LGL n− 1 2n− 3

Legendre-Gauss-Radau LGR n− 1 2n− 2

Legendre-Gauss LG n− 1 2n− 1

Newton-Cotes NCDiag. �n−1
2 � n− 1

NCDense n− 1 n− 1

Clenshaw-Curtis CCDiag. �n−1
2 � n− 1

CCDense n− 1 n− 1

Fejér (type 1) F1Diag. �n−1
2 � n− 1

F1Dense n− 1 n− 1

Fejér (type 2) F2Diag. �n−1
2 � n− 1

F2Dense n− 1 n− 1

Barycentric Rational Interpolation (d = 3) BCRI
→ Odd n 4 5

→ Even n 3 3

Table 1: Summary of SBP operators, their associated abbreviations and general proper-
ties. Notes: 1) the degrees q and τ of traditional implementations of classical FD-SBP
operators are not dependent of the number of nodes in the block/element and are there-
fore not reported; 2) the general properties of diagonal SBP operators based on Newton-
Cotes quadrature hold only for the case of positive quadrature weights; 3) NC/CC/F1/F2
quadratures with an odd number of points, n, achieve one degree higher than reported
in the table; 4) diagonal-norm SBP operators based on NC/CC/F1/F2 quadratures with
odd numbers of points, n, achieve one additional degree in the operator as well; 5) the
value for q given for EB-FDDiag. applies only to q ≥ 2.
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One of the disadvantages of using diagonal-norm SBP operators is that in
many cases the degree of the operators is less than what can be achieved using
dense norms. However, diagonal norms are required for stability in curvilin-
ear coordinates [46]. In the FD community, the reduction in degree is miti-
gated by a dual-consistent implementation that leads to superconvergence of
functionals i.e. the functional converges at a higher rate than the solution [21].
For the present set of simulations, including the novel operators presented,
the boundary conditions have been implemented using dual-consistent SATs
and the functional integrated with the quadrature associated with the norm
of the discretization. The results numerically demonstrate that using such
an implementation leads to superconvergence of functionals.

To demonstrate the effect of implementing SATs that are not dual consis-
tent, the SBP operators for the LG quadrature points were used to solve
(138) with dual-inconsistent SATs. Specifically, the penalty parameter for
the boundary SATs was chosen as σ = −3

4a, but the functional was still
integrated with the quadrature associated with the norm of the discretiza-
tion. This choice results in a scheme that is stable but not dual-consistent.
Examining Figure 1 we can see that although the convergence rate of the
solution error remains the same, the convergence rate of the functional error
is substantially reduced using dual-inconsistent SATs.

The maximum degree an operator approximating the first derivative can
attain is n − 1, and there is therefore no difference in terms of the conver-
gence rate of the solution error between the Legendre-Gauss based pseudo-
spectral SBP operators: LGL, LG, and LGR. However, if one is concerned
with functionals, and the discretization is dual-consistent, there is a poten-
tial advantage in using operators that do not include boundary points. With
a dual-consistent discretization the functional error converges at the rate of
approximately τ+1 and so the higher the degree of the quadrature the higher
the convergence rate of functionals. This means that although the pseudo-
spectral methods that do not include boundary points (LG,LGR), have the
same convergence rate in the solution error as methods that include the
boundary points, the convergence rate of the functional error is improved.
However, the required SATs are dense matrices that fully couple adjacent
elements. This necessarily increases the bandwidth of the discretization and
the computational cost.
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Figure 1: Comparison of a) solution error and b) functional error using dual-consistent
(DC) and dual-inconsistent (DI) SATs for 5-node LG-quadrature-based SBP discretiza-
tion.

Figure 2 (a-c) compares the convergence rates of the solution error for tradi-
tional and element-based implementations of classical FD-SBP operators for
various q, while Figure 3 (a-c) displays the convergence rate of the computed
functional, arranged in terms of τ . The motivation for organizing Figure 3
based on τ , rather than q, is to highlight the connection of the associated
quadrature rule to the superconvergence of the computed functional. Simi-
larly, results for non-classical SBP operators are presented in Figure 2 (d-f),
for solution error, and Figure 3 (d-f), for the error in the computed func-
tional.

Traditionally, classical FD-SBP operators are implemented on complex do-
mains by decomposing the domain into a set of simple domains, each of which
can be mapped onto a line, square, or cube, for one, two, or three dimensions
respectively. For an operator of degree q, the error in a given simulation
is decreased by adding more interior nodes. The generalized framework al-
lows for the derivation of element based FD-SBP operators. It is therefore
interesting to see the effect of treating classical FD-SBP operators as ele-
ments. For the purpose of this study, classical FD-SBP operators are used
in three different ways: 1) using a single block (T-FDDiag./Dense), 2) 5 blocks
(T5-FDDiag./Dense), and 3) as elements (EB-FDDiag./Dense), where each element
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Figure 2: Convergence of solution error eU . Note that the absence of a subscript Diag. or
Dense indicates that the diagonal and dense operators operators are in fact the same.
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Figure 3: Convergence of the functional error eF . Note that the absence of a subscript
Diag. or Dense indicates that the diagonal and dense operators operators are in fact the
same.
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has a sufficient number of nodes so that one node has the interior point op-
erator. The first two cases represent the traditional method of implementing
FD-SBP operators where accuracy is increased by increasing the number of
nodes with a fixed number of blocks, while for the third case the number of
elements is increased with a constant n.

Figure 3 (a-c) displays the convergence of the error in the computed func-
tional for classical FD-SBP operators. The interior point operators of the
diagonal and block norm SBP operators are the same, but the degree of the
resultant operator is different, with the block-norm operators having higher
degree. For norms associated with quadrature rules of degree τ > 1, the
choice of diagonal or block norm and discretization strategy, 1 block, 5 block,
or element-based, has a large effect. Overall the results displayed in Figures
2 and 3 are consistent with the theory presented.

Finally, Figure 4 displays the difference in both solution error and func-
tional error for the diagonal and dense-norm Newton-Cotes rule based SBP
operators discussed in Section 7.3. As anticipated, the dense-norm operator
has a better rate of solution convergence, relative to the diagonal-norm op-
erator, and a lower solution error. However, because of the dual-consistent
implementation, both operators have similar functional error.
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Figure 4: Comparison of a) solution error and b) functional error using a 14-point diagonal-
norm equally spaced SBP operator (q = 6, τ = 11) and an 11-point-dense-norm Newton-
Cotes SBP operator (q = 10, τ = 11).
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9. Conclusions and future work

This paper has extended the FD-SBP theory to a more general class of
operators including: i) non-repeating interior point operators, ii) nonuniform
nodal distributions in the computational domain, and iii) operators that do
not include one or both boundary nodes. The approach has been to deter-
mine the necessary and sufficient conditions for the existence of nodal SBP
operators. We found that SBP operators are intimately tied to quadrature
rules and proved that given a quadrature rule an SBP operator is guaranteed
to exist. Conversely, we proved that the norm of an SBP operator must be
associated with a quadrature. The extension of the FD-SBP theory to oper-
ators that do not necessarily include boundary nodes required generalizing
the concept of the definition of an SBP operator. The SBP property by itself
is sufficient to guarantee stability for Cauchy problems. However, for initial-
boundary-value problems, the SBP property is insufficient. We derived SATs
for the generalized SBP operators for the imposition of boundary conditions
and inter-block/element coupling that lead to consistent, conservative, and
stable numerical algorithms.

The extensions proven here allow for a large class of operators to be con-
sidered within the definition of SBP operators and enables the rigorous de-
velopment of SATs for such operators. The examples considered in this pa-
per include the following: Legendre-Gauss, Legendre-Gauss-Radau, Newton-
Cotes, Clenshaw-Curtis, Fejér, Gauss-Chebyshev-quadratures, and Barycen-
tric rational interpolation. A selection of these operators was used to solve
the steady linear convection equation with a source term. The boundary
conditions and block/element interfaces were numerically implemented using
dual-consistent SATs. It was found that the solution error converged at rate
of q + 1, where q is the degree of the operator. The convergence rate of
the computed error of a simple functional, the integral of the solution, was
shown to display superconvergence of τ + 1, where τ is the degree of the
underlying quadrature of the norm matrix. We also demonstrated that with-
out dual-consistent SATs this superconvergence is lost. This result implies
that the concept of dual-consistency applies to the generalized SBP opera-
tors presented in this paper. Extending the theory of dual-consistent classical
FD-SBP operators to generalized SBP operators that include both bound-
ary nodes should be straightforward; for generalized SBP operators that do
not include one or both boundary nodes, we also do not immediately see
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any impediments. Although operators that do not include boundary nodes
have the potential to have higher degree quadratures, the resultant SATs are
dense matrices that couple adjacent elements and the implications of this on
efficiency require investigation.

Finally, the traditional implementation of classical FD-SBP operators was
contrasted with an element-based approach. The latter opens up the use of
p-refinement with FD-SBP operators in a similar manner to, for example,
DG schemes.

The theory presented is based on one-dimensional operators that are ex-
tended to multiple dimensions through Kronecker products. Further gen-
eralizations are possible to multidimensional operators that can be applied,
for example, to simplex elements, or multidimensional meshless methods;
the theory herein suggests that the starting point to prove the necessary
and sufficient conditions for existence of SBP operators will be a quadrature
rule.

References

[1] J.P. Berrut, M.S. Floater, G. Kelin, Convergence rates of derivatives of
a family of barycentric rational interpolants, Applied Numerical Math-
ematics 61 (2011) 989–1000.

[2] M.H. Carpenter, T.C. Fisher, N.K. Yamaleev, Boundary closures for
sixth-order energy-stable weighted essentially non-oscillatory finite-
difference schemes, in: Advances in Applied Mathematics, Modeling,
and Computational Science, Volume 66 of Fields Institute Communica-
tions, Springer US, 2013, pp. 117–160.

[3] M.H. Carpenter, D. Gottlieb, Spectral methods on arbitrary grids, Jour-
nal of Computational Physics 129 (1996) 74–86.

[4] M.H. Carpenter, D. Gottlieb, S. Abarbanel, Time-stable boundary con-
ditions for finite-difference schemes solving hyperbolic systems: Method-
ology and application to high-order compact schemes, Journal of Com-
putational Physics 111 (1994) 220–236.

51



[5] M.H. Carpenter, J. Nordström, D. Gottlieb, A stable and conservative
interface treatment of arbitrary spatial accuracy, Journal of Computa-
tional Physics 148 (1999) 341–365.

[6] E.K.Y. Chiu, Q. Wang, R. Hu, A. Jameson, A conservative mesh-free
scheme and generalized framework for conservation laws, SIAM Journal
on Scientific Computing 34 (2012) A2896–A2916.

[7] P. Diener, E.N. Dorband, E. Schnetter, M. Tiglio, Optimized high-order
derivative and dissipation operators satisfying summation by parts, and
applications in three-dimensional multi-block evolutions, Journal of Sci-
entific Computing 32 (2007) 109–145.

[8] T.C. Fisher, M.H. Carpenter, N.K. Yamaleev, S.H. Frankel, Bound-
ary closures for fourth-order energy stable weighted essentially non-
oscillatory finite-difference schemes, Journal of Computational Physics
230 (2011) 3727–3752.

[9] M.S. Floater, K. Hormann, Barycentric rational interpolation with no
poles and high rates of approximation, Numerische Mathematik 107
(2007) 315–331.

[10] D. Funaro, D. Gottlieb, A new method of imposing boundary conditions
in pseudospectral approximations of hyperbolic equations, Mathematics
of Computation 51 (1988) 599–613.

[11] G.J. Gassner, A skew-symmetric discontinuous Galerkin spectral ele-
ment discretization and its relation to SBP-SAT finite difference meth-
ods, SIAM Journal on Scientific Computing 35 (2013) A1233–A1253.

[12] A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special Func-
tions, Society for Industrial and Applied Mathematics, 2007.

[13] J. Gong, J. Nordström, Interface procedures for finite difference approx-
imations of the advection-diffusion equation, Journal of Computational
and Applied Mathematics 236 (2011) 602–620.

[14] B. Gustafsson, The convergence rate for difference approximations to
mixed initial boundary value problems, Mathematics of Computation
29 (1975) 396–406.

52



[15] B. Gustafsson, High Order Difference Methods for Time Dependent
PDE, Springer, 2008.

[16] B. Gustafsson, H.O. Kreiss, J. Oliger, Time Dependent Problems and
Difference Methods, Willey-Interscience, 1996.

[17] F. Ham, K. Mattsson, G. Iaccarino, Accurate and stable finite volume
operators for unstructured flow solvers, Center for Turbulence Research
Annual Briefes (2006).

[18] J.S. Hesthaven, A stable penalty method for the compressible Navier-
Stokes equations: III. multidimensional domain decomposition schemes,
SIAM Journal on Scientific Computing 20 (1988) 62–93.

[19] J.S. Hesthaven, A stable penalty method for the compressible Navier-
Stokes equations: II. one-dimensional domain decomposition schemes,
SIAM Journal on Scientific Computing 18 (1997) 658–685.

[20] J.S. Hesthaven, D. Gottlieb, A stable penalty method for the compress-
ible Navier-Stokes equations: I. open boundary conditions, SIAM Jour-
nal on Scientific Computing 17 (1996) 579–612.

[21] J.E. Hicken, D.W. Zingg, The role of dual consistency in functional
accuracy: error estimation and superconvergence, AIAA paper 2011-
3070 (2011).

[22] J.E. Hicken, D.W. Zingg, Superconvergent functional estimates from
summation-by-parts finite-difference discretizations, SIAM Journal on
Scientific Computing 33 (2011) 893–922.

[23] J.E. Hicken, D.W. Zingg, Summation-by-parts operators and high-order
quadrature, Journal of Computational and Applied Mathematics 237
(2013) 111–125.

[24] J.E. Hicken, D.W. Zingg, Dual consistency and functional accuracy:
A finite-difference perspective, Journal of Computational Physics 256
(2014) 161–182.

[25] A. Kitson, R.I. McLachlan, N. Robidoux, Skew-adjoint finite difference
methods on nouniform grids, New Zealand Journal of Mathematics 32
(2003) 139–159.

53



[26] G. Klein, Applications of Linear Barycentric Rational Interpolation,
Ph.D. thesis, University of Fribourg, 2012.

[27] G. Klein, J.P. Berrut, Linear barycentric rational quadrature, BIT Nu-
merische Mathematik 52 (2012).

[28] H.O. Kreiss, J. Lorenz, Initial-Boundary Value Problems and the Navier-
Stokes Equations, Volume 47 of Classics in Applied Mathematics, SIAM,
2004.

[29] H.O. Kreiss, J. Oliger, Comparison of accurate methods for the integra-
tion of hyperbolic equations, Tellus 24 (1972) 199–215.

[30] H.O. Kreiss, G. Scherer, Finite element and finite difference methods
for hyperbolic partial differential equations, in: Mathematical aspects
of finite elements in partial differential equations, Academic Press, New
York/London, 1974, pp. 195–212.

[31] D.W. Levy, K.R. Laflin, E.N. Tinoco, J.C. Vassberg, M. Mani, B. Rider,
C. Rumsey, R.A. Wahls, J.H. Morrison, O.P. Brodersen, S. Crippa, D.J.
Mavriplis, M. Murayama, Summary of data from the fifth AIAA CFD
drag prediction workshop, AIAA paper 2013-0046 (2013).

[32] K. Mattsson, Boundary procedures for summation-by-parts operators,
Journal of Scientific Computing 18 (2003) 133–153.

[33] K. Mattsson, Summation by parts operators for finite difference ap-
proximations of second-derivatives with variable coefficients, Journal of
Scientific Computing 51 (2012) 650–682.

[34] K. Mattsson, M. Almquist, A solution to the stability issues with block
norm summation by parts operators, Journal of Computational Physics
15 (2013) 418–442.

[35] K. Mattsson, J. Nordström, Summation by parts operators for finite dif-
ference approximations of second derivatives, Journal of Computational
Physics 199 (2004) 503–540.
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[49] M. Svärd, J. Nordström, A stable high-order finite difference scheme
for the compressible Navier-Stokes equations: No-slip wall boundary
conditions, Journal of Computational Physics 227 (2008) 4805–4824.

[50] B. Swartz, B. Wendroff, The relative efficiency of finite difference and
finite element methods. I: Hyperbolic problems and splines, SIAM Jour-
nal on Numerical Analysis 11 (1974) 979–993.

[51] L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?,
SIAM Review 50 (2008) 67–87.

[52] N.K. Yamaleev, M.H. Carpenter, A systematic methodology for con-
structing high-order energy stable WENO schemes, Journal of Compu-
tational Physics 228 (2009) 4248–4272.

[53] N.K. Yamaleev, M.H. Carpenter, Third-order energy stable WENO
scheme, Journal of Computational Physics 228 (2009) 3025–3047.

56


