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Abstract. The generalization of summation-by-parts operators for the first derivative of Del Rey
Fernández et al. (J. Comput. Phys., 266, 2014) is extended to approximations of second derivatives
with a constant or variable coefficient. This enables the construction of second-derivative operators
with one or more of the following characteristics: i) non-repeating interior point operators, ii) nonuni-
form nodal distributions, and iii) exclusion of one or both boundary nodes. Definitions are proposed
that give rise to generalized summation-by-parts operators that result in consistent, conservative,
and stable discretizations of partial differential equations with or without mixed derivatives. It is
proven that approximations to the second derivative with a variable coefficient can be constructed
using the constituent matrices of the constant-coefficient operator. Moreover, for operators with a
repeating interior point operator, a decomposition is proposed that makes the application of such
operators particularly straightforward. A number of novel operators are constructed, including oper-
ators on the Chebyshev-Gauss quadrature nodes and operators that have a repeating interior point
operator but nonuniform nodal spacing near boundaries. The various operators are compared to
the application of the first-derivative operator twice in the context of the linear convection-diffusion
equation with a variable coefficient.
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1. Introduction. The focus of this paper is on developing generalized sum-
mation-by-parts (GSBP) operators [7] for the second derivative with a constant or
variable coefficient. In combination with simultaneous approximation terms (SATs)
[3, 4, 19, 22, 24, 25] for the weak imposition of boundary conditions and inter-element
coupling, GSBP operators lead to consistent, conservative, and provably stable high-
order discretizations. Our first objective is to extend the classical theory of SBP op-
erators for the second derivative in Refs. 22 and 23 and Mattsson’s extension of those
ideas to the approximation of the second derivative with a variable coefficient [19] to
GSBP operators. Our second objective is to propose an extension and simplification
of the work of Kamakoti and Pantano [16], on operators with a repeating interior point
operator, to allow the straightforward inclusion of boundary nodes. This formalism
leads to a very simple representation of operators with a repeating interior point oper-
ator that can be advantageous from an implementation standpoint, both for function
evaluations, as well as constructing the Jacobian matrix for implicit methods.

The SBP operators in Refs. 18, 27, 29, and 8 are characterized by a uniform nodal
distribution in computational space that includes both boundary nodes. We refer to
these as classical SBP operators. The GSBP framework extends the theory of classical
SBP operators to a broader class of operators characterized by one or more of the fol-
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2 Generalized Summation-By-Parts Operators for Second Derivatives

lowing: i) non-repeating interior point operators, ii) nonuniform nodal distributions,
and iii) exclusion of one or both boundary nodes. For first-derivative operators, the
GSBP framework provides two advantages. First, the above generalizations can be
exploited to construct operators that are more efficient than classical SBP operators
while retaining the desirable properties of the SBP method [7,21]. Second, it enables
the construction of multidimensional element-type operators for the extension of SBP
methods to fully unstructured grids. In this paper, we extend the GSBP framework
to approximations of the second derivative.

For PDEs that contain first- and second-derivative terms, if the same first-deriva-
tive operator is used to approximate both of these terms (applied twice to approxi-
mate the second derivative), then the resultant operator approximating the second-
derivative term is one order lower than the first-derivative operator. Our goal is to
construct GSBP operators for the second derivative that match the order of the first
derivative term and are therefore called order-matched. For stability, we will also
require that they share the same norm-matrix, where first-derivative GSBP operators
are constructed as D1 = H−1Q, and H is called the norm-matrix. Furthermore, we
are interested in operators that lead to stable semi-discrete forms for PDEs that con-
tain mixed-derivative terms, and hence develop second-derivative operators that are
compatible with the first-derivative operator used to discretize the mixed-derivative
terms [19, 23]. For the constant-coefficient second derivative, the application of the
first-derivative operator twice for operators with a repeating interior point operator
leads to interior point operators that use information from nearly twice the number
of nodes as the first-derivative operator. Alternatively, minimum-stencil operators
for the second derivative can be constructed that have interior point operators that
have the same stencil width as the first-derivative operator and are more efficient
than the application of the first-derivative operator twice. Here we are interested in
constructing approximations to the second derivative with a variable coefficient using
compatible and order-matched GSBP operators with a repeating interior point oper-
ator that have minimum stencil width and exploring the potential efficiency gains of
such operators.

This paper is organized as follows: in Section 2, the notation of the paper is
introduced, while in Section 3 we describe the difference between element-type oper-
ators and operators with a repeating interior point operator. The first derivative is
important for the construction of compatible GSBP operators for the second deriva-
tive, so a brief review is given in Section 4. General definitions for order-matched
as well as compatible and order-matched GSBP operators for the second derivative
are given in Section 5.1. In Section 5.2, we prove that the existence of compatible
and order-matched constant-coefficient second-derivative GSBP operators guarantees
the existence of compatible and order-matched variable-coefficient GSBP operators.
Section 5.3 describes a useful alternative representation of GSBP operators with a
repeating interior point operator, including classical SBP operators. We present two
formulations for operators with a repeating interior point operator, one of which is
based on the work in Refs. 22, 23, 19, 9, 10, and 8, while a more general formulation is
constructed by extending the ideas of Kamakoti and Pantano [16] to include nodes at
and near boundaries. The construction of various GSBP and classical SBP operators
for the second derivative is discussed in Section 6, including novel GSBP operators on
the Chebyshev-Gauss quadrature nodes and operators that have a repeating interior
point operator with variable node-spacing at boundaries—similar in spirit to those
developed by Mattsson, Almquist, and Carpenter [21], but derived by considering the



David C. Del Rey Fernández and David W. Zingg 3

nodal distributions of the quadrature rules proposed by Alpert [1]. These operators
are then validated numerically by solving the linear convection-diffusion equation with
a variable coefficient in Section 7. Finally, conclusions and future work are discussed
in Section 8.

2. Notation. The conventions in this paper are based on those laid out in
Refs. 15, 8, and 7. Vectors are denoted with small bold letters, for example x =
[x1, . . . , xN ]T, while matrices are presented using capital letters with sans-serif font,
for example M. Capital letters with script type are used to denote continuous func-
tions on a specified domain x ∈ [xL, xR]. As an example, U(x) ∈ C∞[xL, xR] denotes
an infinitely differentiable function on the domain x ∈ [xL, xR]. Lower case bold fonts
are used to denote the restriction of such functions onto a grid; for example, the
restriction of U onto the grid x is given by:

(2.1) u = [U(x1), . . . ,U(xN )]T .

Vectors with a subscript h, for example uh ∈ RN×1, represent the solution to a system
of discrete or semi-discrete equations.

The restriction of monomials onto a set of nodes is used throughout this paper

and is represented by xj =
[

xj
1, . . . , x

j
N

]T
, with the convention that xj = 0 if j < 0.

A subscript is used to denote which derivative is being approximated; for example,
D1 denotes an SBP approximation to the first derivative. The second derivative can
be approximated by applying an SBP operator approximating the first derivative
twice or by constructing SBP operators that have preferential properties. For the lat-
ter, it is necessary to differentiate between approximations of the constant-coefficient
derivative and the variable-coefficient derivative. The convention used is best shown
through an example: D2 represents an SBP approximation to the constant-coefficient
second derivative, while D2 (B) represents the approximation to the second derivative
∂
∂x

(

B ∂U
∂x

)

, where B is the variable coefficient, and B = diag[B(x1), . . . ,B(xN )]. We
discuss the degree of SBP operators, that is, the degree of monomial for which they
are exact, as well as the order of the operator. The approximation of the derivative
has a leading truncation error term for each node, proportional to some power of the
mesh spacing h. The order of the operator is taken as the smallest exponent of h in
these truncation errors. The relation between the two for an operator approximating
the mth derivative is

(2.2) order = degree−m+ 1.

For GSBP operators with a repeating interior point operator, as well as classical SBP
operators, we will discuss operators approximating higher derivatives. For example,
Di,e denotes an operator for the ith derivative; if used, the subscript e differentiates
among various versions of the operator.

For later use, the L2 inner product and norm are defined as

(2.3) (U ,V) =
xR∫

xL

UVdx, ||U||2 =
xR∫

xL

U2dx.

A discrete inner product and norm have the form

(2.4) (u,v)H = uTHv, ||u||2
H
= uTHu,

where H must be symmetric and positive definite.
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3. Element-type operators and operators with a repeating interior

point operator. In this paper, we develop element-type operators and operators
with a repeating interior point operator that can be applied either as blocks or as ele-
ments. Consider the following four-node element-type GSBP operator for the second
derivative on x ∈ [−1, 1], constructed by applying the first derivative operator twice:

(3.1) D2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 − 5
4 − 15

√
5

4 − 5
4 + 15

√
5

4 − 5
2

3
4

√
5 + 5

4 −5 5
2

5
4 − 3

4

√
5

5
4 − 3

4

√
5 5

2 −5 3
4

√
5 + 5

4

− 5
2 − 5

4 + 15
√
5

4 − 5
4 − 15

√
5

4 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which is of order two and approximates the second derivative on the Legendre-Gauss-
Lobatto nodes given by

(3.2) x =
[

−1 − 1
5

√
5 1

5

√
5 1

]T
.

On a mesh with m equally sized elements on the domain x ∈ [−1, 1], the operator
becomes (ignoring the inter-element coupling for now):

(3.3) m2

⎡

⎢
⎣

D2

. . .
D2

⎤

⎥
⎦ .

Mesh refinement is accomplished by increasing the number of elements. We refer to
this as the element approach.

In contrast, consider the first-order classical SBP operator applied at N nodes on
the domain x ∈ [−1, 1], which is given as

(3.4) D2 =
(N − 1)2

4

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −2 1
1 −2 1

. . .
. . .

. . .
1 −2 1
1 −2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The operator (3.4) has a repeating interior point operator

(3.5)
1

h2

[

1 −2 1
]

,

where in this case the mesh spacing is h = 2
N−1 . Implemented in this way, mesh

refinement is carried out by increasing the number of nodes at which the interior
point operator is applied. We refer to such a mesh refinement strategy as the tra-
ditional finite-difference approach. Alternatively, we can apply, for example, a four
node operator

(3.6) D2 =
9

4

⎡

⎢
⎢
⎣

1 −2 1
1 −2 1

1 −2 1
1 −2 1

⎤

⎥
⎥
⎦
.

in the same way as in (3.3), i.e., the element approach. However, the operator given
in (3.1) can only be applied using the element approach.
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4. Generalized SBP operators for the first derivative. The set of PDEs
of interest here contain both first and second derivatives, and may or may not contain
mixed derivatives. For such PDEs, just as for classical SBP methods [8, 18, 27, 29],
it is possible to construct GSBP operators that lead to stable schemes if certain
relationships exist between the first- and second-derivative operators. Therefore, in
this section, GSBP operators for the first derivative are briefly reviewed.

To motivate the definition of an SBP operator for the first derivative, consider
the linear convection equation

(4.1)
∂U
∂t

= −
∂U
∂x

, x ∈ [xL, xR], t ≥ 0,

where specification of the initial condition and boundary conditions is not important
for the present discussion. The energy method is applied to (4.1) to construct an
estimate on the solution, called an energy estimate, which is then used to determine
stability (for more information see Refs. 13, 14, and 17). This consists of multiplying
the PDE by the solution and integrating in space and transforming the integral on
the right-hand side using integration-by-parts. This leads to

(4.2)
∂ ∥U∥2

∂t
= − U2

∣
∣
xR

xL
.

SBP operators for the first derivative are constructed such that when the energy
method is applied to the semi-discrete or fully-discrete equations, the result is analo-
gous to (4.2). This leads to the following definition [7]

Definition 4.1. Generalized summation-by-parts operator: A matrix
operator D1 ∈ RN×N of degree p is an approximation to the first derivative, on the
nodal distribution x that need neither be uniform nor include nodes on the boundaries
and may have nodes that lay outside of the domain of the element x ∈ [xL, xR], with
the SBP property if

1. D1x
j = H−1Qxj = jxj−1, j ∈ [0, p];

2. H, which is referred to as the norm matrix, is symmetric positive definite; and

3. Q+ QT = E, where
(

xi
)T

Exj = xi+j
R − xi+j

L , i, j ∈ [0, r], r ≥ p.
Both classical SBP and GSBP operators can be constructed with either a diago-

nal-norm H or a dense-norm H, where dense norm refers to any H that is not diagonal.
The matrix E is constructed as [7]

(4.3) E = txRt
T
xR

− txLt
T
xL

= ExR − ExL .

The vectors txR and txL satisfy the relations

(4.4) tTxR
xj = xj

R, t
T
xL
xj = xj

L, j ∈ [0, r].

Relation (4.4) implies that tTxR
u and tTxL

u are degree r approximations to U (xR) and
U (xL), respectively, and are, therefore, of order r + 1; that is,

(4.5) tTxR
u = U(xR) +O

(

hr+1
)

, tTxL
u = U(xL) +O

(

hr+1
)

,

where u is the projection of U onto the nodal distribution. In (4.5), h is taken as the
average spacing between nodes, for operators with a repeating interior point operator,
or the size of the element, i.e., xR − xL, for element-type operators.
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The semi-discrete representation of (4.1) using GSBP operators is

(4.6)
duh

dt
= −D1uh,

where we ignore, for now, the numerical imposition of boundary conditions. The
energy method consists of multiplying (4.6) by uT

hH and adding the transpose of the
product, which gives

(4.7)
d ∥uh∥2H

dt
= −uT

h

[

HD1 + DT
1 H

]

uh.

Using Definition (4.1) results in

(4.8)
d ∥uh∥2H

dt
= −uT

hEuh = −
(

ũ2
xR

− ũ2
xL

)

,

where ũxR = tTxR
uh and ũxL = tTxL

uh, and it can be seen that (4.8) is a discrete
analogue of (4.2).

5. Generalized SBP operators for the second derivative.

5.1. Preliminaries. In this section, the definition of classical SBP operators
approximating the second derivative, given by Refs. 22, 23, and 19, is extended to
accommodate the derivation of GSBP operators. The form we propose combines
ideas from Refs. 22, 23, and 19, as well as our extension of the ideas of Kamakoti and
Pantano [16] on the interior point operator of classical SBP operators (see Section
5.3). The goal is to construct operators more accurate than the application of the
first-derivative operator twice that are still amenable to the energy method, that is,
operators for which discrete energy estimates can be constructed.

The motivation for the form of the operators comes in part from the integration-
by-parts property of the second derivative with a variable coefficient. For example,
consider the variable coefficient heat equation

(5.1)
∂U
∂t

=
∂

∂x

(

B
∂U
∂x

)

.

Applying the energy method to (5.1), i.e., multiplying by the solution, integrating in
space, and using integration by parts, results in

(5.2)
d∥U∥2

dt
= 2 BU

∂U
∂x

∣
∣
∣
∣

xR

xL

− 2

xR∫

xL

∂U
∂x

B
∂U
∂x

dx.

The application of a first-derivative classical SBP or GSBP operator leads to semi-
discrete forms mimetic of (5.2). To see this, we first note that the application of the
first-derivative operator twice can be decomposed as

(5.3) D1BD1 = H−1
[

−DT
1 HBD1 + EBD1

]

,

which can be derived as follows:

(5.4)
D1BD1 = H−1QBD1 = H−1

(

E− QT
)

BD1

= H−1
[

−QTH−1HBD1 + EBD1

]

= H−1
[

−DT
1 HBD1 + EBD1

]

,
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where we have used the property of GSBP operators that Q+ QT = E.
The semi-discrete version of (5.1), using (5.3), is

(5.5)
duh

dt
= H−1

[

−DT
1 HBD1 + EBD1

]

uh.

Applying the energy method to (5.5) gives

(5.6)
d∥uh∥2H

dt
=

≈2BU ∂U
∂x |xR

xL
︷ ︸︸ ︷

2uT
hEBD1uh −

≈2
xR
∫

xL

∂U
∂x

B ∂U
∂x

dx

︷ ︸︸ ︷

2 (D1uh)
T
HBD1uh,

and we see that the application of the first-derivative operator twice is mimetic of
(5.2). Our goal is to retain the ability to prove stability using the energy method, but
with operators that are more accurate.

The equations that an operator must satisfy in order to approximate the sec-
ond derivative with a variable coefficient, denoted the degree conditions, are based
on monomials restricted onto the nodes of the grid. Given that the operator must
approximate ∂

∂x

(

B
∂U
∂x

)

, it is necessary to determine what degree monomial to insert

for B and U in constructing the degree conditions. Taking B = xk and U = xs and
inserting into the second derivative gives

(5.7)
∂

∂x

(

xk ∂x
s

∂x

)

= s(k + s− 1)xk+s−2.

To be of order p, second-derivative operators must be of degree p+1 (from 2.2). This
implies that all combinations of k + s ≤ p + 1 must be satisfied. Thus, the operator
must satisfy the following degree conditions:

(5.8) D2

(

diag
(

xk
))

xs = s(k + s− 1)xk+s−2, k + s ≤ p+ 1,

where diag
(

xk
)

is a diagonal matrix such that the ith diagonal entry is the ith entry
of xk. If there are N nodes in the nodal distribution, then each combination of k + s
in (5.8) returns a vector of N equations.

The maximum attainable degree and order for an operator for the second deriva-
tive are given by the following lemma:

Lemma 5.1. An operator, D2 ∈ RN×N , is at most of order p ≤ N − 2 and degree
N − 1.

Proof. Consider the degree conditions for a constant-coefficient operator:

(5.9) D2x
k = k (k − 1)xk−2, k ∈ [0, p+ 1].

Taking p = N − 2, the degree conditions can be recast as

(5.10) D2X = X̃,

where X =
[

x0, . . . ,xN−1
]

and X̃ =
[

0,0, 2x0, . . . , (N − 1) (N − 2)xN−3
]

. The ma-
trix X is the Vandermonde matrix and is invertible, where the columns of X represent
a basis for RN×N . Therefore, a unique solution exists, given as D2 = X̃X−1, and by
examining the range of the operator D2, i.e., X̃, it is clear that D2 is of most degree
N − 1 and hence order p = N − 2.
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An immediate consequence of Lemma 5.1 is the following corollary:
Corollary 5.2. An operator D2 (B) ∈ RN×N , approximating the second deriva-

tive with a variable coefficient, is at most of order p = N − 2 and degree N − 1.
Proof. The set of equations for the constant-coefficient case is a subset of the

equations for the variable-coefficient operator, and therefore, by Lemma 5.1 D2 (B) is,
at best, of order N − 2.

5.2. Order-matched and compatible GSBP operators for the second

derivative. For classical SBP operators, one of the drawbacks of the application of
the first-derivative operator twice, of degree p, is that the interior point operator uses
information from 4p+1 nodes while minimum-stencil operators have an interior point
operator that uses information from 2p+1 nodes. For GSBP operators that can only
be applied using an element approach, no such concept exists. Regardless, the appli-
cation of the first-derivative operator twice results in an approximation that is of lower
order than the first-derivative operator. Therefore, for PDEs that contain first and
second derivative terms, if the same first-derivative operator is used to approximate
both terms, the approximation to the second derivative term is one order lower than
that for the first-derivative term. Thus, in general, we search for GSBP operators
approximating the second derivative that use the same norm-matrix and are of the
same order as a given first-derivative operator. If they exist, these operators are one
order more accurate than the application of the first-derivative operator twice and
are denoted order matched. These ideas lead to the following definition:

Definition 5.3. Order-matched GSBP operator for the second-deriva-

tive: The matrix D2(B) ∈ RN×N is a GSBP operator approximating the second
derivative, ∂

∂x

(

B ∂U
∂x

)

, of degree p+ 1 and order p that is order matched to the GSBP
operator D1 = H−1Q of degree and order p, on a nodal distribution x, if it satisfies
the equations

(5.11) D2

(

diag
(

xk
))

xs = s(k + s− 1)xk+s−2, k + s ≤ p+ 1,

and is of the form

(5.12) D2(B) = H−1 [−M (B) + EBD1,b] , where M(B) =
N
∑

i=1

B(i, i)Mi.

The matrices Mi, B, and D1,b are ∈ RN×N , Mi is symmetric positive semi-definite,
B = diag(B(x1), . . . ,B(xN )), and D1,b is an approximation to the first derivative of
degree and order ≥ p+ 1.

If one takes B to be the identity matrix, then Definition 5.3 collapses onto that
given by Mattsson and Nordström [22] for classical SBP operators—defining the rele-
vant matrix in their definition as the sum of the Mi—where we do not specify further
restrictions on the form of the Mi in order to allow for GSBP operators. The ex-
tension to the variable-coefficient case, by taking the sum of matrices multiplied by
the variable coefficient, is an extension and simplification of the work by Kamakoti
and Pantano [16], who decompose the interior point operator of finite-difference ap-
proximations to the second derivative with a variable coefficient as the sum of the
variable coefficient multiplying a third-order tensor. Definition 5.3 can be applied to
dense-norm GSBP operators, though we do not pursue this further.

Applying the energy method to Definition 5.3 leads to terms similar to those
obtained using the application of the first-derivative operator twice. Consider dis-
cretizing (5.1) using a GSBP operator, as given in Definition 5.3, which results in the
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following semi-discrete system:

(5.13)
duh

dt
= H−1 [−M (B) + EBD1,b]uh.

Applying the energy method to (5.13) results in

(5.14)
d∥u∥2

H

dt
= 2uT

hEBD1,buh − 2uT
hM (B)uh.

We see that Definition 5.3 results in the correct boundary terms and a negative semi-
definite term, i.e., −2uT

hM (B)uh, as in the continuous case (5.2). However, it is not
fully mimetic of the continuous case. Nevertheless, with appropriate SATs, Definition
5.3 is sufficient to prove stability of the semi-discrete form of PDEs that do not contain
mixed derivatives. Further restrictions need to be applied to Definition 5.3 such that
stability can be proven for the semi-discrete form of PDEs with mixed derivatives.
One possibility is referred to as compatible operators [23], which leads to the following
definition:

Definition 5.4. Compatible and order-matched GSBP operator for

the second-derivative: A diagonal-norm order-matched GSBP operator, D2(B) ∈
RN×N , for the second derivative, is compatible with the first-derivative GSBP oper-
ator, D1 of order and degree p, if in addition to the requirements of Definition 5.3,

(5.15) M (B) = DT
1 HBD1 − R (B) , where R (B) =

N
∑

i=1

B(i, i)Ri,

where the Ri matrices are symmetric negative semi-definite, therefore,

(5.16) D2 (B) = H−1
[

−DT
1 HBD1 + R (B) + EBD1,b

]

.

The decomposition in (5.16) is inspired by the observation that the application of
the first-derivative GSBP operators twice to approximate the second derivative with
a variable coefficient can be reformulated as given in (5.3). The idea of construct-
ing classical SBP approximations to the second derivative as the application of the
first-derivative operator twice plus corrective terms was first proposed by Mattsson et
al. [23] and later used by Mattsson [19] to construct classical SBP operators to approx-
imate the second derivative with a variable coefficient. We say corrective terms since
not only has the term H−1R (B) been added, but EBD1 has been replaced by EBD1,b,
which can be construed as adding a corrective term to EBD1. The definition of com-
patible operators is limited to diagonal-norm operators. For the variable-coefficient
case, it is unclear how to prove stability using the energy method for compatible
dense-norm operators (see Mattsson and Almquist [20] for a discussion and potential
solution).

Applying the energy method to Definition 5.4 results in terms fully mimetic of
the continuous case. Discretizing (5.1) with a GSBP operator as given by Definition
5.4 results in the following semi-discrete equations:

(5.17)
duh

dt
= H−1

[

−DT
1 HBD1 + R (B) + EBD1,b

]

.



10 Generalized Summation-By-Parts Operators for Second Derivatives

Applying the energy method to (5.17) results in

(5.18)
d∥uh∥2H

dt
= 2uT

hEBD1,buh − 2 (D1uh)
T
HBD1uh + 2uT

hR (B)uh.

Now the right-hand side of (5.17) fully mimics the continuous case (5.2), where
2uT

hR (B)uh adds a term of order of the discretization error.
The compatibility that is necessary is between the first-derivative operators ap-

proximating the mixed derivatives and the second-derivative operator for the same
spatial direction. In addition, for an energy estimate to exist, with appropriate SATs,
the norms H of all operators in the same spatial direction must be the same. In prac-
tice, this means that all first-derivative terms are typically approximated using the
same GSBP operator.

Constructing the degree conditions (5.8) using the application of the first-deriva-
tive operator twice results in

(5.19) D1diag
(

xk
)

D1x
s = sD1x

s+k−1 = s(s+ k − 1)xs+k−2, s+ k ≤ p+ 1, s ≤ p.

Equations (5.19) show that only the degree conditions for s = p + 1, k = 0 are not
satisfied by the application of the first-derivative operator twice. This observation
leads to the following theorem:

Theorem 5.5. The existence of a diagonal-norm compatible and order-matched
constant-coefficient GSBP operator D2 of order p and degree p + 1 is sufficient for
the existence of a compatible and order-matched variable-coefficient GSBP operator
D2 (B), for p+ 1 ≤ N − 1 and N ≥ 3.

Proof. First, by Lemma (5.1), we must have at least three nodes to obtain an
approximation of at least first order. We assume that the constant-coefficient operator
exists, given as

(5.20) D2 = H−1
[

−DT
1 HD1 + Rc + ED1,b

]

.

Consider constructing the variable-coefficient operator as

(5.21) H−1

⎡

⎢
⎢
⎣
−DT

1 HBD1 +

N∑

i=1
bi

N
Rc + EBD1,b

⎤

⎥
⎥
⎦
,

where Rc and D1,b are from the constant-coefficient operator. As has been argued,
the additional degree conditions that must be satisfied are for (k, s) = (0, p+1). Since
(5.21) collapses onto the constant-coefficient operator for this condition, it automati-
cally satisfies these additional conditions. It remains to be shown that the remaining
degree conditions are still satisfied.

Now D1,b = D1 + A, where A is a corrective term such that D1,b is at least one
order more accurate than the first-derivative operator (see Definition 5.4). Using the
decomposition of the first derivative twice (5.3), (5.21) can be recast as

(5.22) D1BD1 + H−1

⎧

⎪
⎪
⎨

⎪
⎪
⎩

N∑

i=1
bi

N
Rc + EBA

⎫

⎪
⎪
⎬

⎪
⎪
⎭

.
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Examining the constant-coefficient version of (5.21), it can be seen that both Axs

and Rcx
s must be be the zero vector for xs for s ≤ p. Therefore, we have proven

that (5.21) leads to a compatible and order-matched GSBP operator for the second
derivative with a variable coefficient.

The implication of Theorem 5.5 is that the search for compatible and order-
matched GSBP operators for the variable-coefficient case reduces to the search for
compatible and order-matched GSBP operators for the constant-coefficient case. This
substantially simplifies both the proof that compatible and order-matched GSBP
operators exist for a given nodal distribution and the construction of such operators.
The implications of this will be further discussed in Section 6.

5.3. Alternative representation of GSBP operators with a repeating
interior point operator. In this section we show that operators constructed based
on ideas in Refs. 22, 23, 19, 9, 10, and 8 can be reformulated into a form based on the
ideas of Kamakoti and Pantano [16]. The alternative form of the operator is not only
convenient for analysis, but also from an implementation standpoint, as it reduces the
application of the operator to one loop. The alternative form is also advantageous for
the construction of implicit methods that require the linearization of the compatible
and order-matched GSBP operator, since the linearization is completely transparent.
Moreover, it is a convenient formalism for presenting particular instances of operators.

For operators with a repeating interior point operator, the added corrective terms
must result in an interior point operator that has the same bandwidth as the interior
point operator of the first-derivative operator, that is, a centered interior point oper-
ator of order 2p which is a function of the solution at 2p+ 1 nodes. On the interior,
the corrective term R (B) is the sum of second-order approximations to even deriva-
tives (see the supplementary material for more details). This form arises by noting
that minimum-stencil centered finite-difference operators can be decomposed as the
application of the first-derivative operator twice plus second-order approximations to
even derivatives [23].

The first form is given as

(5.23) D2(B) = H−1
[

−DT
1 HBD1 + R (B) + EBD1,b

]

,

where

(5.24) R (B) =
2p
∑

i=p+1

α
(p)
i h2i−1 (Di,p)

T
C
(p)
i BDi,p,

where R (B), Di,p, and C
(p)
i are all N ×N matrices. In the supplementary material,

we give more details on how to derive R (B) as well as the details of the operators
used in this paper. Constructed this way, for appropriate values of the α coefficients

and positive semi-definite C
(p)
i (see the supplementary material), the operators have

interior point operators that are of the same bandwidth as the first-derivative operator,
and the R (B) corrective term is guaranteed to be negative semi-definite, a necessary
condition for an energy estimate to exist.

Following the lead of Kamakoti and Pantano [16], we can reorganize (5.23) in
terms of the variable coefficient as

(5.25) D2(B) =
N
∑

i=1

B(i, i)Mi,
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where Mi in (5.25) are N × N matrices. Again, taking our cue from Kamakoti and
Pantano [16], the second form we propose is constructed by collapsing (5.25) by re-
taining only the nonzero blocks from the Mi. The resulting operator applied to a
vector u, with a slight abuse of notation, can be constructed as

(5.26) D2 (B)u =
g

∑

i=1

B(i, i)Fiui + F̃iuN−i+1 +
N−g
∑

i=g+1

B(i, i)FINTui,

where the F̃i matrices are the permutation of the rows and columns of the Fi matri-
ces. The ui are portions of the vector u, and FINT is a matrix that originates from
the coefficients of the interior point operator. Form (5.26) is to be understood as
constructing the vector D2 (B)u using the sequence implied by the right-hand side of
(5.26). The transition from form (5.23) to (5.25) and finally (5.26) is best understood
using a simple example.

Consider the following compatible and order-matched classical first-order second-
derivative SBP operator on five nodes:
(5.27)

4hD2 (B) =

⎡

⎢
⎢
⎢
⎢
⎣

10b1 − 6b2 8b2 − 16b1 −2b2 + 6b1 0 0
4b2 2b1 − 2b3 − 8b2 −2b1 + 4b2 + 2b3 0 0

−b2 + b1 −2b1 + 4b2 + 2b3 −3b2 − 3b4 + b1 − 4b3 + b5 2b3 + 4b4 − 2b5 −b4 + b5
0 0 2b3 + 4b4 − 2b5 −2b3 + 2b5 − 8b4 4b4
0 0 −2b4 + 6b5 8b4 − 16b5 −6b4 + 10b5

⎤

⎥
⎥
⎥
⎥
⎦

,

where we have used the short form bi = B(i, i). Using form (5.25) we have

(5.28) D2 (B)u =
5

∑

i=1

biMiu,

where

(5.29) 4h2M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 −16 6 0 0

0 2 −2 0 0

1 −2 1 0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 4h2M2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−6 8 −2 0 0

4 −8 4 0 0

−1 4 −3 0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(5.30) 4h2M3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

0 −2 2 0 0

0 2 −4 2 0

0 0 2 −2 0

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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(5.31) 4h2M4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

0 0 0 0 0

0 0 −3 4 −1

0 0 4 −8 4

0 0 −2 8 −6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 4h2M5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

0 0 0 0 0

0 0 1 −2 1

0 0 −2 2 0

0 0 6 −16 10

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that M4 and M5 are equal to the permutation of the rows and columns of M2

and M1, respectively. On this five node mesh (5.26) is given by
(5.32)
D2 (B)u = b1F1u(1 : 3) + b2F2u(1 : 3) + b3F3u(2 : 4) + b4F4u(3 : 5) + b5F5u(3 : 5),

where

(5.33)
F1 = M1(1 : 3, 1 : 3) F2 = M2(1 : 3, 1 : 3), F3 = M3(2 : 4, 2 : 4),

F4 = M4(3 : 5, 3 : 5), F5 = M5(3 : 5, 3 : 5).

To apply (5.26) to more than five nodes only requires shifting the indices of u and
adding more applications of F3. Thus, for N nodes we have

(5.34)

D2 (B)u = b1F1u(1 : 3) + b2F2u(1 : 3)

+bN−1F4u(N − 2 : N) + bNF5u(N − 2 : N)

+
N−2∑

i=3
biFINTu(i− 1 : i+ 1),

where FINT = F3.
Form (5.26) demonstrates that the increased computational expense between a

finer mesh and a coarse mesh originates from the increased application of FINT. Table
1 delineates the number of nonzero elements in FINT that result for p ∈ [1, 4] and
we find that for p ≤ 3 the number of floating point operations to implement the
interior point operator is greater for the compatible and order-matched operators, as
compared to the application of the first-derivative operator twice, even though the
stencil size is the same. This contrasts with the constant-coefficient case, where the
resultant operator not only has a smaller interior stencil, but the number of floating
point operations required to build the interior point operator is 2p + 1 as compared
to 4p + 1 required to build the interior point operator from the application of the
first-derivative operator twice. We remark that for the constant-coefficient operator
it is more efficient to add the various matrices in (5.23) once and for all and apply
the operator point-wise.

6. Construction of GSBP operators for the second derivative.

6.1. Preliminaries. For compatible order-matched GSBP operators it is nec-
essary to first solve for the first-derivative GSBP operator, the degree conditions for
which are given by

(6.1) Qxj = jHxj−1, j ∈ [0, p].
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Table 1
The number of nonzero entries in FINT

p D2(B) D1BD1

1 7 4
2 19 16
3 37 36
4 61 64

p (2p+ 1) + 2
p∑

i=1
p+ i 4p2

The solution to the degree conditions (5.8) and (6.1) typically results in free parame-
ters that must be specified. This naturally leads to the concept of optimization. Here
we use the discrete GSBP L2 inner product of the error as the objective function to
be minimized. For the first-derivative operator, D1 of order p, we obtain

(6.2) Jp+1 = eTp+1Hep+1,

where the error vector is

(6.3) ep+1 = D1x
p+1 − (p+ 1)xp.

For GSBP operators approximating the second derivative with a variable coefficient,
there are several error vectors, each of which is given by

(6.4) ek,s = D2

(

diag
(

xk
))

xs − s(s+ k − 1)xs+k−2, k + s = p+ 2

and the objective function is constructed as

(6.5) Jp+2 =
p+2
∑

i=0

(ei,p+2−i)
T
Hei,p+2−i.

6.2. Operators with a repeating interior point operator: Classical SBP

and hybrid Gauss-trapezoidal operators. In addition to classical SBP operators
on uniform grids, we also examine operators with a repeating interior point operator
that have a number of nodes near the boundaries that are not equally spaced. This
idea was first proposed by Mattsson et al. [21]. These operators have some very
attractive properties. By allowing the nodal spacing to vary near the boundaries, it
is possible to reduce the magnitude of the error originating from the point operators
near and at boundary nodes [21]. For diagonal-norm classical SBP operators this is
particularly beneficial, as the order of the operator reduces by half at these nodes. The
construction of these operators follows the same steps as for classical SBP operators
and so we use form (5.23).

Deriving the optimal nodal locations beyond two or three nodes while at the
same time ensuring that a positive-definite norm matrix can be found is difficult [21].
Alternatively, Del Rey Fernández et al. [7] have proven that the norm matrix of
a GSBP operator is associated with a quadrature rule of certain degree. Thus, if
quadrature rules with the desired properties exist, then those nodal locations can
be used to construct GSBP operators. It turns out that Alpert [1] proposed such
quadrature rules guaranteed to have positive weights up to degree twenty. The nodal
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locations and quadrature weights are determined from the solution to

(6.6)

j∑

i=1
w̃ix̃

r
i = Br+1(a)

r+1 , r = 0, 1, . . . , 2j − 2,

where Bi (x) is the ith Bernoulli polynomial, and B0 (x) = 1, and the parameters a
and j are chosen so that a particular degree is attained. If they are chosen such that
a = j, which is the approach taken here, then it is possible to show that the resultant
quadrature rule has positive weights up to degree twenty [1]. To enforce a node at
the left boundary the equations (6.6) are constrained by

(6.7) x̃1 = 0.

Since the resultant nodal distribution is symmetric it thus includes both boundary
nodes. We consider two nodal distributions: 1) hybrid Gauss-trapezoidal (HGT),
which does not include the boundary nodes, and 2) hybrid Gauss-trapezoidal-Lobatto
(HGTL), which does include the boundary nodes. To construct a nodal distribution
on x ∈ [0, 1] and quadrature weights, the following relations are used:

(6.8)

xi = hx̃i, xn−(i−1) = 1− hx̃i, i ∈ [1, j],

xi+j+1 = h(a+ i), i ∈ [0, n− 1],

ωi = hω̃i ∀i ∈ [1, j] and ωi = h for the remaining i,

where h = 1
n+2a−1 , n is the number of uniformly distributed nodes, the total number

of nodes is given as N = n+ 2j, and ωi are the quadrature weights, i.e.

(6.9)

xR∫

xL

fdx ≈
j

∑

i=1

(f(xi) + f(xN−i+1))ωi +
N−j
∑

i=j+1

f(xi)h.

Rather than using the quadrature rules given by Alpert [1], we use only his nodal
distributions. This is done to allow variation in the quadrature weights at the first
2p nodes which contain some of the equally spaced nodes; otherwise, we can only
construct element-type operators using the H norm matrix that results from Alpert’s
quadrature rules. Thus, the resultant norm matrix H and associated quadrature rules,
which are different from those given by Alpert [1], naturally result from the solution
to the degree conditions.

We summarize the steps taken to construct both classical SBP operators and the
hybrid Gauss-trapezoidal-Lobatto and hybrid Gauss-trapezoidal operators:

• solve the degree conditions (6.1) for the first-derivative GSBP operator;
• minimize Jp+1 (6.2) if there are free parameters;
• set any remaining free parameters to zero;
• construct the GSBP operator for the second derivative using (5.23);
• form and solve the first 2p degree conditions (5.8);
• choose a family of operators and specify free parameters through optimiza-

tion, using the objective function (6.5), with the constraint that the C
(p)
i

matrices in (5.24) are positive semi-definite; and then
• set any remaining free parameters to zero.
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The form (5.23) leads to nonlinear degree conditions and hence multiple families
of solutions. Each one of these families can be optimized with the constraint that the

C
(p)
i matrices are positive semi-definite. Some of these families are more difficult to

optimize than others, in particular for hybrid Gauss-trapezoidal-Lobatto and hybrid
Gauss-trapezoidal operators. Here we choose one family for each operator that is
easily optimized by Maple c⃝ for operators of orders two and three. However, for order
four hybrid Gauss-trapezoidal-Lobatto and hybrid Gauss-trapezoidal operators we
had significant difficulty solving the degree conditions and had to resort to manually
zeroing the undetermined coefficients and the general solution to the degree conditions
for these operators is still an open question.

6.3. Diagonal-norm GSBP operators on Gauss quadrature nodal dis-
tributions. We construct a number of diagonal-norm GSBP operators on Gauss
quadrature nodal distributions. Definition 5.4 requires the construction of R (B). In
the most general case, R (B) can be constructed as

(6.10) R(B) =
N
∑

i=1

B(i, i)Ri,

with the restriction that Ri is symmetric negative semi-definite for all i. This formu-
lation leads to linear degree conditions (5.8), but nonlinear constraints for Ri to be
symmetric negative semi-definite. Alternatively, Ri is constructed to be symmetric
negative semi-definite as follows:

(6.11) Ri = −LTi ΛiLi,

where Li is lower unitriangular and Λi is a diagonal matrix. Now the constraint that
Ri be symmetric negative semi-definite reduces to the constraint that Λi be positive
semi-definite; however, the degree conditions become nonlinear. Although (6.11) is
guaranteed to result in compatible order-matched operators, if solutions can be found,
the resultant system of equations is very difficult to solve, particularly for operators
with many nodes. This motivates the search for simplifications of R (B), as have been
found for classical SBP operators (see the supplementary material).

Rather than the above, we seek a construction of R (B) such that it is of the
form (6.10) and satisfies the requirement that Ri be symmetric negative semi-definite,
but does not require the solution of a large system of nonlinear equations. We do
this by taking advantage of Theorem 5.5. We first solve for the constant-coefficient
compatible and order-matched GSBP operator for the second derivative, given by

(6.12) D2 = H−1
[

−DT
1 HD1 + Rc + ED1,b

]

,

which has degree conditions

(6.13) D2x
k = k(k − 1)xk−2, j ∈ [0, p+ 1].

By Theorem 5.5, if Rc is symmetric negative semi-definite, then a compatible and
order-matched GSBP operator is given by

(6.14) D2 (B) = H−1

[

−DT
1 HBD1 +

N
∑

i=1

B(i, i)

N
Rc + EBD1,b

]

.

The general steps to construct compatible and order-matched GSBP operators,
given a nodal distribution x, are as follows:
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• solve the degree conditions (6.1) for the first-derivative GSBP operator;
• minimize Jp+1 (6.2) if there are free parameters;
• set any remaining free parameters to zero;
• solve the degree conditions for the constant-coefficient second derivative
(6.13);

• use free parameters to ensure that Rc is negative semi-definite; and then
• optimize using Jp+2 (6.5) and set any remaining free parameters to zero.

As examples, we have constructed element-type operators on the Chebyshev-
Gauss quadrature nodes defined by

(6.15) xk = − cos

(
(2k + 1)π

2 (N − 1) + 2

)

, k ∈ [0, N − 1]

Even though the first-derivative GSBP operators are constructed on the Chebyshev-
Gauss quadrature nodes, the operators that are obtained are not the classical pseudo-
spectral difference operators associated with that nodal distribution, which have dense
norms [26].

As a point of comparison, we construct operators on the Legendre-Gauss-Lobatto
quadrature nodes, for which the resulting pseudo-spectral difference operators have
been shown to be diagonal-norm GSBP operators [11]. The nodal distribution, for N
nodes, is given by the solution to

(6.16)
dPN−1

dx
= 0,

where the Legendre polynomial, PN , has the explicit representation

(6.17) PN−1 =
1

2N

N
∑

k=0

(
N

k

)2

(x− 1)N−k (x+ 1)k .

6.4. Summary of operators. Table 2 lists the abbreviations used to refer to
the GSBP operators studied in Section 7. The arguments of the abbreviations can
take the following values:

• F2 for the application of the first-derivative operator twice or CO for com-
patible and order-matched operators

• elem denotes that the operator is applied using the element approach, while
trad is an operator applied using the traditional finite-difference approach

• N is the number of nodes in each element (not applicable to operators applied
using the traditional finite-difference approach)

• p is the order of the second-derivative operator
The operators used in this paper are available electronically, and their description

is given in the supplementary material. The degree and order of operators as the
application of the first-derivative operator twice, on the Chebyshev-Gauss quadrature
node with N nodes, are given as

(6.18) degree = ⌈N
2 ⌉, and order = ⌈N

2 ⌉ − 1,

where ⌈·⌉ is the ceiling operator which returns the closest integer greater than or
equal to the argument. For compatible and order-matched operators on these nodal
distributions, the relationship is given as

(6.19) degree = ⌈N
2 ⌉+ 1, and order = ⌈N

2 ⌉.
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Table 2
Abbreviations for GSBP operators1

Abbreviation Operator
LGL

(

F
2, elem, N, p

)

Diagonal-norm element-type GSBP opera-
tors constructed on the Legendre-Gauss-
Lobatto quadrature nodes.

CG
(

F
2
or CO, elem, N, p

)

Diagonal-norm element-type GSBP opera-
tors constructed on the Chebyshev-Gauss
quadrature nodes.

CSBP
(

F
2
or CO, elem or trad, N, p

)

Diagonal-norm classical SBP operator with
a repeating interior point operator.

HGTL
(

F
2
or CO, elem or trad, N, p

)

Diagonal-norm GSBP operators on the hy-
brid Gauss-trapezoidal-Lobatto nodal distri-
bution with a repeating interior point oper-
ator.

HGT
(

F
2
or CO, elem or trad, N, p

)

Diagonal-normGSBP operator on the hybrid
Gauss-trapezoidal nodal distribution with a
repeating interior point operator.

On the Legendre-Gauss-Lobatto quadrature nodes, withN nodes, the first-deriva-
tive operator is of degree N−1. This means that the application of the first-derivative
operator is of degree N − 1 and is therefore of maximum degree as per Lemma (5.2).
We therefore cannot construct compatible and order-matched operators on this nodal
distribution.

Finally, for operators with a repeating interior point operator, the following rela-
tions hold for the application of the first-derivative operator twice, of order p:

(6.20) degree = p, and order = p− 1,

while for order-matched operators, the relationship is given as

(6.21) degree = p+ 1, and order = p.

7. Numerical results. In this section, various GSBP operators are character-
ized in the context of the steady linear convection-diffusion equation given as

(7.1) −a
∂U
∂x

+ µ
∂

∂x

(

B
∂U
∂x

)

+ S = 0, x ∈ [xL, xR], B > 0,

with boundary conditions

(7.2) αxLUxL + βxLBxL
∂U
∂x

∣
∣
xL

= GxL and αxRUxR + βxRBxR
∂U
∂x

∣
∣
xR

= GxR .

1The parameter N is only relevant to operators applied using the element approach.
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We solve (7.1), subject to (7.2) with a variable coefficient given by

(7.3) B = 2 + sin (10x) ,

We set a = 1 and µ = 1
10 and solve on the domain x ∈

[
32
100 ,

94
100

]

, while the source
term S and the functions GxL and GxR are chosen such that the solution to (7.1) and
(7.2) is

(7.4) U(x) = exp

(

a
µ

(
tan−1

(

2 tan(5x)+1√
3

)

5
√
3

))

.

The discrete equations for a single block or element are given as

(7.5)
−aD1uh + µH−1

[

−DT
1 HBD1 + R(B) + EBD1,b

]

uh

+SATxL + SATxR + s = 0,

where the additional two terms are the SATs to impose the boundary conditions. The
SATs are constructed to mimic the continuous boundary conditions (7.2) and have
the form

(7.6)
SATxL = σxLH

−1ExL (αxLuh + βxLBD1,buh − 1GxL) ,

SATxR = σxRH
−1ExR (αxRuh + βxRBD1,buh − 1GxR) ,

where 1 is a vector of ones. The terms within the parentheses are an approximation
of the boundary conditions; the rest of the SAT is constructed to allow the energy
method to be applied, with the additional parameters σ chosen so that the method is
stable (for more information about the SATs used in this section see [12]).

The extension to a multi-element approach necessitates SATs for inter-element
coupling, in addition to the boundary SATs (7.6), and in this paper we use the
Baumann-Oden type interface SATs [12]. Consider two abutting elements, with so-
lution uh in the left element and solution vh in the right element. The SAT for the
right boundary of the left element is [12]

(7.7)

SATuh
= σ

(uh)
1 H−1

uh

(

Euh,xRuh − tuh,xRt
T
vh,xL

vh

)

+σ
(uh)
2 H−1

uh

(

Euh,xRBuh
D1,buh

uh − tuh,xRt
T
vh,xL

Bvh
D1,bvh

vh

)

+σ
(uh)
3 H−1

uh
(D1,buh

)T Buh

(

Euh,xRuh − tuh,xRt
T
vh,xL

vh

)

,

where the subscripts uh and vh are used to identify operators for the left and right
elements, and

(7.8)
Quh

+ QT
uh

= Euh,xR − Euh,xL = tuh,xRt
T
uh,xR

− tuh,xLt
T
uh,xL

,

Qvh
+ QT

vh
= Evh,xR − Evh,xL = tvh,xRt

T
vh,xR

− tvh,xLt
T
vh,xL

.

The SAT for the left boundary of the right element is given as

(7.9)

SATvh
= σ

(vh)
1 H−1

vh

(

Evh,xLvh − tvh,xLt
T
uh,xR

uh

)

+σ
(vh)
2 H−1

vh

(

Evh,xLBvh
D1,b vh

vh − tvh,xLt
T
uh,xR

Buh
D1,buh

uh

)

+σ
(vh)
3 H−1

vh
(D1,bvh

)T Bvh

(

Evh,xLvh − tvh,xLt
T
uh,xR

uh

)

.
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For the numerical studies in this paper, the following values for the boundary
condition and SAT parameters, based on the analysis in [12], are used:

(7.10)

αxL = a βxL = −µ αxR = 0 βxL = µ

σxL = µ
βxL

σxR = −µ
βxR

σ
(uh)
1 = a

2 σ
(uh)
2 = µ σ

(uh)
3 = −µ− σ

(uh)
2

σ
(vh)
1 = σ

(uh)
1 − a σ

(vh)
2 = σ

(uh)
2 + µ σ

(vh)
3 = −σ

(uh)
2 .

The solution error is defined by

(7.11) ∥e∥H =
√

eTH̄e,

where e = (uh − ua), ua is the restriction of the analytical solution onto the grid,
and H̄ is a diagonal matrix with the norm matrix, H, from each element along the
diagonal.

Figures 1 through 4 present the convergence of the ∥e∥H versus 1
DOF as well as

the cpu time to compute the left-hand side (LHS) of (7.5), where DOF stands for
the number of degrees of freedom in the spatial operator. For operators implemented
using the traditional finite-difference approach, the number of degrees of freedom is
simply the number of nodes, while for element-type operators, it is the product of
the number of elements and the number of nodes in each element. Table 3 gives the
convergence rates, computed by determining the slope of the line of best fit through
the points (x, y) = (log(h), log(∥e∥H)) associated with the filled-in markers in the
figures. For operators implemented using the traditional finite-difference approach,
h is taken as the average spacing between nodes, i.e., xR−xL

N−1 , while for elements,
h is computed as the size of the element. In this paper, grid refinement using the
traditional finite-difference approach is carried out by doubling the number of nodes,
while grid refinement using the element approach is carried out by equally subdividing
elements, starting with one element at the coarsest grid level.

For operators with a repeating interior point operator, Figures 1 through 3, two
main trends emerge. First, implementing the operators using the traditional finite-
difference approach significantly reduces the global error. Second, compatible and
order-matched operators are more accurate and more efficient than the application of
the first-derivative operator twice. Examining Table 3, we see that for the traditional
finite-difference approach, the operators have a convergence rate of roughly the order
of the second-derivative operator plus two, which is consistent with the theory of
Svärd and Nordström [28]. In contrast, the convergence rates using the element
approach are worse for even-order compatible and order-matched operators, while the
order of accuracy of application of the first-derivative operator twice is unaffected.
Overall, we find that hybrid Gauss-trapezoidal and hybrid Gauss-trapezoidal-Lobatto
operators are more accurate and therefore, in most cases, more efficient than either
the application of classical SBP first-derivative operators twice or their compatible
and order-matched counterparts.

For element-type operators, our interest is first to verify that operators con-
structed by leveraging Theorem 5.5, i.e., the compatible and order-matched operators
constructed on the Chebyshev-Gauss nodal distribution, have reasonable performance.
Second, we want to determine if we can find operators that provide some advantage



David C. Del Rey Fernández and David W. Zingg 21

over the commonly used Legendre-Gauss-Lobatto operators. Figure 4 demonstrates
that the five-node Chebyshev-Gauss compatible and order-matched operator is more
efficient than either the application of the first-derivative-twice on that same nodal
distribution, or the four-node Legendre-Gauss-Lobatto operator. Moreover, the appli-
cation of the first derivative twice Chebyshev-Gauss operator is more efficient than the
Legendre-Gauss-Lobatto operator. In that same Figure, we see that both seven-node
Chebyshev-Gauss operators are as efficient as the five-node Legendre-Gauss-Lobatto
operator. Moreover, we find that all of the compatible and order-matched operators
with a repeating interior point operator, implemented as elements, are significantly
more efficient than the Legendre-Gauss-Lobatto operators.

One possible reason for some of the suboptimal convergence rates experienced
either by the element-type operators or operators with a repeating interior point
operator applied as elements may be related to our use of the Baumann-Oden [2]
interface SATs. Previous studies using such SATs have also shown suboptimal con-
vergence rates for pseudo-spectral operators [5, 6], and it is possible that the same
mechanisms are at play here.
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Fig. 1. Solution error obtained using operators with a repeating interior point operator of
order four implemented using the element approach or the traditional finite-difference approach. H

norm of the error in the solution to problem (7.1) versus 1
DOF , (a) and (c), or versus cpu time to

construct the LHS, (b) and (d). The hybrid Gauss-trapezoidal and hybrid Gauss-trapezoidal-Lobatto
nodal distributions were constructed with a = j = 2.
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Fig. 2. Solution error obtained using operators with a repeating interior point operator of order
six using the element approach or the traditional finite-difference approach. H norm of the error in
the solution to problem (7.1) versus 1

DOF , (a) and (c), or versus cpu time to construct the LHS,
(b) and (d). The hybrid Gauss-trapezoidal and hybrid Gauss-trapezoidal-Lobatto nodal distributions
were constructed with a = j = 3.
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Fig. 3. Solution error obtained using operators with a repeating interior point operator of
order eight implemented using the element approach or the traditional finite-difference approach. H

norm of the error in the solution to problem (7.1) versus 1
DOF , (a) and (c), or versus cpu time to

construct the LHS, (b) and (d). The hybrid Gauss-trapezoidal and hybrid Gauss-trapezoidal-Lobatto
nodal distributions were constructed with a = j = 4.
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Fig. 4. Comparison of various second-derivative operators of order two and three, (a) and (b),
or three and four, (c) and (d). H norm of the error in the solution to problem (7.1) versus 1

DOF ,
(a) and (c) or versus cpu time to construct the LHS, (b) and (d). The first-derivative operator in
(a) and (b) is of order three and therefore the application of the first-derivative operator is of order
two, while for (c) and (d) the first-derivative operator is of order four and therefore the application
of the first-derivative twice is of order three.
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Table 3
Convergence of the H norm of the error of the solution to problem (7.1) with a variable coefficient

Application of the

first-derivative

operator twice

implemented using

the element

approach

Compatible and

order-matched

operators

implemented using

the element

approach

Application of the

first-derivative

operator twice

implemented using

the traditional

finite-difference

approach

Compatible and

order-matched

operators

implemented using

the traditional

finite-difference

approach

Operator CSBP
(

F2, elem, 13, 1
)

CSBP(CO, elem, 13, 2) CSBP
(

F2, trad, –, 1
)

CSBP(CO, trad, –, 2)

Order 3.134 3.534 2.9939 4.2867
Operator HGTL

(

F2, elem, 13, 1
)

HGTL(CO, elem, 13, 2) HGTL
(

F2, trad, –, 1
)

HGTL(CO, trad, –, 2)

Order 3.1485 3.4247 2.9941 4.2364
Operator HGT

(

F2, elem, 13, 1
)

HGT(CO, elem, 13, 2) HGT
(

F2, trad, –, 1
)

HGT(CO, trad, –, 2)

Order 3.0184 3.8143 2.9815 4.2693
Operator CSBP

(

F2, elem, 19, 2
)

CSBP(CO, elem, 19, 3) CSBP
(

F2, trad, –, 2
)

CSBP(CO, trad, –, 3)

Order 4.027 4.8954 3.9855 5.0286
Operator HGTL

(

F2, elem, 19, 2
)

HGTL(CO, elem, 19, 3) HGTL
(

F2, trad, –, 2
)

HGTL(CO, trad, –, 3)

Order 4.1057 5.0385 4.2211 5.234
Operator HGT

(

F2, elem, 19, 2
)

HGT(CO, elem, 19, 3) HGT
(

F2, trad, –, 2
)

HGT(CO, trad, –, 3)

Order 3.8703 5.2723 3.7329 4.9415
Operator CSBP

(

F2, elem, 25, 3
)

CSBP(CO, elem, 25, 4) CSBP
(

F2, trad, –, 3
)

CSBP(CO, trad, –, 4)

Order 5.3374 5.7061 5.8418 6.1933
Operator HGTL

(

F2, elem, 25, 3
)

HGTL(CO, elem, 25, 4) HGTL
(

F2, trad, –, 3
)

HGTL(CO, trad, –, 4)

Order 5.4085 5.5649 5.0517 5.8663
Operator HGT

(

F2, elem, 25, 3
)

HGT(CO, elem, 25, 4) HGT
(

F2, trad, –, 3
)

HGT(CO, trad, –, 4)

Order 5.9434 5.6913 6.0576 6.1888
Operator CG

(

F2, elem, 5, 2
)

CG(CO, elem, 5, 3)

Order 3.9836 3.8073
Operator LGL

(

F2, elem, 4, 2
)

Order 3.1959
Operator CG

(

F2, elem, 7, 3
)

CG(CO, elem, 7, 4)

Order 4.683 4.9015
Operator LGL

(

F2, elem, 5, 3
)

Order 3.5814
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8. Conclusions and future work. In this paper, we extended the generalized
summation-by-parts operators developed in [7] to the second derivative with a con-
stant or variable coefficient. We proposed definitions for operators that are one order
more accurate than the application of the first-derivative operator twice, and in addi-
tion, operators that are compatible with the first-derivative operator. The principal
conclusion that can be drawn from this paper is that it is possible to construct com-
patible and order-matched operators that are more accurate and efficient than the
application of diagonal-norm classical SBP first-derivative operators twice. A future
extension of this work is to multidimensional operators that can be applied to, for
example, triangles and tetrahedra. Such operators are naturally used in the context
of unstructured meshes and therefore represent a potentially effective strategy for
the discretization of PDEs with second-derivative terms, such as the Navier-Stokes
equations. Specific conclusions that can be drawn are:

• The hybrid Gauss-trapezoidal and hybrid Gauss-trapezoidal-Lobatto opera-
tors offer accuracy and efficiency gains relative to classical SBP operators.

• The compatible and order-matched versions of the above-mentioned GSBP
operators, implemented as elements, are significantly more efficient than the
examined Legendre-Gauss-Lobatto operators.

• Theorem 5.5 greatly simplifies the construction of compatible and order-
matched GSBP operators, and the resultant operators are either more efficient
or as efficient as the Legendre-Gauss-Lobatto operators.

Additional directions for future research include 1) to further explore element-
type operators, for example using Alpert’s quadrature rules to construct families
of element-type operators; 2) to determine if more accurate and efficient element-
type operators can be constructed by using the more general form of R (B); and 3)
to determine whether using a different inter-element coupling SAT (for example see
Refs. 5, 6, and 12) can improve the performance of compatible and order-matched
operators.
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