
Aerodynamic Optimization Algorithm with Integrated
Geometry Parameterization and Mesh Movement

Jason E. Hicken∗ and David W. Zingg†

University of Toronto, Toronto, Ontario M3H 5T6, Canada

DOI: 10.2514/1.44033

An efficient gradient-based algorithm for aerodynamic shape optimization is presented. The algorithm consists of
several components, including a novel integrated geometry parameterization and mesh movement, a parallel
Newton–Krylov flow solver, and an adjoint-based gradient evaluation. To integrate geometry parameterization and
mesh movement, generalized B-spline volumes are used to parameterize both the surface and volume mesh. The
volumemesh ofB-spline control pointsmimics a coarsemesh; a linear elasticitymesh-movement algorithm is applied
directly to this coarsemeshand thefinemesh is regenerated algebraically.Using this approach,mesh-movement time
is reduced by two to three orders of magnitude relative to a node-based movement. The mesh-adjoint system also
becomes smaller and is thus amenable to complex-step derivative approximations. When solving the flow-adjoint
equations using restarted Krylov-subspace methods, a nested-subspace strategy is shown to be more robust than
truncating the entire subspace.Optimization is accomplished using a sequential-quadratic-programming algorithm.
The effectiveness of the complete algorithm is demonstrated using a lift-constrained induced-dragminimization that
involves large changes in geometry.

I. Introduction

T HE aircraft industry faces two critical challenges in the 21st
century: climate change [1] and peak oil production [2,3]. These

problems may eventually be solved by alternative fuels such as
hydrogen and bio-kerosene. However, when production emissions
are included, these alternative fuels presently produce more green-
house gases than traditional kerosene [4]. Alternative fuels must
therefore be considered a long-term solution.

In the near term, unconventional aircraft configurations offer the
potential for reduced emissions and improved fuel efficiency. For
example, design studies of the blended-wing body suggest a 27%
reduction in fuel burn per seat mile compared with a conventional
composite aircraft [5]. But can we do better than this? In particular,
can we use numerical optimization to discover radically new
concepts in aircraft design?

Using numerical optimization to uncover novel configurations
is an exciting prospect, but there are significant challenges. The
required optimization algorithmwill involvemultiple disciplines and
high-fidelity analysis codes. The present work is focused on the
aerodynamic discipline with a view to incorporating the resulting
modules with other disciplines in subsequent work. Moreover, we
consider only clean aerodynamic configurations of fixed topology;
holes cannot be created or removed during the optimization.

Even if we limit ourselves to aerodynamic optimization, the
questions posed above remain very difficult. For example, any hope
of finding novel drag-reduction concepts requires a highly flexible
and efficient geometry parameterization. Without a flexible
parameterization, the optimization algorithm may not reveal new

concepts. If the parameterization is inefficient, the algorithmmay use
more design variables than necessary and converge slowly.

No method of parameterization is clearly superior to all others.
Nevertheless, for clean aerodynamic configurations with fixed
topologies, there are several arguments in favor of patched B-spline
surfaces. From approximation theory, we know that the space of
(p ! 1)-degree splines converges asymptotically to any function
f 2 Cp!1"a; b# with order p [6]. In particular, cubic B-splines will
converge at a fourth-order rate to the smooth geometries typically
used in aerodynamics (indeed, many geometries used in the
aerospace industry are B-splines). Although approximations based
on Fourier continuation [7] or Chebyshev partial sumsmay converge
faster, B-splines offer other advantages, such as local control of the
geometry. More complicated geometries, involving a finite number
of piecewise-smooth surfaces, can be readily approximated by
joining the individual B-spline patches along their edges. For the
above reasons, we have chosen to parameterize geometries using
B-spline surfaces.

To address our motivating question, we also need a robust and fast
mesh-movement algorithm. Algebraic mesh movement can be fast
[8–10], but is typically limited to small shape changes. Liu et al. [11]
developed an algebraic mesh movement based on mapping the mesh
to a Delaunay graph. They demonstrate that the Delaunay graph
approach is robust for large shape changes, provided multiple
increments are used; however, analysis of their method suggests that,
in general, using multiple increments produces a discontinuous
objective function. This may limit the approach to gradient-free
optimization methods.

Batina [12] introduced spring-analogy mesh movement, which
models the mesh edges as springs. Although more robust than many
algebraic algorithms, the spring-analogy method can produce
negative cell volumes [13]. To address this problem, torsional [14,15]
and semitorsional [16,17] springs have been incorporated into the
spring-analogy method. These extensions greatly enhance the
robustness of the spring analogy, but they also increase the compu-
tational cost.

Johnson and Tezduyar [18] demonstrated that the equations of
linear elasticity can be used to achieve robust mesh movement, even
for large shape changes. This approach has been used successfully
for aeroelastic problems [19] and aerodynamic optimization [13,20].
Unfortunately, the equations of linear elasticity are typically less
diagonally dominant than the spring-analogy equations, so the
elasticity approach tends to be more computationally expensive.

Jakobsson and Amoignon [21] developed a promising mesh-
movement algorithm based on radial basis functions (RBFs). In RBF

Presented as Paper 6079 at the 12th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Victoria, British Columbia, Canada,
10–12 September 2008; received 26 February 2009; revision received 11
September 2009; accepted for publication 15 October 2009. Copyright ©
2009 by J. E. Hicken andD.W. Zingg. Published by the American Institute of
Aeronautics andAstronautics, Inc., with permission. Copies of this papermay
be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0001-1452/10 and $10.00 in
correspondence with the CCC.

∗Postdoctoral Fellow, Institute for Aerospace Studies. Student Member
AIAA.

†Professor and Director, Canada Research Chair in Computational
Aerodynamics, J. Armand Bombardier Foundation Chair in Aerospace
Flight. Associate Fellow AIAA.

AIAA JOURNAL
Vol. 48, No. 2, February 2010

400

http://dx.doi.org/10.2514/1.44033

mesh movement, the surface displacements are interpolated into the
interior. This interpolation problem is relatively fast, although the
resultingmeshmay not interpolate the geometry unless the geometry
is also parameterized using radial basis functions [21]. Indeed, such a
parameterization is proposed by Allen and Rendall [22] and Morris
et al. [23], who implemented an integrated approach based on
RBFs for both mesh-movement and free-form deformation of the
geometry.

Our proposed mesh-movement algorithm also uses ideas from
free-form deformation [24] and integrates geometry parameter-
ization with mesh movement. Integration is achieved by parameter-
izing the mesh using the control points of B-spline volumes. The
control points corresponding to the surface nodes are adopted as the
design variables; hence, the geometry is parameterized as a B-spline
surface, as desired. Mesh movement is accomplished by applying
any standard movement algorithm to the coarse B-spline grid. Thus,
the proposed integrated approach provides an entire class of efficient
mesh-movement algorithms while simultaneously representing the
geometry as a B-spline surface. Details regarding the integrated
method can be found in Sec. II.

The flow solver plays a critical role in an aerodynamic optimi-
zation algorithm. The solver must provide accurate aerodynamic
analyses for the range of geometries encountered during an
optimization. Moreover, these analyses must be performed rapidly
if the optimization is to be practical. To meet these requirements, we
use an efficient parallel Newton–Krylov flow solver [25], which we
briefly review in Sec. III.

Finally, wemust choose an optimization algorithm. Often, this is a
choice between fast local convergence (gradient-basedmethods) and
increased probability of finding the global optimum (stochastic
methods). Our target application, which will involve hundreds or
even thousands of design variables, will likely lead to a highly
multimodal design space. We say likely, because the complexity of
the design space is not obvious a priori. Clearly there will be local
optima (consider the different ways to achieve elliptical loading), but
will there be a few or many? If the former, then a gradient-based
algorithm with a simple multistart procedure will be sufficient. If the
latter, then a hybrid approach can be developed that couples a
stochastic global search with a gradient-based local search (see, for
example, Gage et al. [26] and Vicini and Quagliarella [27]). In either
case, gradients will provide invaluable information about the design
space.

To compute the gradient, an adjoint approach is adopted. By
introducing adjoint variables, Pironneau [28] showed that the
gradient can be calculated at a cost that is (virtually) independent of
the number of design variables. This adjoint-based gradient calcul-
ation was later pioneered by Jameson [29] within computational
aerodynamics and is now well established. A particular variation,
called the discrete adjoint method [30,31], ensures that the gradient is
exact with respect to the discrete objective function and compatible
with sophisticated nonlinear optimization algorithms.

The flow-adjoint variables are governed by a sparse linear system.
This system can be solved, for example, using Krylov iterative
methods [10,32–35] or by time-marching the system to steady state
[29,36,37]. Among Krylov iterative methods, the restarted genera-
lized minimal residual (GMRES) method [38] is popular for solving
the adjoint equations. However, restarted GMRES may exhibit
degraded and, in some cases, stalled convergence. In Sec. IV.A, we
demonstrate improved convergence of the adjoint problem by
applying a nested Krylov subspace method.

Nielsen and Park [39] and Truong et al. [20] included mesh-
movement adjoint variables in the gradient evaluation and demons-
trated improved efficiency. Unfortunately, forming the mesh-adjoint
equations can be tedious, depending on the complexity of the mesh-
movement algorithm. Our proposed mesh-movement algorithm
produces a relatively small mesh-adjoint system, which simplifies
code development, since its small size makes complex-step deri-
vative approximation [40–42] practical in the formation of the mesh-
adjoint equations (see Sec. IV.B).

The algorithm components are demonstrated by coupling them
with the SNOPT optimization software [43]. SNOPT is based on

the sequential-quadratic-programming paradigm and is designed
for nonlinear optimization problems with general (nonlinear)
constraints. The complete algorithm, incorporating the individual
components, is described and verified in Sec. V. Subsequently, we
present an optimization example to illustrate the algorithm in Sec. VI
and provide some concluding remarks in Sec. VII.

II. Integrated Geometry Parameterization
and Mesh Movement

A. B-Spline Volume Meshes and Modified Basis Functions

A B-spline tensor-product volume is a mapping from the cubic
domain

D$ f!$ %!; "; #& 2 "0; 1#3g

to P ' R3 and is defined by

x %!& $
XNi

i$1

XNj

j$1

XNk

k$1

BijkN
%p&
i %!&N %p&

j %"&N %p&
k %#& (1)

The points Bijk are the de Boor control points, or simply control
points. The functions N %p&

i %!& are the B-spline basis functions of
order p; they are (p ! 1)-degree spline polynomials joined at
nondecreasing knot locations. The first p and last p knots are equal
to 0 and 1, respectively (i.e., we use open knot vectors [44]).

A B-spline volume mesh [45,46] is produced from Eq. (1) by
discretizing the domainD. The parameters !, ", and # do not need to
be discretized in a uniform way. Indeed, nonuniform parameter
spacing is usually necessary for precise control of mesh spacing in
physical space. If a flow solver requires uniform mesh spacing in
parameter space, an intermediate mapping is implied.‡ A B-spline
volume and a corresponding mesh are illustrated in Fig. 1. Note that
B-spline volumes can also be generated by generalizing triangular
Bézier patches, which may be of interest to unstructured grid users.

The basis functions appearing in Eq. (1) are generalized to permit
curved knot lines [47]. For example, the basis functions in the !
direction are given by

N %1&
i %!; "; #& $

(
1 if Ti%"; #& (! < Ti)1%"; #&
0 otherwise

N %p&
i %!; "; #& $

!
! ! Ti%"; #&

Ti)p!1%"; #& ! Ti%"; #&

"
N %p!1&

i %!; "; #&

)
!

Ti)p%"; #& ! !

Ti)p%"; #& ! Ti)1%"; #&

"
N %p!1&

i)1 %!; "; #& (2)

where Ti%"; #& are the knot values. Analogous definitions generalize
the basis functions N %p&

j %"; #; !& and N %p&
k %#; !; "&. Readers familiar

with B-splines will recognize that the above definition differs only in
its use of spatially varying knots. The spatially varying knots allow
the modified B-spline basis to be tailored to different edges of a
geometry.

For fixed " and #, the modified basis function (2) reduces to the
standard definition, so the modified basis retains Cp!2 continuity at
the knots in the ! direction. Although less obvious, themodified basis
is also Cp!2 in the " and # directions, provided Ti%"; #& 2 Cp!2 and
the internal knots have a multiplicity of, at most, one. This result is a
consequence of the chain rule and the smoothness of the derivative of
a B-spline with respect to its knots [48–50].

The internal knots of the modified basis functions must be strictly
increasing and sufficiently smooth, but the user is otherwise free to
choose the functional form. For simplicity, we use bilinear knots of
the form

‡In practice, finite difference and other mapping-based discretizations use
the grid coordinates only, so the details of the B-spline parameters are not
important; however, the smoothness of the mapping must be consistent with
the order of the discretization being used. The fourth-order splines used here
are suitable for discretizations up to third-order.

HICKEN AND ZINGG 401

Ti%"; #& $ "%1 ! "&%1 ! #&#Ti;%0;0&) ""%1 ! #&#Ti;%1;0&

) "%1 ! "&##Ti;%0;1&) ""##Ti;%1;1& (3)

The four constants Ti;%0;0&, Ti;%1;0&, Ti;%0;1&, and Ti;%1;1& denote the ith
knot value at the " and # edges of the parameter space. Again, similar
knot definitions are used for Ti%#; !& and Ti%!; "&. Figure 2 shows an
example modified basis function. The salient feature is the changing
basis location.

B. Approximating Grids Using B-Spline Volume Meshes

Wehave reviewed howB-spline volumes can be used, in theory, to
define mappings from computational space to physical space. To use
these mappings in practice, the optimization algorithm could be
coupledwith aB-spline-basedmesh generator that provides access to
the control points and their sensitivities. Alternatively, since mesh
generators do not generally provide this functionality, we fit existing
grids to determine the initial control-point positions and the !, ", and
parameter values.

A least-squares fit with parameter correction [51] is often used to
find spline curve and surface approximations to data points.We use a
similar least-squares fit to obtain B-spline volume approximations
of multiblock structured grids. Each block of the structured grid is
associated with a B-spline volume. For each B-spline volume, the
user chooses the number of control points and the B-spline order in
the parameter directions !, ", and #. At interfaces where blocks meet,
the number of control points and order must be consistent to ensure
continuity.

The !, ", and # values associated with each grid point are
determined using a chord-length parameterization. For example, the
! values, along a curve of constant " and #, are determined by the
normalized arc length. The knots along each edge of the B-spline
volume are located such that an equal number of nodes are in each
knot interval. Thus, the knots inherit a chord-length parameterization

from the !, ", and # values. We have found that chord-length-based
knots produce control grids that approximate the spacing of a coarse
mesh, a feature that is important for our chosen mesh-movement
algorithm. Once the knots along the edges of the volume are
calculated, the bilinear interpolation (3) is used to find knot values
in the interior.

Finally, the fitting algorithm solves least-squares systems to deter-
mine the control points that best approximate the mesh (for further
details, see [44]). Least-squares problems are solved sequentially for
the edge, face, and internal control points. This ordering ensures that
adjacent blocks have consistent grid-point locations. If necessary,
the iterative parameter-correction algorithm of Hoschek [51] can be
applied to improve the fit by adjusting the parameter values.

C. Applications of B-Spline Volumes

The control grid is designed tomimic a coarsemesh, so the surface
control points provide a low dimensional approximation of the
surface. This makes the surface control points a suitable choice for
the design variables in shape optimization. However, B-spline
volumes may be useful in applications other than optimization.

1) The mesh-movement algorithm can be used to generate high-
quality grids. A simple canonical grid, with the same surface patch
topology as a target geometry, can be morphed into a grid for the
target geometry (see [52]).

2) The surface control points can be used to control the shape of the
wing in studies of aeroelasticity.

3) The volume control points can be used for mesh adaptation,
rather than the individual grid points.

4) The parameter space can be refined in a smooth way to achieve
rigorous mesh convergence studies (see Sec. VI).

5) Hierarchical grids can easily be constructed for multigrid.
6) Grids and geometries suitable for high-order discretizations can

be obtained with a suitable choice of B-spline basis order.

D. Linear Elasticity Model for Control-Point Movement

Once fitted using B-spline volumes, the flow-analysis mesh can be
manipulated using the control grid of points fBijkg. In particular, we
can apply anymesh-movement algorithm of our choice to the control
grid and regenerate the flow-analysis mesh algebraically using
Eq. (1).

A very simple algebraic mesh-movement algorithm consists of
moving only those control points associated with design variables.
Although this fixes the internal control points, the mesh points near
the surface geometry will still move, because B-spline basis
functions at the boundary extend into the interior (imagine moving
the end of a spline curve while fixing the remaining control points).
Such a mesh-movement strategy may be useful if only small shape
changes are necessary.

Fig. 1 Example of a B-spline volume mesh: a) B-spline control grid and b) corresponding volume mesh.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.5

1

η

ξ
Fig. 2 Example two-dimensional modified basis or, equivalently, a
three-dimensional modified basis for fixed ".

402 HICKEN AND ZINGG

If larger shape changes are expected, then an algorithm is needed
that moves the internal control points based on the surface control
points. Essentially, any grid movement algorithm can be applied to
the control points: algebraic, spring analogy, linear elasticity, radial
basis functions, etc. For B-spline volume meshes, there are typically
two orders of magnitude fewer control points than grid points, so the
CPU time of the mesh movement becomes insignificant relative to
the flow solution. For this reason, we have chosen to use a robust,
albeit expensive, linear-elasticity-based mesh movement.

We model the control mesh as a linear elastic solid with stiffness
controlled using a nonconstant Young’s modulusE. The algorithm is
very similar to the one used in Truong et al. [20]. The equations of
linear elasticity are discretized on theB-spline controlmesh using the
finite element method with trilinear elements.

For large shape changes, the problem can be broken into a
sequence of m mesh-movement problems by moving the surface in
increments. When increments are used, the stiffness matrix becomes
a function of the control-point coordinates at the previous level
through the spatially varying Young’s modulus (explained below).
Thus, the linear equation for the control points at increment i has the
form

M%i&%b%i!1&;b%i&& $ K%i&%b%i!1&&"b%i& ! b%i!1&# ! f%i& $ 0;

i$ 1; . . . ; m (4)

where M%i& is the mesh-movement residual, b%i& is a block-column
vector of control-point coordinates, and K%i& is the symmetric-
positive-definite stiffnessmatrix. Given the properties of the stiffness
matrix, we solve Eq. (4) using the conjugate gradient method
preconditioned with an incomplete lower-upper (ILU) factorization:
specifically, ILU%p& [53] and a fill level of p$ 1.

Element stiffness is controlled using a spatially varying Young’s
modulus. Young’smodulus is calculated at the beginning of themesh
movement, or at the beginning of each increment if the movement is
broken into smaller steps. The goal is to vary the element stiffness in
such a way that mesh quality is maintained in critical regions of the
grid (e.g., the boundary layer). Young’s modulus at increment i is
given by

E%i&
E $!%i!1&

E

!%0&
E V%i!1&

E

; i$ 1; 2; . . . ; m (5)

where VE is the element volume and

!E $
!Y8

v$1

1

%uv * vv& + wv

"
2

(6)

is an orthogonality measure. The vectors uv, vv, and wv are unit
vectors parallel to the element edges that meet at vertex v, and they

form a right-handed system. Hence, the triple product %uv * vv& + wv

is positive for valid elements, equal to 1 for orthogonal vectors, and
tends to zero as the vectors become coplanar. Following Bar-Yoseph
et al. [54], !%i&

E is normalized in E%i&
E by its value on the initial mesh.

E. Mesh-Movement Examples

We demonstrate the integrated geometry parameterization and
mesh movement using two examples. In the first example, we
parameterize and morph an existing shape (the ONERA M6 wing
[55]) and test the algorithm using modest shape changes that are
typical of traditional aerodynamic shape optimization problems. The
second example involves morphing a flat plate into a blended-wing
body (BWB) with winglets and demonstrates the algorithm’s ability
to handle large geometric changes.

In both examples, we use a node-based mesh movement as a
benchmark for the B-spline mesh movement. The node-based algor-
ithm consists of applying the methodology described in Sec. II.D
to the individual nodes rather than the control points. In both
algorithms, the movement is broken into five increments (m$ 5),
and Poisson’s ratio is fixed at $$!0:2.

The grids produced by the two mesh-movement algorithms are
evaluated using an orthogonality measure based on Eq. (6). Speci-
fically, the quality of an element E is defined by

QE $
#######
1

!E

s
$
Y8

v$1

%uv * vv& + wv (7)

It follows from this definition that elements with perfect ortho-
gonality have QE $ 1, and highly skewed elements have QE , 0.
To provide a fair comparison, in the case of the B-spline mesh-
movement algorithm, QE is measured for elements on the inter-
polated mesh and not the control grid. The measure is calculated for
each element and then grouped into 50 bins that uniformly divide the
range of possible values: namely, [0, 1]. These bins are then used to
produce a distribution of orthogonality. Integrating the distribution
over the orthogonality range "a; b# gives the ratio of elements that lie
in this range. In particular, integrating the distribution over [0, 1]
gives 1.

1. ONERA M6 Wing Morphed to Unswept Wing

We parameterize the ONERA M6 wing and transform it into an
unswept wing with NACA 0012 airfoil sections. The root chord of
the M6 wing is normalized to 1.0, and the unswept wing has a root
chord of 0.49664. The shape transformation involves sweep, scaling,
and section modifications.

The parameterization is obtained from the surface control points of
a B-splinemesh fitted to an initial 12-blockH-H-topology grid. Each

Fig. 3 Control grids and flow-analysis meshes for the initial ONERA M6 wing geometry (left) and the final unswept-wing geometry (right).

HICKEN AND ZINGG 403

of the 12 blocks in the grid consists of 45 * 65 * 33 nodes, leading to
approximately 1:158 * 106 nodes in total. The mesh spacing is
typical for an inviscid flow analysis with the offwall, leading-edge,
trailing-edge, and tip spacings set at 0.001 chord-length units. The
B-spline volumes for each block use Ni * Nj * Nk $ 13 * 13 * 9
control points; hence, the B-spline grid is approximately 60 times
smaller than the computational grid. Figure 3 shows the initial and
final B-spline control grids and their corresponding flow-analysis
meshes.

Figure 4 plots the orthogonality distribution for the initial ONERA
M6 grid, the unswept-wing grid obtained using the B-spline mesh
movement, and the unswept-wing grid obtained using the node-
based mesh movement. The final grids have distributions that are
qualitatively similar to the initial distribution, which we would
expect for mesh-movement algorithms based on linear elasticity.
More notable are the similarities between the B-spline and node-
basedmesh-quality distributions. Indeed, in some cases, the B-spline
distribution is better; consider the first peak, near the low end of the
quality range, which is smaller for the B-spline mesh. This can be
attributed to the smoothing properties of the B-spline volumes.

For this problem, the B-spline and node-based mesh movement
required 227 s and 27.79 h, respectively, on a single 1500 MHz
Itanium 2 processor. For the B-splinemeshmovement, we found that
a fill level of 1 was optimal in the ILU%p& preconditioner, and a fill
level of 2 was better for the larger node-based problem. Although
better preconditioners may exist, the relative performance of the two
approaches is ultimately bounded by the relative size of their linear
systems.

2. Flat Plate Morphed to Blended-Wing Body

In this example, the initial shape is a flat platewith unit chord and a
semispan of 2. The mesh consists of 12 blocks in an H-H topology,
and each block has 45 * 45 * 45 nodes. The offwall spacing is 0.001
chord-length units, and the leading-edge, trailing-edge, and tip
spacing are 0.005 chord lengths.

The initial mesh is fit using 12 B-spline volumes, with 9 * 9 * 9
control points per volume; the control grid reduces the number of
degrees of freedom by a factor of 125 relative to the fine mesh. The
fitted mesh for the flat plate is shown in Fig. 5a, together with its
control grid (inset).

The control points on the surface of the plate are chosen as design
variables. In this example, we set the design variables to obtain a
generic blended-wing geometrywithwinglets. Thefinalmesh for the
blended-wing-body shape is shown in Fig. 5b. The perturbed-surface
control points and control grid are shown in the inset.

The orthogonality distribution for the flat-plate grid is plotted in
Fig. 6, together with the distributions for the BWB grids obtained
using the B-spline and node-based mesh-movement algorithms. The
initial grid is almost Cartesian and its distribution reflects this: all the
elements have orthogonality measures greater than 0.74. In trans-
forming from the flat plate to the blended-wing body, some loss
of element orthogonality is unavoidable. As in the ONERA M6
example, the important observation is that the B-spline and node-
based mesh movements produce very similar quality distributions,
despite the significant difference in CPU time: the B-spline mesh
movement required 128 s, and the node-based mesh movement
required 32.4 h.

The two examples presented here share the same surface and block
topology. To handle geometries with complicated surface features
(e.g., wing-body junctions), it would be necessary to consider more
general topologies. The issues posed by complex geometries are
similar to those encountered in multiblock grid generation of the
same geometries and can be accommodated using related blocking
strategies. For example, geometries with kinks or junctions can be
handled in a straightforward manner by joining B-spline surfaces
along their edges.

III. Flow Analysis
The flow solver incorporated into the optimization algorithm uses

a second-order-accurate finite difference discretization and a
Newton–Krylov solution strategy. The solver is described briefly
below and in detail by Hicken and Zingg [25].

A. Governing Equations and Discretization

We consider the three-dimensional Euler equations on multiblock
structured grids. Applying a diffeomorphism from physical to
computational space, the Euler equations become

Orthogonality measure

O
th

og
on

al
ity

D
is

tr
ib

ut
io

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

initial grid
B-spline movement
node-based movement

Fig. 4 Orthogonality distribution for the initial ONERA M6 grid and
grids for the unswept wing.

Fig. 5 Control grids and flow-analysis meshes for the initial plate geometry (left) and final blended-wing body (right).

404 HICKEN AND ZINGG

@tQ̂) @!iÊi $ 0 (8)

where Q̂ is the vector of conservative flow variables scaled by the
Jacobian of the mapping, and Êi is the inviscid flux vector in the
coordinate direction !i.

The spatial derivatives in Eq. (8) are discretized using second-
order-accurate summation-by-parts (SBP) operators [56]. Boundary
conditions are imposed and blocks are coupled using simultaneous
approximation terms (SATs) [57]. The SBP-SAT discretization is
linearly time-stable, requires only C0 mesh continuity at block
interfaces, accommodates arbitrary block topologies, and has low
interblock communication overhead. To suppress high-frequency
modes, the discretization is augmented with combined second- and
fourth-difference scalar dissipation [58,59] or matrix dissipation
[60]. The discretization produces a set of nonlinear algebraic
equations, which is represented by the vector equation

R %q;b%m&& $ 0 (9)

where q is a block-column vector of the conservative flow variables.
The flow residual depends on the B-spline control points b%m&, since
these determine the nodal coordinates. When solving Eq. (9) for the
flow variables, the control points are fixed.

B. Newton–Krylov Solution Algorithm

We solve the discretized Euler equations using a Newton–Krylov
strategy. This strategy involves, for each major iteration n, a sparse
linear system of the form

A%n&!q%n& $!R%n& (10)

where R%n& $R%q%n&&, !q%n& $ q%n)1& ! q%n&, and

A%n&
ij $ @R%n&

i

@qj

) E%n&
ij

The Jacobian matrix A%n& is exact if the error E%n& is zero, and it is
approximate otherwise.

Successful convergence of Newton’s method depends on the
initial iterate q%0&, which must be sufficiently close to the solution of
Eq. (9). For this reason, our algorithm is broken into two phases: 1) an
approximate-Newton startup phase to find a suitable initial iterate
and 2) an inexact-Newton phase. The startup phase uses an
approximate Jacobian based on a nearest-neighbor stencil and is
similar to the implicit Euler time-marching method. The inexact-
Newton phase gets its name from solving the Newton update (10)
inexactly to a relative tolerance of 10!2 using a Krylov linear solver.
The Krylov solver permits a Jacobian-free approach, since only
Jacobian-vector products are needed and these are approximated
using forward differences.

Although the matrix A%n& is different during the startup and
inexact-Newton phases, the solution method for the linear equation
remains the same. Specifically, we solve Eq. (10) in parallel using a
preconditioned Krylov iterative method. Experience suggests that
the generalized minimal residual method (GMRES) [38] is an effi-
cient Krylov method for aerodynamic applications. We use flexible
GMRES (FGMRES) [61] to accommodate iterative preconditioners.

Preconditioning is necessary when Krylov methods are used to
solve ill-conditioned problems. Two parallel preconditioners are
implemented in the solver: an additive-Schwarz preconditioner
[62–64] with no overlap (block Jacobi) and an approximate-Schur
preconditioner [65]. Both preconditioners require an ILU factori-
zation of the nearest-neighbor approximate Jacobian. This matrix
approximates the Jacobian, because it lumps the fourth-difference
dissipation into the second-difference dissipation [66]. ILU%p& [53]
with a fill level of 1 is applied locally to each processor’s block of the
approximate Jacobian to obtain the incomplete factorizations (i.e.,
the factorization involves no communication).

IV. Gradient Evaluation
Let J denote an objective function to be minimized: for example,

drag or CD=CL. Let the vector of design variables be v$ "vTgeo; %#T ,
where vgeo are the geometric design variables and % is the angle of
attack. Recall that the geometric design variables are the coordinates
of the B-spline control points on the aerodynamic surface.

To find the gradient of J with respect to v, we regard the mesh-
movement and flow equations as constraints and introduce the
Lagrangian function:

L$ J %v;b%m&;q&)
Xm

i$1

#%i&TM%i&%v;b%i!1&;b%i&&

) TR%v;b%m&;q& (11)

The Lagrange multipliers f#%i&gmi$1 and are the mesh- and flow-
adjoint variables, respectively. The first-order (necessary) optimality
conditions are obtained by setting the partial derivatives of L to zero
[67]. The partial derivatives with respect to the adjoint variables
recover the mesh-movement and flow equations. Setting the partial
derivatives with respect to q and fb%i&gmi$1 to zero yields

!
@R
@q

"
T

 $!
!
@J
@q

"
T

(12)

!
@M%m&

@b%m&

"
T

#%m& $!
!

@J
@b%m&

"
T

!
!

@R
@b%m&

"
T

 (13)

!
@M%i&

@b%i&

"
T

#%i& $!
!
@M%i)1&

@b%i&

"
T

#%i)1&;

i 2 fm ! 1; m! 2; . . . ; 1g (14)

We follow the approach outlined in Truong et al. [20], and we drive
the conditions (12–14) to zero using a sequential approach. The
following subsections provide further details on these equations and
the methods used to solve them.

Finally, the gradient of the objective function is given by the partial
derivative of L with respect to v:

G - @L
@v

$ @J
@v

)
Xm

i$1

!
#%i&T @M

%i&

@v

"
) T @R

@v
(15)

where G denotes the gradient of the objective. Note that the mesh-
movement residuals depend on the design variables, since the
variables determine the position of the surface control points. Unlike
the partial derivatives in Eqs. (12–14), setting G to zero does not lead
to a linear system we can use to solve for v. Instead, we must drive G
to zero using a nonlinear optimizer (see Sec. V).

Orthogonality measure

O
th

og
on

al
ity

D
is

tr
ib

ut
io

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

initial grid
B-spline movement
node-based movement

Fig. 6 Orthogonality distribution for the initial flat-plate grid and
BWB grids.

HICKEN AND ZINGG 405

A. Flow-Adjoint Equation

The flow-adjoint variables are governed by the linear equation

AT $!
!
@J
@q

"
T

(12′)

If we choose to use a Krylov iterative method to solve Eq. (12′), then
we need only evaluate generic transposed-Jacobian products of the
form ATz, since Krylov methods need these products and not
necessarily the matrix itself.

Unlike the Jacobian-vector products used in the flow solver, the
transposed-Jacobian-vector products cannot be approximated using
finite differences. However, the transposed-Jacobian products can
be evaluated on-the-fly [68] or using reverse-mode automatic differ-
entiation of the residual [69]. These approaches offer reduced
memory requirements, since the Jacobian does not need to be stored.
Nevertheless, we prefer evaluating and storing the Jacobian and
subsequently performing the transposed products explicitly.We have
found that this approach is more efficient than the methods above,
because the explicit products are faster and the cost of computing the
Jacobian is amortized over the total time needed to converge the
adjoint equations.

There are several methods available for computing the Jacobian
matrix. Nielsen and Kleb [70] used the complex-step method [40]
with coloring to efficiently and accurately evaluate the entries of the
Jacobianmatrix.Mader et al. [71] constructed the residual on a node-
by-node basis and then evaluated each row of the transposed
Jacobian by applying the reverse mode of automatic differentiation.

We use a combination of analytical and complex-step differen-
tiation to evaluate the Jacobian matrix. The Euler fluxes and
numerical dissipation are differentiated analytically. Much of this
linearization is already available from the approximate Jacobian,
which is used to build the preconditioner for both the primal and dual-
flow problems. This reusability is one of the advantages of the
Newton–Krylov approach when calculating the adjoint.

The SAT operators that couple blocks and impose boundary
conditions have the following form:

! f. $ 1
2
%jAj. A&%q! qbc& (16)

where qbc contains either boundary data or neighboring block
variables. We differentiate the SAToperators using the complex-step
method [40,42], which simplifies their linearization. SAT terms
appear only in the equations at block interfaces and boundaries, so
the application of the complex-stepmethod has a negligible effect on
CPU time. There is no benefit to using the reverse-mode here, since
the number of inputs and outputs is equal.

1. Flow Jacobian Verification

To verify the accuracy of the Jacobian matrix, we implemented a
complex-variable version of the flow residual. When applied to the
flow residual, the complex-step method provides a second-order-
accurate approximation of the matrix-vector product Az. Unlike
finite difference approximations, the complex-step method does not
experience subtractive cancellation errors as the step size is reduced.
Thus,thetruncationerrorinthecomplex-stepapproximationcanbere-
duced tomachine accuracyby choosing a sufficiently small step size.

Figure 7 shows the difference between matrix-vector products
evaluated using the Jacobianmatrix and products evaluated using the
complex-step method, for various step sizes. The same random
vector z is used for both products, and the second-difference
dissipation coefficient is set to zero. Similar results are producedwith
distinct z, so we conclude that the Jacobian matrix is accurate to
machine error.

2. Iterative Solution of the Flow-Adjoint Equation

To obtain a gradient accurate to 10!6, theflow-adjoint systemmust
be solved to a relative tolerance of10!8 [72]. This tolerance requires a
considerable number of Krylov iterations, unlike the larger tolerance
of 10!2 used for the linear systems of the inexact-Newtonflow solver.

The memory requirements of GMRES and its flexible variant
FGMRESgrow linearlywith the number of iterations. This can cause
problems when GMRES is applied to the adjoint problem and
memory is limited. One way to reduce the memory burden is to use
restarted versions of GMRES or FGMRES, denoted as GMRES(m)
and FGMRES(m). These solvers simply restart after everymKrylov
iterations, which keeps memory requirements proportional to m.
Unfortunately, restarted Krylov solvers often exhibit degraded and,
in some cases, stalled convergence.

To address this, we have developed a flexible variant of the Krylov
method GCROT [73], called GCROT%m; k& [74], which uses the
same amount of memory as FGMRES (m) k). Unlike restarted
FGMRES,GCROTdoes not discard the entire Krylov subspace each
time it restarts but instead maintains a set of vectors from one outer
iteration to the next. This nested-subspace strategy has been shown to
perform very well with respect to full GMRES while maintaining a
Krylov subspace of fixed size [73].

To demonstrate the performance of GCROT%m; k&, we consider
the solution of the flow-adjoint variables corresponding to J $ L,
where L is the lift, on a 1-million-node mesh using 12 processors.
Figure 8 plots the L2-norm of the (relative) adjoint system residual
versus CPU time in seconds. Results were obtained on a Beowulf-
class cluster consisting of Itanium2 processors with a 6MBL3 cache
and a clock speed of 1500 MHz. Typically, the flow solver requires
approximately 30 min to converge 10 orders of magnitude for this
size of mesh, number of processors, and architecture. Thus, Fig. 8
indicates that GCROT solves the adjoint system to a relative
tolerance of 10!8 in 50% of the time needed to converge the flow
solution. For the low-memory case, observe that FGMRES(20) stalls
while GCROT(10,10) converges. When more memory is available

Step-size

R
M

S
 E

rr
or

10-2010-1510-1010-5100
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Fig. 7 Verification of the analytical Jacobian matrix using the
complex-step method.

CPU time (s)

R
es

id
ua

l n
or

m

0 200 400 600 800 1000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

FGMRES(20)
FGMRES(50)
GCROT(10,10)
GCROT(25,25)

Fig. 8 Comparison ofCPU times for FGMRESandGCROTapplied to
the flow-adjoint problem.

406 HICKEN AND ZINGG

[i.e., FGMRES(50) and GCROT(25,25)], the performances of the
two solvers are similar. Our experience suggests that these results
are typical: when FGMRES (m) k) converges, GCROT%m; k& con-
verges with similar CPU time; when FGMRES(m) k) stalls,
GCROT%m; k& converges.

B. Mesh-Adjoint Equations

There are two types of B-spline mesh-adjoint equations: namely,
Eqs. (13) and (14). The system matrix appearing in these equations
can be found by differentiating the control mesh-movement
equation (4) with respect to b%i&:

!
@M%i&

@b%i&

"
T

$ K%i&T $ K%i&; i 2 fm;m ! 1; . . . ; 1g

where we have used the symmetry of the stiffness matrix K%i&. The
symmetry of the stiffnessmatrix allows themesh-movement solution
algorithm to be reused for the mesh adjoints; hence, we use the
conjugate gradient method preconditioned with ILU(1) to solve both
Eqs. (13) and (14).

Unlike the left-hand sides, the right-hand sides of Eqs. (13) and
(14) are very different. To evaluate the right-hand side (RHS) of the
adjoint equation (13), we make liberal use of the chain rule:

!
!

@J
@b%m&

"
T

!
!

@R
@b%m&

"
T

$!
!

@g
@b%m&

"
T
$
@J
@g

%%%%
m

)
!
@J
@m

%%%%
g

) T @R
@m

"
@m
@g

&
T

(17)

where g andm are block-column vectors of the grid coordinates and
metrics, respectively. The blocks in g are composed of x$ %x; y; z&
at each node, with the coordinates defined by the B-spline volume-
mesh equation (1). Similarly, the blocks in m consist of the nine
components of r!i at each node. The term @J =@gjm denotes the
partial derivative of the objectivewith respect to the grid coordinates
while freezing the metric terms (similarly for @J =@mjg). Equa-
tion (17) provides a right-hand-side reformulation that is signifi-
cantly easier to implement. Note that none of the matrices appearing
in Eq. (17) are stored, since only the resulting vector is needed.

When the number of increments is greater than one, wemust solve
the additional adjoint equations (14). Again, the difficulty presented
by these equations is evaluating their right-hand sides. The move-
ment residual M%i)1& has a complicated nonlinear dependence on
the control points b%i& through Young’s modulus (5); therefore, in the
present work, we evaluate the right-hand sides of Eq. (14) using the
complex-step method. Evaluating the right-hand sides in this way
typically requires more CPU time than solving the mesh-adjoint
systems. However, the relatively small control grid ensures that the
impact on the total CPU time is small, as we demonstrate in
Sec. IV.D.

C. Verification of Gradient Accuracy

Given the complexity of the present algorithm and the use of hand
differentiation, verifying the gradient accuracy is essential. Our goal
in this section is to demonstrate that the gradient is sufficiently
accurate for gradient-based optimization.

Consider a 12-block mesh around a generic wing with no sweep
(see Fig. 9). Each block consists of 23 * 33 * 17 nodes and is fit with
B-spline volumes. The wing is parameterized using the B-spline
control points corresponding to the surface. These control points are
depicted as white spheres in Fig. 9. In total, there are 298 design
variables: 297 geometric variables plus the angle of attack.

Each component of an objective-function gradient can be verified
using a finite difference approximation; however, this would be time-
consuming for the number of design variables considered here.
Instead, we use a directional derivative to check all the gradient
components simultaneously. For a given direction d, the directional
derivative is given by

DdJ $ G + d

and a second-order finite difference approximation is

DdJ $ J %v) &d& ! J %v ! &d&
2&

)O%&2&

where & is a perturbation parameter. In the finite difference
approximation, the perturbation to the design variables is propagated
through the entire algorithm; that is, this is an approximation to the
total derivative of J and not the partial derivative.

In principle, one could use a complex-step-based directional deri-
vative to test the gradient accuracy; however, the additional accuracy
of such a test is not justified, given the costs of implementing a
complex-variable version of the Newton–Krylov solution algorithm.

Individual components of the gradient can differ in magnitude by
2–4 orders; therefore, it is tempting to choose a direction d such that
each element of the gradient makes an equal contribution to DdJ .
However, this tends to increase the step-size range overwhich round-
off errors affect the finite difference approximation. Instead, we use
the direction

%d&i $ sign"%G&i#

which gives a directional derivative equal to the L1 norm of the
gradient. This direction does not eliminate the possibility that large
gradient components will overwhelm small gradient components,
but it does prevent subtractive cancellation between gradient
components.

Figure 10 plots the relative error between the adjoint-based and
finite difference values of DdJ , for both J $ L and J $D. For
each objective, the freestream Mach number is fixed at 0.5 and the
angle of attack is fixed at 4 deg. The plot shows the expected second-
order convergence of the finite difference approximation and its
eventual contamination by round-off errors. These results suggest
that the adjoint-based gradients are at least as accurate as finite
difference approximations with optimal step sizes.

D. CPU-Time Breakdown
Table 1 lists a CPU-time breakdown of the objective function and

gradient evaluations. The times are normalized by the total time
required to calculate the objective function (the first row in bold). To
ensure the gradient is accurate to 10!6, the flow and flow-adjoint
equations are converged 10 and 8 orders, respectively. The mesh-
movement and mesh-adjoint equations are converged 12 orders;
while this tolerance may be unnecessary for the desired gradient
accuracy, the additional CPU time is insignificant. Times are

Fig. 9 Genericwingwith parameterizing control points (white spheres)
used for the gradient accuracy verification.

HICKEN AND ZINGG 407

provided for two grid sizes to illustrate how the components of the
algorithm scale.

The two examples in Table 1 use B-spline volumes with the same
number of control points. Consequently, the mesh-movement and
mesh-adjoint routines have a very weak dependence on grid size.
This is reflected in the normalized CPU times, which differ by an
order of magnitude between the two grids. While the mesh-
movement and mesh-adjoint CPU times are relatively significant for
the coarse grid, they represent only 3.4% of the total computational
effort on the fine grid. Thus, B-spline mesh movement is very
efficient for the fine grid, which is representative of the grids used
in practice. On the fine grid, the total time needed to compute the
gradient is less than one-half of that needed for the objective.

V. Optimization Algorithm
We use the software package SNOPT [43] to solve nonlinear

optimization problems with general constraints. SNOPT uses a
sequential-quadratic-programing algorithm that is capable of hand-
ling both linear and nonlinear constraints.

SNOPT measures convergence using the first-order optimality
conditions, also known as the Karush–Kuhn–Tucker (KKT) condi-
tions. Let c and $ denote the SNOPT constraints and Lagrange
multipliers, respectively. An element of cmay be, for example, a lift
constraint, an area constraint, a span constraint, etc. The KKT
conditions are given by [75]

rv%J) $Tc& $ 0

ci%v& $ 0 8 i 2 E

ci%v& / 0 8 i 2 I

'i / 0 8 i 2 I

'ici%v& $ 0 8 i 2 E [I

where E and I denote the set of equality and inequality constraints,
respectively. For an optimization problem to be considered conver-
ged, SNOPT requires the KKT conditions to be satisfied to within a
specified tolerance ". We use a tolerance of "$ 10!7 for the cases
presented here.

The Hessian of the SNOPT Lagrangian, J) $Tc, is approxi-
mated using the quasi-Newton method of Broyden–Fletcher–
Goldfarb–Shanno (BFGS). We use the full-memory BFGS update
rather than the limited-memory option, since the storage require-
ments are modest relative to the flow solver.

If a lift constraint is imposed, then its gradient must be calculated,
which requires additional flow- and mesh-adjoint solutions for lift.
As shown above, the adjoint solution process is very efficient, and
adding this constraint represents an approximately 30% increase in
CPU time per optimization cycle. An alternative, not explored in this
work, is to impose the lift constraint as an equation in the flow solver
and to add the angle of attack as a variable to the vectorq. Billing [76]
and Zingg and Billing [77] have shown that this approach increases
the flow solver time between 20–50%, so the total CPU time per
optimization cycle is comparable to solving the lift-adjoint problem.

The optimization process may be curtailed due to time limits
imposed by a queuing system. In such cases, it is desirable to warm-
start the optimization using the previously calculated objectives
and gradients. Although SNOPT does not provide a warm-start
capability,§we have implemented a simple strategy that is transparent
to the optimization. SNOPT, like most gradient-based algorithms,
is deterministic and will follow the same path if given the same
information. Therefore, it is sufficient to store the objective, con-
straint, and gradient values in the order they are produced and read
them into SNOPT in the same order during a warm start. Once all
information in the file has been exhausted, new objectives and
gradients are evaluated and stored.

As a simple verification of the optimizer, we consider an inverse
design based on surface pressure. The design variables consist of the
angle of attack and the three coordinates of a control point on the
upper surface of the wing shown in Fig. 9. The initial angle of attack
is 4 deg. A target pressure distribution is obtained by randomly
perturbing the four design variables and solving for the flow. The
optimizer is given the unperturbed wing and angle of attack and
attempts to recover the perturbed variables using the objective

J $ 1

2

XNsurf

i$1

%pi ! pi;targ&2"Ai

where Nsurf is the total number of surface nodes, and "Ai is the
surface area element at node i. The pressure and target pressure at
node i are denoted by pi and pi;targ, respectively.

Figure 11 shows the convergence history for the inverse design
problem. The gradient converges 10 orders and the objective con-
verges 20 orders in 25 objective function and gradient evaluations.
These convergence tolerances are smaller than those typically used
in aerodynamic shape optimization, but they help demonstrate the
accuracy of the gradient. Note, in particular, the superlinear conver-
gence of the objective function.

VI. Lift-Constrained Induced-Drag Minimization
Ultimately, we wish to explore the possibility of using high-

fidelity optimization to uncover novel configurations. However, any
algorithm designed to find novel configurations should, if suitably
constrained, recover known results. We can use this idea to demon-
strate the capabilities of the optimization algorithm. In particular, we
can begin with a low-aspect-ratio wing and minimize induced drag
under lift and bound constraints, and the algorithm should maximize
the span and the vertical extent of the wing tip.

The initial geometry is a rectangular wing with a root chord of 1, a
span of b$ 3, and NACA 0012 sections. The aspect ratio based on
the surface area is 2.917. A five-block mesh surrounds the geometry
with 4:05 * 105 nodes. The surfacemesh consists of 5850 nodes, and
the initial tip, leading-edge, trailing-edge, and offwall mesh spacing
is 10!3.

The blocks are associated with B-spline volumes, and the volume
mesh is parameterized with 1404 control points. The semispan wing
is parameterized using six spanwise stations of control points, with
nine control points in the streamwise direction on both the upper and
lower surfaces. The parameterization is similar to the one shown in
Fig. 9. There are 251 geometric degrees of freedom, after accounting

Step-size

E
rr

or

10-1210-1010-810-610-410-2
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
lift derivative
drag derivative

Fig. 10 Relative error between the adjoint-based and second-order-
accurate finite difference values of the directional derivative DdJ .

§SNOPT does have a limited version of warm-starting that restarts the
optimization with the current design variables and estimates for the Lagrange
multipliers; however, the BFGS Hessian approximation is discarded.

408 HICKEN AND ZINGG

for coincident control points and ignoring the y coordinate of control
points on the symmetry plane (i.e., the geometry cannot move in the
spanwise direction at the symmetry plane). Including the angle of
attack gives 252 degrees of freedom in total.

When the flow is subsonic and the trailing wake is planar, the
optimal (elliptical) loading can be achieved by varying the spanwise
distribution of twist, chord, or zero-lift angle. Therefore, the number
of degrees of freedom must be reduced to avoid nonunique inviscid
designs. For this example, the following constraints are imposed.

For this example, the following constraints are imposed:
1) Each spanwise station of control points is limited to rotations

and scalings defined by the leading edge (LE) and trailing edge (TE).
For each spanwise station, k$ 1; . . . ; 6, we have

x ! xLE
z ! zLE

! "
k $ rk

cos%(k& ! sin%(k&
sin%(k& cos%(k&

$ &
xTE ! xLE
zTE ! zLE

! "

k

The parameters

rk$ k x ! xLE k = k xTE ! xLE k

and

(k $ arctan"%z ! zLE&=%x ! xLE&#

are based on the initial values of the control-point coordinates.
2) The y coordinate of the spanwise stations k$ 2; . . . ; 6

maintains the same ratio with the wing span according to

yk $)ymax

where)$ %yk=ymax& is the initial ratio.
3) To prevent streamwise translation and sweep, the quarter-chord

of each spanwise station is fixed to its initial value xqc;k:

3

4
xLE;k)

1

4
xTE;k $ xqc;k

4) The distance between the leading and trailing edges of the
spanwise sections (k$ 2; . . . ; 6) is equal to the root chord (k$ 1):

k xLE;k ! xTE;k k $ k xLE;1 ! xTE;1 k

This constraint ensures that chord-length changes cannot be used to
optimally load the design.

5) The z coordinates of the leading and trailing edges at the wing
tip are extrapolated from the two neighboring stations: that is,

zLE;k ! zLE;k!1 $ *%zLE;k!1 ! zLE;k!2&

where

* $ %yLE;k ! yLE;k!1&=%yLE;k!1 ! yLE;k!2&

An analogous constraint is applied at the trailing edge. These
constraints prevent excessive stretching of the surface mesh, which
may result if the tip station is displaced independently in the vertical
direction.

With the exception of the chord-length constraint 4, the above
constraints are linear. Linear constraints are satisfied exactly by
SNOPT at each design iteration and effectively redefine the design
variables. Consequently, the effective design variables for this
example are 1) the twist at the five inboard semispanwise stations,
2) the vertical position of the five inboard stations, 3) the wing span,
and 4) the root chord.

The vertical position and twist of the tip are not design variables,
because they are determined implicitly by the inboard stations
through the constraints. The chord-length constraint is nonlinear, so
it is not satisfied exactly at each design iteration. Nevertheless, it is
satisfied at convergence, so chord-length can be considered an
effective design variable.

Bounds on the spanwise and vertical coordinates are necessary to
prevent wings of infinite span or winglets of infinite height. We
arbitrarily use the box constraints jyj (2:5 and jzj (0:25 for this
example. Constraints are also imposed on the lift and reference area,
which implies that the lift coefficient is constrained. The reference
area is the surface area of the geometry and is constrained by its initial
value of S$ 3:08554. The target lift is chosen such thatCL $ 0:325
when the lift constraint is satisfied. The optimization begins with an
angle of attack that produces the target lift.

Table 1 Breakdown of objective function and gradient CPU times for two gridsa

Grid size (nodes)

1:55 * 105 1:158 * 106

CPU time (12 proc.) CPU time (12 proc.)
Relative Absolute Relative Absolute

Objective function components
Mesh movement 0.121 —— 0.014 ——
Flow solution 0.877 —— 0.986 ——
Total 1.000 (107.0 s) 1.000 (1278.1 s)

Gradient components
Flow Jacobian assembly 0.005 —— 0.003 ——
ILU(2) factorization 0.032 —— 0.020 ——
GCROT flow-adjoint solution 0.366 —— 0.397 ——
Mesh Jacobian assembly 0.007 —— 0.001 ——
ILU(1) factorization 0.020 —— 0.002 ——
PCG mesh-adjoint solution 0.083 —— 0.008 ——
Complex-step RHS assembly 0.294 —— 0.025 ——
Total 0.812 (86.8 s) 0.457 (584.0 s)

aRelative times are normalized by the total objective-function evaluation time.

Function evaluations

O
bj

ec
tiv

e,
 O

pt
im

al
ity

0 5 10 15 20 25 30
10-30

10-25

10-20

10-15

10-10

10-5

100
objective function
optimality

Fig. 11 Convergence history for the inverse design verification.

HICKEN AND ZINGG 409

We consider a single-point optimization with the Mach number
fixed at 0.5. Practical aerodynamic optimizations must consider
multiple operating conditions (see [78] for an example), and so we
reiterate that the present problem is intended to demonstrate the
algorithm by recovering expected theoretical results.

Figure 12 shows the optimization convergence history using
several metrics. The SNOPT optimality conditions are satisfied to
10!7 after 68 function evaluations (a function evaluation includes
computation of the objective, the constraints, and all gradients). The
total optimization requires approximately 42 h using five Itanium 2
processors. After 32 function evaluations, or approximately 20 h, the
coefficient of lift and drag are accurate to three and two digits,
respectively.

Intermediate designs from the optimization process are also shown
in Fig. 12. As expected, the algorithmmaximizes the span and height
of the configuration within the given box constraints (i.e., b$ 5 and
h$ 0:5). The aspect ratio b2=S of the final geometry is 8.102.

The intermediate designs demonstrate the range of geometries
handled by the geometry parameterization and mesh movement.
They also reveal the relative importance of various variables on the
design. Although twist is thefirst variable to be exploited (iterations 1
to 4), we see that most of the reduction in induced drag is achieved by
increasing span (reflected in the geometries from iterations 8 and 16).
The remaining improvements are accomplished by changing the
vertical position and twist of the sections. Of these, the vertical extent
at the tip provides the most reduction, which is consistent with the
remarks in [79]. The vertical position of the wing root is established
toward the end of the optimization, and the convergence history
indicates that the drag is relatively insensitive to this variable.

Lifting-line theory predicts that an elliptical spanwise lift distri-
bution produces the minimum induced drag for a wing with a planar
wake. The coefficient of drag for an elliptically loaded planar wing is
given by

CD;ellip $
C2

LS

'b2
(18)

where b is the span and S is the reference area. Recall that both CL

and S are constrained here. The coefficient of drag for the initial
geometry isCD $ 0:0120. This is approximately 4% higher than the
drag coefficient predicted by Eq. (18) for b$ 3, which indicates that
the initial design is not optimally loaded. In contrast, the coefficient
of drag at the end of the optimization is CD $ 0:00403, which is 3%

lower than CD;ellip $ 0:00415 (the induced-drag coefficient of an
elliptically loaded planar wing with an equivalent span of b$ 5).
The optimal geometry achieves a lower induced drag, because the
winglets produce a nonplanarwake.Asmentioned above,most of the
reduction in drag from the initial value of CD $ 0:0120 to the final
value of CD $ 0:00403 is due to the increase in span [i.e., the b!2

factor in Eq. (18)].
Finally, we conducted a grid refinement study to confirm the

performance of the final design.We refined the grid by a factor of 4 in
each coordinate direction and broke each block into 64 individual
blocks. Hence, the refined grid consists of 320 blocks and
approximately 25:9 * 106 nodes. The refined-grid node locations
were determined using the B-spline volumes. One of the advantages
of the present approach is the easewith which refinement studies can
be carried out after an optimization.

Using the refined grid, the coefficients of lift and drag were found
to be CL $ 0:3255 and CD $ 0:003935, respectively. Based on this
coefficient of lift, and the refined-surface-area value of 3.08630, the
coefficient of drag for a planar wing with elliptical loading is pre-
dicted to beCD;ellip $ 0:004163. Thus, rather than 3%, the optimized
design produces closer to 5% lower induced drag than predicted by

0 10 30 5020 40 60 70
0.29

0.30

0.31

0.32

0.33

0.003

0.004

0.005

0.006

0.007

CL
CD

CL
CD

XY

Z

10-13

10-11

10-9

10-7

10-5

10-3

10-1

Lagrangian gradient
constraint violation

function
evaluations

Fig. 12 Convergence history of the lift-constrained induced-drag minimization, including the semispan geometry at various points in the history.

y

Li
ft

(y
)

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

optimized geometry
elliptical distribution

Fig. 13 Lift distribution of the optimized geometry (from the refined
grid) and an elliptical distribution with the same total lift. Note that the
data points do not reflect the grid resolution.

410 HICKEN AND ZINGG

lifting-line theory for an optimally loaded planar wing. Figure 13
compares the spanwise lift distribution of the optimized geometry,
obtained on the refined grid, with an elliptical lift distribution. There
is a marked difference in the two distributions, as expected from the
nonplanar optimized geometry.

VII. Conclusions
To what extent can numerical optimization be used to find novel

and efficient aerodynamic configurations? As a first step toward
answering this question, we have developed a robust and efficient
optimizer for the Euler equations.

An important aspect of the present work is an integrated param-
eterization and mesh movement that is flexible enough to explore a
wide range of designs. The integrated approach uses B-spline
volumes to parameterize the mesh, substantially reducing the
number of degrees of freedom used in the mesh movement. B-spline
mesh movement produces grids with quality comparable to those
obtained using node-based linear-elasticity mesh movement, while
requiring two to three orders less CPU time. The integrated approach
also reduces the cost of the mesh-adjoint solution, despite consi-
derable use of complex-step differentiation. For typical grid
densities, the mesh-movement and mesh-adjoint solutions represent
less than 5% of the total computational work.

For the solution of the flow-adjoint equations, we have shown that
a Krylov iterative solver with a nested subspace (GCROT) is more
robust than restarted flexible GMRES with equivalent memory
requirements. Using the mesh-movement and flow adjoints, the
gradient of an objective is evaluated in less than 50% of the time
needed for a flow solution on typical meshes.

The algorithm components are integrated with the optimizer
SNOPT and demonstrated on a lift-constrained induced-drag mini-
mization of a rectangular wing. The optimizer correctly maximizes
the span of the wing and the vertical extent of the wing tip. Partially
converged results are available in 20 h with three- and two-digit
convergence in the lift and drag, respectively, using five processors.
Full convergence of the KKT conditions is achieved in 42 h. This
case establishes that the algorithm can efficiently solve difficult
optimization problems that include large changes in the initial
geometry. Future work will include incorporating the Reynolds-
averaged Navier–Stokes equations, a turbulence model, and multi-
point optimization.

Acknowledgments
The authors gratefully acknowledge financial assistance from the

Natural Sciences and Engineering Research Council (NSERC), the
Canada Research Chairs program, Mathematics of Information
Technology and Complex Systems (MITACS), and the University
of Toronto. In addition, the authors acknowledge the SciNet Con-
sortium for providing high-performance computing resources used
for the refinement study reported within this paper.

References
[1] “Climate Change 2007: IPCC Synthesis Report,” Intergovernmental

Panel on Climate Change, World Meteorological Organization,
Geneva, Nov. 2007.

[2] Deffeyes, K. S., Hubbert’s Peak—The Impending World Oil Shortage,
Princeton Univ. Press, Princeton, NJ, 2001.

[3] Goodstein, D., Out of Gas: The End of the Age of Oil, W. W. Norton,
New York, 2004.

[4] The Potential Use of Alternative Fuels for Aviation, SeventhMeeting of
the Committee on Aviation Environmental Protection (CAEP), Inter-
national Civil Aviation Organization, Rept. CAEP/7-IP/28, Montréal,
Feb. 2007.

[5] Liebeck, R., “Design of the blended wing body subsonic transport,”
Journal of Aircraft, Vol. 41, No. 1, 2004, pp. 10–25.
doi:10.2514/1.9084

[6] de Boor, C.,A Practical Guide to Splines, revised ed., Springer–Verlag,
Berlin, 2001.

[7] Brunoa, O. P., Hana, Y., and Pohlmanb, M. M., “Accurate, High-Order
Representation of Complex Three-Dimensional Surfaces via Fourier

Continuation Analysis,” Journal of Computational Physics, Vol. 227,
No. 2, 2007, pp. 1094–1125.
doi:10.1016/j.jcp.2007.08.029

[8] Jones,W. T., “AGrid Generation System forMulti-Disciplinary Design
Optimization,” 12th AIAA Computational Fluid Dynamics Confer-
ence, AIAA Paper 1995-1689, San Diego, CA, June 1995.

[9] Reuther, J., Jameson, A., Farmer, J., Martinelli, L., and Saunders, D.,
“Aerodynamic Shape Optimization of Complex Aircraft Configura-
tions via an Adjoint Formulation,” 34rd AIAA Aerospace Sciences
Meeting and Exhibit, AIAA Paper 1996-0094, Reno, NV, 1996.

[10] Nemec, M., Zingg, D. W., and Pulliam, T. H., “Multipoint and Multi-
Objective Aerodynamic Shape Optimization,” AIAA Journal, Vol. 42,
No. 6, 2004, pp. 1057–1065.
doi:10.2514/1.10415

[11] Liu, X., Qin, N., and Xia, H., “Fast Dynamic Grid Deformation Based
on Delaunay Graph Mapping,” Journal of Computational Physics,
Vol. 211, No. 2, 2006, pp. 405–423.
doi:10.1016/j.jcp.2005.05.025

[12] Batina, J. T., “Unsteady Euler Airfoil Solutions Using Unstructured
DynamicMeshes,”AIAA Journal, Vol. 28, No. 8, Aug. 1990, pp. 1381–
1388.
doi:10.2514/3.25229

[13] Nielsen, E. J., and Anderson, W. K., “Recent Improvements in
Aerodynamic Design Optimization on Unstructured Meshes,” AIAA
Journal, Vol. 40, No. 6, June 2002, pp. 1155–1163.
doi:10.2514/2.1765

[14] Farhat, C., Degand, C., Koobus, B., and Lesoinne, M., “Torsional
Springs for Two-Dimensional Dynamic Unstructured Fluid Meshes,”
Computer Methods in Applied Mechanics and Engineering, Vol. 163,
Nso. 1–4, 1998, pp. 231–245.
doi:10.1016/S0045-7825(98)00016-4

[15] Degand, C., and Farhat, C., “A Three-Dimensional Torsional Spring
Analogy Method for Unstructured Dynamic Meshes,” Computers and
Structures, Vol. 80, No. 3–4, Feb. 2002, pp. 305–316.
doi:10.1016/S0045-7949(02)00002-0

[16] Blom, F. J., “Considerations on the Spring Analogy,” International
Journal for Numerical Methods in Fluids, Vol. 32, No. 6, March 2000,
pp. 647–688.
doi:10.1002/(SICI)1097-0363(20000330)32:6<647::AID-FLD979>3.0.
CO;2-K

[17] Zeng, D., and Ethier, C. R., “A Semi-Torsional Spring Analogy Model
for Updating Unstructured Meshes in 3D Moving Domains,” Finite
Elements in Analysis and Design, Vol. 41, Nos. 11–12, June 2005,
pp. 1118–1139.
doi:10.1016/j.finel.2005.01.003

[18] Johnson,A.A., andTezduyar, T. E., “MeshUpdate Strategies in Parallel
Finite Element Computations of Flow Problems with Moving
Boundaries and Interfaces,” Computer Methods in Applied Mechanics
and Engineering, Vol. 119, Nos. 1–2, 1994, pp. 73–94.
doi:10.1016/0045-7825(94)00077-8

[19] Yang, Z., and Mavriplis, D. J., “Unstructured Dynamic Meshes with
Higher-Order Time Integration Schemes for the Unsteady Navier-
Stokes Equations,” 43rd AIAA Aerospace Sciences Meeting and
Exhibit, AIAA Paper 2005-1222, Reno, NV, 2005.

[20] Truong, A. H., Oldfield, C. A., and Zingg, D. W., “Mesh Movement
for a Discrete-Adjoint Newton–Krylov Algorithm for Aerodynamic
Optimization,” AIAA Journal, Vol. 46, No. 7, July 2008, pp. 1695–
1704.
doi:10.2514/1.33836

[21] Jakobsson, S., and Amoignon, O., “Mesh Deformation Using Radial
Basis Functions for Gradient-Based Aerodynamic Shape Opti-
mization,” Computers and Fluids, Vol. 36, No. 6, 2007, pp. 1119–
1136.
doi:10.1016/j.compfluid.2006.11.002

[22] Allen, C. B., and Rendall, T. C. S., “Unified Approach to CFD-CSD
Interpolation and Mesh Motion Using Radial Basis Functions,” 25th
AIAA Applied Aerodynamics Conference, AIAA Paper 2007-3804,
Miami, FL, June 2007.

[23] Morris, A. M., Allen, C. B., and Rendall, T. C. S., “Domain-Element
Method for Aerodynamic Shape Optimization Applied to a Modern
Transport Wing,” AIAA Journal, Vol. 47, No. 7, July 2009, pp. 1647–
1659.
doi:10.2514/1.39382

[24] Sederberg, T. W., and Parry, S. R., “Free-Form Deformation of Solid
Geometric Models,” Proceedings of the 13th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’86),
Association for Computing Machinery, New York, 1986, pp. 151–160.

[25] Hicken, J. E., and Zingg, D. W., “A Parallel Newton-Krylov Solver for
the Euler Equations Discretized Using Simultaneous Approximation

HICKEN AND ZINGG 411

http://dx.doi.org/10.2514/1.9084
http://dx.doi.org/10.1016/j.jcp.2007.08.029
http://dx.doi.org/10.2514/1.10415
http://dx.doi.org/10.1016/j.jcp.2005.05.025
http://dx.doi.org/10.2514/3.25229
http://dx.doi.org/10.2514/2.1765
http://dx.doi.org/10.1016/S0045-7825(98)00016-4
http://dx.doi.org/10.1016/S0045-7949(02)00002-0
http://dx.doi.org/10.1016/j.finel.2005.01.003
http://dx.doi.org/10.1016/0045-7825(94)00077-8
http://dx.doi.org/10.2514/1.33836
http://dx.doi.org/10.1016/j.compfluid.2006.11.002
http://dx.doi.org/10.2514/1.39382

Terms,” AIAA Journal, Vol. 46, No. 11, Nov. 2008, pp. 2773–2786.
doi:10.2514/1.34810

[26] Gage, P. J., Kroo, I. M., and Sobieski, I. P., “Variable-Complexity
Genetic Algorithm for Topological Design,” AIAA Journal, Vol. 33,
No. 11, Nov. 1995, pp. 2212–2217.
doi:10.2514/3.12969

[27] Vicini, A., and Quagliarella, D., “Airfoil and Wing Design Through
Hybrid Optimization Strategies,” AIAA Journal, Vol. 37, No. 5,
May 1999, pp. 634–641.
doi:10.2514/2.764

[28] Pironneau, O., “On Optimum Design in Fluid Mechanics,” Journal of
Fluid Mechanics, Vol. 64, No. 1, 1974, pp. 97–110.
doi:10.1017/S0022112074002023

[29] Jameson, A., “Aerodynamic Design via Control Theory,” Journal of
Scientific Computing, Vol. 3, No. 3, 1988, pp. 233–260.
doi:10.1007/BF01061285

[30] Baysal, O., and Eleshaky, M. E., “Aerodynamic Sensitivity Analysis
Methods for the Compressible Euler Equations,” Journal of Fluids
Engineering, Vol. 113, No. 4, 1991, pp. 681–688.
doi:10.1115/1.2926534

[31] Frank, P. D., and Shubin, G. R., “AComparison of Optimization-Based
Approaches for a Model Computational Aerodynamics Design
Problem,” Journal of Computational Physics, Vol. 98, No. 1, Jan. 1992,
pp. 74–89.
doi:10.1016/0021-9991(92)90174-W

[32] Burgreen, G. W., and Baysal, O., “Three-Dimensional Aerodynamic
Shape Optimization Using Discrete Sensitivity Analysis,” AIAA
Journal, Vol. 34, No. 9, Sept. 1996, pp. 1761–1770.
doi:10.2514/3.13305

[33] Nielsen, E. J., and Anderson, W. K., “Aerodynamic Design
Optimization on Unstructured Meshes Using the Navier-Stokes
Equations,” AIAA Journal, Vol. 37, No. 11, Nov. 1999, pp. 1411–
1419.
doi:10.2514/2.640

[34] Anderson, W. K., and Bonhaus, D. L., “Airfoil Design on Unstructured
Grids for Turbulent Flows,” AIAA Journal, Vol. 37, No. 2, Feb. 1999,
pp. 185–191.
doi:10.2514/2.712

[35] Rumpfkeil, M. P., and Zingg, D.W., “TheOptimal Control of Unsteady
Flowswith aDiscrete AdjointMethod,”Optimization andEngineering,
2008.
doi:10.1007/s11081-008-9035-5

[36] Giles, M. B., Duta, M. C., Müller, J.-D., and Pierce, N. A., “Algorithm
Developments for Discrete Adjoint Methods,” AIAA Journal, Vol. 41,
No. 2, Feb. 2003, pp. 198–205.
doi:10.2514/2.1961

[37] Nemec, M., Aftosmis, M. J., Murman, S. M., and Pulliam, T. H.,
“Adjoint Formulation for an Embedded-Boundary Cartesian Method,”
43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA
Paper 2005-0877, Reno, NV, 2005; also NASA Advanced Super-
computing Div., TR NAS-05-008, 2005.

[38] Saad, Y., and Schultz, M. H., “Gmres: AGeneralizedMinimal Residual
Algorithm for Solving Nonsymmetric Linear Systems,” SIAM Journal
on Scientific and Statistical Computing, Vol. 7, No. 3, July 1986,
pp. 856–869.
doi:10.1137/0907058

[39] Nielsen, E. J., and Park, M. A., “Using an Adjoint Approach to
Eliminate Mesh Sensitivities in Computational Design,” 43rd AIAA
Aerospace Sciences Meeting and Exhibit, AIAA Paper 2005-0491,
Jan. 2005.

[40] Squire, W., and Trapp, G., “Using Complex Variables to Estimate
Derivatives of Real Functions,” SIAM Review, Vol. 40, No. 1, 1998,
pp. 110–112.
doi:10.1137/S003614459631241X

[41] Anderson, W. K., Newman, J. C., Whitfield, D. L., and Nielsen, E. J.,
“Sensitivity Analysis for Navier-Stokes Equations on Unstructured
Meshes Using Complex Variables,” AIAA Journal, Vol. 39, No. 1,
Jan. 2001, pp. 56–63.
doi:10.2514/2.1270

[42] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The Complex-Step
Derivative Approximation,” ACM Transactions on Mathematical
Software, Vol. 29, No. 3, Sept. 2003, pp. 245–262.
doi:10.1145/838250.838251

[43] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization,” SIAM Journal
on Optimization, Vol. 12, No. 4, 2002, pp. 979–1006.
doi:10.1137/S1052623499350013

[44] Farin, G. E., Curves And Surfaces for Computed Aided Geometric
Design: A Practical Guide, 4th ed., Academic Press, London, 1997.

[45] Yu, T.-Y., and Soni, B. K., “Application of NURBS in Numerical
Grid Generation,” Computer-Aided Design, Vol. 27, No. 2, Feb. 1995,
pp. 147–157.
doi:10.1016/0010-4485(95)92154-K

[46] Yu, T.-Y., and Soni, B. K., “NURBS in Structured Grid Generation,”
Handbook of Grid Generation, edited by J. F. Thompson, B. K. Soni,
and N. P. Weatherill, CRC Press, Boca Raton, FL, 1999, Chap. 30.

[47] Hayes, J. G., Numerical Analysis,Springer, Berlin, 1982, pp. 140–
156.

[48] Schumaker, L. L., Spline Functions, Wiley, New York, 1981.
[49] Walz, C., “A Unified Approach to B-Spline Recursions and Knot

Insertion, with Application to New Recursion Formulas,” Advances in
Computational Mathematics, Vol. 3, No. 1, 1995, pp. 89–100.
doi:10.1007/BF02431997

[50] Piegl, L. A., and Tiller, W., “Computing the Derivative of NURBSwith
Respect to a Knot,”Computer Aided Geometric Design, Vol. 15, No. 9,
1998, pp. 925–934.
doi:10.1016/S0167-8396(98)00028-4

[51] Hoschek, J., “Intrinsic Parametrization for Approximation,” Computer
Aided Geometric Design, Vol. 5, No. 1, 1988, pp. 27–31.
doi:10.1016/0167-8396(88)90017-9

[52] Truong, A. H., Hicken, J. E., and Zingg, D. W., “A Pseudo-Nonlinear
Elasticity Mesh Movement Algorithm Applied to Mesh Generation: A
Hands-Off Approach,” 15 Annual Conference of the CFD Society of
Canada [CD-ROM], CFD Society of Canada, May 2007.

[53] Meijerink, J. A., and van derVorst,H.A., “An IterativeSolutionMethod
for Linear Systems of Which the Coefficient Matrix is a Symmetric
M-Matrix,”Mathematics of Computation, Vol. 31, No. 137, Jan. 1977,
pp. 148–162.
doi:10.2307/2005786

[54] Bar-Yoseph, P. Z.,Mereu, S., Chippada, S., andKalro, V. J., “Automatic
Monitoring of Element Shape Quality in 2-D and 3-D Computational
Mesh Dynamics,” Computational Mechanics, Vol. 27, No. 5, 2001,
pp. 378–395.
doi:10.1007/s004660100250

[55] Schmitt, V., andCharpin, F., “PressureDistributions on theONERAM6
Wing at Transonic Mach Numbers,” Office National d’Etudes et
Recherches Aerospatiales, Rept. 92320, Chatillon, France, 1979.

[56] Strand, B., “Summation by Parts for Finite Difference Approximations
for d=dx,” Journal of Computational Physics, Vol. 110, No. 1, 1994,
pp. 47–67.
doi:10.1006/jcph.1994.1005

[57] Carpenter, M. H., Gottlieb, D., and Abarbanel, S., “Time-Stable
Boundary Conditions for finite Difference Schemes Solving Hyper-
bolic Systems: Methodology and Application to High-Order Compact
Schemes,” Journal of Computational Physics, Vol. 111, No. 2, 1994,
pp. 220–236.
doi:10.1006/jcph.1994.1057

[58] Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the
Euler Equations by Finite Volume Methods Using Runge-Kutta Time-
Stepping Schemes,” 14th Fluid and PlasmaDynamics Conference, Palo
Alto, CA, AIAA Paper 81-1259, 1981.

[59] Pulliam, T. H., “Efficient Solution Methods for the Navier-Stokes
Equations,” Numerical Techniques for Viscous Flow Computation in
Turbomachinery Bladings, VKI Lecture Series, von Kármán Inst. for
Fluid Dynamics, Rhode-Saint-Genèse, Belgium, Jan. 1986.

[60] Swanson, R. C., and Turkel, E., “On Central-Difference and Upwind
Schemes,” Journal of Computational Physics, Vol. 101, No. 2, 1992,
pp. 292–306.
doi:10.1016/0021-9991(92)90007-L

[61] Saad, Y., “AFlexible Inner-Outer Preconditioned GMRESAlgorithm,”
SIAM Journal on Scientific and Statistical Computing, Vol. 14, No. 2,
1993, pp. 461–469.
doi:10.1137/0914028

[62] Cai, X.-C., Gropp, W. D., Keyes, D. E., and Tidriri, M. D., “Newton–
Krylov-Schwarz methods in CFD,” International Workshop on
Numerical Methods for the Navier-Stokes Equations, Notes in
Numerical Fluid Mechanics, edited by F. Hebeker, and R. Rannacher,
Vieweg Verlag, Braunschweig, Germany, 1993, pp. 17–30.

[63] Nielsen, E. J., Walters, R. W., Anderson, W. K., and Keyes, D. E.,
“Application of Newton-Krylov Methodology to a Three-Dimensional
Unstructured Euler Code,” 12th AIAAComputational Fluid Dynamics
Conference, San Diego, CA, AIAA Paper 95-1733, 1995.

[64] Gropp, W. D., Kaushik, D. K., Keyes, D. E., and Smith, B. F., “High-
Performance Parallel Implicit CFD,” Parallel Computing, Vol. 27,
No. 4, 2001, pp. 337–362.
doi:10.1016/S0167-8191(00)00075-2

[65] Saad, Y., and Sosonkina, M., “Distributed Schur Complement Tech-
niques for General Sparse Linear Systems,” SIAM Journal on Scientific

412 HICKEN AND ZINGG

http://dx.doi.org/10.2514/1.34810
http://dx.doi.org/10.2514/3.12969
http://dx.doi.org/10.2514/2.764
http://dx.doi.org/10.1017/S0022112074002023
http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.1115/1.2926534
http://dx.doi.org/10.1016/0021-9991(92)90174-W
http://dx.doi.org/10.2514/3.13305
http://dx.doi.org/10.2514/2.640
http://dx.doi.org/10.2514/2.712
http://dx.doi.org/10.1007/s11081-008-9035-5
http://dx.doi.org/10.2514/2.1961
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.2514/2.1270
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.1137/S1052623499350013
http://dx.doi.org/10.1016/0010-4485(95)92154-K
http://dx.doi.org/10.1007/BF02431997
http://dx.doi.org/10.1016/S0167-8396(98)00028-4
http://dx.doi.org/10.1016/0167-8396(88)90017-9
http://dx.doi.org/10.2307/2005786
http://dx.doi.org/10.1007/s004660100250
http://dx.doi.org/10.1006/jcph.1994.1005
http://dx.doi.org/10.1006/jcph.1994.1057
http://dx.doi.org/10.1016/0021-9991(92)90007-L
http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1016/S0167-8191(00)00075-2

Computing, Vol. 21, No. 4, 1999, pp. 1337–1357.
doi:10.1137/S1064827597328996

[66] Pueyo, A., and Zingg, D. W., “Efficient Newton-Krylov Solver for
Aerodynamic Computations,” AIAA Journal, Vol. 36, No. 11,
Nov. 1998, pp. 1991–1997.
doi:10.2514/2.326

[67] Nocedal, J., and Wright, S. J., Numerical Optimization, Springer–
Verlag, Berlin, 1999.

[68] Barth, T. J., and Linton, S. W., “An Unstructured Mesh Newton Solver
for Compressible Fluid Flow and Its Parallel Implementation,” 33rd
AIAAAerospace SciencesMeeting and Exhibit, AIAA Paper 95-0221,
Reno, NV, 1995.

[69] Griewank, A., Evaluating Derivatives, Society for Industrial and
Applied Mathematics, Philadelphia, 2000.

[70] Nielsen, E. J., and Kleb, B., “Efficient Construction of Discrete Adjoint
Operators on Unstructured Grids by Using Complex Variables,” 43rd
AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2005-
0324, Reno, NV, 2005.

[71] Mader, C. A., Martins, J. R. R. A., Alonso, J. J., and van der Weide,
E., “ADjoint: An Approach for Rapid Development of Discrete
Adjoint Solvers,” AIAA Journal, Vol. 46, No. 4, April 2008,
pp. 863–873.
doi:10.2514/1.29123

[72] Hicken, J. E., “Efficient Algorithms for Future Aircraft Design:
Contributions to Aerodynamic Shape Optimization,” Ph.D. Thesis,
Univ. of Toronto, Toronto, Ontario, Canada, 2009.

[73] de Sturler, E., “Truncation Strategies for Optimal Krylov Subspace
Methods,” SIAM Journal on Numerical Analysis, Vol. 36, No. 3, 1999,
pp. 864–889.
doi:10.1137/S0036142997315950

[74] Hicken, J. E., and Zingg, D. W., “A Simplified and Flexible Variant of
GCROT,” SIAM Journal on Scientific Computing (to be published).

[75] Nocedal, J., and Wright, S. J., Numerical Optimization, 2nd ed.,
Springer–Verlag, Berlin, 2006.

[76] Billing, L. K., “On the Development of an Improved Lift-Constrained
Aerodynamic Optimization Algorithm,”M.S. Thesis, Univ. of Toronto,
Toronto, Ontario, Canada, 2006.

[77] Zingg, D. W., and Billing, L., “Toward Practical Aerodynamic Design
Through Numerical Optimization,” 18th AIAA Computational
Fluid Dynamics Conference, AIAA Paper 2007-3950, Miami, FL,
June 2007.

[78] Buckley, H., and Zingg, D. W., “Airfoil Optimization Using Practical
Aerodynamic Design Requirements,” 19th AIAAComputational Fluid
Dynamics Conference, AIAA Paper 2009-3516, San Antonio, TX,
2009.

[79] Kroo, I., “Drag Due to Lift: Concepts for Prediction and Reduction,”
Annual Review of Fluid Mechanics, Vol. 33, 2001, pp. 587–617.
doi:10.1146/annurev.fluid.33.1.587

Z. Wang
Associate Editor

HICKEN AND ZINGG 413

http://dx.doi.org/10.1137/S1064827597328996
http://dx.doi.org/10.2514/2.326
http://dx.doi.org/10.2514/1.29123
http://dx.doi.org/10.1137/S0036142997315950
http://dx.doi.org/10.1146/annurev.fluid.33.1.587

