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Abstract. There is a need for flexible iterative solvers that can solve large-scale (> 106 un-
knowns) nonsymmetric sparse linear systems to a small tolerance. Among flexible solvers, flexible
GMRES (FGMRES) is attractive because it minimizes the residual norm over a particular subspace.
In practice, FGMRES is often restarted periodically to keep memory and work requirements reason-
able; however, like restarted GMRES, restarted FGMRES can suffer from stagnation. This has led us
to develop a flexible variant of the Krylov linear solver GCROT (generalized conjugate residual with
inner orthogonalization and outer truncation). Unlike the original GCROT algorithm, the proposed
GCROT variant uses a simplified truncation strategy similar to loose GMRES (LGMRES). This
modification is motivated by numerical experiments that suggest the specific subspace retained in
the outer iteration of GCROT is less important than its size. The flexible GCROT variant appears to
be well suited for advection-dominated problems. In particular, when applied to an adjoint problem
from computational aerodynamics, the proposed GCROT variant is robust and efficient compared
with several popular truncated Krylov subspace methods. Finally, a flexible version of LGMRES is
easily constructed by recognizing algorithmic similarities to GCROT.
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1. Introduction and motivation. Iterative Krylov solvers are now commonly
used to solve sparse linear systems that arise from the discretization of partial differ-
ential equations (PDEs). In particular, Krylov subspace methods have found success
in inexact Newton strategies for solving nonlinear systems of equations; see, for ex-
ample, [11, 15, 6]. When a Krylov iterative method is used to inexactly solve the
linear Newton subsystems, the residual norm is typically reduced by a modest factor
η ∈ [10−2, 10−1], relative to the initial residual norm. These large tolerances re-
quire few iterations when a good preconditioner is available; hence, optimal methods
such as GMRES [18] are often favored in the Newton–Krylov context, since memory
requirements remain modest.

Researchers are increasingly interested in optimization problems that are con-
strained by PDEs. Such problems are often solved using gradient-based optimization
algorithms, which require the sensitivities (i.e., gradients) of the functional of interest.
These sensitivities can be determined efficiently using the adjoint variables, ψ, which
are solutions to linear equations of the form

ATψ = b,

where A is the Jacobian matrix of the discretized PDE. In contrast to the linear
systems that arise during the Newton–Krylov solution of the discretized PDE, the
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adjoint system must be solved to a much smaller tolerance to ensure that the gradient
is accurate. For example, a tolerance of η = 10−8 is necessary to keep the norm of
the gradient error below 10−6 in aerospace applications [8, 10].

The tighter tolerance demanded by the adjoint equations requires significantly
more iterations, making full GMRES prohibitively expensive for three-dimensional
problems involving millions of degrees of freedom. In such situations, when many
iterations are needed, restarted GMRES is often employed to limit memory usage,
despite its tendency to stall. BiCGStab [21] offers an alternative to restarted GM-
RES, but this method is not well suited to advection-dominated steady-state problems
arising in many of the physical sciences [7]. Researchers have proposed numerous vari-
ants of BiCGStab and GMRES(m) to address the above shortcomings; see Simoncini
and Szyld [20] for a review. One of the more promising Krylov subspace algorithms
is GCROT [4] (generalized conjugate residual with inner orthogonalization and outer
truncation).

Despite its promise, in the decade following the original GCROT paper very few
application-based articles have been published that use this solver. We speculate
that there are two reasons for this. First, GCROT is, in its full generality, a complex
algorithm to implement. Second, users must supply five input parameters to GCROT,
the choice of which is nontrivial and requires some knowledge of the method.

In an effort to reduce the burden of determining optimal parameters, we present
a variant of GCROT, GCROT(m, k), that uses a simplified truncation strategy. The
proposed method requires two parameters: an inner subspace size, m, and an outer
subspace size, k. In addition to requiring fewer input parameters, GCROT(m, k) is
straightforward to implement, and we hope that this will encourage others to experi-
ment with GCROT.

Together with the simplified GCROT algorithm, we also present flexible versions
of GCROT and loose GMRES (LGMRES) [1]. Flexible iterative methods allow the
preconditioner to vary with each step. Thus, the preconditioner can use relaxation-
based methods, or even nested Krylov methods. An example of a nonstationary
preconditioner, which we have found useful in computational aerodynamics, is the
parallel approximate-Schur preconditioner of Saad and Sosonkina [19].

The paper is organized as follows. We begin in section 2 with a review of general-
ized conjugate residual with inner orthogonalization (GCRO), the method underlying
GCROT, and present a variant that uses flexible GMRES (FGMRES) as the inner
method. In section 3, we investigate the residual error analysis proposed by de Sturler
[4], by conducting some numerical experiments. These experiments lead to the trun-
cation strategy used in GCROT(m, k). In section 4, we briefly discuss the flexible
variant of LGMRES and its properties. Finally, in section 5, we assess the new
variants by comparing their performance with that of GMRES(m), FGMRES(m),
BiCGStab, and flexible BiCGStab (FBiCGStab) [23]. Conclusions can be found in
section 6.

2. GCRO with FGMRES nested. In this section, we present a version of
GCRO [3] that uses FGMRES as the inner Krylov method; this version of GCRO will
subsequently be used to develop GCROT(m, k). We also use this as an opportunity
to review GCRO in general and establish an optimality result for the flexible version
of GCRO.

GCRO is essentially a generalization of the generalized conjugate residual (GCR)
method [5]. Consider the linear system Ax = b with A ∈ R

n×n. Let Uk, Ck ∈ R
n×k
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be given matrices that satisfy

AUk = Ck,(2.1)

CT
k Ck = Ik,(2.2)

where Ik is the k × k identity matrix. In addition, let xk and rk ∈ R
n be the

approximate solution and residual, respectively, at iteration k; throughout this paper
we will assume that the initial iterate is x0 = 0. Suppose we look for xk ∈ range (Uk)
such that the residual norm is minimized. This assumption, together with (2.1) and
(2.2), leads to

rk = b−AUkyk = b− Ckyk,

where yk ∈ R
k is given by

yk = argmin
y

‖b− Cky‖2 = CT
k b.

Thus, we obtain xk = UkC
T
k b and rk = b− CkC

T
k b.

The question remains of how to generate uk+1 and ck+1 for the subsequent it-
eration. Suppose, for the moment, that it would be possible to take ck+1 = rk for
iteration k + 1. Then Ck+1 = [Ck rk], and if we take yTk+1 = [yTk 1], the residual at
iteration k + 1 is given by

b −AUk+1yk+1 = b− [Ck rk
] [yk

1

]
= b− CkC

T
k b− rk

= 0.

This shows that taking ck+1 = rk is optimal; however, this choice implies uk+1 =
A−1rk = ek (the error), which requires inverting the matrix. Nevertheless, it does
suggest that we take uk+1 ≈ ek and ck+1 = Auk+1. This strategy is applied in the
GMRESR [22] algorithm by using GMRES to find a uk+1 that approximates the error.

GCRO improves upon GMRESR by requiring that the inner method maintain
orthogonality to Ck. Orthogonality to Ck is ensured by replacing A in the Arnoldi
iteration with ACk

= (I − CkC
T
k )A.

In general, GCRO can use any Krylov-based iterative solver for the inner method.
We consider FGMRES since this method is flexible and because it leads to the fol-
lowing global optimality result.

Theorem 1. Let Zm and Vm+1 be the matrices generated from FGMRES(m)
using an Arnoldi iteration with ACk

= (I − CkC
T
k )A and v1 = rk/‖rk‖2; hence,

ACk
Zm = Vm+1H̄m and V T

m+1Vm+1 = Im+1 [16]. Let ym be the solution of the inner,
FGMRES(m), iteration:

ym = argmin
y

‖rk −ACk
Zmy‖2 = argmin

y
‖rk − Vm+1H̄my‖2.

Then the minimal residual solution of the (inner) FGMRES method gives the outer
approximation

xk+1 = xk + (I − UkC
T
k A)Zmym,
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which is also the solution of the global minimization problem

min {‖b−Ax̃‖2 | x̃ ∈ range (Uk)⊕ range (Zm)}.
Proof. The proof is analogous to the proof for Theorem 2.2 from [3], with Zm

replacing Vm and ACk
Zm = Vm+1H̄m replacing ACk

Vm = Vm+1H̄m.
Theorem 1 explains why GCRO is preferable to GMRESR: the former finds the

solution with the minimal residual norm in the space range (Uk)⊕ range (Zm).
To make these ideas more concrete, the pseudocode for GCRO using FGMRES

as the inner method is presented in Algorithm 1 in the appendix. As is the case with
GCRO nested with GMRES [3], more efficient implementations of FGMRES-nested
GCRO are possible, but many of the changes are useful only for full GCRO and must
be discarded when we consider truncation.

3. Truncation strategies for GCRO. The memory requirements of GCRO
grow linearly with each outer iteration, since the vectors ck+1 and uk+1 are added to
the matrices Ck and Uk. In [4], de Sturler addresses this by developing GCRO trun-
cated, or GCROT. The truncation strategy in GCROT examines the residual error
to determine which subspace was most important to convergence at outer iteration
k. The strategy assumes that a subspace that was important for convergence will
continue to be important, and that a subspace that did not contribute to convergence
will continue to be unimportant. These assumptions will be tested below. However,
we begin by reviewing the theory presented in [4] in the context of using FGMRES
as the inner method in GCRO.

The following analysis is motivated by the question, Which subspace from range (Ck)
was most important for convergence during the inner FGMRES iteration of GCRO?
Recall that the inner FGMRES method produces the relation (see Theorem 1)

Vm+1H̄m+1 = ACk
Zm

= AZm − CkC
T
k AZm

⇔ AZm = CkB + (Vm+1Gm)R̄m,(3.1)

where B ≡ CT
k AZm ∈ R

k×m. We have also introduced Gm ∈ R
(m+1)×(m+1), which

is the product of the m Givens rotations1 that reduce the upper Hessenberg matrix
H̄m to an upper triangular matrix, denoted here by R̄m ∈ R

(m+1)×m. Dropping the
last row of zeros from R̄m to obtain Rm and the last column of Gm to obtain Ḡm, we
arrive at the QR-decomposition Vm+1H̄m+1 = QmRm, where Qm ≡ Vm+1Ḡm. Using
this decomposition in (3.1), we have

(3.2) AZm = CkB +QmRm.

Recall that Vm+1 is constructed to satisfy CT
k Vm+1 = 0, so CTQm = 0 as well. Con-

sequently, (3.2) shows us how to express AZm using the orthonormal basis [Ck Qm].
Alternatively, if we ignore orthogonality to the subspace range (Ck), we can obtain
the following QR-decomposition of AZm:

(3.3) AZm =WmS,

where S ∈ R
m×m is upper triangular and WT

mWm = Im. It follows from (3.2) and
(3.3) that the best approximation to the residual rk in (range (AZm)⊕ range (Ck))

⊥

1These rotations are available in most implementations of GMRES and FGMRES.
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is (recall CT
k rk = 0)

r
(1)
k = (I − CkC

T
k −QmQ

T
m)rk

= (I −QmQ
T
m)rk,

and the best approximation to rk in range (AZm)
⊥
, ignoring orthogonality to range (Ck),

is

r
(2)
k = (I −WmW

T
m)rk.

The residual error is defined as the difference between r
(1)
k and r

(2)
k :

ε ≡ r
(2)
k − r

(1)
k .

We now paraphrase Theorem 2.2 from [4], which provides an inexpensive means of
orthogonally decomposing the residual error and calculating its norm.

Theorem 2. Let D = BR−1
m , and let the singular value decomposition of D be

given by

D = ΛDΣDΓT
D,

where the columns of the unitary matrices ΛD = [λ1 λ2 · · · λk ] ∈ R
k×k and ΓD =

[γ1 γ2 · · · γm ] ∈ R
m×m are ordered such that the singular values in ΣD satisfy

σ1 ≥ σ2 ≥ · · · ≥ σp,

p = min (k,m). Then the residual error satisfies

ε =

p∑
i=1

εi, where εi =

(
νiσ

2
i

1 + σ2
i

Qmvi − νiσi
1 + σ2

i

Ckyi

)

and νi = γTi Q
T
mrk. The norm of the residual error is given by

‖ε‖2 =

(
p∑
i

‖εi‖22
) 1

2

, where ‖εi‖22 =
ν2i σ

2
i

1 + σ2
i

.

We consider Theorem 2 as it applies to the residual error in neglecting subspaces
from Ck. When the inner method of GCRO is GMRES, the theorem can be applied
much more generally [4]. For example, by identifying the first s iterations of the inner
method with Cs, we can, with the help of the residual error, determine how restarting
at iteration s+1 would affect convergence in the last m−s iterations. Unfortunately,
it does not appear possible to extend this more general analysis to the case where
the inner method of GCRO is FGMRES.2 Even if such an analysis were possible, we
could keep only a small subspace from Vm+1 before the potential residual reduction in
subsequent iterations would be outweighed by the CPU cost of moving the subspace
into Ck. For these reasons, we favor a truncated version of flexible GCRO that keeps
only the residual updates, ck, in the matrix Ck.

If the dimension of Ck is limited to k, then the subspace range (Ck) must be
truncated for outer iterations greater than k + 1. We consider the following three
truncation strategies here.

2In particular, the matrix S in (3.3) cannot be constructed using an Arnoldi iteration based on
H̄m, in contrast to the case where GMRES is the inner method; see page 873 of [4].
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Table 1

Summary of cases used to study the truncation strategy for GCRO.

Case Name Size RHS? Tolerance

1 add20 2395 yes 10−10

2 osreg 1 2205 no 10−10

3 orsirr 1 1030 no 10−5

4 cdde2 961 no 10−10

5 pde900 900 no 10−10

6 sherman1 1000 yes 10−5

7 sherman4 1104 yes 10−10

8 rdb1250 1250 no 10−5

9 cavity05 1182 yes 10−5

10 nos3 960 no 10−5

11 watt 2 1856 no 10−5

12 fs 760 1 760 no 10−10

13 er05r0000 236 yes 10−5

14 steam2 600 no 10−5

15 cavity10 2597 yes 10−5

16 example6 (D = 1) 1600 yes 10−10

17 example6 (D = 41) 1600 yes 10−10

18 example6 (D = 412) 1600 yes 10−10

(1) Smallest singular value. The first strategy is the one proposed in [4]; namely, we
discard the vector associated with the smallest singular value. Thus, we keep
the subspace

Ck[λ1 λ2 · · · λk−1 ].

If we had been limited to using a (k−1)-dimensional subspace from range (Ck)
during the inner iteration, Theorem 2 tells us that the above choice is the
one that minimizes the residual error. Note, however, that there is no way of
knowing a priori that this will continue to be the optimal choice. This is an
assumption that we must test.

(2) Largest singular value. In this strategy, we discard the vector associated with the
largest singular value, keeping the subspace

Ck[λ2 λ3 · · · λk ].
This choice may seem counterintuitive, given Theorem 2. It provides a test
for the assumptions used for the first choice.

(3) Oldest vector in Ck. The final strategy we consider is modelled on the one used
in LGMRES. Specifically, we discard the oldest vector in Ck and keep

Ck

[
e2 e3 · · · ek

]
,

assuming the vectors are stored columnwise, oldest to newest, in Ck.
Following [1], we assess the truncation strategies using a set of 15 problems from

the Matrix Market Collection [2, 12], as well as the three convection-diffusion problems
from Example 6 in [14]. All 18 cases are summarized in Table 1. The table indicates
the names of the matrices, their size, and whether or not the right-hand-side vector
is provided. If the right-hand side is not available, we pseudo-randomly generate the
entries in b such that bi ∈ [0, 1].

The convection-diffusion problems, denoted example6 in Table 1, are based on a
finite-difference discretization of the PDE

uxx + uyy +Dux = − 412.
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The parameter D determines the relative importance of convection over diffusion and
takes on values D = 1, 41, and 412. The domain consists of a unit square, and it
is discretized using a uniform mesh with Δx = Δy = 1/41. Second-order centered
schemes are used to discretize the derivatives, and Dirichlet boundary conditions of
u = 0 are applied along the edges of the domain.

Table 1 also lists the tolerances that determine when the iterative solution process
terminates. A particular problem is considered solved when the relative residual,
‖r‖2/‖b‖2, is reduced below the given tolerance. The tolerance for each case is chosen
to ensure that the number of matrix-vector products falls approximately in the range
[102, 104] and that truncation of Ck is necessary.

Figures 1(a)–(c) compare the three truncation strategies for m+ k = 10, 20, and
30, respectively, where m is the size of the inner subspace and k is the dimension of
Ck (the outer subspace). The dimension of range (Ck) is allowed to vary from k = 1
to k = m. Note that if k > m, there will always be a subspace of range (Ck) that
is orthogonal to the residual error, so the upper bound on k is required for the first
truncation strategy to remain well defined. The data points in the figures indicate
the average number of matrix-vector products over all k, while the upper and lower
“error” bars indicate the maximum and minimum number of products required.

The results suggest that truncating Ck based on the smallest singular value does
not offer a significant improvement over the other strategies. Indeed, for m+ k = 20
this strategy performs the worst on average for five of the cases. Similarly, if the
singular value analysis can predict which subspace should be kept, then truncating
based on the largest singular value should perform rather poorly. Instead, the overall
performance of this strategy is very similar to those of the other two.

3.1. GCROT(m, k). Despite its simplicity, the strategy of discarding the oldest
vector in Ck is competitive with truncation based on the singular-value analysis.
Discarding the oldest vector is also attractive because there is no need to apply Givens
rotations to eliminate a column from Ck to make space for the new residual update,
unlike the singular-value-based truncation.

This simplified truncation strategy is a variant of GCROT that we refer to
as GCROT(m, k). This variant can use either GMRES or FGMRES as the inner
method; when FGMRES is used we refer to the solver as flexible GCROT(m, k) or
F-GCROT(m, k). A listing for F-GCROT(m, k) is provided in the appendix.3 Note
the use of FGMRES(m + max (k − l, 0)) as the inner method, where l is the outer
iteration. Thus, the method begins with FGMRES(m+k) and progressively decreases
the number of inner iterations as the size of Ck grows, to keep memory requirements
fixed. A similar strategy is used in LGMRES [1].

Table 2 lists the computational costs of F-GCROT(m, k) in terms of the number
of matrix-vector products (matvecs), scalar-vector-plus-vector operations (daxpys),
and inner products (ddots). The costs for the first k outer iterations differ from
those of the subsequent iterations, so these are listed separately. The total memory
requirements are also listed in the table in terms of the number of vectors of length
n. The memory requirements are based on an actual implementation, which modifies
Algorithm 2 such that the residual is stored in v1, one work array is used for both w
and û, and ĉ is stored directly in Ck. The nonflexible GCROT(m, k) algorithm has
identical costs but uses only m+ 2k + 3 vectors.

3The nonflexible version can be obtained by replacing FGMRES with GMRES in the inner
method, which makes the zi vectors redundant.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIMPLIFIED GCROT 1679

case

m
at

rix
-v

ec
to

r
pr

od
uc

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

102

103

104

case

m
at

rix
-v

ec
to

r
pr

od
uc

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

102

103

104
small sing. val. truncation
largest sing. val. truncation
oldest vector truncation

(a) m+ k = 10, k = 1, . . . , 5

case

m
at

rix
-v

ec
to

r
pr

od
uc

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

102

103

104

case

m
at

rix
-v

ec
to

r
pr

od
uc

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

102

103

104
small sing. val. truncation
largest sing. val. truncation
oldest vector truncation
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(c) m+ k = 30, k = 1, . . . , 15

Fig. 1. Number of iterations used by the three GCRO truncation strategies to converge the test
cases for various values of m and k.
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Table 2

Computational costs and memory requirements of flexible GCROT(m, k) and flexible LGMRES.

Flexible GCROT(m, k)

Memory 2m+ 2k + 3

Cost (first k outer iterations)

matvecs mk + 1
2
k(k + 1)

daxpys 1
2
k(m+ k + 1)(m + k + 6)− 1

6
k(k + 1)(k + 5) + 4k

ddots 1
2
k(m+ k + 1)(m + k + 2)− 1

6
k(k + 1)(k + 2) + 3k

Cost (every subsequent outer iteration)

matvecs m

daxpys 1
3
(m+ k)(m + k + 7)− 1

2
k(k + 5) + 5

ddots 1
2
(m+ k)(m + k + 3)− 1

2
k(k + 3) + 3

Flexible LGMRES(m, k)

Memory 2m+ 3k + 3

Cost (first k outer iterations)

matvecs mk + 1
2
k(k + 1)

daxpys 1
2
k(m+ k + 1)(m + k + 6)

ddots 1
2
k(m+ k)(m+ k + 1) + k

Cost (every subsequent outer iteration)

matvecs m

daxpys 1
2
(m+ k)(m + k + 7) + 3

ddots 1
2
(m+ k)(m + k + 3) + 1

Although GCROT(m, k) is a variant of GCROT, the algorithm is sufficiently
distinct that some discussion regarding appropriate values for the parameters m and
k is warranted. The parameter m determines the size of the Krylov subspace used
in the inner (F)GMRES iterations. In our applications, we typically use values of
m between 10 and 50, with the larger values giving more robust convergence at the
expense of memory. To determine appropriate values for k, we performed a parameter
study using the same cases from the truncation strategy study. For each case, we fixed
s = m+ k and varied the value of k from 1 to s− 1, and we recorded the number of
matrix-vector products. We define an efficiency measure for each value k using

ηk =
1

Ncases

Ncases∑
i=1

mink (Li,k)

Li,k
,

where Li,k is the number of matrix-vector products used by GCROT(m, k) on case i
and Ncases = 18 is the total number of cases. Hence, ηk ≤ 1, with equality if and only
if GCROT(m, k) used the fewest products in all cases. If GCROT(m, k) stalled or
failed to converge in fewer than 30000 products for case i, the ratio mink (Li,k)/Li,k

was set to zero.
Figure 2 plots the efficiency measure ηk for m+ k = 10 and m+ k = 20; similar

results were obtained for other values of m + k. The results suggest that k ≈ m
is a good choice on average, at least in terms of matrix-vector products. When the
computational cost of the daxpys and ddots are taken into consideration, lower values
of k may also provide good performance in terms of CPU time. In section 5.2, we will
revisit the choice of k in the context of an adjoint problem.
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(b) m+ k = 20

Fig. 2. Performance of GCROT(m, k) for fixed m+ k and various values of k.

4. Flexible LGMRES(m,k). A flexible variant of LGMRES is obtained with
only a few changes to the original algorithm in [1]. See Algorithm 3 in the appendix for
a listing of flexible LGMRES (F-LGMRES). As with F-GCROT, F-LGMRES is built
on FGMRES as the inner Krylov method. Thus, since an additional vector of storage
is required for each iteration of the inner method, the total memory requirements
increase from m + 3k + 3 to 2m + 3k + 3. The memory and computational costs of
F-LGMRES(m, k) are summarized in Table 2.

Several theorems from [1] that apply to GMRES or LGMRES can be extended
to their flexible variants; these theorems are repeated below for completeness. In
fact, the theorems apply more broadly to any Petrov–Galerkin projection method for
which ui ≡ xi − xi−1 ∈ K and ri ⊥ L = AK.

Theorem 3. Let ri+1 and ri be the residuals from the consecutive FGMRES
cycles i+ 1 and i, respectively. Then the angle between these residuals is given by

cos∠(ri+1, ri) =
‖ri+1‖2
‖ri‖2 .

Theorem 4. Let ri+1 and ri−1 be the residuals from the FGMRES restart cycles
i+ 1 and i− 1, respectively. Then the angle between these residuals is

cos∠(ri+1, ri−1) =
‖ri+1‖2
‖ri−1‖2 − (Aui+1, Aui)

‖ri+1‖2‖ri−1‖2 ,

where ui+1 = xi+1 − xi and ri+1 = ri −Aui+1 for all i ≥ 1.
Theorem 5. Let ri+1 and ri−1 be the residuals from the F-LGMRES restart

cycles i+1 and i− 1, respectively. Then the angle between these residuals is given by

cos∠(ri+1, ri−1) =
‖ri+1‖2
‖ri−1‖2 .

Proofs of the above theorems are easily obtained by generalizing the proofs of the
corresponding theorems in [1].
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Theorems 4 and 5 suggest that F-LGMRES will improve upon FGMRES in much
the same way that LGMRES improves upon GMRES: by increasing the angle between
ri+1 and ri−1, thereby reducing the tendency for these residuals to point in the same
direction.

5. Results. In this section, we consider two problems that illustrate the per-
formance of (F)GCROT(m, k) and, to a lesser extent, F-LGMRES(m, k). The prob-
lems reflect our interest in the advection-dominated physics that typically arises in
computational fluid dynamics. In particular, we choose problems that result in ill-
conditioned, indefinite sparse matrices.

5.1. Advection-diffusion. The first example is a two-dimensional steady advec-
tion-diffusion problem governed by the PDE

(5.1) ∂xu− ν∇2u = 0,

where ∇2 is the Laplacian and ν is the diffusion coefficient. The domain consists of
the unit square [0, 1] × [0, 1], which is discretized uniformly with 46 nodes in both
the x- and y-directions. The PDE (5.1) is discretized using a second-order accurate
finite-volume scheme.

Dirichlet boundary conditions of u = 0 are applied along the edges y = 0 and
y = 1. Dirichlet boundary conditions are also applied at the inlet, x = 0, where we
set

u(x = 0) =

{
1 if |y − 1

2 | ≤ 1
6 ,

0 otherwise.

Neumann boundary conditions of ∂xu = 0 are enforced at the outlet, x = 1. To
improve equation scaling, the boundary equations are multiplied by ν. The diffusion
coefficient is set to ν = 0.2(Δx)2 ≈ 10−4. All solvers are given an initial guess of
u = 0.

To investigate the flexible solvers, we use GMRES(5) as a preconditioner and
measure performance in terms of matrix-vector products. Thus, each iteration re-
quires six matrix-vector products when the GMRES(5) preconditioner is used—five
products for the preconditioner and one for the solver itself. We consider three sub-
space sizes, m + k = 16, 20, and 24, and we compare FGMRES(m + k) with the
flexible variants of GCROT(m, k) and LGMRES(m, k).

Table 3 lists the number of matrix-vector products required to reduce the relative
residual of the advection-diffusion problem below 10−10. Runs that failed to reach
this tolerance in 105 products were terminated and are indicated with a dash in the
table. The truncated solvers were run with all values of k between 1 and m, although
only three representative values are shown in Table 3, specifically, k = 1,m/3, and m.

When no preconditioning is used, GCROT is the only method of the three that
consistently solves the problem in fewer than 105 products. Admittedly, Krylov solvers
are rarely used without a preconditioner; nevertheless, these results suggest that
GCROT(m, k) is a robust solver. Indeed, (m, k) = (15, 1) is the only parameter
combination considered that results in the failed convergence of GCROT.

As expected, all the methods perform significantly better with GMRES(5) pre-
conditioning. The improvement is particularly dramatic for FGMRES(m + k) and
F-LGMRES(m, k), which both failed to converge in 105 products without the precon-
ditioner. F-GCROT(m, k) has the best performance, with k = m requiring the fewest
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Table 3

Matrix-vector products required to reach convergence tolerance 10−10 for the advection-diffusion
problem.

Matrix-vector products

No preconditioner GMRES(5)

Solver m + k 16 20 24 16 20 24
FGMRES(m + k) — — — 3846 2046 1188

F-GCROT(m, k = 1) — 32862 5686 1746 1362 1092
F-GCROT(m, k = 1

3
m) 3787 1829 2246 942 912 696

F-GCROT(m, k = m) 2803 2562 2784 756 780 696

F-LGMRES(m, k = 1) — — — 4002 2184 1230
F-LGMRES(m, k = 1

3
m) — — — — 2520 924

F-LGMRES(m, k = m) — — — — 1098 924

products. The performance of F-LGMRES(m, k) is similar to FGMRES(m + k) on
this particular problem.

We observe the following trends regarding the choice of k for the present advection-
dominated problem. GCROT(m, k) and its flexible variant are relatively insensitive
to this parameter. For all k ≤ m, only k = 1 leads to convergence difficulties. For
the preconditioned cases, k = m was the optimal choice for F-GCROT for each value
of m+ k. For the unpreconditioned cases, there was more variability in the optimal
choice of k for GCROT; k = 8, 3, and 3 produced the fewest products (2803, 1628,
and 1116) for m+ k = 16, 20, and 24, respectively.

In [1], LGMRES(m, k) was found to perform well with values of k less than or
equal to 3. This is consistent with the present results for F-LGMRES(m, k) when
m + k = 16 (k = 1 gives the fewest matrix-vector products in this case). However,
for the subspace sizes m + k = 20 and 24, larger values of k performed better. In
particular, the value k = m was optimal, using 25%–50% fewer matrix-vector products
relative to values k ≤ 3.

Finally, we emphasize that the present comparison is based on the subspace size,
m + k, and not on memory. This distinction is important, because the memory for
flexible LGMRES grows as 2m+3k+3, so fixing the subspace size at m+k ignores a
nonconstant k term. A comparison based on fixed memory is considered in the next
section.

5.2. Adjoint equation for a compressible flow. In this example, we investi-
gate the performance of F-GCROT(m, k) on an adjoint problem from computational
aerodynamics. Such problems frequently arise in aerodynamic optimization during
the evaluation of functional gradients. The problem is an appropriate test case for
two reasons. First, many iterations are necessary to achieve an accurate gradient, so
full GMRES and full FGMRES are not practical. Second, as we shall see, a nonsta-
tionary preconditioner may be optimal in some applications, so a flexible variant is
useful.

The matrix for the adjoint problem is the transpose of a Jacobian matrix, de-
noted by A. The Jacobian matrix arises from the linearization of the discrete Euler
equations. The Euler equations are discretized using second-order-accurate finite dif-
ferences; see [9] for further details. The right-hand-side vector is the derivative of a
functional (e.g., lift or drag) with respect to the flow variables at each node.

The properties of the adjoint matrix are strongly influenced by the Mach num-
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ber. The Mach number is defined by M ≡ u∞/a∞, where u∞ is the far-field flow
velocity and a∞ the far-field speed of sound. For Mach numbers below 0.3, the flow is
essentially incompressible. For larger Mach numbers, compressibility effects become
important—for the geometry considered here, a shock wave appears at M ≈ 0.7 and
grows in strength as the Mach number is increased. To cover both incompressible and
compressible regimes, we consider a range of Mach numbers between M = 0.2 and
M = 0.8.

There are 5791500 unknowns, so a parallel solution strategy is necessary for rea-
sonable CPU times. The matrix and vectors (solution and right-hand side) are parti-
tioned across 12 processors. The distributed matrix is stored in the format described
in [17] and [19] such that the equations and unknowns corresponding to the same
node are assigned to the same processor.

We consider two parallel preconditioners for the adjoint problem: an additive-
Schwarz preconditioner with no overlap (block Jacobi), and an approximate-Schur
preconditioner [19]. The Schwarz preconditioner consists of a single application of an
incomplete lower-upper factorization [13] to the diagonal blocks of AT . It does not
require a flexible iterative solver. The Schur-based preconditioner couples the entire
domain by finding an approximate solution to the Schur complement corresponding
to interface unknowns, i.e., unknowns coupled between processors. This approximate
solution uses GMRES, and, consequently, the approximate-Schur preconditioner re-
quires a flexible iterative solver.

For the same nested subspace size, the flexible variants of GCROT and LGM-
RES require more memory than their GMRES-based counterparts. Therefore, we
need to demonstrate that the flexible variants can perform better using the same
amount of memory and, hence, smaller subspaces. For example, suppose we pair the
approximate-Schur preconditioner with F-GCROT(m, k). The flexible variant is un-
necessary for the additive-Schwarz preconditioner, so FGMRES can be replaced with
GMRES in Algorithm 2. Consequently, the set of vectors {zi}mi=1 becomes redundant,
and the additional memory can be used to expand the subspace sizes. Thus, to provide
a fair comparison in terms of memory, the additive-Schwarz preconditioner should be
paired with GCROT(2m, k). Similar arguments can be applied to LGMRES.

We have implemented the solvers and preconditioners in an in-house Fortran95
library, which we have used in the following studies. In addition, the results were ob-
tained on the resources of SciNet, an IBM iDataPlex cluster based on Intel’s Nehalem
architecture. The cluster is interconnected with nonblocking 4X-DDR InfiniBand.

5.2.1. The choice of k in GCROT(m,k). In section 3.1 we investigated
appropriate values for the parameter k in GCROT(m, k). Here, we use the adjoint
problem to explore this issue further. In addition, we compare the Schur and Schwarz
preconditioners applied to GCROT(m, k), which provides an opportunity to assess
the benefits of a flexible version of this solver.

We consider the set of Mach numbers

(5.2) Mi = 0.2 + (i − 1)0.5, i = 1, 2, . . . , 13,

and solve the adjoint problem using F-GCROT(20 − k, k) paired with the approxi-
mate-Schur preconditioner and GCROT(40− 2k, k) paired with the additive-Schwarz
preconditioner. The parameter k is varied from 1 to 19. This covers the full range of
k values for F-GCROT(20− k, k) and approximately half the range for GCROT(40−
2k, k).
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Fig. 3. Efficiency measure, over a range of k values, for F-GCROT(20 − k, k) and for
GCROT(40− 2k, k) paired with the Schur- and Schwarz-based preconditioners, respectively.

For each k value, we define an efficiency measure as follows:

ηk =
1

13

13∑
i=1

Tmin
i

Ti,k
,

where Ti,k is the time required by GCROT or F-GCROT, using the parameter value k,
to reduce the relative residual below 10−8 for Mach numberMi. T

min
i is the minimum

time for Mach numberMi and is taken over all k values and both preconditioner-solver
combinations; consequently, ηk permits a direct comparison of the two combinations.
If the solver fails to converge in 3000 matrix-vector products, Tmin

i /Ti,k is set to zero.
The above measure is similar to the one used in section 3.1, except that CPU time
is used rather than matrix-vector products. CPU time is preferable in the present
context, since it accounts for the unequal costs of the two preconditioners.

Figure 3 plots the efficiency measure for the F-GCROT(20 − k, k)-Schur combi-
nation and the GCROT(40 − 2k, k)-Schwarz combination. For k ≤ 15, F-GCROT
outperforms GCROT by 15%–28% (for a fixed k), despite the smaller inner sub-
space size used by the flexible variant. On this set of problems, GCROT(m, k) and
F-GCROT(m, k,) perform best using small values of k. This does not necessarily con-
tradict the findings of section 3.1, since those results were obtained by averaging over
a range of distinct problems; thus, k = m may still be optimal on average. Moreover,
the present efficiency measure is based on the CPU time, which includes the advan-
tage that smaller values of k have in terms of daxpys.4 Both the earlier and present
results agree that the largest k value (i.e., m = 1) should be avoided. Finally, while
k = 1 performs best, the figure shows that the performance for other values of k is
reduced by only a modest amount (approximately 10%–30% for k ≤ 17).

5.2.2. The choice of k in LGMRES(m,k). In this section, we adapt the
methodology of section 5.2.1 to LGMRES and its flexible variant to determine values

4The k = 1 case is also the most efficient in terms of matrix-vector products, which is why fewer
daxpys offers only a partial explanation here.
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Fig. 4. Efficiency measure, over a range of k values, for F-LGMRES((60 − 3k)/ 2, k) and
LGMRES(60− 3k,k) paired with the Schur- and Schwarz-based preconditioners, respectively.

of k that work well for these solvers when applied to the adjoint problem. This study
will inform our choice of k in the next section, where the performance of LGMRES
and F-LGMRES is compared with the performance of other solvers.

We note two changes to the methodology of the previous GCROT study. First, the
subspace-dependent memory is increased from 40 to 60, because F-LGMRES((40 −
3k)/2, k) was found to stall for Mach numbers Mi ≥ 0.45, making it difficult to
determine suitable values of k. Therefore, we compare LGMRES(60 − 3k, k) with
F-LGMRES((60 − 3k)/2, k): recall that the subspace-dependent memory of LGM-
RES(m, k) and F-LGMRES(m, k) is m + 3k and 2m + 3k, respectively. The second
change we make is to consider only even values of k in F-LGMRES(m, k) to ensure
that m = (60− 3k)/2 is a whole number.

Figure 4 shows ηk for Schur-preconditioned F-LGMRES((60 − 3k)/2, k) and for
Schwarz-preconditioned LGMRES(60 − 3k, k). We see that standard LGMRES is
approximately 20% less efficient than flexible LGMRES for k ≤ 8, with the precon-
ditioners considered. Both solvers consistently stall when Mi > 0.6 and k ≥ 14.
Consequently, we observe degraded efficiency for larger values of k in the figure.

In reference [1] lower values of k are recommended for LGMRES, and this is
consistent with the performance of Schur-preconditioned F-LGMRES applied to the
present adjoint problem. However, while k = 2 yields the best efficiency for flexible
LGMRES, values k ≤ 8 give similar performance. Schwarz-preconditioned LGMRES
appears to be even less sensitive to the choice of k, provided k ≤ 14. In general, given
the present results and those of section 5.1, we can only conclude that the optimal
value of k for advection-dominated problems likely falls in the broad range [1,m].

The efficiency in Figure 4 is based on the best LGMRES or F-LGMRES run time,
so we cannot use this figure and Figure 3 to compare the performance of GCROT and
LGMRES. Such a comparison is included in the next section.

5.2.3. Solver comparison over a range of Mach numbers. Finally, we com-
pare GCROT(m, k) with restarted GMRES, LGMRES(m, k), and BiCGStab over
a range of Mach numbers. We pair each solver with the additive-Schwarz precon-
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Fig. 5. CPU time (in seconds) required by GCROT and F-GCROT to solve the adjoint problem
for 0.2 ≤ Mi ≤ 0.8. Both memory scenarios (s = 36 and s = 60) are plotted.

ditioner, and the corresponding flexible variants with the approximate-Schur pre-
conditioner. We consider two memory scenarios for the truncated subspace solvers:
s = 36 and s = 60, where s is the size of the subspace used in restarted GMRES.
To have the same subspace-dependent memory requirements as GMRES(s), we use
FGMRES(s/2), GCROT(s−2k, k), F-GCROT((s−2k)/2, k), LGMRES(s−3k, k), and
F-LGMRES((s− 3k)/2, k). Based on the results of sections 5.2.1 and 5.2.2, we adopt
k = 1 for GCROT, F-GCROT, and LGMRES, and we use k = 2 for F-LGMRES. As
in the previous two studies, we consider the set of Mach numbers defined by (5.2) and
solve the adjoint problem to a relative tolerance of 10−8.

We begin by comparing the performance of GCROT with that of F-GCROT, so
that we can identify the better variant to compare with the remaining solvers. Al-
though we expect Schur-preconditioned F-GCROT(m, k) to perform better—based on
the results of section 5.2.1—we need to confirm this for the memory scenarios s = 36
and s = 60. Figure 5 plots the CPU time, in seconds, required by GCROT and F-
GCROT to solve the adjoint problem for the selected set of Mach numbers. The two
memory scenarios are plotted together. Note that F-GCROT(m, k) is relatively in-
sensitive to the two subspace sizes; this observation is consistent with the results from
the advection-diffusion problem. As expected, the F-GCROT(m, k)-Schur combina-
tion outperforms GCROT(m, k)-Schwarz in both memory scenarios, so we restrict our
comparisons below to F-GCROT.

To compare the remaining solvers, we use a relative efficiency measure defined at
each Mach number:

(5.3) ηsolver,i =
Tmin
i

Tsolver,i
,

where Tsolver,i is the CPU time required by the solver to fully converge the adjoint
problem at the Mach number Mi, and Tmin

i is the minimum time over all solver-
preconditioner pairs at Mach number Mi. Recall that the solvers considered are
GMRES(m), LGMRES(m, k), BiCGStab, GCROT(m, k), and their flexible variants.
Cases that failed to converge in 4000 matrix-vector products are assigned a relative
efficiency of zero.
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The results for the s = 36 memory scenario are summarized in the plots of
Figure 6. Figure 6(a) compares the efficiency of F-GCROT(17,1) with GMRES(36)
and FGMRES(18). The most striking result is that FGMRES(18) stalls for all Mach
numbers considered, yet F-GCROT(17,1) has relative efficiencies between 0.9 and
1. This dramatic improvement is achieved by simply keeping one residual update
during a restart. F-GCROT(17,1) outperforms GMRES(36) using half the number of
subspace vectors.

The efficiencies of LGMRES(30,2) and F-LGMRES(15,2) are plotted in Fig-
ure 6(b), together with that of F-GCROT(17,1). LGMRES was designed to accel-
erate the convergence of restarted GMRES and does not necessarily prevent stalling
[1]. Therefore, it is not surprising that F-LGMRES(15,2) stalls for the full range of
Mach numbers, since FGMRES(18) does the same. In the case of standard LGM-
RES(33,1), the slightly smaller subspace size may explain why it does not improve
upon the performance of GMRES(36).

Figure 6(c) compares the performance of F-GCROT(17,1) with that of BiCGStab
and FBiCGStab. As the figure shows, the Lanczos-based algorithms are the best
choices for the adjoint problem at low Mach numbers (Mi ≤ 3.5). Nevertheless,
F-GCROT(17,1) remains competitive with these methods over this range, perform-
ing no worse than 10% slower. At the higher Mach numbers, F-GCROT(17,1) has
the best performance and is typically more robust than BiCGStab and FBiCGStab.
FBiCGStab fails to converge at M = 0.65 and M = 0.75 due to a breakdown in the
algorithm (ρi = 0 in the terminology of [21]).

The results for s = 60 are shown in Figure 7. With an increased subspace size,
restarted FGMRES performs well on all Mach numbers (Figure 7(a)). Nevertheless,
F-GCROT(29,1) remains faster for all but three cases. As was the case for s = 36,
the GMRES-Schwarz combination is not competitive with F-GCROT.

The performance of LGMRES and F-LGMRES improves when s is increased
from 36 to 60; see Figure 7(b). Indeed, F-LGMRES(27,2) is competitive with F-
GCROT(29,1) and has the lowest time for the Mach numbers M = 5.5 and M = 6.0.
The efficiency curve of LGMRES(57,1) is similar to that of GMRES(60) for lower
Mach numbers (M < 0.45) and is slightly better at larger Mach numbers.

For completeness, we include a comparison of F-GCROT(29,1) with BiCGStab
and FBiCGStab in Figure 7(c). This figure is almost identical to Figure 6(c), because
F-GCROT(29,1) and F-GCROT(17,1) behave similarly (see Figure 5).

The evidence from this adjoint problem suggests the following conclusions for this
class of problem:

• Schur-preconditioned F-GCROT is a good choice for a large range of Mach
numbers (M ∈ [0.2, 0.8]) and is particularly well suited to larger Mach num-
bers (M > 0.45).

• For the same memory, Schur-preconditioned F-GCROT outperforms Schwarz-
preconditioned GCROT.

• The performance of F-GCROT appears to be insensitive to the value of s =
2m+ 2k for the range s ∈ [36, 60].

• Schwarz-preconditioned BiCGStab and Schur-preconditioned FBiCGStab are
good choices for lower Mach numbers (M < 0.45). They are competitive for
larger Mach numbers but are less robust.

6. Conclusions. Singular-value analysis of the residual error indicates which
subspaces of range (Ck) in GCRO were most important to convergence during the
previous nested GMRES or FGMRES method. However, numerical experiments sug-
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Fig. 6. Relative efficiency of the solvers applied to the adjoint problem as a function of Mach
number. Subspace-dependent memory is limited to 36 vectors. F-GCROT(17,1) is included in each
figure to facilitate comparisons.

gest there is no correlation between those subspaces that contribute to convergence
in a given iteration and those that will be useful in future iterations. This motivates
a simplified truncation strategy for GCRO based on dropping the oldest vector from
Ck, a strategy that does not require singular-value analysis. We refer to the resulting
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Fig. 7. Relative efficiency of the solvers applied to the adjoint problem as a function of Mach
number. Subspace-dependent memory is limited to 60 vectors. F-GCROT(29,1) is included in each
figure to facilitate comparisons.

method as GCROT(m, k), where m is the size of the inner subspace and k is the size
of the outer subspace.

Numerical experiments suggest that the parameter k in GCROT(m, k) should be
chosen such that k ≤ m. Although the optimal choice is problem dependent, the per-
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formance throughout the range k ≤ m is typically good. The pair (m, k) determines
the total number of vectors required and should be chosen based on available memory.

We have presented flexible variants of GCRO, GCROT, and LGMRES. By allow-
ing the preconditioner to vary at each iteration, these variants have access to a large
class of preconditioners. For fixed memory, F-GCROT(m, k) was shown to outperform
its nonflexible implementation by taking advantage of a nonstationary preconditioner.

Based on the results presented, F-GCROT(m, k) is a promising option for the
iterative solution of large-scale (> 106) nonsymmetric linear systems—particularly
when such systems must be solved to a tight tolerance.

Appendix.

Algorithm 1. GCRO with FGMRES nested.
Data: x0, m
Result: x

set r0 = b−Ax0
for k = 0, 1, 2, . . . do

perform inner FGMRES method
compute β = ‖rk‖2 and v1 = rk/β
for j = 1,m do

compute zj =M−1
j vj

compute w = Azj
orthogonalize w against Ck

for i = 1, k do
bi,j = wT ci
w := w − bi,jci

end
orthogonalize w against V1:j
for i = 1, j do

hi,j = wT vi
w := w − hijvi

end
compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

end
define Zm := [z1, z2, . . . , zm]
compute ym = argminy ‖βe1 − H̄my‖2
define new outer vectors
uk+1 = (Zm − UkBm)ym
ck+1 = rk − rinner = Vm+1H̄mym
compute α = ‖ck+1‖2, ck+1 := ck+1/α, and uk+1 := uk+1/α
update residual and solution
rk+1 := rk − (cTk+1rk)ck+1

xk+1 := xk + (cTk+1rk)uk+1

end
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Algorithm 2. Flexible GCROT(m,k).

Data: x0, m, k
Result: x

set r0 = b−Ax0, Ck = 0, and Uk = 0
for l = 0, 1, 2, . . . do

perform inner FGMRES method
compute β = ‖rl‖2, v1 = rl/β, and ml = m+max (k − l, 0)
for j = 1,ml do

compute zj =M−1
j vj

compute w = Azj
orthogonalize w against Ck

for i = 1,min (l, k) do
bi,j = wT ci
w := w − bi,jci

end
orthogonalize w against V1:j
for i = 1, j do

hi,j = wT vi
w := w − hijvi

end
compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

end
define Zml

:= [z1, z2, . . . , zml
]

compute yml
= argminy ‖βe1 − H̄ml

y‖2
define new outer vectors
û = (Zml

− UkBml
)yml

ĉ = rl − rinner = Vml+1H̄ml
yml

compute α = ‖ĉ‖2, ĉ := ĉ/α, and û := û/α
update residual and solution
rl+1 := rl − (ĉT rl)ĉ
xl+1 := xl + (ĉT rl)û
if (l > k) then

discard the oldest vectors from Ck and Uk

Ck := Ck

[
e2 e3 · · · ek

]
Uk := Uk

[
e2 e3 · · · ek

]
end

Ck :=
[
Ck ĉ

]
Uk :=

[
Uk û

]
end
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Algorithm 3. Flexible LGMRES(m,k).

Data: x0, m, k
Result: x

set r0 = b−Ax0, Ck = 0, and Uk = 0
for l = 0, 1, 2, . . . do

perform inner FGMRES method
compute β = ‖rl‖2, v1 = rl/β and ml = m+max (k − l, 0)
for j = 1,m+ k do

if j ≤ ml then
compute zj =M−1

j vj
compute w = Azj

else
w = Auj−ml

= cj−ml

end
orthogonalize w against V1:j
for i = 1, j do

hi,j = wT vi
w := w − hijvi

end
compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

end
define Zml

:= [z1, z2, . . . , zml
]

compute ym+k = argminy ‖βe1 − H̄m+ky‖2
define new outer vectors
û =

[
Zml

Uk

]
ym+k

ĉ = Aû = Vm+k+1H̄m+kym+k

update residual and solution
rl+1 := rl − ĉ
xl+1 := xl + û
if (l > k) then

discard the oldest vectors from Ck and Uk

Ck := Ck

[
e2 e3 · · · ek

]
Uk := Uk

[
e2 e3 · · · ek

]
end

Ck :=
[
Ck ĉ

]
Uk :=

[
Uk û

]
end
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