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Abstract. Summation-by-parts (SBP) finite-difference discretizations share many attractive
properties with Galerkin finite-element methods (FEMs), including time stability and superconver-
gent functionals; however, unlike FEMs, SBP operators are not completely determined by a basis, so
the potential exists to tailor SBP operators to meet different objectives. To date, application of high-
order SBP discretizations to multiple dimensions has been limited to tensor product domains. This
paper presents a definition for multidimensional SBP finite-difference operators that is a natural ex-
tension of one-dimensional SBP operators. Theoretical implications of the definition are investigated
for the special case of a diagonal-norm (mass) matrix. In particular, a diagonal-norm SBP operator
exists on a given domain if and only if there is a cubature rule with positive weights on that domain
and the polynomial-basis matrix has full rank when evaluated at the cubature nodes. Appropriate
simultaneous-approximation terms are developed to impose boundary conditions weakly, and the
resulting discretizations are shown to be time stable. Concrete examples of multidimensional SBP
operators are constructed for the triangle and tetrahedron; similarities and differences between these
SBP operators and those typically used in spectral-element, spectral-difference, and nodal discontin-
uous Galerkin methods are discussed. An assembly process is described that builds SBP operators
on a global domain from element-level operators. Numerical results of linear advection on a doubly
periodic domain demonstrate the accuracy and time stability of the simplex operators.
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1. Introduction. Summation-by-parts (SBP) operators are high-order finite-
difference schemes that mimic the symmetry properties of the differential operators
they approximate [23]. Respecting such symmetries has important implications; in
particular, they enable SBP discretizations that are both time stable and high-order
accurate [5, 37, 30], properties that are essential for robust, long-time simulations of
turbulent flows [28, 38].

Most existing SBP operators are one-dimensional [33, 27, 34, 26] and are applied to
multidimensional problems using a multiblock tensor-product formulation [35, 18, 32].
Like other tensor-product methods, the restriction to multiblock grids complicates
mesh generation and adaptation, and it limits the geometric complexity that can be
considered in practice.

The limitations of the tensor-product formulation motivate our interest in gener-
alizing SBP operators to unstructured grids. There are two ways this generalization
has been pursued in the literature: (1) construct global SBP operators on an arbi-
trary distribution of nodes, or (2) construct SBP operators on reference elements and
assemble a global discretization by coupling these smaller elements.
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The first approach is appealing conceptually, and it is certainly viable for second-
order accurate SBP schemes. For example, Nordström et al. [31] showed that the
vertex-centered second-order accurate finite-volume scheme1 has a multidimensional
SBP property, even on unstructured grids; however, the first approach presents chal-
lenges when constructing high-order operators. Kitson, McLachlan, and Robidoux
[21] showed that, for a given stencil width and design accuracy, there exist grids for
which no stable, diagonal-norm SBP operator exists. Thus, building stable high-order
SBP operators on arbitrary node distributions may require unacceptably large sten-
cils. When SBP operators do exist for a given node distribution, in general, they
must be determined globally by solving a system of equations. The global nature of
these SBP operators is exemplified in the mesh-free framework of Chiu and colleagues
[6, 7].

The second approach—constructing SBP operators on reference elements and us-
ing these to build the global discretization—is more common and presents fewer dif-
ficulties. The primary challenge here is to extend the one-dimensional SBP operators
of Kreiss and Scherer [23] to a broader set of operators and domains. The existence
of such operators, at least in the dense-norm case,2 was established by Carpenter and
Gottlieb [3]. They proved that operators with the SBP property can be constructed
from the Lagrangian interpolant on nearly arbitrary nodal distributions, which is
practically feasible on reference elements with relatively few nodes. More recently,
Gassner [13] showed that the discontinuous spectral-element method is equivalent
to a diagonal-norm SBP discretization when the Legendre–Gauss–Lobatto nodes are
used with a lumped mass matrix.

Of particular relevance to the present work is the extension of the SBP concept by
Del Rey Fernández, Boom, and Zingg [10]. They introduced a generalized summation-
by-parts (GSBP) definition for arbitrary node distributions on one-dimensional ele-
ments, and these ideas helped shape the definition of SBP operators presented herein.

Our first objective in the present work is to develop a suitable definition for
multidimensional SBP operators on arbitrary grids and to characterize the resulting
operators theoretically. We note that the discrete-derivative operator presented in [6]
is a possible candidate for defining (diagonal-norm) multidimensional SBP operators;
however, it lacks properties of conventional SBP operators that we would like to retain,
such as the accuracy of the discrete divergence theorem [19].

Our second objective is to provide a concrete example of multidimensional
diagonal-norm SBP operators on non–tensor-product domains. We focus on diagonal-
norm operators because they are better suited to discretizations that conserve non-
quadratic invariants [21]; they are also more attractive than dense norms for explicit
time-marching schemes. We construct diagonal-norm SBP operators for triangular
and tetrahedral elements. The resulting operators are similar to those used in the
nodal triangular-spectral-element method [8, 29, 14]. Unlike the spectral-element
method based on cubature points, the SBP method is not completely specified by a
polynomial basis; we use the resulting freedom to enforce the SBP property, which
leads to provably time-stable schemes.

The remaining paper is structured as follows. Section 2 presents notation and the
proposed definition for multidimensional SBP operators. We study the theoretical
implications of the proposed definition in section 3. We then describe, in section 4,

1On simplices, the vertex-centered finite-volume scheme is equivalent to a mass-lumped p = 1
finite-element discretization.

2In this paper, norm matrix is synonymous with mass matrix.
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how to construct diagonal-norm SBP operators for the triangle and tetrahedron. Sec-
tion 4 also establishes that SBP operators on subdomains can be assembled into SBP
operators on the global domain. Results of applying the triangular SBP operators
to the linear advection equation are presented in section 5. Conclusions are given in
section 6.

2. Preliminaries. To make the presentation concise, we concentrate on multi-
dimensional SBP operators in two dimensions; the extension to higher dimensions
follows in a straightforward manner. Furthermore, we present definitions and theo-
rems for operators in the x coordinate direction only; the corresponding definitions
and theorems for the y coordinate direction follow directly from those in the x direc-
tion.

2.1. Notation. We consider discretized derivative operators defined on a set of n
nodes, S = {(xi, yi)}ni=1. Capital letters with script type are used to denote continuous
functions. For example, U(x) ∈ L2(Ω) denotes a square-integrable function on the
domain Ω. We use the lowercase bold font to denote the restriction of functions to
the nodes. Thus, the restriction of U to S is given by

u = [U(x1, y1), . . . ,U(xn, yn)]
T .

Several theorems and proofs make use of the monomial basis. For two spatial
variables, the size of the polynomial basis of total degree p is

n∗
p ≡ (p+ 1)(p+ 2)

2
.

More generally, n∗
p =

(
p+d
d

)
, where d is the spatial dimension. We use the following

single-subscript notation for monomial basis functions:

Pk(x, y) ≡ xiyj−i, k = j(j + 1)/2 + i+ 1 ∀ j ∈ {0, 1, . . . , p}, i ∈ {0, 1, . . . , j}.

We will frequently evaluate Pk and ∂Pk/∂x at the nodes S, so we introduce the
notation

pk ≡ [Pk(x1, y1), . . . ,Pk(xn, yn)]
T

and p′
k ≡

[
∂Pk

∂x
(x1, y1), . . . ,

∂Pk

∂x
(xn, yn)

]T
.

Finally, matrices are represented using capital letters with sans serif font; for
example, the first-derivative operators with respect to x and y are represented by the
matrices Dx and Dy, respectively. Entries of a matrix are indicated with subscripts,
and we follow MATLAB-like notation when referencing submatrices. For example,
A:,j denotes the jth column of matrix A, and A:,1:k denotes its first k columns.

2.2. Multidimensional SBP operator definition. We propose the following
definition for Dx, the SBP first-derivative operator with respect to x. An analogous
definition holds for Dy and, in three-dimensions, Dz . A version of Definition 2.1 was
first put forward in [9] and is a natural extension of the GSBP definition [10], which
itself extends the classical SBP definition of Kreiss and Scherer [23].

Definition 2.1 (two-dimensional SBP operator). Consider an open and bounded
domain Ω ⊂ R2 with a piecewise-smooth boundary Γ. The matrix Dx is a degree p
SBP approximation to the first derivative ∂

∂x on the nodes S = {(xi, yi)}ni=1 if



A1938 J. HICKEN, D. DEL REY FERNÁNDEZ, AND D. ZINGG

1. Dxpk = p′
k for all k ∈ {1, 2, . . . , n∗

p};
2. Dx = H−1Qx, where H is symmetric positive definite; and
3. Qx = Sx + 1

2Ex, where STx = −Sx, ET
x = Ex, and Ex satisfies

pT
k Expm =

∮

Γ
PkPmnxdΓ ∀ k,m ∈ {1, 2, . . . , n∗

τ},

where τ ≥ p and nx is the x component of n = [nx, ny]
T, the outward pointing unit

normal on Γ.

Before studying the implications of Definition 2.1 in section 3, it is worthwhile to
motivate and elaborate on the three properties in the definition.

Property 1 ensures that Dx is an accurate approximation to the first partial
derivative with respect to x. The operator must be exact for polynomials of total
degree less than or equal to p, so at least n∗

p nodes are necessary to satisfy property 1.

Remark 1. We emphasize that a polynomial basis is not used to define the solu-
tion in SBP methods, in contrast with the piecewise polynomial expansions found in
FEMs. We adopt the monomial basis only to define the accuracy conditions concisely
and avoid cumbersome Taylor-series expansions.

The matrix H must be symmetric positive definite to guarantee stability: without
property 2, the discrete “energy,” uTHu, could be negative when uTu > 0, and vice
versa. The so-called norm matrix H can be interpreted as a mass matrix, i.e.,

Hi,j =

∫

Ω
φi(x, y)φj(x, y)dΩ,

but it is important to emphasize that SBP operators are finite-difference operators,
and there is no (known) closed-form expression for an SBP nodal basis {φi}ni=1 in
general. In the diagonal-norm case, we shall show that another interpretation of H is
as a cubature rule.

Property 3 is needed to mimic integration by parts (IBP). Recall that the IBP
formula for the x derivative is

∫

Ω
V ∂U
∂x

dΩ+

∫

Ω
U ∂V
∂x

dΩ =

∮

Γ
VUnxdΓ.

The discrete version of the IBP formula, which follows from property 3, is

vTHDxu+ uTHDxv = vTExu ∀ v,u ∈ Rn.

There is a one-to-one correspondence between each term in the IBP formula and its
SBP proxy. For example, it is clear from property 3 that vTExu approximates the
surface integral in IBP to order τ + 1. Moreover, in section 3 we show that diagonal-
norm SBP operators also approximate the left-hand side of IBP.

3. Analysis of diagonal-norm, multidimensional, SBP operators. In this
section, we determine the implications of Definition 2.1 on the constituent matrices
of a multidimensional SBP operator and whether or not such operators exist. We
also investigate the time stability of discretizations based on multidimensional SBP
operators. The focus is on diagonal-norm operators because (i) they are better suited
to conserving nonquadratic quantities for nonlinear stability [21], and (ii) dense-norm
operators, i.e., where the matrix H is not diagonal, do not appear to offer significant
advantages over conventional FEMs.

The following lemma will prove useful in what follows. It follows immediately
from properties 1 and 3, so we state it without proof.
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Lemma 3.1 (compatibility). Let Dx = H−1(Sx + 1
2Ex) be an SBP operator of

degree p. Then we have the following set of relations:

(3.1) pT
mHp′

k + pT
kHp

′
m = pT

mExpk ∀ k,m ∈ {1, 2, . . . , n∗
p}.

We refer to (3.1) as the compatibility equations for the x derivative; H must
simultaneously satisfy analogous relations for Ey. The relation between H and Ex

was first derived by Kreiss and Scherer [23] and Strand [33] to construct a theory
for one-dimensional classical finite-difference SBP operators. Furthermore, Del Rey
Fernández, Boom, and Zingg [10] have used these relations to extend the theory of
such operators to a broader set. What is presented in this paper is a natural extension
of those works to multidimensional operators, and the derivation of (3.1) follows in a
straightforward manner from any of the mentioned works.

Our first use of the compatibility equations is to prove that, in the diagonal-
norm case, the multidimensional SBP definition conceals a cubature rule with positive
weights.

Theorem 3.2. Let Dx = H−1Qx be a degree p, diagonal-norm, multidimensional
SBP operator on the domain Ω. Then the nodes S = {(xi, yi)}ni=1 and the diagonal
entries of H form a degree 2p− 1 cubature rule on Ω.

Proof. Using property 3 of Definition 2.1, the compatibility equations become

n∑

j=1

Hj,j

[
Pm

∂Pk

∂x
+ Pk

∂Pm

∂x

]

(xj,yj)

=

∮

Γ
PmPknxdΓ ∀ k,m ∈ {1, 2, . . . , n∗

p}.

Using the chain rule on the left and IBP on the right results in

(3.2)
n∑

j=1

Hj,j
∂PmPk

∂x

∣∣∣∣
(xj ,yj)

=

∫

Ω

∂PmPk

∂x
dΩ ∀ k,m ∈ {1, 2, . . . , n∗

p}.

Since Pk and Pm are monomials of degree at most p, it follows that ∂ (PmPl) /∂x is a
scaled monomial of degree at most 2p−1; thus, by considering all of the combinations
of k and m, (3.2) implies

n∑

j=1

Hj,jPk (xj , yj) =

∫

Ω
PkdΩ ∀ k ∈ {1, 2, . . . , n∗

2p−1},

which are the conditions for a degree 2p− 1 cubature.

We now prove one of our central theoretical results, relating the existence of a
diagonal-norm SBP operator to the existence of a cubature rule with positive weights.

Theorem 3.3. Consider the node set S = {(xi, yi)}ni=1 with n ≥ n∗
p nodes, and

define the generalized Vandermonde matrix V ∈ Rn×n∗
p whose columns are the mono-

mial basis evaluated at the nodes:

V:,k = pk ∀ k ∈ {1, 2, . . . , n∗
p}.

Assume that the columns of V are linearly independent. Then the existence of a
cubature rule of degree at least 2p − 1 with positive weights on S is necessary and
sufficient for the existence of degree p diagonal-norm SBP operators approximating
the first derivatives ∂

∂x and ∂
∂y on the node set S.



A1940 J. HICKEN, D. DEL REY FERNÁNDEZ, AND D. ZINGG

Proof. The necessary condition on H follows immediately from Theorem 3.2. To
prove sufficiency, we must show that, given a cubature rule, we can construct an
operator that satisfies properties 1–3 of Definition 2.1 on the same node set as the
cubature rule.

Before proceeding, we introduce some matrices that facilitate the proof. Let
Vx ∈ Rn×n∗

p be the matrix whose columns are the x derivatives of the monomial-
basis:

(Vx):,k = p′
k ∀ k ∈ {1, 2, . . . , n∗

p}.

We construct an invertible matrix Ṽ ∈ Rn×n by appending a set of vectors, W ∈
Rn×(n−n∗

p), that are linearly independent among themselves and to the vectors in V:

Ṽ ≡
[
V W

]
.

Similarly, we define
Ṽx ≡

[
Vx Wx

]
,

where Wx ∈ Rn×(n−n∗
p) is a matrix that will be specified later. Below, we use the

degrees of freedom in Wx to satisfy the SBP definition.
Let H be the diagonal matrix whose entries are the cubature weights ordered

consistently with the cubature node set S. Since the cubature weights are positive,
property 2 is satisfied.

Next, we use the cubature to construct a suitable Ex. Using V and Vx, we define
the symmetric matrix

(3.3) Ẽx ≡ VTHVx + VT
xHV.

Since V and Vx are polynomials of degree p and p− 1, respectively, evaluated at the
nodes, the cubature is exact for the right-hand side of (3.3):

(3.4)
(
Ẽx

)

k,m
=

∫

Ω

∂Pk

∂x
PmdΩ+

∫

Ω
Pk

∂Pm

∂x
dΩ =

∮

Γ
PkPmnxdΓ

for all k,m ∈ {1, 2, . . . , n∗
p}. Now we can define the boundary operator

Ex ≡ Ṽ−T

[
Ẽx FT

x

Fx Gx

]
Ṽ−1,

where Fx ∈ R(n−n∗
p)×n∗

p and Gx = GT
x ∈ R(n−n∗

p)×(n−n∗
p). It follows from this definition

that Ex is symmetric. Moreover, together with (3.4), this definition implies

(
VTExV

)
k,m

=
(
Ẽx

)

k,m
=

∮

Γ
PkPmnxdΓ ∀ k,m ∈ {1, 2, . . . , n∗

p},

so Ex satisfies the accuracy condition of property 3.
Finally, let

(3.5) Sx ≡ HṼxṼ
−1 − 1

2
Ex.

The accuracy conditions, which are equivalent to showing DxV = Vx, follow immedi-
ately from this definition of Sx:

DxV = H−1

(
Sx +

1

2
Ex

)
V = H−1

(
HṼxṼ

−1
)
V = Vx;
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thus, property 1 is satisfied.
Our remaining task is to show that Sx can be constructed to be antisymmetric.

If we can show that

ṼTSxṼ =

[
VTSxV VTSxW
WTSxV WTSxW

]

can be made antisymmetric, then the result will follow for Sx. Consider the first block
in the 2× 2 block matrix above, i.e.,

VTSxV = VTHVx − 1

2
VTExV.

Adding this block to its transpose, we find

(3.6) VTSxV + VTSTxV = VTHVx + VT
xHV − VTExV,

where we have used the symmetry of Ex. The right-hand side of (3.6) is the matrix
form of the (rearranged) compatibility equations (3.1). Thus, VTSxV + VTSTxV =
0, proving that the first block is antisymmetric. For the remaining three blocks,
antisymmetry requires

(
VTSxW

)T
= −WTSxV and WTSxW = −WTSTxW.

Substituting Sx and Ex and simplifying, we obtain the following equations:

(3.7) WT
xHV +WTHVx = Fx and WTHWx +WT

xHW = Gx.

The two matrix equations above constitute n(n − n∗
p) scalar equations. We are free

to choose Wx, Gx, and Fx, so the matrix equations are underdetermined (Wx alone
has n(n− n∗

p) entries). To prove existence of an SBP operator we need only find one
solution; for example, take Wx = 0, Gx = 0, and Fx = WTHVx. Thus, the equations
can be satisfied to ensure the antisymmetry of Sx.

Remark 2. In general, there are infinitely many operators associated with a given
cubature rule that satisfy Definition 2.1. For example, the proof of Theorem 3.3 only
considered one way to solve (3.7). Another way to satisfy these conditions is to set
Fx = 0 and then solve (

VTH
)
Wx = −VT

xHW

for Wx by finding the minimum Frobenius-norm solution. Gx can then be computed
directly from the second equation in (3.7).

Remark 3. The requirement that V be full rank is similar to, but less stringent
than, the unisolvency condition [1]. The latter requires the Vandermonde matrix to
be invertible on the nodes, which is challenging to satisfy if the nodes are also required
to be a cubature rule. In contrast, Theorem 3.3 permits n ≥ n∗

p, and this expands
the set of cubatures that are suitable for a given polynomial degree at the expense of
increasing the number of degrees of freedom.

The following theorem characterizes the matrices Qx and Sx in terms of the bilin-
ear forms that they approximate. The theorem is useful when discretizing the weak
form of a PDE, rather than the strong form, using SBP finite-difference operators.
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Theorem 3.4. Let Dx = H−1Qx = H−1
(
Sx + 1

2Ex

)
be a diagonal-norm SBP

operator of degree p on the domain Ω. Then

pT
kQxpm =

∫

Ω
Pk

∂Pm

∂x
dΩ,(3.8)

pT
k Sxpm =

∫

Ω
Pk

∂Pm

∂x
dΩ− 1

2

∮

Γ
PkPmnxdΓ,(3.9)

where k,m ≤ n∗
τ and PkPm is at most degree 2p.

Proof. The proof of (3.8) is analogous to the proof in [19] for one-dimensional
classical finite-difference SBP operators. With (3.8) established, we can substitute
Qx = Sx + 1

2Ex and rearrange to obtain

pT
k Sxpm =

∫

Ω
Pk

∂Pm

∂x
dΩ− 1

2
pT
k Expm =

∫

Ω
Pk

∂Pm

∂x
dΩ− 1

2

∮

Γ
PkPmnxdΓ,

where we have used the accuracy property of Ex to get the desired result.

3.1. Stability analysis. We conclude our analysis of diagonal-norm multidi-
mensional SBP operators by investigating the stability of an SBP semidiscretization
of the constant-coefficient advection equation

(3.10)

∂U
∂t

+ βx
∂U
∂x

+ βy
∂U
∂y

= 0 ∀ (x, y) ∈ Ω,

U(x, y, t) = Ubc(x, y, t) ∀ (x, y) ∈ Γ−,

where Γ− = {(x, y) ∈ Γ | βxnx + βyny < 0} is the inflow boundary and Γ+ = Γ \ Γ−

is the outflow boundary.
Let Dx and Dy be SBP operators and let Ex and Ey be their corresponding

boundary operators. In order to impose the boundary conditions in a stable manner,
we introduce the decomposition

(3.11) βxEx + βyEy = E+ + E−,

where E+ is symmetric positive semidefinite and E− is symmetric negative semidefi-
nite, and

pT
k E±pm =

∮

Γ±

PkPm (βxnx + βyny) dΓ ∀ k,m ∈ {1, 2, . . . , n∗
τ}.

The existence of the decomposition (3.11) is guaranteed, provided that Fx = Fy = 0;
see Appendix A for the proof.

Using Dx and Dy and the matrix E−, a consistent semidiscretization of (3.10) is
given by

(3.12)
du

dt
+ βxDxu+ βyDyu = σH−1E− (u− ubc) .

The three terms on the left-hand side of (3.12) correspond to the three terms in
the strong form of the PDE. The terms on the right-hand side of (3.12) are penalties
that enforce the boundary conditions weakly using simultaneous-approximation terms
(SATs) [12, 4]. The boundary data is supplied by the vector ubc, which must produce
a sufficiently accurate reconstruction of Ubc along the boundary. Evaluating Ubc
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is adequate when the nonzeros of Ex correspond to nodes that lie on Γ, such as
the simplex operators presented below. More generally, a preprocessing step can be
performed to find a suitable ubc.

We now show that (3.12) is time stable.

Theorem 3.5. Let u be the solution to (3.12) with homogeneous boundary condi-
tions and bounded initial condition. Then the norm ∥u∥H =

√
uTHu is nonincreasing

if σ ≥ 1
2 .

Proof. Multiplying the semidiscretization (with ubc = 0) from the left by uTH,
we find

uTH
du

dt
+ βxu

TQxu+ βyu
TQyu = σuTE−u

⇒ d∥u∥2H
dt

= −uTE+u+ (2σ − 1)uTE−u.

To obtain the last line, we used the definitions of Qx and Qy, as well as the decom-
position (3.11). The first quadratic form on the right is nonpositive by definition of
E+. The result follows if σ ≥ 1

2 , since E− is negative semidefinite.

4. Constructing the operators. This section describes how we construct
diagonal-norm SBP operators for triangles and tetrahedra. The algorithms described
below have been implemented in the Julia package SummationByParts.3

4.1. The node coordinates and the norm matrix. Theorem 3.2 tells us
that the diagonal entries in H are positive weights from a cubature that is exact for
polynomials of total degree 2p− 1. Thus, our first task is to find cubature rules with
positive weights for the triangle and tetrahedron. Additionally, we seek rules that use
as few nodes as possible for a given order of accuracy while respecting the symmetries
of the triangle and tetrahedron; the former condition is for efficiency, while the latter
condition is to reduce directional biases.

For the operators considered in this paper, we require that
(p+d−1

d−1

)
cubature

nodes lie on each boundary facet, where d is the spatial dimension. This requirement
on the nodes is motivated by the particular form of the Ex, Ey, and Ez operators that
we consider below; however, Definition 2.1 does not require a prescribed number of
boundary nodes, and SBP operators for the 2- and the 3-simplex exist that do not
have any boundary nodes at all. In this case the E matrices still obey property 3 of
Definition 2.1, but they must also have a particular symmetric decomposition to ensure
boundary and interface data can be imposed in a stable manner; this decomposition
is the subject of a forthcoming paper.

Cubature rules that meet our requirements for triangular elements are presented
in references [24, 8, 29, 14] in the context of the spectral-element (SE) and spectral-
difference (SD) methods. Table 1 summarizes the rules that are adopted for triangular-
element SBP operators of degree p = 1, 2, 3, and 4. For reference, the node locations
for the triangular cubature rules are shown in Figure 1.

To find cubature rules for the tetrahedron, we follow the ideas presented in [14,
39, 36]. Our procedure is briefly outlined below for completeness, but we make no
claims regarding the novelty of the cubature rules nor our method of finding them.

We assume that each node belongs to a (possibly degenerate) symmetry orbit [39].
As indicated above, we assume that the cubature node set includes p+1 nodes along

3See https://github.com/OptimalDesignLab/SummationByParts.jl.

https://github.com/OptimalDesignLab/SummationByParts.jl
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Table 1
Active orbits and their node counts for triangular-element operators. The notation Perm in-

dicates that every permutation of the barycentric coordinates is to be considered. Free-node counts
are decomposed into the product of the number of nodes in the orbit times the number of orbits of
that type.

Operator degree, p

Orbit name Barycentric form 1 2 3 4

Fixed nodes vertices Perm(1, 0, 0) 3 3 3 3

mid-edge Perm
( 1
2 ,

1
2 , 0

)
— 3 — 3

centroid
( 1
3
, 1
3
, 1
3

)
— 1 — —

Free nodes edge Perm (α, 1− α, 0) — — 6× 1 6× 1

S21 Perm (α,α, 1− 2α) — — 3× 1 3× 2

# free parameters — — 2 3
# nodes total 3 7 12 18
cubature degree 1 3 5 7

p = 1 p = 2 p = 3 p = 4

Fig. 1. Node distributions for cubature rules adopted for the SBP operators on triangles.

each edge and (p+1)(p+2)/2 nodes on each triangular face. For the interior nodes, we
activate the minimum number of symmetry orbits necessary to satisfy the accuracy
conditions; these orbits have been identified through trial and error.

Each symmetry orbit has a cubature weight associated with it, and orbits that
are nondegenerate are parameterized using one or more barycentric parameters. To-
gether, the orbit parameters and the weights are the degrees of freedom that must be
determined. They are found by solving the nonlinear accuracy conditions using the
Levenberg–Marquardt algorithm. The accuracy conditions are implemented using the
integrals of orthogonal polynomials on the tetrahedron [22, 11].

Table 2 summarizes the node sets used for the tetrahedron cubature rules, and
Figure 2 illustrates the node coordinates.

4.2. The boundary operators. Definition 2.1 implies that the boundary op-
erator Ex satisfies

vTExu =

∮

Γ
UVnx dΓ

for all polynomials U and V whose total degree is less than τ ≥ p. In particular, if we
choose U and V to be nodal basis functions on the faces, we can isolate the entries of
Ex. This is possible because we have insisted on operators with

(p+d−1
d−1

)
nodes on each

facet, which leads to a complete nodal basis. For further details on the construction
of the boundary operators, we direct the interested reader to [16, p. 187].
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Table 2
Active orbits and their node counts for tetrahedral-element operators. See the caption of Table 1

for an explanation of the notation.

Operator degree, p

Orbit name Barycentric form 1 2 3 4

Fixed nodes vertices Perm(1, 0, 0, 0) 4 4 4 4

mid-edge Perm
( 1
2 ,

1
2 , 0, 0

)
— 6 — 6

centroid
(
1
4 ,

1
4 ,

1
4 ,

1
4

)
— 1 — 1

face centroid Perm
( 1
3 ,

1
3 ,

1
3 , 0

)
— — 4 —

Free nodes edge Perm (α, 1− α, 0, 0) — — 12× 1 12× 1

face S21 Perm (α,α, 1− 2α, 0) — — — 12× 1

S31 Perm (α,α,α, 1− 3α) — — 4× 1 4× 1

S22 Perm
(
α,α, 1

2 − α, 1
2 − α

)
— — — 6× 1

# free parameters — — 2 4
# nodes total 4 11 24 45
cubature degree 1 3 5 7

p = 1 p = 2 p = 3 p = 4

Fig. 2. Node distributions for cubature rules adopted for the SBP operators on tetrahedra.

Remark 4. The boundary operators, when restricted to the boundary nodes, are
dense matrices. Contrast this with the tensor-product case, where the boundary
operators are diagonal matrices. In the simplex case, we have not found a way to
construct diagonal Ex, Ey, and Ez that are sufficiently accurate.

4.3. The antisymmetric part. The accuracy conditions are used to determine
the antisymmetric matrices Sx, Sy, and Sz. We will describe the process for Sx, since
it can be adapted in a straightforward way to Sy and, in the case of the tetrahedron,
to Sz .

In theory, we can compute Sx using the monomials that appear in the SBP oper-
ator definition; however, the monomials are known to produce ill-conditioned Vander-
monde matrices. Instead, we follow the standard practice in spectral-element methods
and apply the accuracy conditions to appropriate orthogonal bases on the triangle and
tetrahedron [22, 11, 16]. Unlike finite- and spectral-element methods, the basis alone
does not completely specify an SBP operator.

Let P and Px be the matrices whose columns are the orthogonal basis function
values and derivatives, respectively, evaluated at the nodes. Then the accuracy con-
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ditions imply DxP = Px, or, in terms of the unknown Sx,

SxP = HPx − 1

2
ExP.

This can be recast as the linear system

(4.1) Aq = b,

where q denotes a vector whose entries are the strictly lower part of Sx:

q ( (i−2)(i−1)
2 + j) = (Sx)i,j , 2 ≤ i ≤ n, 1 ≤ j < i.

There are (n − 1)n/2 unknowns and n ×
(
p+d
d

)
equations in (4.1); thus, for the op-

erators considered here, there are more equations than unknowns. Fortunately, the
compatibility conditions ensure that the system is consistent. Indeed, for p ≥ 3 the
rank of A is actually less than the size of q, so there are an infinite number of solutions.
In these cases, we choose the minimum-norm least-squares solution [15] to (4.1).

4.4. Similarities and differences compared with existing operators.There
is a vast literature on high-order discretizations for simplex elements, so we focus on
the three that share the most in common with the proposed SBP operators: the
diagonal mass matrix SE method [8, 29, 14], the SD method [25], and the nodal
discontinuous Galerkin (NDG) method [16].

Our norm matrices H are identical to the lumped mass matrices in the SE method.
The difference between the methods arises in the definition of Qx. In the SE method
of Giraldo and Taylor [14], the Qx matrix is defined as

(
QSE

x

)
i,j

=
n∑

k=0

Hk,kφi(xk, yk)
∂φj

∂x
(xk, yk),

where {φi}ni=1 is the so-called cardinal basis. For a degree p operator, the cardinal
basis is a polynomial nodal basis that is a superset of the basis for degree p polyno-
mials; the basis contains polynomials of degree greater than p, because the number
of nodes n is greater than

(p+d
d

)
in general. Consequently, the cubature defined by

H is not necessarily exact for the product φi∂φj/∂x when p ≥ 2, and the resulting
QSE

x does not satisfy the SBP definition for the p ≥ 2 discretizations. Indeed, as
the results below demonstrate, the higher-order SE operators are unstable and re-
quire a skew-symmetric formulation, filtering, or numerical dissipation even for linear
problems.

Remark 5. The QSE
x matrix in the diagonal mass matrix SE method can be made

to satisfy the SBP definition by using a cubature rule that is exact for the cardinal
basis; however, such a cubature rule would require additional cubature points and
would defeat the purpose (i.e., efficiency) of collocating the cubature and basis nodes.

The SBP simplex operators can also be viewed as a special case of the SD method
in which the unknowns and fluxes are collocated. As pointed out in [25], this means
that our proposed SBP operators require more unknowns to achieve a given accuracy
than SD methods; however, collocation eliminates the reconstruction step, so there
is a tradeoff between memory and floating-point operations. In addition, the relative
increase in unknowns is more pronounced for discontinuous discretizations, such as
SD, than for continuous ones; if we assemble a global SBP operator, as described
below, then the number of unknowns can be significantly reduced.
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Finally, our diagonal-norm SBP operators also share much in common with the
simplex-based NDG method; see, for example, the monograph [16]. Indeed, it is easy
to show that the element-level simplex operators used in the NDG method are dense-
norm SBP operators. Compared to diagonal-norm SBP operators, these nodal FE
operators require fewer nodes for the same design accuracy; however, they are not
attractive for C0 solution spaces when explicit time marching is used, because they
yield mass matrices that are nontrivial to invert.

4.5. Assembly of global SBP operators from elemental operators. The
SBP operators defined in sections 4.1–4.3 can be used in an NDG formulation [16]
with elements coupled weakly using, for example, SATs [12, 4]. An alternative use for
these element-based operators, and the one pursued here, is to mimic the continuous
Galerkin formulation. That is, we assemble global SBP operators from the elemental
ones.

We need to introduce some additional notation to help describe the assembly
process and facilitate the proof of Theorem 4.1 below. Suppose the domain Ω is
partitioned into a set of L nonoverlapping subdomains Ω(l) with boundaries Γ(l):

Ω =
L⋃

l=1

Ω̄(l) and Ω(k) ∩ Ω(l) = ∅ ∀ k ̸= l,

where Ω̄(l) = Ω(l) ∪ Γ(l) denotes the closure of Ω(l).
Each subdomain is associated with a set of nodes S(l) ≡ {(x(l)

i , y(l)j )}ni=1 such

that (x(l)
i , y(l)i ) ∈ Ω̄(l). In the present context, some of the nodes in S(l) will lie on the

boundary Γ(l) and be shared by adjacent subdomains.
Let S ≡ ∪lS(l). Suppose there are ñ unique nodes in S, and let each node be

assigned a unique global index. Suppose ı̃ is the global index corresponding to the
ith local node of element l. We define Z(l)(i, j) to be the ñ × ñ matrix with zeros
everywhere except in the (̃ı, ȷ̃) entry, which is unity. If eı̃ denotes the ı̃th column of
the ñ× ñ identity, then Z(l)(i, j) = eı̃eTȷ̃ .

We can now state and prove the following result, which applies to both diagonal-
and dense-norm SBP operators.

Theorem 4.1. Let D(l)
x =

(
H(l)

)−1
Q(l)

x be a degree p SBP operator for the first

derivative ∂/∂x on the node set S(l). If

H ≡
L∑

l=1

n∑

i=1

n∑

j=1

H(l)
i,jZ

(l)(i, j),

Qx ≡
L∑

l=1

n∑

i=1

n∑

j=1

(
Q(l)

x

)

i,j
Z(l)(i, j),

then Dx = H−1Qx is a degree p SBP operator on the global node set S.

Proof. We need to check each of the three properties in Definition 2.1.
1. The first property is straightforward, albeit tedious, to verify. H−1 exists by
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property 2, which is shown to hold independently below, so we have

Dxpk = H−1Qxpk = H−1

⎡

⎣
L∑

l=1

n∑

i=1

n∑

j=1

(
Q(l)

x

)

i,j
Z(l)(i, j)

⎤

⎦pk

= H−1
L∑

l=1

n∑

i=1

n∑

j=1

n∑

r=1

H(l)
i,r

(
D(l)

x

)

r,j
eı̃Pk(xȷ̃, yȷ̃)

= H−1
L∑

l=1

n∑

i=1

n∑

r=1

H(l)
i,reı̃

n∑

j=1

(
D(l)

x

)

r,j
Pk(xj , yj)

= H−1
L∑

l=1

n∑

i=1

n∑

r=1

H(l)
i,reı̃

∂Pk

∂x
(xr , yr)

= H−1

[
L∑

l=1

n∑

i=1

n∑

r=1

H(l)
i,rZ

(l)(i, r)

]
p′
k.

But the term in brackets above is the definition of H, so we are left with
Dxpk = p′

k, as desired.
2. H is clearly symmetric by construction. To show that it is positive definite,

let u ∈ Rñ be a nonzero vector and consider

uTHu = uT

⎡

⎣
L∑

l=1

n∑

i=1

n∑

j=1

H(l)
i,jZ

(l)(i, j)

⎤

⎦u =
L∑

l=1

⎡

⎣
n∑

i=1

n∑

j=1

uiH
(l)
i,juj

⎤

⎦ ≥ 0,

where the inequality follows since each H(l) is positive definite; however,
we cannot have uTHu = 0, since this would imply that all the subvectors
Z(l)(i, j)uj are zero and, consequently, that u = 0. Therefore H is positive
definite.

3. Finally, we form the decomposition Qx = Sx + 1
2Ex, where

Sx =
L∑

l=1

n∑

i=1

n∑

j=1

(Sx)
(l) (i, j)Z(l)

i,j,

Ex =
L∑

l=1

n∑

i=1

n∑

j=1

E(l)
x (i, j)Z(l)

i,j .

The matrix Sx is antisymmetric because it is the sum of antisymmetric matri-
ces. Similarly, Ex is symmetric because it is the sum of symmetric matrices.
In addition,

pT
k Expm =

L∑

l=1

n∑

i=1

n∑

j=1

E(l)
x (i, j)pT

k Z
(l)
i,jpm

=
L∑

l=1

∮

Γ(l)

PkPmnxdΓ

=

∮

Γ
PkPmnxdΓ,
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where we have used the fact that the boundary fluxes of adjacent elements
cancel analytically. Thus, property 3 is satisfied.

5. Verification studies. The two-dimensional linear advection equation is used
to verify and study the triangular-element SBP operators of section 4. In particular,
we consider the problem

∂U
∂t

+
∂U
∂x

+
∂U
∂y

= 0 ∀ (x, y) ∈ Ω = [0, 1]2,

U(x, 0, t) = U(x, 1, t) and U(0, y, t) = U(1, y, t),

U(x, y, 0) =
{
1− (4r2 − 1)5 if r ≤ 1

2 ,

1 otherwise,

where r(x, y) ≡
√
(x− 1

2 )
2 + (y − 1

2 )
2. The boundary conditions imply periodicity in

both the x and y directions, and the PDE implies an advection velocity of (1, 1). The
initial condition is a C4 continuous bump function that is periodic on Ω.

A nonuniform mesh for the square domain Ω is generated in order to eliminate
possible error cancellations that may arise on uniform grids. The vertices of the mesh
are given by

xi,j =
i

N
+

1

40
sin

(
2πi

N

)
sin

(
2πj

N

)
, yi,j =

j

N
+

1

40
sin

(
2πi

N

)
sin

(
2πj

N

)
,

where N is the number of elements along an edge of Ω and i, j = 0, 1, 2, . . . , N . The
nominal element size is h ≡ 1/N . A triangular mesh is generated by dividing each
quadrilateral {xi,j , xi+1,j , xi,j+1, xi+1,j+1} along the diagonal from xi+1,j to xi,j+1.
Finally, for an SBP element of degree p, the reference-element nodes are mapped
(affinely) to each triangle in the mesh. Figure 3 illustrates a representative mesh for
p = 3 and N = 12.

Fig. 3. Example mesh with p = 3 and
N = 12 for accuracy and energy-norm studies.

Fig. 4. Solution error after one period,
t = T , for the p = 1 (left) and p = 2 (right)
C-SBP discretizations with N = 12.
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Table 3
Maximally stable CFL numbers for the SBP operators on the nonuniform mesh with N = 32.

p = 1 p = 2 p = 3 p = 4

C-SBP CFLmax 1.885 2.257 1.816 1.570
D-SBP CFLmax 0.696 1.269 1.157 1.148

Remark 6. The use of an affine mapping on each element ensures that the map-
ping Jacobian is elementwise constant; consequently, the transformed PDE has con-
stant coefficients in the reference space and the FD operator remains SBP. More
generally, curvilinear elements would require constructing SBP operators for each
curved element.

We consider both continuous (C-SBP) and discontinuous (D-SBP) discretizations
using the SBP operators. The global operators for the C-SBP discretizations are
constructed using the assembly process described in section 4.5. In addition, the
periodic boundaries are transparent to the global C-SBP operators; that is, nodes that
coincide on the periodic boundary are considered the same. The D-SBP discretization
of the surface fluxes follows the NDG method outlined, for example, in Hesthaven and
Warburton [16, Chapter 6]. We use SATs with a penalty parameter of σ = 1, which
is equivalent to the use of upwind numerical flux functions.

The classical fourth-order Runge–Kutta scheme is used to discretize the time
derivative, and the initial condition is sampled at the nodes. The maximally stable
CFL number for each SBP operator was identified for N = 32 using golden section
optimization, where the CFL number was defined as

√
2∆t/(h∆r) =

√
2N∆t/∆r for

a time-step size of ∆t and an advection velocity of (1, 1); the nominal node spacing is
h∆r, where h = 1/N and ∆r denotes the minimum distance between cubature nodes
on a right triangle with vertices at (0, 0), (1, 0), and (0, 1). Each discretization was run
for five periods, t ≡ 5T = 5 units, and was considered stable if the final solution norm
was less than or equal to the initial solution norm. The results of the optimization
are listed in Table 3.

5.1. Accuracy and efficiency studies. Figures 5 and 6 plot the normalized H-
norm error for the C-SBP and D-SBP discretizations, respectively, for SBP operator
degrees 1–4 and a range of N . Specifically, if u0 is the initial solution and u is the
solution at t = T , then the error is

H-norm Error ≡
√
(u− u0)

T H (u− u0),

where H is the appropriate SBP norm for the scheme. The error is normalized by the
H-norm of the initial condition. The mesh resolution ranges from N = 4 to N = 64
in increments of 4. Each case was time marched using a CFL number of 0.9CFLmax,
which was sufficiently small to produce negligible temporal discretization errors.

Remark 7. Recall that Hi,i are weights for a cubature rule of degree 2p−1, so the
error computed using the H-norm approximates the integral L2 error. The H-norm
error is commonly used in the SBP literature. Alternatively, one could choose a basis
that interpolates the error at the nodes, e.g., the cardinal basis used in [14], and then
compute the L2 error using a sufficiently accurate cubature rule; however, the choice
of basis is not unique for FD operators, and it is not clear how to select one basis over
another in this context.
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Fig. 5. H-norm error between the C-SBP
solution after five periods, t = 5T , and the ini-
tial condition for different mesh spacing and
operators.

Fig. 6. H-norm error between the D-SBP
solution after five periods, t = 5T , and the ini-
tial condition for different mesh spacing and
operators.

The results in Figure 6 indicate that the D-SBP discretizations and the odd-
order C-SBP discretizations exhibit asymptotic convergence rates of O(hp+1). In
contrast, the C-SBP discretizations based on the p = 2 and p = 4 operators have
convergence rates of O(hp). These discretizations experience even-odd decoupling,
i.e., checkerboarding, which is illustrated in Figure 4 by comparing the spatial error
at t = T for the p = 1 and p = 2 C-SBP discretizations; the p = 1 error is smooth,
whereas the p = 2 error is oscillatory. Checkerboarding is not unique to the SBP
simplex operators and can be observed with one-dimensional SBP operators as well
as FEMs. We are currently investigating methods to address this issue with the
even-order C-SBP discretizations.

Remark 8. The optimal convergence rates produced by the D-SBP scheme are a
consequence of the dissipation introduced by the upwind SATs; see Figure 9 for the
eigenvalue spectra of the schemes. We have verified that using symmetric SATs leads
to pure imaginary eigenvalues and suboptimal convergence rates.

Figures 7 and 8 plot the normalized H-norm error versus CPU time for both
the C-SBP and D-SBP discretizations. The runs were performed on an Intel Core
i5-3570K processor, and the code was implemented in Julia version 0.4.0. The effi-
ciency provided by the high-order operators is apparent in both the continuous and
discontinuous cases.

5.2. Stability studies. Figure 9 shows the spectra of the C-SBP, D-SBP, and
SE spatial discretizations for the linear advection problem. Specifically, these eigen-
values are for the spatial operators scaled by ∆r/(N

√
2), where N = 12. This scaling,

which is consistent with the CFL number definition, allows a qualitative comparison
of the maximum allowable time steps.

The eigenvalues of the C-SBP operators are imaginary to machine precision, which
mimics the continuous spectrum for this periodic problem. This is expected, because

the boundary operators E(l)
x and E(l)

y cancel between adjacent elements when the
SBP derivative operator is assembled, leaving only the antisymmetric parts. The
eigenvalues of the D-SBP operators have nonpositive real parts to machine precision;
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Fig. 7. Normalized H-norm error of the
C-SBP solutions after one period versus CPU
time measured in seconds.

Fig. 8. Normalized H-norm error of the
D-SBP solutions after one period versus CPU
time measured in seconds.

this is also expected, since the SATs introduce dissipation. Finally, the SE operator
for p = 1 also has a purely imaginary spectrum, because it is identical to the linear
SBP operator; however, the spectra of the high-order SE operators have a positive
real component.

The consequences of the eigenvalue distributions are evident when the linear ad-
vection problem is integrated for five periods. Figure 10 plots the difference between
the solution H-norm at time t ∈ [0, 5] and the initial solution norm, i.e., the change
in “energy,”

∆E = uT
nHun − uT

0 Hu0,

where un denotes the discrete solution at time step n. For this study, N = 12 and
the CFL number was fixed at 0.01 to reduce temporal errors.

The energy history in Figure 10 clearly shows that the SE operators are unstable
for this linear advection problem, while the SBP operators are stable. The small
change in the C-SBP energy is due to round-off and temporal errors; the latter can
be reduced by using a different time-marching method, e.g., leapfrog, or at the cost
of using a sufficiently small CFL number.

6. Conclusions and discussion. We proposed a definition for multidimen-
sional SBP operators that is a natural extension of one-dimensional SBP definitions.
We studied the theoretical implications of the definition in the case of diagonal-norm
operators, and showed that the multidimensional operators retain the attractive prop-
erties of tensor-product SBP operators. A significant theoretical result of this work is
that a diagonal-norm SBP operator of degree p exists for a given domain if and only
if there exists a cubature rule of degree 2p−1 with positive weights and an associated
full-rank Vandermonde matrix, i.e., the n×n∗

p matrix of a polynomial basis evaluated
at the cubature nodes is full column rank. We showed that an SBP-SAT discretization
of the linear advection equation is time stable.

We presented a novel—at least for SBP operators—assembly procedure that con-
structs SBP operators for a global domain from elementwise SBP operators. The
procedure offers an alternative to using interface SATs and can result in SBP discre-
tizations with significantly fewer degrees of freedom.
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p = 1 (C-SBP) p = 2 (C-SBP) p = 3 (C-SBP) p = 4 (C-SBP)

p = 1 (D-SBP) p = 2 (D-SBP) p = 3 (D-SBP) p = 4 (D-SBP)

p = 1 (SE) p = 2 (SE) p = 3 (SE) p = 4 (SE)

Fig. 9. Eigenvalue distributions for the C-SBP (upper row), the D-SBP (middle row), and the
SE (lower row) spatial discretizations of the linear advection problem. Note the different ranges for
the real axes.

The multidimensional SBP definition and theory were illustrated by constructing
diagonal-norm SBP operators for the triangle and tetrahedron. To the best of our
knowledge, this is the first example of diagonal-norm SBP operators of degree p ≥ 2 on
these domains. We verified the triangle-element SBP operators using both continuous
and discontinuous (i.e., SAT) interelement coupling. Results for linear advection on
a doubly periodic domain demonstrated the time stability and accuracy of the SBP
discretizations. The results suggest that the proposed operators could be effective for
the long-time simulation of turbulent flows on complex domains.

We believe that the above simplex operators are useful, but they do not fully
demonstrate the potential value of multidimensional SBP operators. The flexibility
offered by the SBP definition can be used to achieve various objectives; we list three
below.
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Fig. 10. Time history of the change in the solution energy norm. Note the use of a symmetric
logarithmic scale on the vertical axis.

• SBP operators can be constructed on simplices with uniform node distribu-
tions, which will facilitate multigrid on unstructured grids. Uniform nodes
also make adjoint-based error estimation easier and cheaper, since high-order
operators can be applied on the same nodes, making it unnecessary to solve
the adjoint on a finer grid [17].

• It is possible to reduce time-step restrictions and improve operator condition-
ing. For example, the simplex operators presented in this work have smaller
time-step restrictions than the SE method when the latter is stabilized using
the skew-symmetric form.

• By increasing the number of nodes in a given element, sparse multidimen-
sional SBP operators can be constructed.

We acknowledge that building operators that meet the above objectives is not straight-
forward and is the goal of future research.

Appendix A. Decomposition of the SAT matrix βxEx + βyEy. Let E ≡
βxEx+βyEy. Recall the block-matrix definition of Ex used in the proof of Theorem 3.3.
Using that definition and a similar definition for Ey, we have

Ṽ−TEṼ−1 = Ṽ−T

[
Ẽ FT

F G

]
Ṽ−1 ≡ βxṼ

−T

[
Ẽx FT

x

Fx Gx

]
Ṽ−1 + βyṼ

−T

[
Ẽy FT

y

Fy Gy

]
Ṽ−1.

From the definitions of Ẽx and Ẽy, we have that the entries in the block Ẽ are given by

(
Ẽ
)

k,m
=

∮

Γ
Pk(x, y)Pm(x, y) (βxnx + βyny) dΓ ∀ k,m ∈ {1, . . . , n∗

τ},

where Pk and Pl have total degrees less than or equal to τ . We can decompose Ẽ by
breaking the above integral into two integrals, one over Γ+ and one over Γ−:

(
Ẽ
)

k,m
=

∮

Γ+

PkPm (βxnx + βyny) dΓ+

∮

Γ−

PkPm (βxnx + βyny) dΓ = Ẽ+ + Ẽ−

∀ k,m ∈ {1, . . . , n∗
τ},
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where Ẽ+ and Ẽ− are equated with the integrals over Γ+ and Γ−, respectively.

Lemma A.1. The matrix Ẽ− is negative semidefinite, and the matrix Ẽ+ is posi-
tive semidefinite.

Proof. We prove the result for Ẽ−, since the proof for the positive definite matrix
is analogous. Let u ∈ Rn∗

p be an arbitrary nonzero vector, and let uk denote its
entries. Then

uT Ẽ−u =

n∗
τ∑

k=1

n∗
τ∑

l=1

∮

Γ−

(ukPk(x, y)) (ulPl(x, y)) (βxnx + βyny) dΓ

=

∮

Γ−

[U(x, y)]2 (βxnx + βyny) dΓ,

where U(x, y) ≡
∑n∗

τ
k=1 ukPk(x, y). The integrand in the above is the product of a

squared polynomial function and the nonpositive quantity (βxnx + βyny) ≤ 0 for all
(x, y) ∈ Γ−. Thus the desired result follows.

We now turn to the main result of this appendix.

Theorem A.2. Suppose Fx = 0 and Fy = 0 in the definitions of Ex and Ey.
Then, for any βx,βy ∈ R, the matrix E ≡ βxEx + βyEy can be decomposed into
E = E+ + E−, where E+ is positive semidefinite, E− is negative semidefinite, and E±
satisfy the accuracy conditions

(A.1) pT
k E±pm =

∮

Γ±

PkPm (βxnx + βyny) dΓ ∀ k,m ∈ {1, 2, . . . , n∗
τ}.

Proof. Consider the decomposition

E = E+ + E− = Ṽ−T

[
Ẽ+ (F+)

T

F+ G+

]
Ṽ−1 + Ṽ−T

[
Ẽ− (F−)

T

F− G−,

]
Ṽ−1,

where Ẽ± are defined above and the pairs (F+,F−) and (G+,G−) are yet-to-be-
determined decompositions of βxFx + βyFy and βxGx + βyGy, respectively; note that
the above decomposition of E is distinct from its definition, which involves Ex and Ey.

The accuracy of the matrices E+ and E−, as defined above, can be established
using the same approach used in the proof of Theorem 3.3. Therefore, we focus on
showing that E− can be made negative semidefinite; again, an analogous proof can
be used to show E+ is positive semidefinite.

To prove that E− is negative semidefinite, it suffices to show that the matrix
[
Ẽ− (F−)

T

F− G−

]

is negative semidefinite. This will be the case if we can ensure G− is negative definite
and the corresponding Schur complement,

S− ≡ Ẽ− − (F−)
T (G−)

−1 F−,

is negative semidefinite; see, for example, [2, Appendix A.5.5].
We first tackle the definiteness of G−. Recall that Gx and Gy are symmetric but

otherwise arbitrary. Therefore, the matrix G = βxGx +βyGy has the eigendecomposi-
tion G = RΛRT, where R holds the eigenvectors and the diagonal matrix Λ holds the
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eigenvalues. For any set of eigenvalues, we can construct the nonunique decomposition

G = RΛ+R
T + RΛ−R

T

such that Λ+ is diagonal positive definite and Λ− is diagonal negative definite; note
that any zero eigenvalue in Λ can be decomposed as c− c for arbitrary c > 0. Equat-
ing G− with RΛ−RT, we have that G− is symmetric negative definite and therefore
invertible.

Finally, we need to show that S− is negative semidefinite. From Lemma A.1, we
have that Ẽ− is negative semidefinite. Thus, showing S− ≼ 0 is equivalent to showing4

Ẽ− ≼ (F−)
T (G−)

−1 F−.

This statement is true, provided that the entries in F− are sufficiently small, which
is certainly the case under the assumption that Fx = Fy = 0. This concludes the
proof.

Remark 9. In general, the assumption that Fx = Fy = 0 is stronger than nec-
essary, since only S− ≼ 0 is required; however, it is not clear how to weaken this
assumption when βx and βy are not known a priori.

Remark 10. The matrices Ex and Ey constructed for the simplex operators satisfy
the conditions of Theorem A.2, i.e., Fx = Fy = 0.

Acknowledgment. All figures were produced using Matplotlib [20].
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order multi-block method for the compressible Navier-Stokes equations, J. Comput. Phys.,
228 (2009), pp. 9020–9035, doi:10.1016/j.jcp.2009.09.005.

[33] B. Strand, Summation by parts for finite difference approximations for d/dx, J. Comput.
Phys., 110 (1994), pp. 47–67, doi:10.1006/jcph.1994.1005.
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