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Abstract

Consider the discretization of a partial differential equation (PDE) and an integral functional
that depends on the PDE solution. The discretization is dual consistent if it leads to a discrete
dual problem that is a consistent approximation of the corresponding continuous dual problem.
Consequently, a dual-consistent discretization is a synthesis of the so-called discrete-adjoint and
continuous-adjoint approaches. We highlight the impact of dual consistency on summation-by-
parts (SBP) finite-difference discretizations of steady-state PDEs; specifically, superconvergent
functionals and accurate functional error estimates. In the case of functional superconvergence,
the discrete-adjoint variables do not need to be computed, since dual consistency on its own is
sufficent. Numerical examples demonstrate that dual-consistent schemes significantly outperform
dual-inconsistent schemes in terms of functional accuracy and error-estimate effectiveness. The
dual-consistent and dual-inconsisent discretizations have similar computational costs, so dual con-
sistency leads to improved efficiency. To illustrate the dual consistency analysis of SBP schemes, we
thoroughly examine a discretization of the Euler equations of gas dynamics, including the treat-
ment of the boundary conditions, numerical dissipation, interface penalties, and quadrature by
SBP norms.

Keywords: dual consistency, adjoint consistency, summation-by-parts operators, functional
superconvergence, adjoint-weighted residual method, differentiate-then-discretize,
discretize-then-differentiate

1. Introduction

Simulations are often used to estimate the value of a functional that depends on the numerical
solution of a partial differential equation (PDE). For example, in computational aerodynamics,
the lift and drag forces are two functionals that are frequently computed based on the numerical
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solution of the Navier-Stokes equations. In this context, where the functional is the quantity of
primary interest, we consider an algorithm efficient if it computes the functional more accurately
than a baseline algorithm using the same computational resources and time.

One way to increase the accuracy and, potentially, the efficiency of a functional estimate is to
increase the accuracy of the solution itself. This is often a motivation for high-order discretization
schemes. However, experience suggests that a discrete solution with a verified order of accuracy —
including second-order — can produce functional estimates with erratic convergence behaviour and
significantly delayed asymptotic convergence. For example, Vassberg and Jameson [1] considered
subsonic and transonic flow around a modified NACA0012 airfoil. They demonstrated that several
well-established solvers require a significant number of nodes (> 2.5 × 105 in 2D) to reach the
asymptotic-convergence regime and often exhibit sub-optimal convergence rates, even for subsonic
flows.

The convergence behaviour of functional estimates was also studied recently by Salas and
Atkins [2]. They showed that the error due to the quadrature rule can interact with the solution
error, producing singularities in the functional convergence. A similar issue arises from higher-order
contributions to the solution error, i.e. when the solution itself is not yet in the region of asymptotic
convergence. Indeed, their theoretical model of convergence bears a striking resemblance to several
convergence results presented in [1].

In this paper we show that functional accuracy and convergence behaviour is strongly influenced
by the (possibly tacit) discretization of the adjoint equations. Adjoint, or dual, problems play an
increasingly important role in scientific computing. Applications that exploit the adjoint variables
include optimization [3–9], error control and estimation [10–12], and mesh adaptation [13–15], to
name a few.

The equations that govern the adjoint variables are typically derived in one of two ways. In the
continuous-adjoint approach, associated with Jameson’s pioneering work in aerodynamic shape op-
timization [4], the adjoint PDE is first derived from the primal3 PDE and functional; subsequently,
the primal and adjoint PDEs are discretized independently. In the discrete-adjoint approach, see
e.g. [16, 17], the discretized primal PDE and functional are used to derive the linear system for the
adjoint variables. In the PDE-constrained optimization literature, the discrete-adjoint approach
(resp. continuous-adjoint approach) is sometimes called the discretize-then-differentiate approach
(resp. differentiate-then-discretize approach) [18].

The two approaches have distinct advantages and disadvantages. The discrete-adjoint equations
are typically easier to derive, since they amount to an exercise in differentiation; thus, develop-
ers can use automatic differentiation [19, 20] or the complex-step method [21–24] to populate
the (transposed) Jacobian. In addition, gradients of the discrete functional computed using the
discrete-adjoint variables are accurate to machine precision, so existing gradient-based optimization
algorithms can be used for design problems.

The continuous-adjoint approach leads to a discretized system that is a consistent approxima-
tion of the adjoint PDE, which has subtle but important consequences. For example, Collis and
Heinkenschloss [25] found that the continuous-adjoint approach leads to control variables with bet-
ter asymptotic convergence properties when high-order elements are used in a SUPG finite-element
discretization. Moreover, in functional error estimation, the adjoint solution is often interpolated
onto a finer grid or solution space. Adjoint solutions based on the discrete-adjoint approach can

3The term primal refers to the original problem of interest.
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be non-smooth and oscillatory, making this interpolation process difficult, if not invalid. Solu-
tions based on the continuous-adjoint approach are typically well behaved and straightforward to
interpolate, because they converge to the infinite-dimensional solution.

The discrete- and continous-adjoint approaches are not mutually exclusive: it is possible to dis-
cretize the primal equations such that the discrete-adjoint equations are consistent with the adjoint
PDE. In this case there is no distinction between the discrete- and continuous-adjoint approaches,
and one can simultaneously obtain the advantages of each. Moreover, a primal discretization that
is consistent with the infinite-dimensional dual problem has some beneficial properties with respect
to the behavior of the functional, such as smooth convergence and even superconvergence.

The discretization property discussed above is called adjoint, or dual, consistency4, and it is
well known in the finite-element community; see, e.g., [11, 26–28]. In this paper, we show that dual
consistency is an important and desirable property beyond finite-element discretizations. In par-
ticular, we demonstrate that dual consistency can significantly impact the accuracy of functionals
and error estimates for high-order summation-by-parts (SBP) finite-difference discretizations. The
results suggest that dual consistency offers a potential solution to the type of irregular functional
convergence discussed by Salas and Atkins [2]

We begin with a review of duality in Section 2, where we also introduce the concept of dual con-
sistency. In Section 3 we summarize the consequences of dual consistency for SBP finite-difference
discretizations, namely superconvergent discrete functionals and improved functional error esti-
mates. In Section 4, we prove that a particular SBP discretization of the Euler equations is dual
consistent. We demonstrate the impact of dual consistency using several numerical experiments;
these results are presented in Section 5. Finally, we conclude in Section 6 with a summary of the
results and some conjectures regarding the importance of dual consistency for general discretiza-
tions.

1.1. Notation

Capital letters with a script type denote functions on a specified domain Ω. For example,
U(x) ∈ Hs(Ω) is a function in the Sobolev space Hs(Ω) whose derivatives up to order s are square
integrable on Ω. Small roman letters in a serif type are used to indicate a function restricted to
the grid, for example

u =
[
U(x0) U(x1) · · · U(xn)

]T
.

If a subscript h appears on a vector, for example, uh ∈ Rn+1, this indicates that the vector is the
solution of a difference equation on a mesh with a nominal spacing h.

We will use Ik to denote the k×k identity matrix and ei to denote its ith column. The Kronecker
product of two matrices A ∈ Rn×m and B ∈ Rq×r is denoted A⊗B ∈ Rnq×mr and defined by

A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

. . .
...

an1B an2B · · · anmB


The “big-O” order notation is used to indicate various bounds. We write F (h) = O(hp) if and

only if ∃M > 0 and h? > 0 such that

|F (h)| ≤Mhp, ∀ h < h?.

4dual and adjoint consistency are used interchangeably throughout the paper
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2. Duality and dual consistency

Dual consistency is a property that is rarely discussed outside the Galerkin finite-element
community. Therefore, this section is devoted to a review of duality and the definition of dual, or
adjoint, consistency.

2.1. The continuous dual problem: a simple example

We introduce the concept of duality using a linear problem with homogeneous boundary condi-
tions. Nonlinearity is easily accommodated using Fréchet linearization; see [11] and Section 4. For a
more general discussion of duality, including nonlinearity and inhomogeneous boundary conditions,
see [28].

Let L be a linear differential operator on a domain Ω, and let B be a linear-differential operator
on Γ, the boundary of Ω. We assume that L and B are such that the following scalar boundary-
value problem (BVP) is well posed.

LU − F = 0, ∀ x ∈ Ω,

B U = 0, ∀ x ∈ Γ,
(1)

where F ∈ L2(Ω) is a spatially varying function independent of the solution U ∈ W, with W an
appropriate Sobolev space. Since (1) is well posed, we can consider a linear functional of the
solution U :

J (U) =

∫
Ω
G U dΩ, (2)

where G ∈ L2(Ω).
Let L∗ and B∗ denote the adjoint operators of L and B, respectively. The adjoint operators are

defined using the extended Green’s identiy [29]: assuming U and V are sufficiently differentiable,
we have ∫

Ω
V (LU) dΩ +

∫
Γ

(C∗ V) (B U) dΓ =

∫
Ω
U (L∗ V) dΩ +

∫
Γ

(C U) (B∗ V) dΓ. (3)

The operator C is a linear differential operator on Γ, and C∗ is its adjoint. The identity (3) can be
derived through (perhaps repeated) application of the Green-Gauss Divergence Theorem. In the
present example, the operators C and B∗ are not unique.

Introducing the term −
∫

Ω V F dΩ into (3), we arrive at the following identity.∫
Ω
V (LU − F) dΩ +

∫
Γ

(C∗ V) (B U) dΓ =

∫
Ω
U (L∗ V) dΩ−

∫
Ω
VF dΩ +

∫
Γ

(C U) (B∗ V) dΓ

= 0

We can add the above (null) right-hand side to the functional J without changing its value:

J (U) =

∫
Ω
G U dΩ +

∫
Ω
U (L∗ V) dΩ−

∫
Ω
VF dΩ +

∫
Γ

(C U) (B∗ V) dΓ

= −
∫

Ω
VF dΩ +

∫
Ω
U (L∗ V + G) dΩ +

∫
Γ

(C U) (B∗ V) dΓ. (4)

Until now we have placed no conditions on V — other than it is sufficiently differentiable —
so (4) is a nonunique expression for the functional J . The dual problem arises when we seek a V
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that makes (4) independent of variations in U , or, in other words, makes J a functional of V only.
Such a V is given by the solution to the adjoint BVP

L∗ V + G = 0, ∀ x ∈ Ω,

B∗V = 0, ∀ x ∈ Γ.
(5)

The solution V to (5) is called the dual, costate, or adjoint variable. It follows from (4) and (5)
that the adjoint variable satisfies

J (U) = J (V) = −
∫

Ω
V F dΩ.

Note that the roles of F and G in the primal formulation are reversed in the adjoint formulation.

2.2. The discrete dual problem and dual consistency

As discussed in the introduction, the adjoint PDE has a discrete analog. Let

Lhuh − f = 0 (6)

be a discretization of (1), where uh ∈ Rn is an element of a discrete solution space; uh may hold
basis function coefficients and/or collocation values. The matrix linear operator Lh : Rn → Rn
incorporates both the discretization of the PDE and the boundary conditions. Let

Jh(uh) = (g, uh)h

be a discrete approximation of the functional J , where (, )h denotes a discrete inner product on
Rn × Rn.

Using the discrete inner product, we contract the discretization (6) with an arbitrary vh ∈ Rn
and add the result to Jh(uh):

Jh(uh) = (g, uh)h + (vh, Lhuh − f)h

= −(vh, f)h + (L∗hvh + g, uh)h,

where (vh, Lhuh)h = (L∗hvh, uh)h defines the discrete adjoint operator L∗h. In analogy with (5), we
define the discrete-adjoint equation

L∗hvh + g = 0. (7)

What is the relationship between the above discrete system and the continuous adjoint PDE (5)?

Definition 1 (Dual/Adjoint Consistency). A discrete operator Lh and functional Jh are dual,
or adjoint, consistent of order q ≥ 1 with respect to a corresponding continuous PDE and functional
if

L∗hv + g = O(hq),

where v is the solution to the continuous dual problem projected onto the discrete solution space.

In other words, a discretization is dual consistent if it leads to a discrete dual problem that is a
consistent discretization of the continuous dual PDE. This concept of dual consistency was formally
introduced by Lu [27] in the context of discontinuous Galerkin discretizations; see also [28]. It is
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(a) dual inconsistent (b) dual consistent

Figure 1: Contours of the third component of the drag adjoint near the leading edge of the NACA0012 airfoil in a
subsonic flow.

important to recognize that dual consistency does not follow from consistency of the primal PDE
discretization, in general.

What are the implications if a scheme is dual consistent? Why should we favour such schemes?
Figure 1 illustrates the difference between a discrete adjoint field that is dual consistent and one
that is dual inconsistent. The primal solution corresponds to an inviscid compressible flow around
a NACA0012 airfoil at Mach 0.5 and an angle of attack of 1.25 degrees, and the functional is the
drag-force coefficient; see Section 5.2.2 for additional details. The contours plotted are for the third
component of the adjoint vector. Significant oscillations are visible near the surface of the airfoil
in the dual-inconsistent results. In contrast, the dual-consistent solution is smooth. We emphasize
that the primal solutions of both schemes do not exhibit any oscillations. As we shall see, the
consequences of dual consistency are more than aesthetic.

3. Dual consistency and summation-by-parts finite-difference discretizations

This section reviews theoretical results regarding the impact of dual consistency on diagonal-
norm summation-by-parts (SBP) finite-difference discretizations. SBP finite-difference operators
were developed by Kreiss and Scherer [30] to mimic the stability properties of Galerkin finite-
element methods. Subsequent work on weak boundary conditions [31–33], multi-block inter-
faces [34–36], numerical dissipation [37], and second-derivative operators [38, 39] have contributed
to the theory and practice of SBP-based discretizations.

The present work focuses on the class of SBP operators with so-called “diagonal-norms.” These
finite-difference operators satisfy the following definition.

Definition 2 (Diagonal-Norm Summation-By-Parts Operator). For discrete functions on
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a uniform mesh with (n + 1) nodes, the matrix D ∈ R(n+1)×(n+1) is a diagonal-norm summation-
by-parts operator approximating the first derivative if it has the form

D = H−1Q,

where H ∈ R(n+1)×(n+1) is a diagonal positive-definite weight matrix with entries Hii = O(h), and
Q ∈ R(n+1)×(n+1) satisfies

Q+QT = diag (−1, 0, 0, . . . , 0, 1).

Furthermore, D is a 2p-order-accurate approximation to d/dx at the interior nodes, {xk}n−2p
k=2p , and

a p-order-accurate approximation at the boundary nodes, {xk}2p−1
k=0 and {xk}nk=n−2p+1.

Thus, an SBP operator is a first-derivative approximation that is “nearly” skew-symmetric with
respect to the weight matrix H. A diagonal-norm SBP operator has 2p boundary points at each
end of the domain whose truncation error is O(hp), or better. The interior points use a centered
stencil and have O(h2p) truncation errors.

We are primarily interested in SBP operators that have diagonal H, because Svärd [40] has
shown that H must be diagonal to guarantee time stability when coordinate transformations are
used. Unfortunately, to achieve both stability and high-order accuracy, diagonal-norm SBP oper-
ators must use interior stencils with twice the accuracy of their boundary stencils. For example,
a sixth-order interior scheme must be paired with a third-order boundary scheme; for hyperbolic
problems, this limits the global accuracy of the solution to fourth order, at best.

The price that diagonal-norm SBP operators pay for time stability is a decrease in solution
accuracy for a given interior stencil size. Fortunately, in addition to enabling the derivation of
time-stable schemes, the properties of SBP operators facilitate the construction of dual-consistent
discretizations.

3.1. Dual consistency analysis of the one-dimensional advection BVP

We begin with a simple one-dimensional advection BVP, which provides an illustrative example
of dual consistency and its implications for functional accuracy. Consider the first-order BVP

d

dx
(λU)−F = 0, ∀ x ∈ Ω = [0, 1]

U(0) = UL,
(8)

where λ ∈ H1[0, 1] is the positive advection velocity. In addition, consider the linear functional

J =

∫ 1

0
GU dx+ α (λU)|x=1 . (9)

The integral inner product of the PDE in (8) with an arbitrary V ∈ H1[0, 1] yields zero.
Similarly, the product of V(0) with the boundary expression, U(0) − UL, also vanishes. The sum
of these two products is the Galerkin-weighted residual, which is denoted by R(U ,V):

R(U ,V) =

∫ 1

0
V
[
d

dx
(λU)−F

]
dx+ [λV (U − UL)]|x=0 = 0.

Note that we have inserted λ into the boundary-condition part of the residual to simplify the
subsequent analysis; omitting this factor does not change the fundamental outcome.
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Adding R to J and integrating by parts, we find

J =

∫ 1

0
GU dx+ α (λU)|x=1 +

∫ 1

0
V
[
d

dx
(λU)−F

]
dx+ [λV (U − UL)]|x=0 ,

= −
∫ 1

0
VF dx− UL (λV)|x=0 +

∫ 1

0
U
[
−λ d

dx
(V) + G

]
dx+ [λU [V + α)]|x=1 . (10)

Relating the present example to the general case in Section 2.1, we see that the primal and adjoint
differential operators are given by L = d

dx(λ) and L∗ = −λ d
dx , respectively. The boundary operators

are given by B = B∗ = I and C = C∗ = λI, where I is the identity operator.
The dual of the primal PDE and functional J can be inferred from line (10), which can be

made independent of U if V satisfies the adjoint PDE

−λ d

dx
(V)− G = 0, ∀ x ∈ Ω = [0, 1],

V(1) = −α.
(11)

Consequently, the dual form of the functional is

J = −
∫ 1

0
VF dx− UL (λV)|x=0 . (12)

Next, we turn to the discrete dual problem. An SBP discretization of (8) is given by

DΛuh − f = −H−1e0 e
T
0 Λ(uh − ULe0), (13)

where

Λ = diag (λ0, λ1, . . . , λn), λi = λ(xi), i = 0, 1, . . . , n,

f ≡
[
F(x0) F(x1) · · · F(xn)

]T
. (14)

The term on the right-hand side of (13) is a penalty that imposes the boundary condition in a
weak sense [31, 41]. Recall e0 is the first column of In+1, so the penalty is applied only to the first
node. A discretization of the functional (9) using SBP quadrature [42] is given by

Jh(u) ≡ gTHu+ αeTnΛu, (15)

where

g ≡
[
G(x0) G(x1) · · · G(xn)

]T
. (16)

If u is the restriction of U ∈ H2p(Ω), then Jh(u) is a 2p-order accurate discretization of J (U), since
the quadrature induced by H is 2p-order accurate [42]. If uh is the solution of the discrete problem
(13), then the accuracy of jh(uh) is not as obvious. This is the subject of Theorem 1 below.

Like the functional J , the continuous residual can also be discretized. We define

Rh(uh, vh) ≡ vThH
[
DΛuh − f +H−1e0 e

T
0 Λ(uh − ULe0)

]
= − [ΛDvh]T Huh − vThHf + vTh en e

T
nΛuh − vThΛe0UL.

(17)
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The second line was obtained using the summation-by-parts property of D. The discrete residual
can be shown to be a 2p-order accurate discretization of its continuous counterpart [43]. Adding
Rh(uh, vh) = 0 to the discrete functional, we find

Jh(uh) = gTHuh + αeTnΛuh − [ΛDvh]T Huh − vThHf + vTh en e
T
nΛuh − vThΛe0UL

= −fTHvh − ULeT0 Λvh +
[
g − ΛDvh +H−1en e

T
nΛ(vh + αen)

]T
Huh.

To find the discrete adjoint equation, we seek vh such that the last line above is independent of
uh, i.e. the term in brackets vanishes. This yields the linear system

− ΛDvh + g = −H−1en e
T
nΛ(vh − αen). (18)

Compare the discrete adjoint equation (18) to its continuous counterpart (11). The left-hand
side is obviously a consistent discretization of the adjoint PDE; indeed, it uses the same SBP
operator as the primal problem, which is p-order accurate at the boundary and 2p-order accurate
in the interior. The term on the right-hand side of the discrete system is a (consistent) penalty
for the adjoint boundary condition. Thus, we have shown that the discretization (13) and discrete
functional (15) are dual consistent.

Below we describe the implications of dual consistency for this model advection problem. The
theory summarized in the next two sections can be found in references [44] and [43].

3.2. Superconvergent discrete functionals

Theorem 1. Assume the primal PDE (8) and adjoint PDE (11) are well posed with solutions
U ∈ H1[0, 1] and V ∈ H1[0, 1], respectively. If the discretization (13) has a solution uh ∈ Rn+1 with
an error that is O(hp+1), then the discrete functional Jh(uh) is a 2p-order accurate approximation
to J (U).

See [44] for the proof. Although not obvious from the statement of the theorem, the proof relies
on the dual consistency of the SBP discretization. If the difference operator did not satisfy the SBP
property, or if there was a mismatch between the boundary penalty and the discrete functional
definition, the functional estimate would not be superconvergent.

Thus, the dual-consistent SBP discretization leads to a superconvergent functional estimate,
a result usually associated only with finite-element methods. However, we note that there are
close connections between the Galerkin FEM and SBP discretizations. For example, the discrete
residual (17) can be interpreted as a discrete version of a Galerkin variational statement.

3.3. Adjoint-based functional error estimation

The adjoint-weighted residual method has proven to be highly effective for both functional error
estimation and output-based mesh adaptation; see [45] for a review. Here we describe the extension
of this method to SBP finite-difference discretizations and highlight the role of dual consistency.

Theorem 2. For a given uniform mesh with (n + 1) nodes, let Dp = H−1
p Qp and Dq = H−1

q Qq
denote diagonal-norm SBP operators with boundary stencils of p- and q-order accuracy, respectively,
where p < q. As before, assume the primal PDE (8) and adjoint PDE (11) are well posed with
solutions U ∈ H1[0, 1] and V ∈ H1[0, 1], respectively. Let Rh,q(u, v) denote the discrete residual (17)
evaluated using the SBP operator Dq. Let uh ∈ Rn+1 be the solution to the primal discretization
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(13) (based on Dp) and vh ∈ Rn+1 the solution to the adjoint discretization (18) (again, using Dp).
Assume that both uh and vh are O(hp+1) accurate. Then the functional error estimate

δJh,p ≡ gT (Hp −Hq)uh −Rh,q(uh, vh) (19)

is a (2p+ 2)-order accurate approximation to the true functional error, δJh,p ≡ Jh(uh)− J (U).

The proof can be found in [43]. This result indicates that we can recover two additional orders
of accuracy in the functional for this particular problem; recall, the superconvergent functional
Jh(uh) is O(h2p) accurate.

While the above theorem has only been proven for a restricted class of problems, the numerical
experiments in Section (5) demonstrate that it continues to hold for more complex PDEs, such as
the Euler equations, provided the discretized problem is dual consistent.

4. Dual consistency analysis of the Euler equations

If we wish to extend Theorems 1 and 2 to more complex problems, we need to prove that the
corresponding discretization is dual consistent. Note that we cannot analyze a particular class
of difference operator, e.g. diagonal-norm SBP, and prove it will be dual consistent for all PDEs.
The operator cannot be treated in isolation, because the details of dual consistency depend on
the discretization of the boundary conditions and functional, not merely that of the differential
operator.

Therefore, in the present work, we have chosen to analyze the dual consistency of an SBP
discretization of the Euler equations, with typical boundary conditions and the most common type
of functional (a pressure-based force). It is hoped that this analysis will illustrate the procedure
that needs to be followed to establish the dual consistency of other SBP discretizations.

4.1. The dual problem for the steady Euler equations

For simplicity, we consider two-dimensional domains Ωx ∈ R2 that are diffeomorphic to the
square Ω = [0, 1]2. Domains that are not diffeomorphic to Ω can often be broken into non-
overlapping subdomains, each of which is individually diffeomorphic to Ω; in the Section 4.4,
we will address the interfaces that arise in this “multi-block” setting. We have restricted the
analysis to two-dimensions to keep the presentation concise. The extension to three-dimensions is
straightforward.

With a suitable mapping T : (x, y) → (ξ, η) between Ωx and Ω, the steady Euler equations
take the form

∂

∂ξ
Fξ +

∂

∂η
Fη = 0, (20)

where the fluxes are given by

Fξ =


ρUξ

ρuUξ + p∂xξ
ρvUξ + p∂yξ

(e+ p)Uξ

 , and Fη =


ρUη

ρuUη + p∂xη
ρvUη + p∂yη

(e+ p)Uη

 .
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The unknowns in (20) are the conservative variables: density, ρ; momentum per unit volume,
(ρu, ρv)T , and; energy per unit volume, e. We denote the complete set of unknowns by U =
(ρ, ρu, ρv, e)T . The ideal gas law is used to define the pressure, p, which closes the system. Finally,
Uξ and Uη denote the contravariant velocities:

Uξ = u∂xξ + v∂yξ, and Uη = u∂xη + v∂yη.

We specify a vanishing normal momentum along η = 0. This inviscid-wall boundary condition
is enforced using the flux in the η direction:

Fη(U) = Fη(PU) =
(
0 p∂xη p∂yη 0

)T
, ∀ξ ∈ [0, 1], η = 0. (21)

The symmetric matrix P ∈ R4×4 projects out the normal component — in (x, y) space — of
momentum from U . For the subsequent analysis, note that the inviscid-wall boundary flux is in
the null space of P ; consequently,

(I4 − P )Fη(PU) = Fη(PU). (22)

For the remaining three edges, we impose far-field characteristic boundary conditions. If U∞
denotes the free-stream value of the conservative variables, then the characteristic far-field bound-
ary conditions are given by

Fξ(U) = A−ξ,∞U +A+
ξ,∞U∞, ∀η ∈ [0, 1], ξ = 0,

Fξ(U) = A+
ξ,∞U +A−ξ,∞U∞, ∀η ∈ [0, 1], ξ = 1,

Fη(U) = A+
η,∞U +A−η,∞U∞, ∀ξ ∈ [0, 1], η = 1.

(23)

These boundary conditions make use of the diagonalizable flux Jacobians

Aξ ≡
∂Fξ

∂U = XξΛξX
−1
ξ and Aη ≡

∂Fη

∂U = XηΛηX
−1
η .

For the definitions of Xξ,Λξ, Xη, and Λη see, for example, [46]. As is common in the gas dynamics
literature, we use the notation |Aξ|, resp. |Aη|, to denote the matrices obtained by replacing the
eigenvalues in Aξ, resp. Aη, with their absolute values. In addition, we define

A+
ξ ≡

1

2
(Aξ + |Aξ|) and A−ξ ≡

1

2
(Aξ − |Aξ|) .

Analogous definitions hold for A+
η and A−η . In the boundary conditions (23), the subscript ∞

indicates that the matrix is evaluated at the constant free-stream value U∞.
For the derivation of the adjoint equations, we write the Euler equations and the boundary

conditions, (21) and (23), in the Galerkin weighted-residual form: ∀V ∈ [H1(Ω)]4 find U such that

11



R(U ,V) = 0, where the residual is defined by

R(U ,V) ≡
∫

Ω
VT

(
∂

∂ξ
Fξ +

∂

∂η
Fη

)
dηdξ

+

∫
Γξ=0

VT
[
Fξ(U)−A−ξ,∞U −A+

ξ,∞U∞
]
dη

−
∫

Γξ=1

VT
[
Fξ(U)−A+

ξ,∞U −A−ξ,∞U∞
]
dη

+

∫
Γη=0

VT [Fη(U)−Fη(PU)] dξ

−
∫

Γη=1

VT
[
Fη(U)−A+

η,∞U −A−η,∞U∞
]
dξ

.

In weighted-residual statements, boundary conditions are often enforced in a strong sense by re-
stricting U to lie in an admissible space where all elements of the space satisfy the boundary
conditions. Here we adopt a weak imposition of the boundary conditions, due to Nitsche [47], in
which the boundary conditions are incorporated directly into the residual. Using weakly imposed
boundary conditions clarifies the connection between the continuous and discrete adjoint derivation
for the SBP discretization. Note that we can rewrite the residual using Green’s theorem as

R(U ,V) =−
∫

Ω

(
∂VT

∂ξ
Fξ +

∂VT

∂η
Fη

)
dηdξ

−
∫

Γξ=0

VT
[
A−ξ,∞U +A+

ξ,∞U∞
]
dη +

∫
Γξ=1

VT
[
A+
ξ,∞U +A−ξ,∞U∞

]
dη

−
∫

Γη=0

VTFη(PU) dξ +

∫
Γη=1

VT
[
A+
η,∞U +A−η,∞U∞

]
dξ.

(24)

For our model functional, we use the force (per unit depth) exerted on the boundary Γη=0 in
the direction (tx, ty)

T . If we define the the constant vector G ≡ −(0, tx, ty, 0)T , then the force is
given by the integral

J =

∫
Γη=0

GTFη(PU) dξ. (25)

Note that the boundary flux in the functional is evaluated using PU . This is not necessary for
the present (continuous) analysis, because the boundary condition ensures PU = U ; however, the
inclusion of P makes the comparison with the discretized case more clear.

As with the linear advection problem, the residual can be added to the functional without
changing the value of J :

J =

∫
Γη=0

GTFη(PU) dξ +R(U ,V). (26)

Unlike the linear advection problem, the Euler equations and the functional (25) are nonlinear
in the solution U . Thus, it is not possible to find a value for V that makes (26) independent of
U . For nonlinear problems, the adjoint operator is defined using the linearized form of (26). In
other words, we consider variations δU about U and seek a V that makes the perturbation δJ
independent of these variations: ∀δU ∈ [H(Ω)]4, find V such that

δJ ≡
∫

Γη=0

GTAηPδU dξ +R′[U ](δU ,V) = 0, (27)

12



where the prime on R indicates Fréchet linearization with respect to the term in square brackets.
For the residual (24) we have

R′[U ](δU ,V) =−
∫

Ω

(
∂VT

∂ξ
Aξ +

∂VT

∂η
Aη

)
δU dηdξ

−
∫

Γξ=0

VTA−ξ,∞δU dη +

∫
Γξ=1

VTA+
ξ,∞δU dη

−
∫

Γη=0

VTAηPδU dξ +

∫
Γη=1

VTA+
η,∞δU dη.

Substituting R′[U ](δU ,V) into (27) and rearranging we find

δJ ≡−
∫

Ω

(
∂VT

∂ξ
Aξ +

∂VT

∂η
Aη

)
δU dηdξ

−
∫

Γξ=0

VTA−ξ,∞δU dη +

∫
Γξ=1

VTA+
ξ,∞δU dη

−
∫

Γη=0

(VT − GT )AηPδU dξ +

∫
Γη=1

VTA+
η,∞δU dη.

The above defines the Galerkin weighted-residual statement for the continuous adjoint. The strong
form of the adjoint PDE can be inferred from the integral over Ω, while the adjoint boundary
conditions can be inferred from the integrals over Γ:

−ATξ
∂V
∂ξ
−ATη

∂V
∂η

= 0, ∀(ξ, η) ∈ Ω, (28)

subject to (
A−ξ,∞

)T
V = 0, ∀η ∈ [0, 1], ξ = 0, (29)(

A+
ξ,∞

)T
V = 0, ∀η ∈ [0, 1], ξ = 1, (30)

PATη (I4 − P )(V − G) = 0, ∀ξ ∈ [0, 1], η = 0, (31)(
A+
η,∞
)T V = 0, ∀ξ ∈ [0, 1], η = 1. (32)

Remark 1. Along the far-field boundaries, we find that the characteristic variables (XT
ξ,∞V) and

(XT
η,∞V), are set to zero if they correspond to out-going waves in the primal problem. Therefore,

the far-field adjoint boundary conditions are well-posed in the sense that they do not overdetermine
V .

Remark 2. For the inviscid-wall boundary condition along Γη=0, we have made use of the property
(I4 − P )Aη(PU) = Aη(PU), which follows from (22). Moreover, along the wall we can show that
ATη = (∂p/∂U)n̂T , where the normal vector n̂ = (0, ∂xη, ∂yη, 0)T /‖∇η‖; thus, ATη is a rank-one

matrix along the wall. Finally, we have that (I4 − P ) = n̂n̂T , so the boundary condition (31)
enforces only one degree of freedom: n̂TV = n̂TG. This is consistent with a single (out-going)
primal characteristic at the the wall.
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4.2. SBP discretization of the Euler equations

In this section we describe a particular summation-by-parts discretization of the Euler equations
and prove that the discretization is dual consistent.

For simplicity, we assume that the domain Ω is uniformly discretized into (n + 1) nodes in
both the ξ and η directions. Scalar fields on this Cartesian grid are ordered first by ξ coordinate
and then by η coordinate. Vector fields are ordered first by their components and then by ξ and
η. For example, if the restriction of the conservative variables U(ξ, η) to the grid is denoted by
u ∈ R4(n+1)2 , then for the vertex (1, 0) we would have

U(1, 0) =
(
u4n+1 u4n+2 u4n+3 u4n+4

)T
.

Let D = H−1Q be a diagonal-norm SBP first-derivative operator that is O(hp) accurate at the
boundary and O(h2p) accurate in the interior. Then, a discretization of the Euler equations on Ω
is given by

D̄ξfξ(uh) + D̄ηfη(uh) = −H̄−1Ēξ,0

[
fξ(uh)− f bξ (uh)

]
+ H̄−1Ēξ,1

[
fξ(uh)− f bξ (uh)

]
− H̄−1Ēη,0

[
fη(uh)− f bη(uh)

]
+ H̄−1Ēη,1

[
fη(uh)− f bη(uh)

]
,

(33)

where

D̄ξ ≡ In+1 ⊗D ⊗ I4, D̄η ≡ D ⊗ In+1 ⊗ I4,

Ēξ,0 ≡ H ⊗ e0 eT0 ⊗ I4, Ēη,0 ≡ e0 eT0 ⊗H ⊗ I4,

Ēξ,1 ≡ H ⊗ en eTn ⊗ I4, Ēη,1 ≡ en eTn ⊗H ⊗ I4,

H̄ ≡ H ⊗H ⊗ I4.

The left-hand side of (33) corresponds to the PDE (20), while the right-hand side consists of
penalties that impose the boundary conditions weakly. The vectors fξ(uh) and fη(uh) are the
restriction of the fluxes Fξ and Fη to the nodes. The vectors f bξ (uh) and f bη(uh) are boundary flux
functions, which are defined as follows.

• For nodes along the far-field boundaries, the corresponding elements in f bξ (uh) and f bη(uh)
are set to the appropriate right-hand side appearing in (23).

• For nodes along the wall boundary, the corresponding elements in f bη(uh) are set to the
right-hand side of (21).

• For all other nodes, the values in f bξ (uh) and f bη(uh) are inconsequential and can be set to
zero.

Remark 3. While the discretization (33) appears unwieldly, each of the terms has a simple in-
terpretation once we form the discrete residual; see (35) below. Indeed, each term in the discrete
residual can be associated with a corresponding term in the continuous residual R(U ,V). To see
this, recall that, for arbitrary vectors u and v, the product vTHu is an accurate quadrature approx-
imating integration over Ω, while the product vTEξ,0u is a quadrature approximating integration
over the boundary Γξ=0. Analogous interpretations hold for vTEξ,1u, vTEη,0u, and vTEη,1u.
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Remark 4. In practice, numerical dissipation must be included in the discretization (33). We will
address dissipation in the next section.

The functional (25) is discretized using the 2p-order accurate quadrature induced by the weight
matrix H appearing in Ēη,0 [42]:

Jh(u) = gT Ēη,0f
b
η(u). (34)

The use of Ēη,0 for the quadrature is one of the keys to the dual consistency of the scheme. Note the
choice f bη(uh) for the boundary flux in the discrete functional matches the boundary flux used in
the wall-boundary penalty; this is also important for dual consistency, as described further below.

Theorem 3. The SBP discretization (33) and the discrete functional (34) produce a dual-consistent
discrete adjoint equation that is O(hp) at the boundaries and O(h2p) in the interior.

Proof. Let vh ∈ R4(n+1)2 be a vector field on the grid. We define the following discrete residual,
which is the H̄ inner product of vh with the discretization (33):

Rh(uh, vh) ≡ vTh H̄D̄ξfξ(uh) + vTh H̄D̄ηfη(uh)

+ vTh Ēξ,0

[
fξ(uh)− f bξ (uh)

]
− vTh Ēξ,1

[
fξ(uh)− f bξ (uh)

]
+ vTh Ēη,0

[
fη(uh)− f bη(uh)

]
− vTh Ēη,1

[
fη(uh)− f bη(uh)

]. (35)

Using the properties of SBP operators, we can show that H̄D̄ξ = Ēξ,1− Ēξ,0− D̄T
ξ H̄ and, similarly,

H̄D̄η = Ēη,1 − Ēη,0 − D̄T
η H̄. Therefore,

Rh(uh, vh) =−
[
D̄ξvh

]T
H̄fξ(uh)−

[
D̄ηvh

]T
H̄fη(uh)

− vTh Ēξ,0f bξ (uh) + vTh Ēξ,1f
b
ξ (uh)

− vTh Ēη,0f bη(uh) + vTh Ēη,1f
b
η(uh).

Clearly, if uh satisfies (33), then Rh(uh, vh) = 0 for all bounded vh. Thus, we can write

Jh(uh) = gT Ēη,0f
b
η(uh) +Rh(uh, vh).

Next, we linearize Jh about uh and consider arbitrary perturbations du. To keep the notation
compact, we define the block-diagonal matrices Bξ and Bη that have the flux Jacobians along their
diagonal:

Bξ ≡
∂fξ
∂uh

= diag (Aξ), and Bη ≡
∂fη
∂uh

= diag (Aη).

The matrices Bb
ξ and Bb

η are defined similarly, with the flux Jacobians replaced with the appropriate
boundary-flux Jacobians. Using these matrices, we can write the linearized perturbation in Jh as
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follows.

dJh ≡ gT Ēη,0
∂f bη
∂uh

du+
∂Rh
∂uh

du

= −
[
D̄ξvh

]T
H̄Bξdu−

[
D̄ηvh

]T
H̄Bηdu

− vTh Ēξ,0Bb
ξdu+ vTh Ēξ,1B

b
ξdu− (vh − g)T Ēη,0B

b
ηdu+ vTh Ēη,1B

b
ηdu

= −
[
BT
ξ D̄ξvh +BT

η D̄ηvh
]T
H̄du

+

[
H̄−1Ēξ,1

(
Bb
ξ

)T
vh − H̄−1Ēξ,0

(
Bb
ξ

)T
vh

]T
H̄du

+

[
H̄−1Ēη,1

(
Bb
η

)T
vh − H̄−1Ēη,0

(
Bb
η

)T
(vh − g)

]T
H̄du.

To obtain the final equality above, we have made use of the fact that Bξ commutes with Eξ,0 and
Eξ,1, Bη commutes with Eη,0 and Eη,1, etc.

If we want an expression for dJh that is independent of the differential du, we must have

−BT
ξ D̄ξvh −BT

η D̄ηvh = H̄−1Ēξ,0

(
Bb
ξ

)T
vh − H̄−1Ēξ,1

(
Bb
ξ

)T
vh

+ H̄−1Ēη,0

(
Bb
η

)T
(vh − g)− H̄−1Ēη,1

(
Bb
η

)T
vh

(36)

This is the discrete adjoint equation for the discretization (33) and functional (34). Consider each of
the terms appearing in (36) in relation to the adjoint PDE (28) and boundary conditions (29)–(32).

• The term BT
ξ D̄ξvh is an SBP discretization of ATξ ∂V/∂ξ. The derivative operator is p-order

accurate at the boundary and 2p-order accurate in the interior. Similar remarks hold for
BT
η D̄ηvh.

• The adjoint inviscid-wall boundary condition is enforced by the term

H̄−1Ēη,0

(
Bb
η

)T
(vh − g). (37)

We need to show that this term vanishes when vh is replaced by the (grid-restricted) con-
tinuous adjoint solution. Consider node i along the wall η = 0. Let uh,i ∈ R4 denote the
elements of uh corresponding to the conservative variables at node i. If Bb

η,i ∈ R4×4 is the

ith diagonal block of Bb
η, then

Bb
η,i =

∂

∂U [Fη(PU)]

∣∣∣∣
uh,i

=
∂

∂U [(I4 − P )Fη(PU)]

∣∣∣∣
uh,i

= (I4 − P ) Aη|uh,i P.

In the second line, we have used the fact that the chosen inviscid-wall boundary flux is in
the null space of P . From the above expression, we find that the penalty term (37) at node
i is proportional to

P ATη
∣∣
uh,i

(I4 − P )(vh,i − gi),
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where vh,i and gi are the four elements of vh and g at node i. Comparing this to the boundary
condition (31), we conclude that the wall-penalty term vanishes when the continuous adjoint
solution replaces vh.

• For nodes along the boundaries ξ = 0 and ξ = 1, the 4 × 4 blocks in Bb
ξ and Bb

η are equal

to A−ξ,∞ and A+
ξ,∞, respectively; recall, the right-hand sides of (23) define the corresponding

boundary fluxes. Similarly, the blocks of Bb
η are equal to A+

η,∞ for nodes along the boundary
η = 1. Therefore, the terms

H̄−1Ēξ,0

(
Bb
ξ

)T
vh, H̄−1Ēξ,1

(
Bb
ξ

)T
vh, and H̄−1Ēη,1

(
Bb
η

)T
vh

contain penalties corresponding to the adjoint boundary conditions (29), (30), and (32),
respectively. Clearly these penalties vanish when the continuous adjoint is substituted for vh.

In summary, we have shown that the truncation error in (36) is order p for boundary nodes (nodes
within 2p of the boundary), and order 2p for interior nodes. �

Remark 5. The dual-consistency analysis is facilitated by the summation-by-parts property built
into D. For general high-order difference operators that do not obey an SBP property, establishing
dual consistency may be much more difficult, and, perhaps, impossible.

Remark 6. Using the SBP weight matrix H to discretize the functional is critical to the proof,
because the quadrature is compatible with the wall boundary penalty: it leads to a consistent
penalty for the adjoint wall boundary condition. In addition, the boundary fluxes appearing in the
penalty terms and functional are deliberately chosen to ensure dual consistency. In particular, the
inviscid-wall boundary flux, used in both the wall penalty and functional, is a function of Puh,i.
Lu’s analysis [27] shows that other choices, including the commonly used flux splitting approach,
can lead to a dual-inconsistent boundary condition.

4.3. Dual-consistent numerical dissipation

Due to nonlinearity, numerical dissipation must be present in the discretization of the Euler
equations to damp high-frequency modes. For centered finite-difference schemes, dissipation is typ-
ically introduced using a symmetric positive-definite operator that contains undivided differences
of sufficient order; see, for example, [37]. In this section, we analyze the impact of dissipation
operators on dual consistency.

For each first-derivative operator in the Euler equations there will be a corresponding dissipation
operator. We will analyze the dissipation operator in the direction ξ, since the same analysis can
be applied to η, and, in three dimensions, ζ. The dissipation is defined by

S̄ξuh ≡ κH̄−1∆̄T
ξ Σξ∆̄ξuh, (38)

where κ is a scaling — we typically use κ = 0.04 — and

∆̄ξ ≡ In+1 ⊗∆⊗ I4,

Σξ ≡ diag
(
Ãξ

)
.
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The operator ∆ ∈ R(n+1)×(n+1) is an undivided difference operator; in particular, to main-
tain the accuracy of the discretization scheme, ∆ is a second-order accurate discretization of
hp+1∂p+1/∂ξp+1. The ith block in Σξ is given by Ãξ ≡ XΛ̃XT , which is a modified version of
|Aξ|. The 4× 4 matrix Ãξ is evaluated at the nodal state uh,i and defined by

Λ̃i ≡ diag
(
λ̃i,1, λ̃i,2, λ̃i,3, λ̃i,4

)
,

λ̃i,k ≡ max (|λi,k|, εσi), k = 1, 2, 3, 4

σi ≡ max
k
|λi,k|.

The {λi,k}4k=1 are the four eigenvalues of Aξ, and the parameter ε is adjusted to avoid difficul-
ties introduced by zero eigenvalues; typically, we use ε = 0.025. The dissipation S̄ξ is an SBP
implementation of matrix dissipation [48].

Recall that the discrete residual Rh(uh, vh) is defined by taking the H̄ inner product of the
discretization with vh. Thus, in Rh the dissipation operator becomes

vTh H̄S̄ξuh = κvTh ∆̄T
ξ Σξ∆̄ξuh

=
[
κH̄−1∆̄T

ξ ΣT
ξ ∆̄ξvh

]T
H̄uh.

Consequently, the dissipation’s contribution to δJh is

∂

∂uh

[
vTh H̄S̄ξuh

]
du =

[
κH̄−1∆̄T

ξ ΣT
ξ ∆̄ξvh

]T
H̄du+

[
κvTh ∆̄T

ξ

(
∂Σξ

∂uh

)
∆̄ξuh

]
du

Assuming the continuous primal and adjoint solutions are sufficiently smooth, the second term
on the right-hand side will be O(h2p+2)), so it will not impact the consistency of the discrete
adjoint. The first term on the right-hand side becomes a dissipation operator in the discrete
adjoint equation; it is analogous to S̄ξuh with ΣT

ξ replacing Σξ. Clearly this dissipation operator

has the same truncation error as S̄ξuh, so we have proven that the discretization (33) remains dual
consistent when the dissipation operator S̄ξ is present. The same conclusion clearly holds for the
analogous η-coordinate dissipation.

Remark 7. The dissipation typically included in finite-difference schemes does not include a norm:
the matrix H̄−1 is absent from (38). In this case, if we repeat the analysis above, the dissipation
term appearing in the discrete-adjoint equation becomes κH̄−1∆̄T

ξ ΣT
ξ ∆̄ξH̄vh. This term is not dual

consistent, because the discrete field H̄vh is not the projection of a smooth (or even continuous)
function onto the nodes.

4.4. Dual-consistent interface treatment

In multiblock domains, SBP finite-difference discretizations typically use penalty terms to cou-
ple the domains [34–36, 49]. These penalties are similar in form to the boundary penalties in
(33). Our goal in this section is to prove that these interface penalties are dual consistent. A
dual-consistency analysis of interface penalties in scalar advection-diffusion can be found in [44].

We consider a two-subdomain problem, where the two square domains are

ΩL = {(ξ, η)|ξ ∈ [0, 1], η ∈ [0, 1]}
and ΩR = {(ξ, η)|ξ ∈ [1, 2], η ∈ [0, 1]}.
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To keep notation simple, we assume both domains are uniformly discretized with n + 1 nodes in
both coordinate directions, and unknowns in each domain have the same relative ordering; thus,
the SBP operators defined earlier can be used on both domains. The vectors uLh ∈ R4(n+1)2 and

uRh ∈ R4(n+1)2 denote the discrete solutions on the left and right domains, respectively. We treat the

vector of fluxes as a function, fξ : R4(n+1)2 → R4(n+1)2 , so that it too can be used interchangeably
on either domain.

Consider the SBP discretization of the Euler equations on ΩL+ΩR, ignoring boundary-condition
penalties and fluxes in the η direction:

D̄ξfξ(u
L
h ) + · · · = H̄−1Ēξ,1

[
fξ(u

L
h )− f Iξ (uLh , u

R
h )
]

+ · · ·
D̄ξfξ(u

R
h ) + · · · = −H̄−1Ēξ,0

[
fξ(u

R
h )− f Iξ (uRh , u

L
h )
]

+ · · · ,
(39)

where f Iξ is the interface flux function. Let node i and node j be two coincident nodes on the

interface of ΩL and ΩR, respectively. Then the interface flux at node i is the Roe flux[
f Iξ (uLh , u

R
h )
]
i
≡ 1

2

[
Fξ(u

L
h,i) + Fξ(u

R
h,j)
]

+
1

2

∣∣Āξ∣∣ (uLh,i − uRh,j) , (40)

where Āξ denotes the flux Jacobian evaluated at the Roe average of uLh,i and uRh,j . Dual-consistent

interface penalties can be defined using a simple average of states from ΩL and ΩR, rather than
the Roe average, but the analysis is more involved.

Remark 8. It is easy to show that the penalty (40) is equal to Ā−ξ (uLh,i − uRh,j); hence, only

characteristics entering ΩL at the interface are penalized against the value in ΩR.

The residual form of (39) is

Rh(uh, vh) =
(
vLh
)T
H̄D̄ξfξ(u

L
h )−

(
vLh
)T
Ēξ,1

[
fξ(u

L
h )− f Iξ (uLh , u

R
h )
]

+
(
vRh
)T
H̄D̄ξfξ(u

R
h ) +

(
vRh
)T
Ēξ,0

[
fξ(u

R
h )− f Iξ (uRh , u

L
h )
]

+ · · ·

It follows from the properties of SBP operators that the contribution to dJh is

∂Rh
∂uh

du = −
[
BT
ξ D̄ξv

L
h

]T
H̄duL −

[
BT
ξ D̄ξv

R
h

]T
H̄duR

+

H̄−1Ēξ,1

(
∂f Iξ

∂uLh

)T (
vLh − 〈vRh 〉L

)T H̄duL
−

H̄−1Ēξ,0

(
∂f Iξ

∂uRh

)T (
vRh − 〈vLh 〉R

)T H̄duR + · · ·

where the dependence of Bξ on uLh or uRh is implied by the vector it multiplies. The vector

〈vRh 〉L ∈ R4(n+1)2 denotes the mapping of the interface values of vRh onto the domain ΩL. Similarly,

〈vLh 〉R ∈ R4(n+1)2 is the mapping from interface values of vLh onto the interface nodes of ΩR.
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Remark 9. To arrive at the expression above, we made use of the property

(wL)T Ēξ,1〈zR〉L = (〈wL〉R)T Ēξ,0z
R,

where (wL, wR) and (zL, zR) are two arbitrary functions on the left and right domains. This
property reflects the equivalence of performing a quadrature over the interface using Eξ,1 on the
left or Eξ,0 on the right.

Since the differentials duL and duR can be varied independently in dJh, we arrive at the following
coupled adjoint equations.

−BT
ξ D̄ξv

L
h + · · · = −H̄−1Eξ,1

(
∂f Iξ

∂uLh

)T (
vLh − 〈vRh 〉L

)
+ · · · , (41)

−BT
ξ D̄ξv

R
h + · · · = H̄−1Eξ,0

(
∂f Iξ

∂uRh

)T (
vRh − 〈vLh 〉R

)
+ · · · . (42)

Consider the penalty on the right-hand side of (41). Referring to the primal penalty (40), we find
that the adjoint penalty at node i on domain ΩL is( ∂f Iξ

∂uLh

)T (
vLh − 〈vRh 〉L

)
i

=

[
1

2
ATξ
(
uLi,h
)

+
1

2

∣∣ĀTξ ∣∣] (vLh,i − vRh,j)
+

1

2

(
vLh,i − vRh,j

)T [∂|Āξ|
∂uLh,i

]
(uLh,i − uRh,j)

Clearly, the right-hand side vanishes if the continuous adjoint solution is substituted for vLh and
uRh ; recall, we assume that V ∈ [H1(Ω)]4, so V is continuous on Ω. Thus, this penalty is dual
consistent. A similar analysis shows that (42) is also dual consistent.

Remark 10. If ‖uh − u‖ = O(hp+1) and ‖vh − v‖ = O(hp+1) then the term on the last line will
be O(h2p+2), and the remaining term will dominate. This remaining term is analogous to the
characteristic far-field boundary penalty. At the interface ξ = 1, characteristic adjoint variables
corresponding to incoming primal waves in ΩL are defined by the solution on ΩL, while variables
corresponding to outgoing primal waves in ΩL are defined by the solution on ΩR.

5. Results

5.1. Examples of superconvergence

In this section we illustrate the impact of dual consistency on functional convergence. We
consider three cases, ranging from a simple flow with an analytical solution to a realistic wing
geometry. The results illustrate that, even when theoretical assumptions are violated (e.g., solution
smoothness), the benefits of using a dual-consistent discretization remain significant.

The dual-consistent and dual-inconsistent schemes used to obtain the following results differ
only in the boundary condition and functional implementation; the difference operators, interface
penalties, and dissipation operators are identical for both the dual-consistent and dual-inconsistent
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schemes. The different implementations amount to the addition of small O(hp+1) corrections to
the boundary conditions and functional estimate, where (p+1) is the order of the discrete solution.
For example, a dual-inconsistent discretization for the functional (25) is

Jh(uh) = gT Ēη,0f
b,DI
η (uh),

where the boundary flux at node i is given by[
f b,DIη (uh)

]
i
≡
(
0 p∂xη p∂yη 0

)∣∣
uh,i

.

The pressure in the dual-inconsistent functional is evaluated using the state uh,i and not the state
Puh,i, as is done in the dual-consistent treatment. This subtle difference is sufficient to produce a
dual-inconsistent discretization.

We emphasize that the results in this section do not require the solution of the adjoint equa-
tions: dual consistency or dual inconsistency is implicitly present, and this is sufficient to impact
functional accuracy.

5.1.1. Vortex flow

Our first example is a 2-dimensional inviscid vortex whose streamlines are concentric circles
about the origin. This isentropic flow has a smooth analytical solution and provides an important
verification of the theory. The solution in polar coordinates is defined by

ρ(r) = ρi

[
1 +

γ − 1

2
M2
i

(
1− r2

i

r2

)] 1
γ−1

,

with the remaining variables obtained using isentropic relations. The subscript i indicates values
along the radius ri. Here we have chosen ri = 1, ρi = 2, Mi = 0.95, and pi = 1/γ, where γ is the
ratio of heat capacities.

The geometry and block topology are illustrated in Figure 2. The grid consists of four curvilin-
ear blocks that conform to the domain Ω = {(r, θ) | r ∈ [1, 3], θ ∈ [0, π/2]}. An inviscid-wall bound-
ary condition is applied along the inner radius, r = 1, while characteristic boundary conditions
supplying the exact solution are applied along the remaining boundaries. For the functional, we cal-
culate a nominal drag defined by the force in the x direction on the curve Γ = {r = 1, θ ∈ [0, π/2]}.
The exact (nondimensional) drag is given by D = −1/γ.

To conduct the grid refinement study, an analytical mapping is used to generate a set of 20
grids. Each block on a given grid is discretized uniformly into (n + 1) nodes in the radial and
angular directions, where n ∈ {17 + 16i | 0 ≤ i ≤ 19}. Thus, the finest grid consists of 321 × 321
nodes on each of the four blocks, or 412 164 nodes in total.

We begin by examining the error in the density. On each of the four blocks, we define the
density error as

E ≡
√

(uh − u)T H̄(uh − u),

where H̄ = H ⊗ H is the appropriate SBP quadrature, and u and uh denote the analytical and
discrete density values. The total density error is the sum of the four block-based errors and is an
accurate approximation to the integral L2 error on Ω.
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Figure 2: Geometry and block topology for the inviscid-vortex study.

Table 1: Functional convergence rate for the inviscid-vortex problem

solution design accuracy
2nd 3rd 4th

dual inconsistent 2.0022 2.9219 3.9397
dual consistent 1.9341 4.0740 5.9095

Figure 3(a) plots the error in density versus the mesh spacing, h = 1/n. Results from second-,
third-, and fourth-order accurate SBP operators are included, and both dual-consistent and dual-
inconsistent treatments are shown. The discretizations obtain their design order of accuracy, and
dual consistency has little impact on the solution order of accuracy.

Next, we examine the functional error, |Jh−J |, plotted in Figure 3(b). Here we see a significant
difference between the errors produced by the dual-consistent and dual-inconsistent discretizations.
Table 1 lists the order of accuracy of the discrete functional calculated from the results on the
finest two grid levels, or the finest two grid levels not affected by round-off errors in the case of
the fourth-order dual-consistent results. As predicted by the theory, the third- and fourth-order
dual-consistent SBP discretizations produce superconvergent functionals.

5.1.2. Symmetric Joukowski airfoil

For our second example, we consider the sectional drag coefficient on a symmetric Joukowski
airfoil in a subsonic inviscid flow: the Mach number is 0.5 and the angle of attack is zero. For
an infinite domain the drag will be zero; however, the finite domain used here has a boundary 10
chord lengths from the airfoil. Imposing the free-stream flow at the finite boundary leads to small
errors in the drag coefficient that do not vanish as the grid is refined. Therefore, the grid-converged
drag coefficient is not zero.

A set of four C-grids was generated for the grid refinement study. The finest grid consists of
762 032 nodes, with 1556 nodes distributed along the airfoil. The three remaining grid levels are
produced by successively removing every other node from the finest grid. The coarsest grid is
shown in Figure 4(a), together with a close-up view near the airfoil in Figure 4(b).
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(a) solution error (b) drag error

Figure 3: Solution errors in the L2 norm and the drag functional errors for the inviscid vortex flow; note the different
y-axis ranges.

(a) example grid (b) grid close-up

Figure 4: Coarsest grid used in the Joukowski-airfoil study, and a close-up view of the grid near the airfoil
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Table 2: Estimated limiting value of Cd as h → 0, and estimated order of accuracy for the Joukowski-airfoil example.
Nonmonotone sequences or sequences that produce negative p are indicated with a dash. The grids are labeled from
from coarsest, 1, to finest, 4.

dual inconsistent
2nd 3rd 4th

Limiting Cd Value grid set (1,2,3) 7.588× 10−6 — 2.662× 10−6

grid set (2,3,4) 2.732× 10−6 2.563× 10−6 2.676× 10−6

Estimated Order grid set (1,2,3) 0.6640 — 2.6802
grid set (2,3,4) 1.8666 1.3713 2.7762

dual consistent
2nd 3rd 4th

Limiting Cd Value grid set (1,2,3) — 2.697× 10−6 2.696× 10−6

grid set (2,3,4) 2.850× 10−6 2.694× 10−6 2.694× 10−6

Estimated Order grid set (1,2,3) — 5.4262 6.3234
grid set (2,3,4) 1.5295 2.3830 4.5682

No analytical solution is available for the flow around a Joukowski airfoil with a finite boundary,
but the order of accuracy and limiting value of Cd can be estimated using the methodology of Baker
[50]; see also [51]. Briefly, we use

Cd(h) = C∗d + αhp

as an asymptotic model for the error in the drag coefficient, where C∗d is the limiting value for the
drag coefficient, α is the leading-error coefficient, and p is the order of accuracy. A value of p can
be estimated using the above model and data from three grid levels, provided the sequence of data
points is monotone. Applying this method to the drag-coefficient functional we obtain the values
listed in Table 2. The estimated order of accuracy for all the discretizations is lower than predicted
by theory, based on the finest sequence of three grids. It is possible that the drag is not yet in the
asymptotic regime, or that one of the assumptions of the theory is violated (e.g. the solution is
not sufficiently smooth). Nevertheless, it is clear that the third- and fourth-order dual-consistent
discretizations are converging at a faster rate than their dual-inconsistent counterparts.

Figure 5 shows the estimated drag-coefficient error versus a normalized mesh spacing. The
error is estimated using the limiting value of the drag coefficient produced from the fourth-order
dual-consistent results on the finest three grids: C∗d ≈ 2.694127 × 10−6. This choice of limiting
value has a negligible impact on the dual-consistent data points in the plot, and the choice makes
the dual-inconsistent data points appear more accurate than they would if the limiting value was
computed from their own data.

Examining Figure 5, we find a two order of magnitude improvement going from the dual-
inconsistent to the dual-consistent treatment on the three finest grids, for the third- and fourth-
order methods. Indeed, the third-order dual-consistent functional using the second coarsest grid is
more accurate than the third-order dual-inconsistent functional on the finest grid.
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Figure 5: Joukowski study: difference between the drag coefficient and the limiting C∗
d calculated from the fourth-

order dual-consistent results.

5.1.3. ONERA M6 wing

For the final example illustrating the impact of dual consistency on functional accuracy, we
consider the ONERA M6 wing at a Mach number of 0.5 and an angle of attack of 3 degrees. In
the Joukowski-airfoil study the grid sequence was generated by recursively removing every other
node in each coordinate direction. This is the typical approach used for grid convergence studies
of one- and two-dimensional problems. In three dimensions, these nested grids increase in size by
a factor of 8 between grid levels, and this limits the number of grids that can be included in the
sequence.

To overcome the above limitation, we use a multi-block grid consisting of B-spline volumes [52]
that define analytical mappings; this permits any integer number of nodes to be used in a given
(computational) coordinate direction. Specifically, we consider blocks with 9, 17, 25, 33, and
41 nodes in each direction. The grid topology consists of 1024 blocks, so the coarsest grid has
approximately 7.5 × 105 nodes and the finest has approximately 7.1 × 107 nodes. The use of an
analytical mapping ensures that the grids belong to the same family, which is necessary for a
rigorous grid refinement study [2].

Table 3 lists the coefficients of drag computed on each grid using second- and third-order SBP
schemes, with dual-inconsistent and dual-consistent formulations. The table includes the estimated
limiting value of CD as h → 0 and the estimated order of accuracy; the latter two are estimated
using the 3 finest grids. The drag coefficients produced by the dual-inconsistent third-order method
on the finest three grids form a nonmonotone sequence, so we cannot estimate the order of accuracy
or limiting value of the functional from these grids.

Table 3 also includes the estimated percent error for each drag coefficient. The error is ap-
proximated using the limiting value from the third-order dual-consistent scheme as the “truth”
value. Compared with using the limiting CD predicted by each scheme individually, this choice
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Table 3: Computed drag coefficients and their (estimated) percent error for the ONERA M6 wing study, together
with the estimated limiting value of CD as h → 0 and the estimated order of accuracy.

dual inconsistent

2nd-order scheme 3rd-order scheme

n CD % error CD % error

8 4.0397× 10−3 2.10 4.3826× 10−3 10.77
16 3.8922× 10−3 1.63 3.9702× 10−3 0.34
24 3.9079× 10−3 1.23 3.9488× 10−3 0.20
32 3.9203× 10−3 0.92 3.9467× 10−3 0.25
40 3.9283× 10−3 0.72 3.9473× 10−3 0.24

limiting CD 3.9846× 10−3 —
estimated order 0.7252 —

dual consistent

2nd-order scheme 3rd-order scheme

n CD % error CD % error

8 4.4100× 10−3 11.46 4.1071× 10−3 3.80
16 4.0166× 10−3 1.52 3.9666× 10−3 0.25
24 3.9750× 10−3 0.47 3.9586× 10−3 0.05
32 3.9647× 10−3 0.21 3.9576× 10−3 0.02
40 3.9610× 10−3 0.11 3.9572× 10−3 0.01

limiting CD 3.9556× 10−3 3.9566× 10−3

estimated order 2.9085 2.8564

has a negligible impact on the dual-consistent second-order errors reported (approximately 0.01%),
and the dual-inconsistent second-order errors appear smaller. Moreover, as mentioned above, no
limiting value can be calculated using the third-order dual-inconsistent sequence.

As with the Joukowski airfoil, the dual-consistent schemes converge smoothly with estimated
orders that are in reasonable agreement with the design order of accuracy. In contrast, the dual-
inconsistent schemes converge slowly relative to their design accuracy; the second-order scheme is
less than first order and the third-order scheme produces a nonmonotone sequence.

The third-order dual-consistent scheme does not appear to be asymptotically superconvergent;
nevertheless, this scheme produces the most accurate functional estimates. We postulate that the
degraded convergence is the result of nonsmooth features in the flow, e.g. along the trailing-edge and
tip vortex. On the second coarsest grid, the estimated percent error in the dual-consistent third-
order functional is 0.25%. The second-order dual-consistent scheme requires a grid approximately
8 times larger to reach this level of accuracy in CD. The second-order dual-inconsistent scheme has
not even reached this level using the finest grid, which is approximately 16 times the resolution of
the second coarsest grid.

Figure 6 plots the estimated drag-coefficient error for the four schemes considered. The nominal
mesh spacing is defined by h = 8/n, where n is the number of intervals in each direction on the
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Figure 6: ONERA M6 study: difference between the CD functional and the limiting C∗
D from the third-order

dual-consistent scheme.

blocks. As with the percent errors in Table 3, the drag-coefficient error is approximated using the
limiting value of the drag coefficient predicted by the third-order dual-consistent scheme.

The well-behaved convergence of the dual-consistent schemes is clearly visible in the figure. The
functional computed using the third-order scheme initially converges at the theoretically predicted
fourth-order rate before reducing to third order. As mentioned above, this may be caused by the
trailing edge or tip vortex, which violate the smoothness assumptions required by the theory. On
the finest grid, the dual-inconsistent schemes produce relatively large errors. The second-order
scheme appears to yield a first-order CD error, consistent with the estimated order in Table 3. The
third-order scheme exhibits rapid convergence for large h followed by slow convergence for small h.
Indeed, there appears to be a singularity of the type described by Salas and Atkins near h = 0.4
in the dual-inconsistent third-order results.

5.2. Error estimation examples

The next set of results illustrate the impact of dual consistency on error estimates. Here, the ad-
joint solution must be computed explicitly, unlike the previous section. We use GCROT(m, k) [53],
a variant of the truncated GCRO iterative solver [54, 55], to solve the adjoint linear system. The
adjoint linear system involves the transpose of the flow Jacobian matrix; however, GCROT(m, k),
like all Krylov solvers based on Arnoldi’s method, requires only products of the transposed Jacobian
with arbitrary vectors. The necessary matrix-vector products are evaluated using a hand-coded
version of reverse-mode algorithmic differentiation [56–58]. The adjoint system is preconditioned
using a transposed variant of the parallel approximate-Schur preconditioner [59] used in the primal
solution algorithm [49].

Both the primal and dual problems are solved to machine tolerance to avoid confounding effects
introduced by partially converged iterative solutions; however, in practice, the tolerances should
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(a) (p, q) = (1, 2) (b) (p, q) = (2, 3)

Figure 7: Results for the vortex flow functional error estimation.

be adjusted dynamically to avoid oversolving the systems when the functional error is large.

5.2.1. Vortex flow

As a simple illustration of the impact of dual consistency on SBP error estimates [43], we
return to the inviscid vortex flow described in Section 5.1.1. The functional remains the force in
the x-direction along the inner radius, and the error estimation procedure is applied on the same
sequence of 20 grids.

Figure 7(a) plots the error-estimation results using a second-order discretization (p = 1) and
fourth-order residual reconstruction (q = 2). Both the dual-consistent and dual-inconsistent
schemes yield second-order accurate functionals. The error estimates from the two schemes are
also second-order, but the dual-consistent error estimate is significantly more accurate. Indeed,
the dual-consistent corrected functional is fourth-order accurate, as predicted by the theory. The
dual-inconsistent corrected functional is three times more accurate than the baseline functional,
but is only second-order accurate.

The error-estimation results for p = 2 and q = 3 are even more striking; see Figure 7(b).
The dual-inconsistent error estimate significantly underpredicts the error for most of the grids
considered; consequently, the dual-inconsistent baseline functional and corrected functional are
not significantly different in terms of accuracy. Contrast this behaviour with the dual-consistent
results: not only is the dual-consistent baseline functional superconvergent, its corresponding error
estimate produces an asymptotically sixth-order corrected functional. On the finest grid the two
error estimates are separated by six-orders of magnitude, a substantial difference considering the
two flow solutions are nominally the same order of accuracy.

5.2.2. NACA0012 airfoil

For a more practical example of the impact of dual consistency on SBP error estimates, we
consider the drag on an airfoil in subsonic flow. We use the modified NACA0012 airfoil and grid
that are described in [1]. The grid is composed of 256 blocks with (n+ 1) nodes in each coordinate
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(a) (p, q) = (1, 2) (b) (p, q) = (2, 3)

Figure 8: Results for the NACA0012 drag error estimation.

direction, where we consider n ∈ {16, 32, 64, 128, 256}. The largest grid (n = 256) is used only in
estimating the error in the computed drag.

The far-field boundary is approximately 150 chord lengths from the airfoil. The flow state used
in the far-field boundary fluxes is based on a free-stream Mach number of M = 0.5 and an angle
of attack of 1.25 degrees. No circulation correction is applied at the far-field.

Like the Joukowski airfoil problem considered in Section 5.1.2, the present BVP has no known
analytical solution. To estimate errors in the drag we require a sufficiently accurate approximation
of the drag functional. As before, we use a Richardson extrapolation following the methodology
of Baker [50]. The extrapolation is based on the drag values from the third-order dual-consistent
scheme on the three finest grids (including n = 256).

Figure 8(a) plots the drag error, estimated error, and corrected-drag error for the second-order
discretization and fourth-order residual reconstruction, i.e. (p, q) = (1, 2). The dual-consistent and
dual-inconsistent schemes produce drag values with comparable errors; however, the dual-consistent
error estimate is more accurate than the dual-inconsistent error estimate, which under predicts the
baseline-drag error. The dual-consistent error estimate leads to a corrected drag that is O(h2.5)
asymptotically and an order of magnitude more accurate than the corresponding dual-inconsistent
value on the finest grid.

Results for the third-order discretization are plotted in Figure 8(b). Here, the dual-consistent
error estimate systematically under predicts the baseline-drag error. Nevertheless, the corrected-
drag error is approximately three times smaller than the baseline-drag error, although both have
similar asymptotic behaviour. In contrast, the dual-inconsistent error estimate significantly over
predicts the drag error, leading to a corrected drag that is less accurate than the baseline drag.

The baseline drag of the third-order dual-inconsistent scheme is remarkably accurate; however,
we believe that this anomalous behaviour is caused by an error cancellation of the type studied in
[2]. For some mesh size h ∈ [0.02, 0.03], the signed errors present in the functional cancel perfectly.
This type of cancellation cannot be relied upon to reduce the error on a given mesh. Indeed, it is
this type of cancellation that can cause the error to increase under further refinement.
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6. Conclusion

A dual-consistent discretization is one that leads to a set of discrete adjoint equations that
converge to the continuous adjoint equations. We have shown that a dual-consistent discretization
of the Euler equations using an SBP finite-difference discretization can significantly improve the
accuracy of functional estimates. The results indicate that dual consistency reduces functional
convergence issues of the type described by Salas and Atkins [2]. Finally, we have also demonstrated
that a dual-consistent formulation leads to improved error estimates from the adjoint-weighted
residual method.

The importance of dual consistency for functional accuracy in Galerkin finite-element methods is
well known. However, the results presented here suggest that dual consistency, like the consistency
and stability of the primal equations, is a property of fundamental importance to all methods
of discretization. As we have shown, a high-order, yet dual-inconsistent, SBP discretization may
not predict functionals with sufficient accuracy to outperform a second-order scheme in terms of
efficiency. In contrast, high-order dual-consistent discretizations are often orders of magnitude
more accurate than a second-order scheme on the same grid.

Dual consistency is a property of the discrete primal equations and the discrete functional, so
a scheme does not need to solve the adjoint equations explicitly to enjoy the potential benefits5.
Unfortunately, constructing a high-order dual-consistent scheme may not be straightforward in all
cases. For example, it is not clear how one might construct a high-order dual-consistent finite-
volume method, without satisfying an SBP property.
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