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Typical aerodynamic shape optimization and multidisciplinary optimization algorithms

omit high-fidelity flutter predictions due to the associated computational costs. This paper

presents a model order reduction framework as a step towards flutter-constrained aircraft

optimization. The Euler equations linearized about a steady-state solution of the nonlinear

Euler equations are used as the governing unsteady flow equations. Using a proper orthogonal

decomposition approach, a reduced basis is constructed onto which the governing equations are

projected. The result is a linear reduced-order model (ROM) with significantly fewer degrees

of freedom capable of rapidly approximating aerodynamic forces. This ROM is coupled to a

linear structural model to create a single monolithic aeroelastic system. The eigenvalues of

the resulting system are analyzed for various flow conditions to determine the onset of flutter

in the system. To ensure the stability of the ROM, the use of a stabilizing inner product

is demonstrated. The flutter boundaries obtained for both a two degree of freedom airfoil

structure and the AGARD 445.6 wing model show good agreement with the full-order model

and with the literature.

Nomenclature

0 = non-dimensional distance from elastic axis to midchord

A = aeroelastic state matrix

�, ⌫, ⇠, ⇡, ⇢ = linear time-invariant system matrices

A = continuous inviscid flux Jacobian

1 = airfoil semi-chord

⇠; = lift coe�cient

⇠< = pitching moment coe�cient

E = vector of continuous inviscid fluxes

f = force vector
�PhD Candidate, University of Toronto, brandon.lowe@mail.utoronto.ca
†University of Toronto Distinguished Professor of Computational Aerodynamics and Sustainable Aviation, Director, Centre for Research in

Sustainable Aviation, dwz@oddjob.utias.utoronto.ca
This work is associated with a conference paper presented at AIAA SciTech 2020, January 10, Orlando FL. AIAA Paper 2020-1998.



F = continuous initial conditions

G = continuous boundary conditions

gB = structural force vector

� = diagonal matrix of metric Jacobian

J = determinant of continuous coordinate mapping Jacobian

 m = mesh movement matrix

 s = structural sti�ness matrix

!ref = reference length

M = aeroelastic mass matrix

"s = structural mass matrix

"1 = freestream Mach number

# = size of full-order model

= = size of reduced-order model

@1 = freestream dynamic pressure

AU = non-dimensional radius of gyration

Xa = semi-discrete Euler equation residual vector

XROM = Galerkin projection residual vector

B = thermodynamic entropy

B̄ = mathematical entropy

( = aerodynamic snapshot matrix

(k = arc length between volume node and surface node

C = time

) = transfer matrix

u = state vector

U = vector of continuous flow states

*, = cholesky decomposition of W

+f = flutter speed index

+1 = freestream flow velocity

, = inner product matrix

W = Hessian of the mathematical entropy

ws = structural generalized coordinate vector

xa,surf = aerodynamic surface node coordinates
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xa,vol = aerodynamic volume node coordinates

GU = non-dimensional distance from elastic axis to center of gravity

W = continuity constant

[ROM = POD snapshot reconstruction tolerance

_ = eigenvalue

⇤ = diagonal matrix of eigenvalues

` = two-dimensional mass ratio

b, [, Z = curvilinear coordinates

bt, [t, Zt = aerodynamic time metrics

l = structural natural frequency

lU = uncoupled torsional frequency

lh = uncoupled bending frequency

⌦s = diagonal matrix of squared natural frequencies

d1 = freestream density

ff = force coupling factor

ft = time coupling factor

5 = reduced basis vector

� = matrix of reduced basis vectors

7 = structural mode shape vector

 = matrix of structural mode shape vectors

Symbols and Subscripts

⇠ = reduced quantity

· = time derivative

a = aerodynamic quantity

s = structural quantity

X = fluctuating quantity

1 = freestream quantity

0 = steady-state quantity
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I. Introduction

I� recent years, a strong emphasis has been placed on the need for increased aircraft fuel e�ciency. Ambitious fuel

burn reduction goals require a shift towards novel aircraft designs. Such e�cient designs can be conceived with the

aid of aerodynamic shape optimization and multidisciplinary optimization tools based on high-fidelity computational

fluid dynamics (CFD) [1–4]. Historically, due to complexity and computational cost, flutter constraints have often

been omitted from such tools. Resulting optimal aircraft geometries could thus be potentially subject to this dangerous

aeroelastic phenomenon.

Recently, the inclusion of flutter constraints in both aerodynamic and structural optimization has gained traction.

Mallik et al. [5] studied the e�ects of a flutter constraint on the multidisciplinary optimization (MDO) of a truss-

braced-wing aircraft. Using a modified version of Theodorsen’s linear aerodynamic function [6], they showed that

inclusion of a flutter constraint lead to meaningful penalties on both the weight and fuel e�ciency of the resulting

aircraft. Jonsson et al. [7] have formulated a flutter constraint based on tracking the aeroelastic modes from the pk

method and aggregated the constraints on all modes using the Kreisselmeier-Steinhauser function [8]. In their work,

aerodynamic forces were approximated using a doublet lattice method. Lupp and Cesnik [9] have extended this method

to include geometric nonlinearities, similarly relying on linear aerodynamic methods. A low-order aerodynamic model

has been implemented into an aircraft design tool by Opgenoord et al. [10]. This low-order model is calibrated using

high-fidelity CFD simulations and uses strip theory to extend its applications to three-dimensional geometries. Their

aircraft optimization results demonstrate that a flutter constraint limits the aspect ratio of the wing, resulting in increased

fuel burn. Jacobson et al. [11] have implemented a linearized frequency-domain approach for flutter prediction with the

intent of formulating a flutter constraint. For further information on flutter-based constraints for aircraft optimization,

see the excellent review by Jonsson et al. [12].

Linear aerodynamic methods (such as the doublet lattice method) have been widely used for flutter predictions in the

past due to their low computational cost. However, these methods fail to model nonlinear flow features accurately in the

transonic regime important for modern commercial aircraft [13]. This lack of accuracy has led to overly conservative

aircraft designs [14], and hence losses in potential fuel savings. Alternatively, high-fidelity CFD presents a means to

model aerodynamics accurately for dynamic aeroelastic analysis. In reality, however, due in part to the unsteady nature

of the problem, the large number of degrees of freedom, and the number of flight conditions to consider, the use of

CFD for flutter predictions in a design context remains intractable. This problem is exacerbated when introducing

flutter predictions into an aerodynamic shape optimization framework, for which each new iteration of aircraft geometry

requires a fresh flutter analysis.

Model order reduction of dynamical systems has reached significant maturity. These methods aim to generate

reduced-order models (ROMs) which accurately capture the dynamic behavior of the full-order system in a fraction of

the computational time. ROMs have previously been used for dynamic aeroelastic analysis [15–31]. Notably, Silva
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et al. [15, 16] have constructed aerodynamic ROMs based on aerodynamic forces from full-order CFD simulations

using the eigensystem realization algorithm [32]; the resulting ROM is coupled to the structural model for flutter

prediction. Badcock et al. [17] use the eigenvectors of a full-order aeroelastic system to create ROMs capable of

predicting the onset of limit cycle oscillations. Kim [18] has developed a system identification method capable of

extracting the aerodynamic substates from aeroelastic time histories, which are used to create a ROM for aeroelastic

predictions. Argaman and Raveh [19] have modeled an aeroelastic system as a multi-output autoregressive process

with model parameters identified using aeroelastic responses from CFD solutions. Of particular interest to this paper

are applications of projection-based ROMs with reduced bases constructed using proper orthogonal decomposition

(POD). Notably, Hall et al. [20] and Thomas et al. [21] were among the first to use a POD-based ROM for aeroelastic

modeling. Using the linearized Euler equations in the frequency domain, they constructed ROMs which provide flutter

boundaries with good agreement to full-order methods. Beran et al. [22] used a POD-based ROM to predict the onset

of limit-cycle oscillations for a nonlinear panel in a two-dimensional flow. A few years later, Lieu et al. [24, 25]

modeled the dynamic aeroelastic behavior of a complete aircraft configuration using a POD-based ROM constructed

from the frequency domain linearized Euler equations. More recently, Amsallem et al. [26] used the same governing

flow equations to predict the flutter boundary of a wing-store configuration using a parameterized ROM. Through an

interpolation framework, they were capable of quickly adapting the aerodynamic ROM for various Mach numbers and

fuel fill levels. Bekemeyer and Timme [27] have constructed POD-based ROMs for the linearized Reynolds-Averaged

Navier-Stokes (RANS) equations for gust load analysis.

This paper presents novel contributions towards a model order reduction approach for flutter prediction for commercial

aircraft. The stability of a dynamic aeroelastic system at a given flight condition can be determined by analyzing the

eigenvalues of the linearized aeroelastic equations. For this reason, the Euler equations linearized about a nonlinear

steady state are used as the governing full-order aerodynamic equations for flutter predictions. The stability of the

full-order aeroelastic system can be determined by obtaining the eigenvalues of the coupled linearized aerodynamic

and structural models. However, due to the high dimension of the linearized Euler-based aerodynamic model, this

eigenproblem is computationally intractable. In this work, a POD approach is used to construct an aerodynamic ROM

which approximates the relevant flow dynamics of the full-order linearized Euler equations. The aerodynamic ROM is

coupled to a linear structural model to form a single monolithic aeroelastic ROM. The aerodynamic ROM is several

orders of magnitude smaller than the full-order aerodynamic model, and thus the aeroelastic eigenvalue problem

becomes tractable.

Flow snapshots used for the POD approach are computed using a single unsteady flow solve for a given Mach

number. As originally proposed by Silva [33], all structural mode shapes are excited using the Walsh functions. The

resulting aerodynamic ROM provides accurate flutter predictions for the Mach number at which the snapshots were

computed. Typically, all flow snapshots must be stored into memory simultaneously in order to perform the POD
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approach. This paper demonstrates the use of an incremental POD approach which significantly reduces memory

requirements while maintaining accuracy if large numbers of snapshots are required. One of the primary contributions

of this paper is the application of a stabilizing inner product for the Galerkin projection in the construction of the

aerodynamic ROM for flutter predictions. Barone et al. [34] demonstrated that a symmetry transformation leads to stable

ROMs for the linearized Euler equations. In their work, they presented a symmetry transformation for the linearized

Euler equations formulated in primitive variables. A theorem and proof for the stabilizing properties of this symmetry

transformation was later provided by Kalashnikova et al. [35]. The current paper applies a symmetry transformation to

create a stabilizing inner product in the construction of the aerodynamic ROM in order to preserve its stability for flutter

predictions. The Hessian of the mathematical entropy is used as the symmetry transformation for the linearized Euler

equations formulated in conservative variables. The original proof of stability by Kalashnikova et al. [35] is modified

to account for a source term in the equations. In the case of flutter predictions, the source term originates from flow

excitations due to structural motion.

This paper presents the aforementioned approach, and investigates both the reductions in computational expense and

the ability of the method to predict the onset of flutter. Two example cases are presented: a two degree of freedom

airfoil structure capable of pitching and plunging, and the well known AGARD 445.6 wing flutter test case. This article

is organized as follows. In Section II, the governing flow equations and mesh movement strategy are presented. Section

III presents the model order reduction methodology. Section IV presents the governing equations for the structural

model. Section V presents a discussion of the strategy for coupling the aerodynamic ROM to the structural model, along

with the methodology for flutter prediction. Both the ROM-based and full-order-based flutter prediction approaches

are presented, the latter is used to validate the results of the former. In Section VI, the test cases are briefly discussed.

Lastly, in Section VII, results for various aspects of this work are presented, including the aforementioned flutter test

cases. These are followed by the conclusions in Section VIII. In order to keep the notation clear, quantities associated to

the aerodynamic model are generally indicated with the subscript a, whereas quantities for the structural model are

presented with a subscript s.

II. Flow Solver
This section presents an overview of the nonlinear flow solver developed at the University of Toronto used in this

work to obtain steady-state flow solutions. Subsequently, the linearized discrete Euler equations are derived. Mesh

deformation and time-marching methodologies are also presented.

A. Nonlinear Flow Solver

The steady-state flow solutions for this work are obtained using a multiblock structured finite-di�erence flow solver for

the Euler equations developed by Hicken and Zingg [36]. Spatial discretization is achieved using second-order-accurate
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summation-by-parts operators, while boundary conditions are weakly imposed using simultaneous approximation terms.

The discrete flow equations are solved iteratively using Newton’s method. At each Newton iteration, the linear system is

solved inexactly using the Krylov-subspace algorithm GMRES with an approximate Schur preconditioner [37].

B. Linearized Discrete Euler Equations

In this section, the Euler equations are linearized after discretization in space. Alternatively, the Euler equations can

be linearized and then discretized [38]. The former option was selected for ease of implementation because the existing

flow solver included a linearization of the discrete nonlinear Euler equations with respect to the flow state for use with

the discrete adjoint method. Transforming the Euler equations to computational space and discretizing in space results

in the following set of #a ordinary di�erential equations:

3 (��1
ua)

3C
+ Xa (ua, xa,vol, §xa,vol) = 0, (1)

where ua 2 R#a is the vector of conservative flow states at each node, Xa 2 R#a is the residual vector, and ��1 2 R#a⇥#a

is a diagonal matrix of inverse metric Jacobians of the transformation to curvilinear coordinates. The equations are

linearized with respect to the conservative flow state ua, the volume grid node coordinates xa,vol, and the volume grid

node velocities §xa,vol. Fluctuations of the latter two quantities will serve as inputs into the system of equations and will

be obtained from the structural model. As the linearization is about a nonlinear steady-state, important nonlinear e�ects,

such as small shock wave motion, are captured [38].

The time-derivative term in (1) is first put into non-conservative form,

3 (��1
ua)

3C
= ��1 §

ua + 3�
�1

3C
ua, (2)

where a dot above a quantity represents a derivative in time. Based on the geometric conservation law (GCL), first

proposed by Thomas and Lombard [39], the term 3��1

3C can be expressed as

3��1

3C
= �

✓
3b̂C
3b

+ 3[̂C
3[

+ 3ẐC
3Z

◆
, (3)

where b, [, Z are curvilinear coordinates, and b̂C , [̂C , ẐC are the time metric terms. The time metrics are dependent

on both grid coordinates and velocities and can be expanded with respect to these quantities in a Taylor series about

a steady-state. However, the steady-state the grid velocity is zero; therefore any first-order dependence on the grid

coordinates disappears. Thus, expanding both terms in (2) in a Taylor series about the steady-state and omitting

second-order terms gives
3 (��1

ua)
3C

⇡ ��1
0 X §ua + m

m §xa,vol

✓
3��1

3C

◆
ua,0 X §xa,vol, (4)
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where steady-state quantities are denoted with a subscript 0, and fluctuating quantities with a X. Similarly, the residual

in (1) is expanded in a Taylor series such that

Xa (ua, xa,vol, §xa,vol) ⇡ Xa (ua,0, xa,vol,0, §xa,vol,0) + mXa

mua
Xua + mXa

mxa,vol
Xxa,vol + mXa

m §xa,vol
X §xa,vol, (5)

where the residual of the steady problem, Xa (ua,0, xa,vol,0, §xa,vol,0), is zero. Combining equations (4) and (5) provides

the linearized discrete Euler equations:

��1
0 X §ua + mXa

mua
Xua + mXa

mxa,vol
Xxa,vol +

✓
m

m §xa,vol

✓
3��1

3C

◆
ua,0 + mXa

m §xa,vol

◆
X §xa,vol = 0. (6)

For aeroelastic considerations, the outputs of interest are the aerodynamic force fluctuations about a steady state. Forces

are computed using the aerodynamic pressure, which is explicitly dependent on the flow state ua, and the area-weighted

surface normal, which is explicitly dependent on the grid node coordinates xa,vol. Expanding the fluctuations of the

force as a Taylor series, one obtains

X fa ⇡ m fa
mua

Xua + m fa
mxa,vol

Xxa,vol. (7)

Combining equations (6) and (7) provides the complete linear time-invariant (LTI) system describing the evolution and

output of the aerodynamic model. Dropping the X’s to simplify the notation, the LTI system is

⇢a §ua = �aua + ⌫a,1 §xa,vol + ⌫a,2xa,vol

fa = ⇠aua + ⇡axa,vol.
(8)

From the linearization above, the system matrices are,

�a =
mXa

mua
, ⌫a,1 =

✓
m

m §xa,vol

✓
3��1

3C

◆
ua,0 + mXa

m §xa,vol

◆
, ⌫a,2 =

mXa

mxa,vol
, ⇠a =

m fa
mua

, ⇡a =
m fa
mxa,vol

, ⇢a = ��1
0 .

C. Algebraic Mesh Deformation

In the formulation of equation (8), the vectors xa,vol and §xa,vol denote the fluctuating node coordinates and velocities

of the entire computational grid, also known as the volume grid. A typical volume grid can easily contain O(105) nodes,

which leads to large input vectors. Such vectors require numerous operations for their respective matrix-vector products

in equation (8); therefore reducing the size of these vectors would save on both memory and computational expense.

Consider a linear mesh deformation algorithm which can be cast in the following form

xa,vol =  <xa,surf, (9)
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where xa,vol is the vector of volume node displacements, xa,surf the vector of surface node displacements, and  < the

mesh deformation matrix. If  < is time-invariant, then one can also relate the volume node velocity fluctuations to the

surface node velocity fluctuations by

§
xa,vol =  < §xa,surf. (10)

Inserting this into equation (8) gives:

⇢a §ua = �aua + ⌫a,1 < §xa,surf + ⌫a,2 <xa,surf,

fa = ⇠aua + ⇡a <xa,surf.
(11)

The mesh movement can be integrated into the linearized Euler equations by performing the matrix multiplications�
⌫a,1 <

�
,
�
⌫a,2 <

�
, and (⇡a <) as a precomputing step.

For this work, the matrix  < is constructed based on an algebraic mesh deformation algorithm described by Leung

and Zingg [40]. In this algorithm, the movement of the : C⌘ volume node is given by the equation

G: ,vol =
G: ,surf

2
(1 + cos(c(: )) , (12)

where G: ,surf is the displacement of the surface node on the same grid line, and (: is the normalized arc length from the

surface node to the : C⌘ volume node. Although algebraic mesh deformation has not been found to be robust for large

surface movements and may lead to poor mesh quality as a result, the use of the linearized Euler equations is limited to

small surface movements; thus algebraic mesh deformation is found to be su�cient.

D. Time-Marching Method

As will be discussed in the following section, the full-order linearized Euler equations (11) are marched in time

in order to create a reduced basis onto which the equations are projected. The second-order backwards di�erence

method is used to march the equations in time. At each time step, the linear system is solved using the modified

Generalized Conjugate Residual with inner Orthogonal and outer Truncation (GCROT(m,k)) Krylov method [41] with

an approximate Schur preconditioner [36].

III. Model Order Reduction
The LTI system (11) retains the same dimension as the original nonlinear discrete governing flow equations and thus

remains impractical for fast flutter predictions. In order to reduce computational expense, a projection-based model

order reduction approach is used for which the reduced basis is created using POD. Excellent literature exists on the

fundamentals and applications of POD [42–45]. To keep this paper self-contained, the general concepts are reviewed
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briefly in the first part of this section. Subsequently, a stability preserving inner product is presented, followed by the

description of an incremental POD approach, and finally the procedure for snapshot collection.

A. POD-based Model Order Reduction

The key goal of POD is to represent a set of data with as few basis vectors as possible. To this end, consider a set of

< state (or “snapshot”) vectors ua,1, ua,2, ..., ua,< 2 R#a at di�erent instants in time, that is ua, 9 = ua (C 9 ). A set of

orthogonal basis vectors 58 2 R#a which minimizes the least squares error of the snapshot reconstruction is desired.

This is done by solving the eigenproblem [43]:

,((),58 = _8,58 , (13)

where ( 2 R#a⇥< is the snapshot matrix containing the < snapshots stored column-wise,, 2 R#a⇥#a is a symmetric

positive-definite matrix which defines a weighted inner product in Euclidean space, and _8 is the eigenvalue associated to

the 8C⌘ eigenvector 58 . The weighted inner product matrix, may serve multiple purposes, including as an approximation

to an inner product in continuous space (for example an !2 inner product) [43], and as an inner product which ensures

the stability of the resulting ROM [35]. The reduced basis� 2 R#a⇥=a onto which the governing equations are projected,

is formed such that � = [51, 52, ..., 5=a ] with the eigenvectors and values arranged as _1 � _2 � ... � _< and =a  <.

The sum of the eigenvalues associated to the excluded eigenvectors quantifies the snapshot reconstruction error,

<’
9=1

����
ua, 9 �

=a’
8=1

⇣
u

)
a, 9,58

⌘
58

����2
, =

<’
9==a+1

_ 9 , (14)

where | |7 | |, =
p
7

),7 is the induced norm associated to, . This can be used as a metric to choose an appropriate

reduced basis dimension =a. With a tolerance [ROM (often smaller than 10�1), one can compute the smallest =a such that

1 �
Õ=a

8=1 _8Õ<
8=1 _8

 [ROM. (15)

For further details, see [42, 43, 45].

In projecting equation (11) onto the reduced basis, one approximates the evolution of the solution in the reduced

space [42]:

ua (C) ⇡ �ũa (C), (16)

where ũa 2 R=a is a vector of time-dependent coe�cients. This approximation results in the residual:

XROM = ⇢a� §̃ua � �a�ũa � ⌫a,1 < §xa,surf � ⌫a,2 <xa,surf. (17)
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Enforcing the Galerkin condition, which states that the residual is orthogonal to the reduced space,

�),XROM = 0, (18)

gives the ROM of interest,

⇢̃a §̃ua = �̃aũa + ⌫̃a,1 < §xa,surf + ⌫̃a,2 <xa,surf,

f̃a = ⇠̃aũa + ⇡̃a <xa,surf.
(19)

This ROM contains =a degrees of freedom, with =a ⌧ #a. The reduced matrices are,

�̃a = �),�a�, ⌫̃a,1 = �),⌫a,1, ⌫̃a,2 = �),⌫a,2, ⇠̃a = ⇠a�, ⇡̃a = ⇡a, ⇢̃a = �),⇢a�.

B. Stabilizing Inner Product

The full-order aerodynamic equations are always stable prior to coupling with the structural model. Therefore, it

is important that the aerodynamic ROM preserves this stability; however this is not always guaranteed. This section

presents a theorem which provides conditions that ensure the stability of the aerodynamic ROM.

To ensure stability for ROMs created using the linearized Euler equations, Barone et al. [34] proposed the use of a

weighted inner product which symmetrizes the flux Jacobian. Kalashnikova et al. [35] extended the work to several

other linearized systems, and provided a theorem and proof for the stabilizing properties of a symmetrizing inner

product. To demonstrate their theorem, the continuous form of the linearized Euler equations are first presented; these

are di�erentiated from the discrete form (6) by using a calligraphic font. In a similar procedure as for the discrete

equations, the continuous Euler equations are mapped from physical coordinates G (1,2,3) to curvilinear coordinates

b (1,2,3) , and each term is expanded in a Taylor series. The resulting continuous linearized Euler equations are:

J�1
0
mXU
mC

+ mA(8)XU
mb (8)

= S, (20)

where Einstein notation is used such that repeated indices are summed. In this equation, 8 2 [1, 3] refers to the coordinate

index, XU 2 R5 is the vector of conservative flow variable fluctuations about a steady state, J0 2 R is the determinant of

the coordinate mapping Jacobian at steady-state, A(8) =
mÊ(8)
mU 2 R5⇥5 is the flux Jacobian in the 8C⌘ direction evaluated

at steady-state, and Ê(8) 2 R5 denotes the flux vector in the 8C⌘ direction. The symbol ˆ on the flux vector indicates that

it has been scaled by J�1
0 . Additionally, b (8) is the 8C⌘ coordinate direction in curvilinear coordinates. The term S 2 R5

is a source term defining the linear influence of the position fluctuations XG (1,2,3) and velocities X §G (1,2,3) in the physical
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domain on the system,

S = � m

mb (8)

 
mÊ(8)
mG ( 9)

XG ( 9)

!
� m

mb (8)

 
mÊ(8)
m §G ( 9) X §G ( 9)

!
�U)

0
m

m §G ( 9)

✓
mJ�1

mC

◆
X §G ( 9) . (21)

The boundary and initial conditions are:

U(G, C) = G(C), G 2 m⌦, C 2 [0,)],

U(G, 0) = F (G), G 2 ⌦.
(22)

The following theorem has been modified from Kalashnikova et al. [35] to generalize the applicable boundary conditions

and to include contributions from the source term. The proof for Theorem III.1 is given in the Appendix.

Theorem III.1. Begin with the linearized Euler equations (20) given on an open domain ⌦ with a smooth boundary

m⌦ and with initial and boundary conditions (22). Suppose a ROM is constructed using the spatial basis functions

q(G). Define Ũ(C) = ⇥Ũ1 (C), Ũ2 (C), ...
⇤)

as the vector of modal coe�cients such that the solution is approximated as,

U(G, C) ⇡
’
8

q8 (G)Ũ8 (C). (23)

Assume that the initial and boundary conditions are bounded and exist in the reduced space. Moreover, assume that the

source term S is also bounded. If the ROM is constructed using a continuous Galerkin projection with a weighted

!2 (⌦) inner product which symmetrizes the flux Jacobian A(8) , the ROM is energy stable with energy estimate:

| |Ũ ()) | |2W  :
⇣
| |F | |2W + ||G||2G

⌘
, (24)

where ) is a given time, | | · | |W is the induced norm from the weighted !2 (⌦) inner product, and | | · | |G is the induced

norm from the !2 (m⌦ ⇥ (0,))) inner product.

Theorem III.1 ensures that the resulting aerodynamic ROM is stable for any reduced basis used for its construction.

With this stability property, any instability seen in the ROM-based aeroelastic system must arise from the coupling

between the structural model and the aerodynamic ROM. For the Euler equations, it has been shown that a number

of mathematical entropy functions exist for which the Hessian symmetrizes the flux Jacobian [46]. In this work, the

following mathematical entropy is used:

B̄ = �dB, (25)

where B is the thermodynamic entropy, and d is the density. The Hessian of the mathematical entropy W = m2 B̄
mU2 2 R5⇥5

is symmetric positive definite. This allows it to be used as a weight for the !2 inner product used in the Galerkin
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projection to provide a stable ROM.

For a semi-discrete system, a matrix, is formed which approximates the continuous weighted !2 inner product.

This is accomplished by storing the values of W at each node in the mesh in blocks along the diagonal of, and using a

trapezoidal quadrature to approximate the integration over the domain.

C. Incremental Basis Creation

The POD approach presented in Section III.A requires that all snapshots first be computed and stored in order

to construct the reduced basis. However, each snapshot contains #a elements, where #a is the number of nodes in

the aerodynamic mesh multiplied by five. Thus, storing the required number of snapshots simultaneously may be

impractical or even impossible. An incremental basis creation method allows one to circumvent this by updating an

existing reduced basis with new batches of snapshots, eliminating the need to store all snapshots concurrently.

The algorithm implemented for this incremental approach is a modified version of Levey and Lindenbaum’s

sequential Karhunen–Loeve algorithm [47]. This algorithm relies on the singular value decomposition of the snapshot

matrix (. In order to use a weighted inner product, the Cholesky decomposition of the inner product matrix, = *)
,*,

is used. To obtain a singular value decomposition equivalent to the POD eigenvalue problem from equation (13), this

Cholesky decomposition is first introduced into the eigenvalue equation,

*)
,*, ((

)*)
,*,� = *)

,*,�⇤, (26)

where ⇤ is a diagonal matrix containing the eigenvalues, and � is the matrix containing the right eigenvectors. By

defining (̄ = *, ( and �̄ = *,�, an equivalent eigenproblem is obtained,

(̄(̄) �̄ = �̄⇤. (27)

This can then be transformed into a singular value decomposition by introducing the decomposition ⇤ = ⌃⌃ and the

identity +)+ = �,

(̄(̄) = �̄⌃+)+⌃�̄) =
⇣
�̄⌃+)

⌘ ⇣
�̄⌃+)

⌘)
(28)

The resulting singular value decomposition for weighted POD is (̄ = �̄⌃+) . The modified sequential Karhunen–Loeve

procedure used to incrementally create the reduced basis is found in Algorithm 1. For parallel computation, except for

snapshot creation, the only multi-processor operation required in this algorithm is the QR factorization. For e�cient

implementation of this step, ScaLAPACK [48] is used.
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Algorithm 1: Incremental weighted proper-orthogonal decomposition, modified from [47].
Input: Initial POD basis �0, associated singular values stored in the diagonal matrix ⌃0, weighted inner
product matrix, , desired number of snapshots ;

Compute the Cholesky decomposition: *)
,*, = , ;

Compute the weighted reduced basis �̄0 = *,�0 ;
8  0 ;
while number of snapshots  desired number of snapshots do

8  8 + 1 ;
Compute =8 snapshots and store them in (8 ;
Weight the snapshot matrix: (̄8 = *F(8 ;
Compute the matrix:  8�1 = �̄8�1⌃8�1 ;
QR factorization: &' =

⇥
 8�1 |(̄8

⇤
;

Singular value decomposition: *⇡+) = ' ;
Let ⌃8 be diagonal matrix containing the A largest singular values from ⇡, and *̃ be the matrix containing
the corresponding left singular vectors from* ;

Update the weighted basis: �̄8 = &*̃ ;
end
Remove the weights from reduced basis: � = *�1

, �̄8 ;

Output: Updated reduced basis � ;

D. Snapshot Collection

Snapshots are collected using a simultaneous input excitation method, similar to the approaches detailed in [30, 33].

As the name suggests, all inputs for the aerodynamic model are excited simultaneously during a single flow solve, and

the resulting flowfield at each time instance is stored as a snapshot and used later to create the POD-based reduced

basis. The use of simultaneous excitations for snapshot collection has been found to be more economical in terms of

computational time when generating the ROM compared to exciting each system input in separate flow simulations [30].

One key aspect is that each input signal must be relatively uncorrelated to generate a rich database of flowfield reactions.

Previously, Silva [33] studied the use of three di�erent types of inputs for multi-excitation: the lagged-step, the

block-pulse, and the Walsh functions. Of these, it was found that ROMs constructed using snapshots from the Walsh

functions demonstrated the best results. The Walsh functions are impulsive in nature due to their step-like behavior.

This allows for a broad bandwidth of frequencies to be excited in the flow. Moreover, they are orthogonal in time, which

helps provide a rich data set of flow reactions. For this reason, the Walsh functions are used to define the structural

excitations when collecting flow snapshots. The amplitude of the structural excitations are limited to 0.01 semi-chord

lengths to ensure that all snapshots remain physical, i.e. no negative pressures. The first four Walsh function excitations

used in this work are given in Figure 1.

IV. Structural Model
It is common to model a structure’s motion using a modal method [49]. Given a structural model with #s degrees

of freedom, the spatial dependence is described via =s mode shapes, where =s < #s. These mode shapes typically

14



-0.01

0

0.01

-0.01

0

0.01

-0.01

0

0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-0.01

0

0.01

Fig. 1 Example of Walsh function based input excitations for snapshot collection.

correspond to the free vibration modes of the structure, given by the generalized eigenvalue problem

 s78 = l2
8"s78 , (29)

where  s 2 R#s⇥#s is the sti�ness matrix, "s 2 R#s⇥#s is the mass matrix, and l8 2 R and 78 2 R#s are the modal

frequency and mode shape associated to the 8C⌘ free vibration mode. These mode shapes are orthogonal to one another

and can be scaled to produce unit modal mass. Using the first =s modes to model the system and neglecting damping

terms gives the following uncoupled equations of motion:

•
ws +⌦sws =  )

gs. (30)

Here, ws 2 R=s is the vector of generalized displacements for each mode, gs 2 R#s the vector of applied forces,

⌦s 2 R=s⇥=s the diagonal matrix of squared modal frequencies l2
8 , and  2 R#s⇥=s the matrix containing the structural

mode shapes 78 stored column-wise.

In order to couple this system with the aerodynamic model, it is convenient to rewrite equation (30) as a system of

first-order ordinary di�erential equations. Introducing the new state vector us =
⇥ §
w

)
s , w

)
s
⇤)

leads to the following

formulation:

§
us = �sus + fs, (31)
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where,

�s =

26666664
0 �⌦s

� 0

37777775
, fs =

26666664
 )

gs

0

37777775
.

V. Flutter Predictions
This section presents the approach used for flutter predictions. First, the displacement and force transfer between

the aerodynamic and the structural model is described. Subsequently, the ROM-based flutter prediction approach is

described. This is followed by a description of the time-dependent full-order model-based flutter prediction approach

used to validate the results obtained by the ROM.

A. Model Coupling

For aeroelastic analysis, the structural model (31) must be coupled to the aerodynamic model. In this section,

the term aerodynamic model is kept general, and may refer to either the full-order nonlinear Euler equations (1), the

full-order linearized Euler equations (11), or the aerodynamic ROM (19). For this coupling, two challenges arise. The

first comes from the fact that quantities exchanged between models must have common dimensions. The second arises

from the non-coinciding surface grids between the two models, resulting in the need for force and displacement transfer

between grids. In this section, the variable representing time is Ca for the aerodynamic model and Cs for the structural

model. Additionally, for clarity, time derivatives in this section will be denoted not by a dot, but rather by 3
3Ca

or 3
3Cs

.

1. Dimensional Consistency

To couple the aerodynamic and structural models, quantities which are exchanged must be dimensionally consistent.

To this end, the following time and force scaling factors are introduced:

Cs = ftCa, 5s = ff 5a. (32)

Note that 5s and 5a represent only scalar force quantities for the structural and aerodynamic model, respectively. They

are not denoted as vectors because the surface grids do not coincide between models; this is addressed in the next

subsection.

From the aerodynamic model, dimensional time Ĉ and force 5̂ are obtained with the following equations:

Ĉ =
!ref"1
+1

Ca, 5̂ = !2
ref@1 5a, (33)

where !ref is a reference length, "1 is the freestream Mach number, +1 is the freestream velocity, and @1 is the

16



freestream dynamic pressure. The structural models presented in this paper each possess di�erent dimensions. For

the AGARD 445.6 wing, the structural model is kept in dimensional form, thus Cs = Ĉ and 5s = 5̂ . Additionally, the

aerodynamic grid was constructed around a dimensional AGARD wing geometry, therefore !ref = 1 in. This leads to

the following scaling factors for the AGARD wing test case:

ft =
!ref"1p
2@1d1

, ff = !2
ref@1, (34)

where d1 is the freestream density. For the two degree of freedom structural model, time is nondimensionalized by the

torsional natural frequency Cs = lU Ĉ, and applied forces are nondimensionalized as 5s = 5̂ /(<1l2
U), where < is the

airfoil mass, and 1 the semi-chord. The aerodynamic grid was constructed about an airfoil geometry nondimensionalized

by the chord length, therefore the length scaling is !ref = 21. Using the definition of the two-dimensional mass ratio

` = </(d112c), the scaling factors for the two degree of freedom structural model is obtained:

ft =
2"1
+
p
`
, ff =

1
c
+2, (35)

where + is the nondimensional speed index defined as

+ =
+1

1lU
p
`
. (36)

The value of + at which flutter occurs is named the flutter speed index, and will be denoted by +f .

2. Displacement and Force Transfer

As the fluid grid surface nodes do not coincide with the structural grid surface nodes due to the di�erent nature of

model discretizations, quantities which must be exchanged between the two models must be transferred between grids.

Specifically, the generalized coordinates ws and velocities 3ws
3Cs

of the structure must be transformed into aerodynamic

surface mesh deformations xa,surf and velocities 3xa,surf
3Ca

, respectively. Additionally, the force output from the aerodynamic

model fa must be transformed into fs, the force applied to the structural model. For this, the transfer matrices )s and )a

are introduced, and the scaling factors in (32) are applied,

xa,surf = )sws,
3xa,surf

3Ca
= ft)s

3ws

3Cs
, fs = ff)a fa, (37)

In the two degree of freedom structural system introduced later in this paper, the matrix )s is formulated analytically

using a small angle approximation, while )a is formulated based on the equations for ⇠; and ⇠<, the lift and pitching

moment coe�cients. For more complex geometries, a number of options exist for constructing )s and )a. In the present

17



work, Rendall and Allen’s radial basis function interpolation [50] is used to construct the transfer matrices for the

AGARD 445.6 wing case. The radial basis function approach ensures that energy, and total force and moment are

conserved between both models. Moreover, it allows for the exact recovery of translation and rotation. This method is

chosen for the aforementioned properties, and for its ease of implementation: it is a point cloud based method and hence

no grid connectivity information is required. For further information see [50].

B. Reduced-Order Model Based Flutter Predictions

Recall that the inputs for the aerodynamic model (19) are: the aerodynamic surface velocity fluctuations 3xa,surf
3Ca

, and

the aerodynamic surface displacement fluctuations xa,surf. From equation (37) above, these inputs can be redefined as

26666664

3xa,surf
3Ca

xa,surf

37777775
=

26666664
ft)s

3ws
3Cs

)sws

37777775
=

26666664
ft)s 0

0 )s

37777775
us, (38)

where us was previously introduced as the augmented structural state vector in equation (31). Inserting equation (38)

into the aerodynamic ROM (19), and using the dimensionalization factors from (32) gives

ft⇢̃a
3ũa

3Cs
= �̃aũa + ⌫̄aus,

f̃a = ⇠̃aũa + ⇡̄aus,

(39)

where

⌫̄a =

ft⌫̃a,1 <)s ⌫̃a,2 <)s

�
, ⇡̄a =


0 ⇡̃a <)s

�
.

Next, the aerodynamic forces are applied to the structure. Rewriting the forces on the right-hand side of the structural

model (31) using force transformation matrix in equation (37) and the aerodynamic force approximation from (39) gives

3us

3Cs
=

�
�s + ff)a⇡̄a

�
us + ff)a⇠̃aũa (40)

Finally, there remains only the task of creating the monolithic aeroelastic ROM from equations (39) and (40),

M
3u

3Cs
= Au, (41)

where

u =

26666664
us

ũa

37777775
, M =

26666664
� 0

0 ft⇢̃a

37777775
, A =

26666664
�s + ff)a⇡̄a ff)a⇠̃a

⌫̄a �̃a

37777775
, (42)
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where � 2 R2=s⇥2=s is the identity matrix. Note that for symmetric airfoils at 0� angle of attack, this system is only

dependent on the dynamic pressure @1 (or the speed index +) through the scaling factors ft and ff . The generalized

eigenvalue problem for the aeroelastic system is: find an eigenvalue _ and eigenvector v such that,

Av = _Mv. (43)

Through the application of model order reduction, all the eigenvalues of this system can be obtained rapidly. By

performing a sweep across a range of dynamic pressures, the stability of the system can be determined. The point at

which any of the eigenvalues in the system cross the imaginary axis (i.e. gain a positive real value) indicates the onset of

flutter.

C. Full-Order Model Based Flutter Predictions

For validation purposes, the results of the ROM-based flutter predictions are compared to the full-order model

predictions, including both the full-order nonlinear Euler model and the full-order linearized Euler model. Due to the

high-dimension of the full-order aerodynamic model, the use of an eigenvalue analysis to determine the stability of the

aeroelastic system is intractable. Hence, this work relies on a time marching approach to determine the flutter boundary

of the full-order aeroelastic system. This methodology is based on the one described by Edwards et al. [51]. In this

approach, the structural model (31) is marched in time with the following method,

u

(=+1)
s = exp(�s�C)u (=)

s +
π �C

0
exp(�s (�C � g)3g

�
f

(=)
s , (44)

where �C is the time step size, and = is the step index. For each time step, the aerodynamic forces are first computed

using either the full-order nonlinear or the linearized Euler equations marched in time. These forces are transferred to

the structural model, which then determines the structural deformation. Deformations are transferred to the aerodynamic

mesh, and computations are repeated until the aerodynamic forces have converged to a relative tolerance of O(10�6)
between iterations. Typically, four iterations are required to complete one step in time.

In order to determine the flutter boundary using the full-order nonlinear and linearized Euler equations, at least two

time-dependent simulations are required. With two or more simulations, the flutter point (the point of zero aeroelastic

damping) can be interpolated or extrapolated based on the damping values obtained at the simulated conditions. For

accurate results, the simulated conditions must be su�ciently close to the flutter point. Time histories of the aeroelastic

transients are fit to a damped sinusoidal wave using the methodology of Bennett and Desmarais [52]. This allows for a

damping factor to be obtained for each dynamic pressure of interest.

It is important to note that the full-order time-marched aeroelastic simulations were not optimized to reduce
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Fig. 2 Two degree of freedom airfoil structure capable of pitching and plunging.

computational expense. However, the total time reported in the results for the full-order approach assumes the best case

scenario for which only two simulations are performed at flight conditions near the flutter boundary. With aircraft for

which flutter behavior is not known a priori, increased computational costs can be anticipated because the aeroelastic

transients may be required for more than two dynamic pressures.

VI. Test Case Description
This section presents the two structural models used as validation cases: a two degree of freedom structural model,

and the AGARD 445.6 wing structural model.

A. Two Degree of Freedom Aeroelastic Test Case

To test the accuracy and e�ciency of the proposed approach for fast flutter predictions, the two degree of freedom

airfoil structure shown in Figure 2 has been implemented. The structure is supported by a torsional and a linear spring

and is capable of both pitching and plunging. For the equations of motion presented in (29) and (30), the mass and

sti�ness matrices and the applied force vector are:

"s =

26666664
1 GU

GU A2
U

37777775
,  s =

26666664
(l⌘/lU)2 0

0 A2
U

37777775
, gs =

26666664
�⇠l

2⇠m

37777775
,

where GU is the distance from the elastic axis to the center of gravity (divided by 1), AU is the radius of gyration (divided

by 1), and l⌘ and lU are the uncoupled plunging and pitching natural frequencies, respectively. ⇠l and ⇠m are the

lift and pitching moment coe�cients, the latter taken about the elastic axis location. Additionally, 0 is defined as the

location of the elastic axis (divided by 1) relative to the midchord. Aeroelastic results are presented for Case A of Isogai

[53]. Parameter values used are: 0 = �2.0, GU = 1.8, AU = 1.865, l⌘ = 100 rad/s, lU = 100 rad/s, and ` = 60. Note

that this value of 0 corresponds to an elastic axis location ahead of the leading edge; this replicates the behaviors of a

swept back wing. Flutter predictions are performed about a steady-state angle of attack of 0�.
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Fig. 3 First four mode shapes of the AGARD 445.6 wing structure.

All simulations pertaining to this model are performed on the NACA 64A010 airfoil with a structured mesh. The

mesh consists of a two-dimensional mesh with 38,000 nodes around the airfoil extruded to create 11 span-wise sections,

resulting in a total of 418,000 nodes subdivided into 32 blocks. All results and snapshots are obtained using 32 Intel

“Skylake” processors at 2.4 GHz.

B. AGARD Wing Aeroelastic Test Case

As a three-dimensional aeroelastic test case, the weakened AGARD 445.6 wing model was chosen, for which wind

tunnel results were obtained by Yates [54]. The structural model provided by Yates [54] is composed of four natural

frequencies and associated mode shapes, the latter shown in Figure 3. Simulations are performed on the AGARD 445.6

wing geometry using a structured mesh with 1,987,392 nodes subdivided into 160 blocks. All results and snapshots are

obtained using 160 Intel “Skylake” processors at 2.4 GHz.

VII. Results
This section presents results obtained for the various components of the flutter prediction algorithm, followed by

complete flutter predictions. Results are first presented for the linearized Euler equations compared to the nonlinear

equations for a transonic pitching airfoil test case. Subsequently, numerical results are given demonstrating the stabilizing

inner product and the incremental POD approaches. Lastly, flutter predictions are presented for the two degree of

freedom aeroelastic test case and the AGARD 445.6 wing case. An aeroelastic transient time history comparison

between the ROM and the full-order linearized Euler equations is presented for the AGARD wing.

A. Results for the Linearized Discrete Euler Equations

Results are presented to assess the accuracy of the linearized discrete Euler equations for unsteady aerodynamic force

approximations. A popular test case for unsteady transonic flow is the pitching NACA 64A010 airfoil at a freestream

Mach number of 0.796, for which experimental data is provided by Davis [55]. The airfoil pitches at a reduced frequency

(l1/+1) of 0.202, with a mean incidence of 0�, and a pitching amplitude of ±1.01�. The case was run using both the

nonlinear and linearized Euler equations.

Simulations were run using the implicit Euler time-marching method with a time step size of 0.02 nondimensional

time units, equivalent to 977 steps per pitching cycle. This small time step size was chosen to ensure that time-marching
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Fig. 4 ⇠l (left) and ⇠m (right) versus angle of attack for the nonlinear and linearized Euler equations, and
experimental results obtained by Davis [55].

errors were negligible. Figure 4 shows the evolution of ⇠l and ⇠m, the lift and pitching moment coe�cients, as a

function of the angle of attack U for the sixth cycle of motion. One can see that, though some error is present, in general

the linearized Euler equations are capable of capturing similar behavior as their nonlinear counterpart for this case.

Quantitatively, the maximum di�erence in ⇠l and ⇠m between the linearized and nonlinear equations for the sixth

pitching cycle are found to be 1.26% and 6.10%, respectively. From both the computational and experimental results, a

shock wave is observed which oscillates about the mid-chord. This indicates that the linearized Euler equations are able

to capture some shock wave motion. Discrepancies between the experimental and computational results are attributed,

in part, to the absence of shock-boundary-layer interactions due to the use of the Euler equations, as discussed by Chyu

et al. [56].

When predicting the onset of flutter, only infinitely small oscillations need be considered [6]. Indeed, the two degree

change in angle of attack used for this analysis is much larger than is required for flutter prediction. Thus, it is expected

that the di�erences between the nonlinear and linearized Euler equations will become negligible for flutter analysis.

However, as will be observed in the results for the AGARD 445.6 wing test case, the exclusion of viscosity can lead to

errors in the flutter boundary at higher Mach numbers.

B. Results for Stabilizing Inner Product

The use of the weighted inner product presented in Section III.B is demonstrated. The stability of the ROM is

determined by the real part of the eigenvalues of the matrix pencil ( �̃a, ⇢̃a), where �̃a is the reduced flux Jacobian and

⇢̃a the reduced diagonal matrix of inverse metric Jacobians, first shown in equation (19). If any eigenvalue possesses a

positive real part, then the aerodynamic ROM is unstable. One may see parallels between this stability analysis and

the flutter predictions outlined above. It is important to note that for flutter predictions, the instability comes from the
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Fig. 5 Comparison between the stability of ROMs with weighted and non-weighted !2 inner products for
various numbers of POD basis vectors.

coupling between the aerodynamic model and the structural model. If the ROM used for aerodynamic predictions is

inherently unstable, the flutter boundary cannot be predicted.

To test the stabilizing properties, the structural model used is the two degree of freedom model presented in Section

VI.A. Four thousand snapshots were collected using the Walsh functions to excite the structural states, with a time step

size of 0.004 nondimensional time units. The standard POD approach is used to obtain a reduced basis from these

snapshots.

Figure 5 shows a comparison between the weighted and non-weighted !2 inner products for the Galerkin projection.

The largest real parts of all the eigenvalues of the matrix pencil ( �̃a, ⇢̃a) are plotted as a function of the number of

POD modes used for the Galerkin projection. It is immediately apparent that for various numbers of POD modes the

non-weighted !2 inner product results in an unstable ROM. One observes several numbers of POD modes for which

the largest positive real part of the eigenvalues is above zero. The weighted inner product demonstrates stability for

almost all numbers of POD modes, save for at 60 modes where the largest real part of the eigenvalues has a value of

approximately 2⇥ 10�4. This instability is believed to be caused by the use of a discrete approximation of the continuous

inner product.

C. Results for Incremental POD

The performance of the incremental POD approach presented in Section III.C is demonstrated. As for the test of the

stabilizing inner product, the two degree of freedom structural model test case was used. Two thousand snapshots were

collected using the Walsh functions to excite the structural states, with a time step size of 0.1 nondimensional time

units. Both the standard POD and incremental POD methods are used to create the reduced basis from these snapshots.

The standard POD approach required all 2000 snapshots to be computed and stored before the basis is created. For

the incremental approach, the first 400 snapshots are used to create the initial basis, and each subsequent batch of 200

snapshots is used to update the existing basis. The largest memory requirements for the incremental approach is thus

600 vectors, a 70 % reduction in memory. For the current test case, taking into account all other memory requirements

including the system matrices and preconditioner, the incremental approach showed a reduction of 40 % in total memory
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usage.

Similar behaviors in the decay of the singular values is observed between the standard and incremental POD

approaches until they reach values of approximately 10�10, where larger discrepancies are observed. Quantitatively, the

first 200 singular values, which together represent a POD reconstruction error of [ROM = 7.245 ⇥ 10�12 from equation

(15), have an average relative error of 1.147 %. Comparing only the first 10 singular values, which represent a value of

[ROM = 5.073 ⇥ 10�4, an average relative error of 0.5268 % is observed. The ROMs constructed using each approach

produce almost identical outputs.

D. Two Degree of Freedom Flutter Predictions

A comparison of the flutter boundaries obtained for the two degree of freedom test case from Section VI.A using

the full-order equations and the ROM methodology is presented. The aerodynamic ROMs used for this test case were

constructed using the procedure outlined in Section III. Incremental POD was used to create the reduced basis from

snapshots collected using the Walsh function excitations. Through experimentation, it was found that 2000 snapshots

for each Mach number with a time step size of 0.2 nondimensional time units resulted in ROMs capable of accurate

flutter predictions. Using the POD-based approach, the ROMs were constructed for five Mach numbers ranging from

0.75 to 0.875, each with between 150 and 188 modes obtained using a tolerance [ROM = 10�10 from equation (15). This

reduction in dimension is significant compared to the 2.09 ⇥ 106 degrees of freedom in the original system. This value

of [ROM may seem excessively small, but note that the time required to determine the flutter boundary using the ROMs,

even with hundreds of POD modes, is insignificant compared to the cost of collecting the snapshots.

Results for the flutter boundary obtained by the nonlinear and linearized Euler equations, the ROM, and those found

in the literature are shown in Figure 6. Results from Alonso and Jameson [57] and Sanchez et al. [58] were obtained

using the Euler equations. All methods used in the present work have good agreement with the results from the literature

for all Mach numbers. The transonic dip around Mach 0.85 is observed in the results. This is the result of nonlinear

behavior in the flow field, specifically the oscillation of the shock wave on the upper surface [53]. This indicates that

the ROM is capable of capturing this nonlinear flow behavior, which would not be captured by a linear aerodynamic

method. Additionally, one observes two points at Mach 0.875: an onset of flutter at +f ⇡ 0.6, and the return of stability

at +f ⇡ 1.8. Of these two points, the ROM predicts the former well, but is incapable of predicting the latter. This is not a

vital concern as the primary goal of the ROM is to find the initial onset of flutter.

A comparison of the total time (measured in equivalent number of steady flow solves) required to obtain the flutter

boundary for all Mach numbers is presented in Table 1. As expected, the nonlinear and linearized Euler equations

require significantly more time than the ROM. However, as mentioned above, the methodology used to obtain the flutter

boundary for the full-order models was not optimized for computational time, and further reduction in these times may

be expected. Despite these caveats, the use of the ROM for flutter prediction performed considerably faster. Notably,
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Fig. 6 Flutter boundary obtained by Alonso and Jameson [57] and Sanchez et al. [58], by the full-order
nonlinear and linearized Euler equations, and by the ROM-based approach.

Table 1 Total time required to obtain the flutter boundary for all Mach numbers of interest, measured in
equivalent number of steady flow solves.

Nonlinear Euler Linearized Euler ROM

Total Time [equivalent number of steady solves] 1751 783 46

most of the time for the ROM was in collecting the snapshots for basis construction. On average, 92.1 % of the time was

required to collect the snapshots and construct the reduced basis, 7.77 % was required for the steady flow solve, while

only 0.134 % was required to perform the eigenvalue analyses of the ROM-based aeroelastic system at all values of +f .

E. AGARD Wing Aeroelastic Test Case

A comparison of the aeroelastic transients and the flutter boundary obtained for the AGARD 445.6 wing test case

from Section VI.B is presented. The aerodynamic ROMs used for the AGARD 445.6 wing were constructed using the

procedure outlined in Section III. Snapshots were collected using the Walsh function excitations, and incremental POD

was used to create the reduced basis. It was determined through experimentation that 3000 snapshots for each Mach

number with a time step size of 2.0 nondimensional time units produced accurate ROMs. The ROMs were constructed

for six Mach numbers ranging from 0.499 to 1.141, each with between 258 and 320 modes obtained using [ROM = 10�10.

Figure 7 shows the time history of the generalized coordinates of the AGARD wing structural model coupled to the

aerodynamic ROM. The time history of the same structural model coupled to the full-order linearized Euler equations

is also presented. All aeroelastic transients are initialized using a perturbation in the velocity of the structure. From

this figure, it is observed that the aerodynamic ROM is capable of producing similar aeroelastic transients as those

obtained using the full-order linearized Euler equations. The damping factor for each of the displacements is well

captured, indicating that instabilities in the aeroelastic system are reproducible with the ROM. Further comparison
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Fig. 7 Generalized structural coordinate displacements obtained by both the linearized Euler equations and
the ROM for the AGARD 445.6 wing at a Mach number of 0.960 and dynamic pressure of 0.57 psi.

between the ROM and the full-order linearized Euler results is provided by looking at the frequency spectrum shown in

Figure 8, obtained by performing a fast-Fourier transform of the time histories from Figure 7. It is observed that the

frequency peaks in the solution are generally well captured by the ROM. Additionally, frequencies further away from

the dominant peaks are also well captured by the ROM, with the largest discrepancies at the lowest frequencies in the

solution. This indicates, at least for these flow conditions, that the use of the Walsh functions as structural excitations

when collecting flow snapshots provides a su�ciently rich set of flow reactions to capture the relevant frequencies for

dynamic aeroelastic analysis.

Results for the flutter boundary obtained for the AGARD wing are shown in Figure 9, from which several observations

can be made. First, as observed by Lee-Rausch and Batina [59], the inclusion of viscosity in the solution is important

for predicting accurate flutter behavior at Mach numbers close to unity. Indeed, the current ROM-based approach is

not limited to inviscid equations and can be extended to the linearized discrete RANS equations. Second, the flutter

boundary obtained by the linearized Euler equations compares well with the nonlinear inviscid results obtained by Silva

et al. [15]. Finally, it is observed that the ROM-based approach demonstrates similar accuracy as the linearized Euler

equations for all Mach numbers of interest except above Mach 1. Thus, in general the ROM shows an ability to closely
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Fig. 8 Frequency spectrum of the time history response for the AGARD wing shown in Figure 7; solid lines
are the full-order model, dashed lines are the ROM, black vertical lines indicate the natural frequency for each
mode.

mimic the governing equations from which it is derived for the lower range of the Mach numbers presented. For this

work, this lower range is of primary interest as this methodology is aimed at flutter prediction for subsonic commercial

aircraft.

The behavior of an aerodynamic ROM for the prediction of flutter for the AGARD wing at Mach 1.141 has been

previously analyzed by Silva et al. [15]. With the use of the root locus plot of the aeroelastic system, Silva et al.

concluded that for the ROM constructed based on the Euler equations at this Mach number, the third structural mode

demonstrated instabilities at all dynamic pressures. In the present work, instabilities were observed at dynamic pressures

above 0.455 psi, well below those predicted by the full-order linearized Euler equations. This instability is di�cult to

capture using the time-marched aeroelastic transient approach used for the full-order equations due to the high frequency

content of the third mode’s response, which makes it di�cult to fit with a damped sinusoidal wave. At lower Mach

numbers, the first mode demonstrates the aeroelastic instability; it is thus assumed that at Mach 1.141, this mode will

also be responsible for flutter. The third mode’s transients are stabilized with the inclusion of viscosity, i.e. with the use

of the RANS equations [15]. Ultimately, it can be concluded that the use of the Euler equations is inappropriate for

determining the flutter boundary of the AGARD wing at Mach numbers above unity.

Table 2 shows the total time required to obtain the flutter boundary for all Mach numbers of interest, measured in

terms of the equivalent number of steady flow solves. The use of the ROM for flutter prediction is considerably faster

than solving the full-order linearized discrete Euler equations.
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Fig. 9 Flutter boundary for the AGARD 445.6 wing obtained experimentally by Yates [54], computationally
by Silva et al. [15], by the linearized discrete Euler equations, and by the current ROM approach.

Table 2 Total time required to obtain the flutter boundary for the AGARD wing for all Mach numbers,
measured in equivalent number of steady flow solves.

Linearized Euler ROM

Total Time [equivalent number of steady solves] 1101 182

VIII. Conclusions
This paper presents a methodology for flutter predictions using a POD-based model order reduction approach.

Snapshots for the ROMs are created with a simultaneous excitation method, using the Walsh functions as input functions.

The use of a stabilizing inner product which symmetrizes the flux Jacobian has been shown to be e�ective in ensuring

the stability of the ROMs.

The resulting aerodynamic ROMs are of su�ciently low order that the determination of a flutter boundary can be

cast as a tractable eigenvalue problem. The concepts presented herein have been shown to be e�ective for predicting

the flutter boundary of a two degree of freedom airfoil structure and the three-dimensional AGARD 445.6 wing for

most Mach numbers. Significant time reductions are obtained relative to the full-order flutter prediction methodology.

The e�ciency of the methodology presented could enable implementation of a flutter constraint in aerodynamic shape

optimization. Moreover, the discrepancy seen for Mach numbers above unity due to the inviscid flow approximation is

not important for application to subsonic commercial aircraft. However, if applications to supersonic aircraft are of

interest, the present methodology can be extended to the RANS equations.

Appendix: Proof of Theorem III.1
The proof for Theorem III.1 is presented, which has been modified from Kalashnikova et al. [35] to generalize the

boundary condition treatment and to include a source term contribution.
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Proof. The proof of the stability of the system follows. Note that the X’s denoting fluctuating quantities are omitted

from the continuous linearized Euler equations (20) for clarity. First, equation (20) is premultiplied by the determinant

of the metric Jacobian J0 and a matrix W which symmetrizes the flux Jacobian A(8) . Using the product rule to expand

the spatial derivative gives:

W mU
mC

+ J0WA(8)
mU
mb (8)

+ J0W
mA(8)
mb (8)

U = J0WS,

W mU
mC

+ B(8)
mU
mb (8)

+ CU = J0WS,
(45)

where B(8) = J0WA(8) , and C = J0W mA(8)
mb(8) . To perform an energy stability analysis on this form, the equation is

premultiplied with U) and integrate over the domain,

π
⌦
U)W mU

mC
3⌦ +

π
⌦
U)B(8)

mU
mb (8)

3⌦ +
π
⌦
U) CU3⌦ =

π
⌦
U) J0WS3⌦,

1
2
3

3C
| |U||2W +

π
⌦
U)B(8)

mU
mb (8)

3⌦ + 1
2

π
⌦
U) (C + C) )U3⌦ =

π
⌦
U) J0WS3⌦.

(46)

Note that the matrix B(8) is symmetric. This allows the use of integration by parts and the product rule to show that

π
⌦
U)B(8)

mU
mb (8)

3⌦ =
1
2

π
m⌦

U)B(8)=(8)U3� � 1
2

π
⌦
U) mB(8)

mb (8)
U3⌦. (47)

Inserting this into equation (46), and removing the common 1
2 factors gives,

3

3C
| |U||2W = �

π
m⌦

U)B(8)=(8)U3� +
π
⌦
U)

✓
mB(8)
mb (8)

� (C + C) )
◆
U3⌦ + 2

π
⌦
U) J0WS3⌦. (48)

Defining the new matrix D = mB(8)
mb(8) � (C + C) ), and inserting the known quantities at the boundaries U = G(C) gives,

3

3C
| |U||2W = �

π
m⌦

G)B(8)=(8)G3� +
π
⌦
U)DU3⌦ + 2

π
⌦
U) J0WS3⌦. (49)

Defining WD as the continuity constant of the linear operator D, and using the equivalence between the !2 (⌦) and W
norms gives, π

⌦
U)DU3⌦  WD ||U||2

!2 (⌦)  W̃D ||U||2W . (50)

Similarly, assuming the sesquilinear form of the source term to be appropriately bounded, with continuity constant WS

gives, π
⌦
U) J0WS3⌦  WS ||U||2

!2 (⌦)  W̃S ||U||2W . (51)
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Next, assuming the quantities at the boundary are bounded gives,

�
π
m⌦

G)B(8)=(8)G3�  : | |G| |2
!2 (m⌦) . (52)

Substituting (50), (51), and (52) into (49), and rearranging leads to

3

3C
| |U||2W � (W̃D + 2W̃S) | |U||2W  : | |G| |2

!2 (m⌦) . (53)

Denote W̃ = W̃D + 2W̃S , and premultiply this equation with the integration factor 4�W̃C to obtain

4�W̃C
3

3C
| |U||2W � 4�W̃C W̃ | |U||2W =

3

3C

⇣
4�W̃C | |U||2W

⌘
 4�W̃C : | |G| |2

!2 (m⌦) . (54)

Integrating (54) in time from 0 to ) gives

4�W̃) | |U(·,)) | |2W � | |U(·, 0) | |2W  :
π )

0
4�W̃C | |G| |2

!2 (m⌦)3C,

| |U(·,)) | |2W  :
π )

0
4W̃ () �C) | |G| |2

!2 (m⌦)3C + 4W̃) | |U(·, 0) | |2W .

(55)

Focusing on the first term of the right-hand side leads to,

:

π )

0
4W̃ () �C) | |G| |2

!2 (m⌦)3C  :4W̃)
π )

0
| |G| |2

!2 (m⌦)3C = :̃ | |G| |2G . (56)

Introducing (56) into (55) and substituting for the initial conditions gives,

| |U(·,)) | |2W  :̃ | |G| |2G + 4W̃) | |F | |2W . (57)

Assuming the state vector evolves in a finite number of spatial modes, U(G, C) = Õ
8 q8 (G)Ũ8 (C) gives,

| |U(·,)) | |2W = | |
’
8

q8Ũ8 ()) | |2W =
’
8

’
9

Ũ8 ())Ũ 9 ())
π
⌦
q8Wq 93⌦ = | |Ũ ()) | |2W . (58)

Introducing (58) into (57) gives

| |Ũ ()) | |2W  :̃ | |G| |2G + 4W̃) | |F | |2W . (59)

Assuming that both the boundary and initial conditions exist in the reduced basis, and observing that : = max( :̃ , 4W̃) )
completes the proof.
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