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Abstract A matrix-free monolithic homotopy continuation algorithm is developed
which allows for approximate numerical solutions to nonlinear systems of equa-
tions without the need to solve a linear system, thereby avoiding the formation
of any Jacobian or preconditioner matrices. The algorithm can converge from an
arbitrary starting guess, under suitable conditions, and can give a sufficiently accu-
rate approximation to the converged solution such that a rapid locally convergent
method such as Newton’s method will converge successfully. Several forms of the
algorithm are presented, as are augmentations to the algorithms which can lead to
improved efficiency or stability. The method is validated and the stability and ef-
ficiency are investigated numerically based on a computational aerodynamics flow
solver.

Keywords homotopy · continuation · monolithic · computational fluid dynamics ·
numerical algorithms · explicit method · explicit time marching

1 Introduction

Homotopy continuation [1] can be an efficient and robust globalization strategy
for implicit algorithms for solving nonlinear systems of equations. The study of
homotopy continuation as a competitive continuation algorithm for solving com-
putational aerodynamics problems was initiated by Hicken and Zingg [14] and
continued by Hicken et al. [12], Brown and Zingg [2], and Yu and Wang [25]. Sub-
sequently, Brown and Zingg [3] developed an efficient and robust monolithic homo-
topy continuation framework based on a dissipation operator and applied it to the

David A. Brown
University of Toronto Institute for Aerospace Studies
Toronto, Ontario, Canada, M3H 5T6
E-mail: utiasdavid.brown@mail.utoronto.ca

David W. Zingg
University of Toronto Institute for Aerospace Studies
Toronto, Ontario, Canada, M3H 5T6
E-mail: dwz@oddjob.utias.utoronto.ca



2 David A. Brown, David W. Zingg

computational solver for steady aerodynamics developed by Hicken and Zingg [13],
demonstrating superior performance than an implementation of the widely-used
implicit pseudo-transient method. The study encompassed several wing and airfoil
geometries for inviscid and viscous subsonic and transonic flows.

The monolithic homotopy continuation algorithm of Brown and Zingg [3] is
based on the dynamic inversion principle described by Getz and Marsden [10] and
requires the solution to a linear system of equations at each iteration. The linear
system can be solved inexactly using an iterative linear solver such as preconditio-
ned (F)GMRES [22,23]. What is presented in this paper is an algorithm similarly
based on the dynamic inversion principle but which does not require the formation
of any matrices during the continuation process. The method is designed to give an
approximate solution to a given nonlinear system of equations. The residual can
then be reduced to machine accuracy using, for example, a quasi-Newton method.

The aim of developing the matrix-free monolithic homotopy continuation al-
gorithms is not cost-competitiveness with the matrix-present algorithm. Further
work would need to be performed to achieve this. For one, the homotopy used in
the numerical investigations in this paper is designed to be efficient when used
with implicit solvers and may not be ideal for the matrix-free case. Additionally,
we do not employ any of the convergence acceleration techniques, such as multi-
grid [16], typically applied to explicit time-marching methods. The three reasons
for developing this algorithm are:

1. To reduce the labour intensity involved in investigating the feasibility of can-
didate homotopies for homotopy continuation;

2. To develop a better understanding and further characterize monolithic homo-
topy continuation algorithms;

3. To continue our study of the stability and accuracy of monolithic homotopy
continuation methods.

The numerical studies in this paper have targeted the third point. We have seen
through numerical analysis that the inexact update which results from solving the
linear system inexactly can result in instabilities in the matrix-present monoli-
thic algorithm [3]. However, since the algorithm normally converges in a relatively
small number of iterations, the instabilities do not often become problematic. The
effect can be studied by adjusting the linear solver tolerance; however, this af-
fects performance of the algorithm in other ways (it affects the accuracy with
which the homotopy “curve” is being traced) and so it is difficult to study the
instabilities directly. The matrix-free monolithic algorithm has been a vehicle for
the direct study of the stability of the monolithic homotopy algorithms in general
and may guide future research efforts in the development of this class of algorithm.

2 Homotopy Continuation

A homotopy is a continuous deformation between two points. The convention that
we adopt is the so-called convex homotopy [1], which is defined as the (presumably)
continuous solution q (λ) to

H (q,λ) = (1− λ)R (q) + λG (q) = 0, (1)
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H : RN × R→ R
N , G : RN → R

N , R : RN → R
N , λ ∈ R.

If R (q) = 0 and G (q) = 0 both have unique solutions and are continuous, then the
deformation, if it exists, is continuous and is therefore a homotopy. If additionally
∇qH (q,λ) is invertible for all λ ∈ {[0, 1]}, then the homotopy exists and is said
to be regular. The regularity condition also ensures that there are no bifurcation
points in the interval λ ∈ {[0, 1]} [1].

Interpreting the homotopy as a curve existing in R
N , a continuation method,

called convex homotopy continuation, can be developed from this homotopy by
discretizing in λ to form a sequence of nonlinear equations:

H (q,λk) = (1− λk)R (q) + λkG (q) = 0, (2)

k ∈ [0,m] , λk ∈ R, λ0 = 1, λm = 0, λk+1 < λk,

H : RN × R→ R
N , G : RN → R

N , R : RN → R
N .

Approximately solving H (q,λ) = 0 for sequentially increasing k can be used to
obtain an approximate solution to R (q). This is only useful if the solution to G (q)
is known or easily obtainable. Previously, Brown and Zingg [2] have presented a
second-difference numerical dissipation operator with far-field pseudo-boundary
conditions, based on the earlier work of Hicken and Zingg [12,14], suited to this
purpose. This operator is used exclusively for the studies presented in this paper.

3 Dynamic Inversion

A matrix-present version of the monolithic homotopy continuation algorithm class
is given by Brown and Zingg [3] and is based on the work of Getz and Marsden [9,
10] and Getz [8]. The method is based on the dynamic inversion principle. A formal
definition of the dynamic inverse is given by Getz and Marsden [10] and is adapted
to homotopy continuation by Brown and Zingg [3]. The definition is repeated here.

Definition 1 Let qs (λ) be a regular homotopy defined implicitly by H (q,λ) = 0,
H : R

N × R → R
N , (q,λ) &→ H (q,λ), q ≡ qs (λ) + ∆q. Let H∗ : R

N × R →
R
N , (w, λ) &→ H∗ (w,λ), w ≡ H (qs +∆q,λ) be continuous in λ and Lipschitz

continuous on the ball Br =
{

∆q ∈ R
N | ∥∆q∥ ≤ r

}

, r > 0. Then H∗ is called a

forward dynamic inverse of H on Br if there exists fixed β ∈ R, 0 < β < ∞, such
that

∆q
TH∗H (q,λ) ≥ β ∥∆q∥2 (3)

for all ∆q ∈ Br . Similarly, H∗ is called a reverse mode dynamic inverse of H on Br

if there exists fixed β ∈ R, 0 < β <∞, such that

∆qTH∗H (q,λ) ≤ −β ∥∆q∥2 (4)

for all ∆q ∈ Br.

Note that we have used the short-hand notation H∗H (q,λ) in place of the more
precise nut more cumbersome notation H∗ (H (q,λ) ,λ).
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Remark 1 If H∗ is a (forward or reverse mode) dynamic inverse of H with constant
β, then for any γ ∈ R, γ > 0, γH∗ is a (forward or reverse mode) dynamic inverse
of H with constant γβ.

Remark 2 If H∗ is a forward dynamic inverse of H, then −H∗ is a reverse mode
dynamic inverse of H.

If a dynamic inverse can be found then we have the following Theorem [3,8].

Theorem 1 Let qs (λ) be a regular homotopy defined implicitly by H (q,λ) = 0.
Assume that H∗ : R

N × R → R
N ; (w,λ) &→ H∗ (w, λ) is a reverse mode dyna-

mic inverse of H (q,λ) on Br =
{

∆q ∈ R
N | ∥∆q∥ ≤ r

}

, r > 0, 0 < β < ∞. Let

E : RN ×R→ R
N ; (q,λ) &→ E (q,λ) be locally Lipschitz in q and piecewise continuous

in λ. Assume that for some fixed ω ∈ (0,∞), E (q,λ) satisfies

−1
2
ω ∥∆q∥2 ≤ ∆q

T [E (qs +∆q,λ) + q̇s (λ)] ≤
1
2
ω ∥∆q∥2 (5)

for all ∆q ∈ Br. Let q′
s (λ) denote the solution to the system

−q̇ = γH∗H (q,λ) + E (q,λ) , (6)

where γ ∈ R, γ > 0 (see Remark 1). Consider now some λk ∈ R such that

qs (λk)− q
′
s (λk) ∈ Br. (7)

Then
∥

∥q
′
s (λ)− qs (λ)

∥

∥ ≤
∥

∥q
′
s (λk)− qs (λk)

∥

∥ e−(γβ−ω)|λk−λ| (8)

for all λ < λk.

The proof of Theorem 1 is given by Brown and Zingg [3]. As observed from
equation (8), convergence of the ODE (6) depends on the values of γ, which is
a free parameter, β, which depends on the dynamic inverse, and ω, which de-
pends on E . Brown and Zingg [3] showed, based on Getz and Marsden [9], that
H∗ = −∇qH (q,λ) is a reverse-mode dynamic inverse of H (q,λ). Clearly, E = −q̇
will give ω = 0, which is the optimal value of ω for convergence. However, calcu-
lating q̇ accurately requires the formation and inversion of a matrix [3]. In this
paper, matrix-free constructions of H∗ and E are investigated.

4 Matrix-Free Dynamic Inverse

Theorem 2 Let H : RN × R → R
N , (q,λ) &→ H (q,λ) be a regular homotopy which

is Lipschitz continuous for all 0 ≤ λ ≤ 1. Let q′
s = qs +∆q, ∆q ∈ Br ⊂ R

N , r > 0
be a point near the curve. Then if H∗ : RN × R → R

N is a linear operator, and
H∗∇qH

(

q′
s,λ
)

is positive-definite in Br, then H∗ is a dynamic inverse of H on Br.

Proof The residual H
(

q′
s,λ
)

can be represented locally by taking the Taylor ex-
pansion at qs:

H (qs +∆q,λ) = H (qs,λ) +∇qH (qs,λ)∆q+O
(

∥∆q∥2
)

. (9)
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Similarly, expanding ∇qH (q,λ) at qs gives

∇qH (qs,λ) = ∇qH (qs +∆q,λ) +O (∥∆q∥) . (10)

Using equation (10) and H (qs,λ) = 0, equation (9) becomes

H (qs +∆q,λ) = ∇qH (qs +∆q,λ)∆q+O
(

∥∆q∥2
)

. (11)

Assuming that H∗ is a linear operator, applying ∆qTH∗ to both sides of equa-
tion (11) gives

∆q
TH∗H (qs +∆q,λ) = ∆q

TH∗∇qH (qs +∆q,λ)∆q+O
(

∥∆q∥3
)

. (12)

If H∗∇qH
(

q′
s,λ
)

is positive-definite, then

∆q
TH∗∇qH

(

q
′
s,λ
)

∆q > 0, (13)

so there exists 0 < β < 1 such that

∆q
TH∗∇qH

(

q
′
s,λ
)

∆q ≥ 2β ∥∆q∥2 . (14)

For sufficiently small r > 0, there exists fixed 0 < β < 1 such that the O
(

∥∆q∥3
)

terms are upper-bounded by β ∥∆q∥2 for all ∆q ∈ Br. Thus, considering equati-
ons (12) and (14), as long as H∗∇qH (q,λ) is positive-definite, then for sufficiently
small r > 0 there exists fixed 0 < β < 1 such that

∆q
TH∗H (qs +∆q,λ) ≥ 2β ∥∆q∥2 − β ∥∆q∥2 = β ∥∆q∥2 (15)

for all ∆q ∈ Br.

By Theorem 2, [∇qH (q,λ)]T is clearly a dynamic inverse of H (q,λ), regardless
of whether or not ∇qH (q,λ) is positive-definite. This formulation would avoid
solving any linear systems of equations and could be useful for solving systems of
equations whose Jacobian is indefinite. However, the method would not be matrix-
free and is not the focus of this paper.

Consider as a candidate for H∗ a diagonal positive-definite matrix T . If the en-
tries of T are all identical and positive, then, assuming that ∇qH (q,λ) is positive-
definite, T∇qH (q,λ) is also positive-definite, so T is a dynamic inverse of H (q,λ)
if ∇qH (q,λ) is positive-definite.

Remark 3 By Remark 2, if T is a forward dynamic inverse of H then −T is a
reverse-mode dynamic inverse of H.

Ideally, we would like to construct E such that equation (5) is satisfied. This may
be accomplished by setting

E (qs,λ) = −q̇s. (16)

However, performing this calculation exactly requires the solution to a linear sy-
stem of equations [3] and so the resulting algorithm would not be matrix-free.
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Since the objective in this paper is to construct a matrix-free algorithm, an ap-
proximation to the tangent vector based on backwards-differencing can be used:

Ek =
1

λk − λk−1
(qk − qk−1) . (17)

Applying a diagonal matrix T as the dynamic inverse with Remark 3 and con-
structing E according to equation (17) gives the discrete update formula

qk+1 = qk + (λk+1 − λk)

[

γT H (qk,λk) +
1

λk − λk−1
(qk − qk−1)

]

. (18)

The use of backwards differencing to approximate the tangent vector violates
condition (5), the consequence being that stability of the algorithm is no longer
assured. We demonstrate in this paper, however, that even though the algorithm
can become unstable as a result of this approximation, it is possible to stabilize
the algorithm using an explicit filter.

5 Two-Stage Formulation

Since the predictor and corrector portion of the update are independent, they can
be separated. Unlike the matrix-present formulation, applying the predictor and
corrector components separately incurs minimal additional computational cost.
The benefit of this two-stage formulation is that information from the corrector
iteration can be used to improve on the quality of the predictor.

Separating the corrector and predictor portion of the update, the two-stage
formulation with Euler corrector and secant predictor is given by:

⎧

⎨

⎩

qk+ 1
2
= qk +

(

λk+ 1
2
− λk

)

γkTkH (qk,λk) ,

qk+1 = qk+ 1
2
+ λk+1−λk

λk−λk−1

(

qk+ 1
2
− qk− 1

2

)

.
(19)

This equation resembles a dual time marching method [21] where a single dual
time step iteration is applied as corrector (the upper equation) using explicit Euler

integration. By this analogy, it is a logical design choice to set γ = γref/
∣

∣

∣
λk+ 1

2
− λk

∣

∣

∣

where γref ∈ R is a constant user-defined parameter. This eliminates dependence
on the step size ∆λ from the corrector equation.

First-order backwards differencing is not the only estimate that can be used for
the predictor. It can be useful to consider performance when using other predictors
as well. A “rank 1” predictor refers to a secant predictor, a “rank 0” predictor
refers to the case of E = 0, and a “rank 1

2” predictor refers to the case where
the predictor alternates between the rank 0 and rank 1 predictor at successive
iterations. A “rank 2” predictor indicates the use of a second degree Lagrange
polynomial to extrapolate qk+1. Lagrange interpolation/extrapolation is covered
by many textbooks, one example of which is Lomax et al. [18]. The formula for
the point predicted using a second degree Lagrange polynomial extrapolation in
the context of homotopy continuation is given below:

qk+1 = qk+ 1
2
lk + qk− 1

2
lk−1 + qk− 3

2
lk−2, (20)
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lk =
(λk+1 − λk−2) (λk+1 − λk−1)

(λk − λk−2) (λk − λk−1)
,

lk−1 =
(λk+1 − λk−2) (λk+1 − λk)
(λk−1 − λk−2) (λk−1 − λk)

,

lk−2 =
(λk+1 − λk−1) (λk+1 − λk)
(λk−2 − λk−1) (λk−2 − λk)

,

lk, lk−1, lk−2 ∈ R.

Since the predictor portion of the update can use information from previous
iterative steps, a predictor-corrector algorithm is used to initialize the first interior
traversing point. A rank 0 predictor is used from the first point and the corrector
problem is solved at the second point by explicit time marching until a suitable
user-defined tolerance is reached.

As we will see in Section 7, the algorithm presented in this section is unstable
when using a rank 1

2 , 1, or 2 predictor. The expansive class of time-integrationmet-
hods known as general linear methods [15] can be used to construct stable and/or
accurate time-integration methods. In Section 6 we apply a general linear method
which uses multiple stages based on current information to a rank 0 predictor
algorithm. However, because the ODE (6) being integrated is redefined at each
iteration of the algorithm, it is not immediately clear how or if a multi-step ge-
neral linear method, using previous information, is justifiable, and it is not clear
how to apply such methods to a formulation which includes a non-zero predictor
component.

In lieu of attempting to apply a general linear method to our two-stage matrix-
free monolithic homotopy formula, as given by equation (18), we attempt to stabi-
lize the algorithm using an explicit filter to damp out high-frequency oscillations
appearing in the λ domain. The most successful explicit filter that we have applied
is a λ-direction explicit kernel smoother. The filter uses the Nadaraya-Watson [19,
24] kernel weighted average, applied at the k-th iteration. The general formula for
a smoothed point q̃ at a given parameter value λ∗ is

q̃
(

λ∗
)

=

∑k+1
i=k+1−p Kb (λ

∗,λi)q (λi)
∑k+1

i=k+1−p Kb (λ∗,λi)
, (21)

with Gaussian kernel function given by

Kb

(

λ∗,λi
)

= exp

(

− (λ∗ − λi)
2

2b2

)

, (22)

where Kb : R × R → R, b ∈ R, b > 0. The smoothing is applied to the updated
point qk+1 at λ∗ = λk+1 after the update (18) is applied making use of p previous
stages. The resulting update takes the form

qk+1 ←
qk+1 +

∑k
k−p+1 Kb (λk+1,λi)qi+ 1

2

1 +
∑k

k−p+1 Kb (λk+1,λi)
. (23)

We observe that the filter-augmented algorithm resembles a general linear met-
hod with coefficients depending on the parameter b, where b = |∆λk| bref , and
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Algorithm 1: The two-stage algorithm with explicit Gaussian kernel filter

Initialize: Set λ = 1 and solve G (q) = 0 if necessary. Take a step λ← λ+∆λ and
solve H (q, λ) = 0 at the updated value of λ.

Iterate: while λ > 0 do
Calculate H (q, λ)
Set the diagonal matrix T
Take the corrector portion of the update: q

k+ 1
2
← qk + γrefT H

Step-length adaptation can be applied at this stage if desired

Perform a predictor step: qk+1 ← qk+ 1
2
+

λk+1−λk

λk−λk−1

(

qk+ 1
2
− qk− 1

2

)

Smooth the update using the Gaussian kernel filter:

qk+1 ←
qk+1+

∑k
k−p+1 Kb(λk+1,λi)qi+ 1

2

1+
∑

k
k−p+1

Kb(λk+1,λi)
end

bref ∈ R, bref > 0 is a user input. Larger values of bref will result in more smoo-
thing, the effect of which is increased stability at the cost of reduced curve-tracing
accuracy. In this study, values in the range 0.5 ≤ bref ≤ 0.8 were found to be
suitable. For values of bref in this range, increasing the value of p beyond 2 has
negligible effect. A pseudo-code of the two-stage algorithm with explicit filter ba-
sed on equation (18) is shown in Algorithm 1.

6 Single-Stage Predictor-Free Formulation

The stability concern in equation (18) comes from the fact that E (q,λ) is approx-
imated using a backwards difference formula. This invalidates condition (5) which
is a condition for convergence of the continuous ODE (6) to the curve. No con-
tinuous analogue can be made for the backwards-difference formulation, making
analysis difficult. We show through numerical testing in Section 7 that the method
is unstable.

Let us turn our attention to the case where E = 0. By the Cauchy-Schwarz
inequality,

∆q
T [E (qs +∆q,λ) + q̇s (λ)] =

∣

∣

∣
∆q

T
q̇s

∣

∣

∣
≤ ∥∆q∥ ∥q̇s∥ . (24)

Setting ω = 2 ∥q̇s∥, we get

−1
2
ω ∥∆q∥ ≤ ∆q

T [E (qs +∆q,λ) + q̇s (λ)] ≤
1
2
ω ∥∆q∥ , (25)

which is insufficient to show unconditional convergence of the ODE (6) to the
curve. However, it is still possible to show conditional convergence for the discrete
case by directly analyzing the ODE

−q̇ = γH∗H (q,λ) . (26)

Let z = q′
s−qs, z ∈ R

N , where q′
s is the solution to the ODE (6) and qs is the

solution to the homotopy equation (2). Let V (z (λ)) = 1
2 ∥z (λ)∥

2, V : RN → R.
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Then we have:

ż = q̇
′
s − q̇s

= −γH∗H
(

q
′
s,λ
)

− q̇s

= −γH∗H (qs + z,λ)− q̇s. (27)

Differentiating V (z (λ)) with respect to −λ gives:

d
d (−λ)

V (z (λ)) = −zT ż

= z
T [γH∗ (H (qs + z, λ)) + q̇s

]

≤ −γβ ∥z∥2 + z
T
q̇s. (28)

Since the term zT q̇s is independent of γ and |∆λ|, it is possible to choose γ suffi-
ciently large such that d

d(−λ)V (z (λ)) ≤ 0 and hence the continuous ODE (26) is
convergent for sufficiently large γ.

Continuing the analysis, let ω = ∥q̇s∥. Then, applying the Cauchy-Schwarz
inequality again,

d
d (−λ)

V (z (λ)) ≤ −γβ ∥z∥2 + ω ∥z∥

= −2γβV (z (λ)) + ω
√

2V (z (λ)). (29)

Solving this ODE and using the Comparison Theorem [11] gives

V (z (λ)) ≤
[(

√

V (z (λk))−
ω√
2γβ

)

e−γβ(λk−λ)
]2

+

√
2ω
γβ

(

√

V (z (λk))−
ω√
2γβ

)

e−γβ(λk−λ) +

(

ω√
2γβ

)2

(30)

where λ < λk. The expression on the right-hand side of the equation can be
factored to give

V (z (λ)) ≤
[(

√

V (z (λk))−
ω√
2γβ

)

e−γβ(λk−λ) +
ω√
2γβ

]2

. (31)

In order for the ODE (26) to converge, V (z (λ)) must decrease to 0 as λk − λ
increases, which would indicate that the error vanishes in the limit. Since γ > 0
and β > 0 by assumption, the exponential term clearly satisfies this property.
However, the constant term ω/

[√
2γβ

]

prevents unconditional convergence. There
are only two ways in which V (z (λ)) can vanish in the limit of λ→ −∞:

1. ω = 0, in which case the curve is a stationary point and the class of algorithms
becomes equivalent to pseudo-transient continuation;

2. γ is taken arbitrarily large.
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Though γ cannot in practice be taken arbitrarily large, γ can indeed be chosen
sufficiently large such that any desired error threshold can be achieved. This is
guaranteed by the fact that the right-hand side expression of equation (31), as a
function of γ, is continuous for all γ > 0 in the interval {(0,∞)}.

If, given some q′
s,k, it is desired that the condition

V (z (λk+1)) ≤ eV (32)

should be met for some specified eV ∈ R, then this condition will be met for any
λk+1 satisfying

[(

√

V (z (λk))−
ω√
2γβ

)

e−γβ(λk−λk+1) +
ω√
2γβ

]2

≤ eV . (33)

Solving this equation for λk − λk+1 gives

λk − λk+1 ≤
1
βγ

ln

(

√

2V (z (λk))βγ − ω
√
2eV βγ − ω

)

, (34)

which is the maximum distance in λ which can be applied to meet condition (32).
Equation (34) indicates that existence of such a λk+1 is assured, but only for
sufficiently large γ. When integrating this ODE numerically, it may be necessary
to take a smaller integration step, depending on the numerical integration scheme,
to achieve the accuracy target.

The single-stage algorithm is given explicitly by the equation

q̇ = −γT H (q,λ) . (35)

We have now shown that this equation is stable for sufficiently large γ. Since |∆λ|
is taken inversely proportional to γ, the condition of requiring γ to be sufficiently
large is equivalent to requiring that |∆λ| be taken sufficiently small. It is possible
to numerically integrate equation (35) with either an Euler update or a more stable
update. In this study, a multi-stage scheme with four stages, which we abbreviate
as MS4, is considered as an alternative to the explicit Euler update. Multi-stage
methods are discussed in more detail by Pulliam and Zingg [21]. The update is
given here in the context of equation (35):

{

λn+m/q = λn + αm∆λ,

qn+m/q = qn − αmγrefT H
(

qn+(m−1)/q,λn+(m−1)/q

)

,
(36)

m = 1, . . . , q,

with q = 4 and

(α1,α2,α3,α4) =

(

1
4
,
1
3
,
1
2
, 1

)

.

A pseudo-code of the single-stage algorithm based on equation (35) is presented
as Algorithm 2.
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Algorithm 2: Single-stage algorithm

Initialize: Set λ = 1 and solve G (q) = 0 if necessary
Iterate: while λ > 0 do

Calculate H (q, λ)
Set the diagonal matrix T
Use equation (35) to update q applying explicit Euler or MS4 (36)
Step-length adaptation can be applied at this stage if desired

end

7 Performance Investigation for the Equations Governing Compressible

Inviscid Fluid Flow

Test cases were performed in order to investigate the functionality of the algo-
rithms. Since the algorithm variants are intended as continuation algorithms, the
objective is not to solve for the solution accurately but to obtain a sufficiently
accurate approximation so that a rapidly-convergent local root-finding method
such as Newton’s method can be applied successfully.

The algorithms are applied to the parallel flow solver for inviscid compressi-
ble aerodynamic flows developed by Hicken and Zingg [13]. The Euler equations
are discretized using the SBP-SAT [4,5,7,17] approach, which uses Summation-
By-Parts (SBP) operators to represent the discrete derivatives and Simultaneous
Approximation Terms (SATs) to enforce the boundary conditions and couple the
flow equations at block interfaces. Though the flow solver is intended as a Newton-
Krylov-Schur three-dimensional flow solver, and has been extended by Osusky
and Zingg [20] to also handle viscous flows, we do not employ any elements of the
Newton-Krylov-Schur methodology and have found two-dimensional inviscid flows
sufficient for the studies in this paper.

The homotopy studied is the convex homotopy given by equation (2), where the
second-difference numerical dissipation operator with far-field pseudo-boundary
conditions of Brown and Zingg [2] is used as the homotopy system. The specific
expression assigned to the diagonal elements of T for these studies is

T[i] =
J[i]

1 + J
1
D

[i]

, (37)

where J is the metric Jacobian resulting from the spatial coordinate transforma-
tion [13], and D is the number of spatial dimensions (equal to 2 for these studies).
Equation (37) is based on the local time step formula in [18], which is derived
based on the advection equation, and it should be possible to develop expressions
better suited to specific homotopies. However, optimizing performance is not cri-
tical for the studies that we are interested in and so we use equation (37) without
modification. Though the connection to local time stepping is loose, we have found
it to be far more effective in practice than using either J−1 on the diagonals or
the identity matrix as T .

The test case is two-dimensional flow over the NACA 0012 airfoil. The mesh
consists of 15, 390 nodes divided evenly into 18 blocks for parallelization on 18
processors. The flow is inviscid at a Mach number of 0.3 and an angle of attack of
1◦. To assess the curve-tracing accuracy, the two-dimensional lift coefficient Cl is
calculated along the trajectory mapped by the explicit method and compared to
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Fig. 1: Two-stage algorithm with Euler corrector, rank 0 predictor; The effect of
different |∆λ| is investigated

an accurate Cl curve generated using the predictor-corrector algorithm presented
by Brown and Zingg [2].

7.1 Step Size ∆λ

For the first study, the two-stage algorithm is employed with Euler corrector and
rank 0 predictor, equivalent to the single-stage algorithm with Euler parameter
integration. The accuracy of the curve-tracing algorithm is investigated by varying
the constant step size |∆λ| over the range 1×10−4 to 1×10−7 with γref = 1×10−5.
The data collected from the study is shown in Figure 1.

The data show the expected trend that the curve tracing accuracy is im-
proved as the step size |∆λ| is reduced. The curve is traced very inaccurately at
|∆λ| = 1× 10−4 and fairly accurately at 1× 10−7.

7.2 Parameter γref

For the second study, again the two-stage algorithm is employed with Euler cor-
rector and rank 0 predictor. The focus of this study is the effect of γref on accuracy
and stability. The reference step size γref was varied between 1×10−5 and 1×10−6

while |∆λ| was varied between 1 × 10−5 and 1 × 10−7. The data from the study
are plotted in Figure 2.

It was found that the algorithm becomes unstable for γref values around
γref = 3×10−5 but demonstrates no symptoms of instability at γref = 1×10−5. It
is apparent from the plots that the γref = 1× 10−6 cases produce nearly identical
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Fig. 2: Two-stage algorithm with Euler corrector, rank 0 predictor; the effect of
γref is investigated at several values of |∆λ|

curves to the γref = 1 × 10−5 case on the next larger |∆λ|. To clarify, taking ten
times more integration steps at one tenth the reference value of γref has minimal
impact on the curve-tracing accuracy. This is an important observation as it in-
dicates that γref should be chosen as large as possible so long as the algorithm
remains stable.

7.3 Predictor Variants for the Two-Stage Algorithm

The third study is an investigation of how the accuracy and stability are affected
by predictor choice. The two-stage algorithm was used with Euler corrector and
γref = 1× 10−5. The data from this study are plotted in Figure 3.

It is observed that the rank 1 predictor traces the curve much more accurately
but results in instability early on. The fact that instability occurs earlier when |∆λ|
is made smaller suggests that the instability is more closely related to the number
of iterations performed than the progress in λ. Using the rank 1

2 predictor allevia-
tes this instability but loses almost all of the additional accuracy incurred by the
rank 1 predictor. The rank 2 predictor destabilizes even sooner than the rank 1
predictor. The use of an explicit filter to stabilize this method is investigated in
the fifth study.

7.4 Multi-Stage Integration for the Single-Stage Algorithm

For the fourth study, the efficiency gained by augmenting the single-stage algo-
rithm with MS4 parameter integration is studied. The performance investigation
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Fig. 3: Two-stage algorithm with Euler corrector, γref = 1 × 10−5; the effect of
different rank predictors is investigated

encompasses several γref in the range of 1×10−4 to 1×10−5 for constant step size
|∆λ| ranging from 1 × 10−5 to 1 × 10−7. The data from this study are shown in
Figure 4.

It was found that the MS4 algorithm gives a nearly identical trajectory as the
explicit Euler corrector when γref = 1 × 10−5 was used for both algorithms. The
advantage of MS4 comes from being able to use a larger γref values. It was found
that γref could be increased by an order of magnitude before stability issues were
encountered. Since MS4 comes at four times the cost for a given |∆λ|, it is thus
about 2.5 times more efficient.

7.5 Filter-Stabilized Two-Stage Algorithm

The Gaussian kernel filter-stabilized method with p = 2, rank 1 predictor and
γref = 1 × 10−5 from equation (18) was compared to the explicit Euler method
applied to equation (35) with γref = 1 × 10−5 and MS4 applied to equation (35)
with γref = 1× 10−4. Several values of b were investigated in the range b = 0.5 to
b = 0.8. The data are shown in Figure 5.

The filter-stabilized algorithm, when it completes without becoming unsta-
ble, provides significant accuracy improvement over the explicit Euler method but
is less accurate than the MS4 method. However, the cost increase of the filter-
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Fig. 4: Single-stage algorithm; the effectiveness of MS4 parameter integration is
compared to Euler with γref = 1 × 10−5; note that the trajectory of the MS4
algorithm with γref = 1× 10−5 is visually indistinguishable from that of the Euler
algorithm
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Fig. 5: Two-stage algorithm with rank 1 predictor including Gaussian kernel fil-
tering; the filtered algorithm has γref = 1 × 10−5 and is compared to MS4 at
γref = 1× 10−4 and explicit Euler with rank 0 predictor at γref = 1× 10−5
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Fig. 6: Globalization error versus work units for the rank 0 method, the two-stage
algorithm with MS4, and the single-stage rank 1 filtered algorithm

stabilized algorithm is only about 17% whereas the cost increase of the MS4 al-
gorithm is approximately 300%. It also appears that the minimum value of bref
needed for stability increases as |∆λ| decreases; the bref = 0.5 case failed when
|∆λ| = 1×10−5, as did the bref = 0.5 and bref = 0.6 cases for both |∆λ| = 1×10−6

and |∆λ| = 1×10−7. The rank 2 predictor was also tested with the filter but either
became unstable or converged with the same accuracy as the rank 1 case for all
∥∆λ∥ that were tested.

7.6 Comparison of Algorithm Variants

Since the single-stage MS4 algorithm was less accurate but also less expensive
than the two-stage explicitly filtered rank 1 predictor algorithm, the relative ef-
fectiveness of the algorithms is evaluated by plotting the error in Cl at the end of
the continuation phase versus the CPU wall time, where the wall time is measu-
red from the beginning of iterations until the end of the continuation phase. The
values of bref used in the filtered algorithm were the smallest which were found to
lead to a stable algorithm, spcifically bref = 5, 6, 7, and 7 for ∥∆λ∥ = 10−4, 10−5,
10−6, and 10−7 respectively.

The data are plotted in Figure 6, measuring CPU time in TauBench “work
units.” We define one work unit (wu) as the total time divided by the time taken
to run the DLR TauBench [6] code using 2.5×105 nodes in serial with 10 iterative
steps. We have measured one work unit as 9.571s on the SciNet general purpose
cluster.

For this study, the two-stage rank 1 filtered algorithm and the single-stage
MS4 algorithm give comparable performance and either of these two algorithms
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% error in Cl 28% 20% 10%
Homotopy with filter, γref = 10−4 123 407 1437
Pseudo-time-marching, ∆tref = 10−4 286 407 580

Table 1: Time (wu) required to achieve a certain error threshold in Cl

is more efficient than the basic rank 0 predictor algorithm.

7.7 Preliminary Comparison to a Pseudo-Time-Marching Algorithm

For reference, we have also collected some timing data from a pseudo-time-marching
algorithm. The algorithm is based on MS4 and uses a spatially varying step-size
given by equation (37) times a reference time step ∆tref . Comparative timing data
is shown in Table 1 which compares timing results from the pseudo-time algorithm
with reference time step ∆tref = 10−4 to that of the filtered homotopy algorithm.

It can be seen from the table that in its current form the homotopy algorithm
can be faster at obtaining an approximate solution up to a certain error thres-
hold, in this case approximately 20% error in Cl. We mention that while this error
seems large, the Cl for this case is very low, and all approximations shown in the
table were sufficiently close to the solution for Newton’s method to converge when
applied.

8 Conclusions

A new matrix-free class of monolithic homotopy continuation algorithm was deve-
loped. Convergence and stability were studied analytically and numerically through
application to a computational aerodynamics flow solver. The so-called “two-
stage” formulation was found to be unstable but accurate. Stability could be
achieved at the cost of accuracy by augmenting the algorithm with an explicit
filter. The so-called “single-stage” formulation, which included no predictor com-
ponent, was found to be stable but required very small step size to trace the
curve accurately, making the algorithm computationally inefficient. Efficiency was
improved by incorporating a more efficient multi-stage integration method into
the discretization. The single-stage algorithm using MS4 and the two-stage filter-
augmented algorithm exhibited similar computational efficiency when performance
was compared for a dissipation-based homotopy on a two-dimensional inviscid sub-
sonic compressible discrete aerodynamic flow problem. Since there are an infinite
number of homotopies which can be constructed there is considerable potential to
improve on the results demonstrated in this paper.

Other convergence acceleration techniques, such as multi-grid, are expected
to be beneficial but were not investigated due to practical considerations. The
method can be of practical value to implementations where it is not desirable to
implement any matrix inversion, either to reduce implementation time or because
it may be difficult to do so for some homotopies. Of more immediate value, the
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analysis of the new algorithms has improved our understanding of monolithic ho-
motopy continuation algorithms in general and may guide future development of
these methods.
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