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This paper investigates the construction and optimization of multidimensional
summation-by-parts (SBP) operators. The optimization of free parameters in
the cubature rule, the interpolation/extrapolation operator R, and in the skew-
symmetric matrix S, is investigated and a methodology to optimize the oper-
ators is presented. It is demonstrated that increasing the degree of the cubature
rule from 2p — 1 to 2p, where p is the degree of the operator, is beneficial to
minimizing the solution error. The optimization method developed is applied
to construct novel multidimensional SBP operators on triangular and tetrahe-
dral elements. For example, new operators with collocated element and facet
cubature nodes are constructed with fewer element nodes and with lower so-
lution errors. For instance, the p = 2 operator has 10 fewer element nodes and
a solution error 44% to 68% lower for the same computational cost than the
previous best operator of the same degree and family.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Summation-by-parts (SBP) operators are finite-difference operators that are readily applicable to higher order
methods with provable stability for linear and nonlinear problems from their construction designed to mimic inte-
gration by parts [1, 2]. The original SBP operators, now commonly referred to as classical SBP operators, are built
on one-dimensional operators and are extended to higher dimensions using a tensor-product formulation. The clas-
sical SBP operators have an element node on each of the boundaries and also have boundary stencils and repeating
interior stencils. It is possible to construct classical SBP operators with norm matrices, H, that are either diagonal or
dense. The former has been utilized to a larger extent since it was proven early on to be stable on curvilinear grids
[3], while the latter has only recently been proven stable [4]. SBP operators were generalized by Del Rey Ferndndez
et al. [5] to allow for non-repeating interior stencils, non-uniform nodal distributions, and to remove the need to have
element nodes on the boundaries. The operators utilizing these additional properties are referred to as generalized
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SBP operators. These generalizations enable element-type operators and multidimensional operators [6, 7] applicable
to unstructured grids and arbitrary polyhedra.

The construction of SBP operators begins with quadrature and cubature rules of degree 2p — 1 or greater, where
p is the degree of the operator [8]. In one dimension, integrals are approximated by quadrature rules, which are well
known and extensively utilized [9]. Examples of quadrature rules include Legendre-Gauss (LG), which is the family of
quadrature rules of the highest degree for a given number of nodes, and Legendre-Gauss-Lobatto (LGL), which is the
family of quadrature rule of the highest degree for a given number of nodes with nodes on the boundaries. In multiple
dimensions, quadrature rules are commonly called cubature rules. Unlike in one dimension, where equations exist to
derive quadrature rules of arbitrary degree, the development of cubature rules often depends on numerical methods
[10]. This process involves solving for the weight and nodal locations using an objective function that includes the
difference between the exact integration of basis functions over the element and the numerical integration. A cubature
rule of a given degree is found once the objective function that contains all basis functions of a given degree evaluates
to zero. Several examples of cubature rules found in this way can be found in [11, 12, 13, 14].

The number of degrees of freedom (DOF) and equations that need to be considered when solving for cubature
rules can be reduced by having all of the nodes in symmetry groups. Liu and Vinokur [15] developed a set of equations
to derive cubature rules of degree one to five on simplices of one to three dimensions with all of the nodes in symmetry
groups. These equations indicate the minimum required number of DOF to have a cubature rule of a given degree.

Another aspect that needs to be considered when determining the nodal locations for the cubature rule is the inter-
polation/extrapolation of the solution from element to facet cubature nodes for imposition of boundary and interface
conditions. A valid cubature rule can be constructed if the nodes are evenly spaced in the domain. However, the
interpolant for a set of evenly spaced nodes is susceptible to the Runge phenomenon [9]. A measure of the quality of
the interpolation for a set of nodes is the Lebesgue constant, which provides an upper bound on the interpolation error
using the L., norm [16]. A lower Lebesgue constant is desirable and the set of nodes with the minimum Lebesgue
constant are referred to as the Lebesgue nodes.

In the construction of SBP and other high-order schemes there are often free parameters that remain after op-
erators are constructed with the required properties. Various objective functions have been used to optimize these
free parameters, including the Lebesgue constant, the spectral radius, and the bandwidth [17, 18]. Several studies in-
vestigating the optimization of SBP operators have considered only one-dimensional operators [17, 19] and recently,
multidimensional SBP elements have been considered as well [20, 21]. In the 2014 study by Mattsson et al., the nodal
locations of the one-dimensional element boundary nodes for SBP operators were optimized [19]. It was found that
changing the nodal locations from the starting equidistant element nodes to optimized nodal locations reduced the
solution error in some cases by an order of magnitude.

In addition to SBP operators, flux reconstruction operators have also been optimized. These schemes construct a
flux that is continuous across the element and its interfaces [22]. A 2014 study investigated the impact of different
cubature rules on triangular elements for a flux reconstruction scheme [18]. This study determined that the operators
that provide the lowest solution error for an isentropic vortex test case have cubature rules of higher degree as well
as lower Lebesgue constants than the other operators. This study demonstrated the importance for element nodal
locations to have both good integration and interpolation properties.

Witherden et al. later studied the importance of cubature rules for flux reconstruction schemes with tetrahedral
elements [23]. In this case, two different test cases were used, which both involved the Euler equations, and a set of
progressively finer meshes was used. Hundreds of cubature rules were derived and used with both test cases. It was
found that the cubature rules that provided the minimum solution error for one test case did not necessarily have the
minimum solution error for the other test case. However, it was found that the flux reconstruction operators with the
lowest solution error for one test case also always had a low solution error for the other test case.

The first objective of this paper is to determine how to optimize the free parameters in the SBP operators such that
solution error is minimized. The next objective is to identify the SBP operators that provide the lowest solution error
for a given computational cost for various SBP families, which are introduced in Section 3.3. The SBP operators are
constructed using different cubature rules, and all of their free parameters are optimized using the methodology that
is found to provide the optimal operators.
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2. Notation

The notation presented in this section is based on [6]. Capital letters with script type denote continuous functions.
For instance, U(x,y) € C*(Q) is an infinitely differentiable function of two variables in the domain Q. Meanwhile,
functions that are evaluated at a set of nodes are identified by lowercase bold fonts. For example, the evaluation of
U(x,y) on a set of nodes is given by u = [U(x1,y1), ..., U, y)1T.

Monomial basis functions are used in this paper to avoid cumbersome Taylor series and to simplify the proofs.
However, in the construction of SBP operators a basis function that does not become ill-conditioned as quickly as
monomials should be used, such as the Legendre polynomials. The cardinality of basis functions is indicated by
N;’ 4 Where p indicates the order of the operator and d is the number of dimensions. The cardinality for one to three
dimensions evaluates to NpO 1, N =p+1, N* =(p+ D(p+2)/2, and N" =(p+ D(p+2)p+3)6. To
facilitate the reference to monomial ba51s functions a s1ngle index notation is used
Pugm =g, k=10

+i+1, Vje{0,1,...,p}, i€{0,1,..., ]}
The k-th basis function and its & derivative evaluated at the element nodes is given by

P = [PeEnm)s. o Prnn)l”,

. _ | 9Pk 0P
pk f (‘fl’nl) é: (é:mnn)

The combination of these basis functions can be used to form a Vandermonde matrix of degree p along with a matrix
that holds the & derivative of the monomial basis functions

T

V=lp....pn 1.
V{: = [p,l’ e ,p;\/;d].

The physical element and its boundaries are denoted by Q and I, respectively, and the physical coordinates are
(x,y,z) € Q. Meanwhile, the computational element and its boundaries are denoted by Q and f, respectively, and
their coordinates are (£,7, ) € Q.

Element nodes refer to nodes at which the solution is evaluated, while facet nodes are those where the facet
integration is performed. DOF indicate all of the entries in a matrix that can be used to satisfy a set of equations,
while the free parameters are the entries that remain unspecified in the matrices after some of the DOF have been used
to satisfy a set of equations. The number of element nodes is indicated by n, while the number of facet nodes is given

by ny.

3. Multidimensional summation-by-parts operators

3.1. Definition of a summation-by-parts operator

A d-dimensional SBP operator is defined as [6]:

Definition 1. A d-dimensional summation-by-parts operator: The square matrix D¢ is a degree p approximation to
the first derivative % on the set of element nodes S ¢ for an open and bounded domain € € R? with a piecewise linear
boundary if ’

1' Dfpk=p],<? Vk€{1$27"',N;’d};
2. D = H’IQSe, where H is symmetric positive-definite; and
3. Q¢ =S¢+ 3E;, where ST = -S;, E] = E, and E; satisfies:

Pl Eepm = ngpkpmnfdf, Vkm e (1,2, N,

where n; is the & component of the unit outward pointing normal on I
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The matrix H is commonly referred to as the norm matrix since it approximates a cubature rule of degree
Pewb = 2p — 1 and it defines a finite-dimensional norm. When H is diagonal, which is the only case considered in
this paper, then all the entries must be positive in order to have a positive-definite matrix.

With this definition, SBP operators mimic integration by parts term by term:

oUu f oV 4 96‘ N
V—dO+ | U=—dO = O VUn:dl, 1)
ffz ¢ a 0 T ¢

vI'HD;u uTHD,v vIEsu

which can also be cast as the compatibility equations
VIHV, + V‘?HV =V EV. (2)

3.2. Construction of summation-by-parts operators

This section presents a methodology for the construction of one-dimensional or multidimensional SBP operators
with diagonal norm matrices. Section 5 will introduce a method to construct optimized SBP operators. The first
step in the construction of SBP operators with diagonal norm matrices is to use either an existing cubature rule or
to construct a cubature rule of degree pcy, > 2p — 1 with exclusively positive weights. In this paper, only cubature
rules with all of the element nodes within the element are considered. Section 3.4 will provide further details on the
construction of cubature rules, particularly when all of the nodes are in symmetry groups.

Once the nodal locations and the norm matrix H have been set by the cubature rule, the next step is to create the
interpolation/extrapolation operator R;, which is for facet j and is of degree r > p. The operator R; is constructed to
satisfy

RVa = Vi, ®)

where Vg and Vy are the Vandermonde matrices for the element and facet nodes of degree p and r, respectively. The
operator R; can be calculated as [7]

Rj = V¢,(Va)', 4)

where ()" is the Moore-Penrose pseudoinverse, which in this case requires the columns of V¢ to be linearly indepen-
dent such that Eq. (3) is satisfied. The matrix E; can be constructed as:

Ny

E.f = an,jR]T»BjRj, )

J=1

where N; is the number of facets, B; = diag(b(j), e b%)), which is a cubature rule of at least degree 2p, and ng ; is
the contribution of the normal vector in the & direction for facet j. It was shown in [7] that Eq. (5) satisfies the third
condition from Definition 1.

The construction of S; requires matrices W and W, to be of size n X (n — N;’ ;) in order to form the following
square matrices

V=[vw], (6)

Ve = [Ve Wel, (7

where the square brackets indicate concatenation of the matrices. The columns in the matrix W must also be selected
to be linearly independent to those of V such that V is invertible. When n = N;‘) » W and W, are empty. The DOF in

S; are used to satisfy the first condition from Definition 1, which is referred to as the accuracy conditions. To solve
for S¢, we begin with the accuracy conditions and use the second and third conditions from Definition 1 to find

1
Se = H(IVe W) (VW] ™' — zEg. (8)

It was shown in [7] that the DOF in W, can be used to ensure S; is skew-symmetric and that the accuracy conditions
are satisfied. Another method of solving for S; will be presented in Section 5.5, where the independent equations will
be identified such that S, can be solved with free parameters that can be used to optimize the SBP operator.
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Table 1: Primary symmetry groups for simplices.

Line Triangle  Tetrahedron
Sym group  Description DOF n 5 " ©oF n DOF
Scent Centroid 1 1 1 1 1 1 1
Sc-vert Vertex cent. 2 2 1 3 1.5 2
Sc-edge Edge cent. 3 6 2 12 4
Sc-mid-edge Mid-edge cent. 2 6 3
Sc-face Face cent. 4 24 6

3.3. Classtfication of multidimensional summation-by-parts operators

Multidimensional SBP operators can be classified into different sets of families. Three families have been previ-
ously introduced in [7, 24], which were designed as the Q, I" and diagonal-E families. A more general classification
for SBP families is introduced where the three families are R?, RY! and RO.

The Q family was originally defined in [7] to designate operators with strictly interior element nodes. This
means that none of the element nodes for the operator can be on the facets. For these operators, all of the element
nodes are used to interpolated/extrapolate the solution to the facet nodes. Hence, the interpolation/extrapolation of
the solution spans d dimensions. One limitation of this family is that none of the element nodes can be on the
facets. This limitation is removed for the newly defined SBP family R?. This family is defined as the operators
whose interpolation/extrapolation spans d dimensions. Therefore, all of the Q operators fall within the R? family. An
operator will be presented in Section 6.1.1 that is in the R? family but not in the Q family since it has element nodes
on the facets.

The I" family was originally defined for triangular elements to have p + 1 element nodes on each facet [7]. When
this requirement is generalized to arbitrary d, it requires N ® ,_; €lement nodes on each facet. This number of ele-
ment nodes on each facet reduces the dimensionality of the 1nterp0latlon/extrapolatlon by one, that is, the interpola-
tion/extrapolation spans d — 1 dimensions instead of the d for the R? family. This means that only the element nodes
on a facet are used to interpolate/extrapolate the solution to the facet nodes on that facet. The R*"! family is similar
to the I" family but instead of requiring exactly N;’ 41 €lement nodes on each facet, it requires at least N;, 41 €lement

nodes on each facet. Therefore, all of the I" operators will also be R~! operators.

The diagonal-E family was first presented in [24] and it requires each facet node to be collocated with an element
node. This collocation of the nodes leads to a diagonal matrix E,, hence the name of the family. However, an
SBP operator with a diagonal matrix E; that does not have collocated facet and element nodes would not be in the
diagonal-E family, which makes this family name somewhat misleading. For example, the one-dimensional p = 1
SBP operator that is constructed with the two-node LG quadrature rule has a diagonal E, matrix. Yet, its facet nodes
are not collocated with its element nodes, which makes it a part of the Q family and not the diagonal-E family. The
new family name that is introduced is R, which indicates that the interpolation/extrapolation spans zero dimensions.
This clearly indicates that each facet node is collocated with an element node. The diagonal-E and R° families are
equivalent since they both require the collocation of the facet and element nodes.

3.4. Construction of symmetric cubature rules

In this paper only SBP operators with symmetric cubature rules are used. The symmetry groups for simplices of
one to three dimensions are shown in Table 1. When constructing cubature rules, it is helpful to use symmetry groups
with a smaller n/DOF ratio since they provide more DOF to the cubature rule, which allows the operator to be further
optimized without adding additional nodes.

For the R?! and RY families, a certain number of element nodes need to be on the facets to reduce the dimen-
sionality of the interpolation/extrapolation. Table 2 provides the symmetry groups for the simplices of one to three
dimensions that have their nodes on the facets. The symmetry groups with element nodes on the facets are degenerate
symmetry groups from Table 1 with at least one fewer DOF since one DOF in the nodal locations is used to have
the element nodes on the facets. The different symmetry groups for triangles and tetrahedra are shown in Figs. 1 and
2, respectively. The symmetry groups with a ‘c’ in their subscript indicates the nodes are on a line or plane that is
centered between the vertices, edges or mid-edges. For example, the symmetry group s..ver; has its nodes on the lines
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Table 2: Symmetry groups for simplices that have the element nodes on the facets.

Groups on facets Nodal locations Primary group Facet equiv. group  line tri tet
Svert On the vertices Sc-vert Svert

Sedge On the edges Sc-edge Sc-vert(lin€) Seqge (tri)

Smid-edge On the mid'edges Sc-vert(tri) Sc-mid-edge(tet) Smid-edge

Sface-cent Cent. of the faces  Sc.vert Scent

Sc-face-vert Faces vertex cent.  Sc.edge Sc-vert

Sface On the faces Sc-face Sc-edge

~

(a) Vertex centered (b) Edge centered

Fig. 1. Nodal symmetry groups for triangles.

that originate from the vertices and continue to the opposing facet’s centroid. The symmetry group s,y meanwhile,
has its nodes at the vertices specifically. Therefore, s is a subset of the s.. ey Symmetry group.

Liu and Vinokur [15] investigated the construction of cubature rules algebraically for simplices with all of the
nodes in symmetry groups. Table 3 indicates the number of DOF that are required to have a cubature rule of degree
one to five for lines, triangles and tetrahedra. This information is used to create new cubature rules for SBP operators
in Sections 6 and 7.

4. Construction of operators with free parameters

In Section 3.2 a method to construct SBP operators was presented but it does not result in any free parameters. In
this section, a different method of constructing SBP operators is presented such that they have free parameters that
can be optimized for various objective functions, which will be introduced in Section 5.1. Section 4.1 will discuss
how directional operators and the interpolation/extrapolation operator R can be permuted such that they only need
to be constructed for one direction and facet, respectively. Next, Section 4.2 will demonstrate that R; needs to be
constructed with additional constraints than those presented in Section 3.2 in order for the SBP operators to have the
proper decomposition when the matrix E, is constructed by permuting E,. Finally, Section 4.3 will demonstrate how
the independent accuracy equations can be identified.

4.1. Permutation of the operators

Using the permutation matrices from Appendix A.1, the directional operators such as D; only need to be con-
structed in one direction and can then be permuted to the other directions. Similarly, only R; needs to be constructed
since the interpolation/extrapolation for the other facets can be found by permuting R;. The advantage of only con-
structing the directional operators for one direction and the interpolation/extrapolation operator for one facet is that
they only need to be optimized once. Furthermore, the permutation of the operators ensures that they have exactly the
same properties in each direction.

The reference triangular and tetrahedral elements are shown in Fig. 3. The vertices of the reference elements are
on the axes and a unit length away from the origin, e.g. vertex II is at coordinate (1,0) in Fig. 3a. The reference
triangle is a right triangle, while the reference tetrahedron is a trirectangular tetrahedron, i.e. a tetrahedron with three
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(a) Vertex centered (b) Mid-edge centered (c) Edge centered

Fig. 2. Nodal symmetry groups along one vertex, mid-edge, or edge for tetrahedra.

Table 3: Minimum required number of DOF to have a cubature rule of degree one to five on a simplex element with nodes in symmetry groups.

Required number of DOF
DPeub 1 2 3 4 5
Line 2 2 3 3
Triangle 1 2 3 4 5
Tetrahedron 1 2 3 5 6

right triangles for its facets. The notation that is used has the first vertex at the origin and then each one is in the same
order as the coordinates, i.e. &,  and then . The facets share the same number as the vertex they face.

Theorem 1. For a simplex reference element, such as the ones shown in Fig. 3, the directional operator D, can be
found by permuting the operator D¢ as follows:

Dy = PeyDePey. €)
where P_,, is the permutation matrix for the symmetry line or plane where & = 1.

Proof: The proof can be found in Appendix A.2.
Similarly, it can be shown that other directional operators can be permuted in the same way

Sy = PeySePey (10)
E) = PeyEePey (11)
QU = Pg_,]Q_fP.f_n. (12)

Permuting the directional operators to the { direction for a tetrahedral operator is analogous. Similarly, the interpola-
tion/extrapolation operators only need to be constructed for one facet and can then be permuted to each of the other
facets.
Theorem 2. A triangular SBP operator can have its operator Ry constructed by permuting Ry as follows:

R2 = RiPr1-2. (13)
where P,.1_o = P|P3 for the triangular reference element shown in Fig. 3a.

Proof: The proof is in Appendix A.3.



8 A. L. Marchildon, D. W. Zingg / Journal of Computational Physics (2020)

v

(a) Reference triangular element (b) Reference tetrahedral element
(facet i is bounded by vertices /1, 111
and V)

Fig. 3. Reference simplex elements where lowercase Roman numerals indicate facet numbers, uppercase Roman numerals indicate vertex
numbers, arrows on the triangular element indicate the direction in which the facets are evaluated, and the green numbers are for the
local edge numbers on the tetrahedral element.

4.2. Symmetry conditions on the construction of R

In previous multidimensional SBP papers, Eq. (4) was used to construct the interpolation/extrapolation operator
Ri, which is fine if E,, and E, are constructed using equations similar to Eq. (5). However, when the operators E,, and
E, are constructed by permuting E,, additional restrictions on the construction of R are required for E, and E; to
have the proper decomposition into Ry, as detailed in

Theorem 3. The operator Ry must be constructed to ensure that the contribution of element nodes to the interpola-
tionfextrapolation of the solution to the facet nodes is equal across symmetry lines and planes such that the directional
operators E,, and E; that are constructed from permuting E; have the proper decomposition into R;.

Proof: The proof is in Appendix B.

Fig. 4 shows the requirements of Theorem 3 for the contributions of the interpolation/extrapolation of the so-
Iution from element to facet nodes for a triangular element. Similarly, Fig. 5 shows the interpolation/extrapolation
contribution from element to facet nodes for a tetrahedral operator. The element nodes in Fig. 5 are on the facet
for clarity but the result would be the same if they were in the element instead. As the proof to Theorem 3 in
Appendix B demonstrates, the requirement for the contributions of the interpolation/extrapolation to be symmetric
across symmetry lines and planes does not require additional DOF in R, since there is also a reduction in the number
of independent equations that need to be considered due to the symmetry. Therefore, when all of the element and
facet nodes are in symmetry groups, there is always a solution with symmetric contributions across symmetry lines
in Ry as long as Eq. (4) returns a valid solution, which requires that the columns of V¢, be linearly independent. Ap-
pendix C provides a set of modified Moore-Penrose pseudoinverse equations that ensures the contributions from the
interpolation/extrapolation are symmetric about all symmetry lines and planes.

4.3. Skew-symmetric matrix Sg

To satisfy the accuracy equations from Definition 1, a total of n X N , equations must be satisfied. However,
since S; is skew-symmetric, there are only n(n — 1)/2 DOF available to satisfy all of these equations. Therefore, there
are often more equations than unknowns. This has previously been identified and it has been demonstrated that it is
possible to satisfy all of the equations [6]. However, this previous method does not allow free parameters to remain.
A new method is introduced that identifies the independent equations that need to be considered, which allows the
system of equations to be solved with free parameters that can be used for the optimization. The first step is to recast
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(a) Contributions to the facet s...; (b) Contributions to the facet s.., node
nodes

Fig. 4. Symmetric contributions to the interpolation/extrapolation operator R; from element nodes to facet nodes.

§

(a) Symmetry planes that intersect (b) Facet i with the symmetry planes
facet i and the facet symmetry groups

(c) Interpolation/extrapolation contri- (d) Interpolation/extrapolation contri-
butions from element nodes to one butions from element nodes to the Scep
Scvert facet node facet node

Fig. 5. Symmetric contributions to the interpolation/extrapolation operator R; from element nodes to facet nodes for a tetrahedral element.

the accuracy conditions into the form

1
SeV = HV; — SEV.
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Both sides of Eq. (14) are of size n X N;’ 4> Which is the number of equations that need to be satisfied for the accuracy
equations. To identify a smaller set of equations that are independent, Eq. (14) is left multiplied by V7 = [V W]:

VWISV = [VW]" (HV§ - %Egv) . (15)

Eq. (15) can be separated into two distinct equations
VIS,V = VT HV, - %VTEgv, (16)
W'S,V = WIHV, — %WTEfV. W)

Eqg. (2) can be substituted into Eq. (16) for VTEgV to obtain
1
VIS,V = E(VTva - V{HV). (18)

Both sides of Eq. (18) are matrices of size size N; 4 X N; 4 However, since both sides are skew-symmetric, there are
only N; d(N; 4 — /2 independent equations.
For Eq. (17) all of the (n — N;, 2D X N;, , €quations need to be considered. Therefore, there are a total of

N;d(N;d -1

N 2n—N* —-1)
* * d d
NS indeq = f + (l’l - Np,d)Np,d =2 .

2

independent equations from Eqs. (16) and (17). The number of free parameters that remain in S; after Eqs. (16) and
(17) are satisfied is

19)

(n=N,)n=N;,—1)

2 )
which is never negative since n > N;, 4 Eq. (20) indicates that there will only be free parameters in S; when
n> N;, 4+ 1. The free parameters in S; can be used to create a sparse matrix, or they can be used to optimize
the operator for various objective functions, which will be investigated in Section 5.5.

Eq. (20) is applicable to element based one-dimensional operators as well as multidimensional operators. How-
ever, this equation is not directly applicable to classical SBP operators since these have a specific structure with
boundary stencils of degree p and 2p — 1 for diagonal and dense norm operators, respectively, and repeating interior
stencils of degree 2p. To derive Eq. (20), it was only assumed that S is skew-symmetric, while classical SBP opera-
tors have the additional requirement that S; is in a particular form to have the needed boundary and repeating interior
stencils.

ns,rp = DOF — ns indeq = (20)

5. Optimization of free parameters in the operators

In Section 4 a methodology was developed to construct SBP operators with free parameters. This section investi-
gates the optimization of these free parameters. Section 5.1 introduces the objective functions that are used and then
Section 5.2 presents the test cases that are used to evaluate the properties of the different optimized operators. In the
construction of SBP operators there can be free parameters in the cubature rule, Ry, and Sg; these are investigated in
Sections 5.3, 5.4 and 5.5, respectively.

5.1. Objective functions

In the investigation of the optimization of the free parameters in the cubature rule, R; and in S, various objective
functions are used. To investigate the optimization of free parameters in the cubature rule, the error in the element
integration is used as an objective to be minimized

*
Nl’cub+ 1d

€elem-int — Z (1THI7/< - Ifz,k)za (21)

k:Npcubv a1



A. L. Marchildon, D. W. Zingg / Journal of Computational Physics (2020) 11

where /g is the exact integration of the k-th basis function over the reference element Q, and 1 is a vector of ones
of length n. When there are sufficient free parameters in the cubature rule, it is possible to increase the degree of
the cubature rule by reducing eejem.int to zero. This objective function, as well as the next one, are calculated using
monomial basis functions.

The H norm of the leading truncation error terms is another potentially important quantity to minimize:

"
Np+l,d

cacrvative = | Y, (Depi = PTHDeps - P}, (22)

kzN;_d+1

where the indices for the polynomials used in Eqgs. (21) and (22) were selected such that only polynomials one degree
higher than the maximum degree that can be exactly integrated or differentiated were used for the respective objective
functions.

The Frobenius norm of a matrix is a helpful objective function since it bounds the spectral radius of a matrix [25]:

P(A) < [IAllF, (23)

where p(A) is the spectral radius of the matrix A, and the Frobenius norm of a matrix with real entries is calculated as

my o mp

22,4 24)
i=1 j=1

where m; and m; indicate the size of the matrix A, and the trace operator, which takes the sum of diagonal entries
in a matrix, is given by Tr. When the problem is stability limited and an explicit time marching scheme is used, the
spectral radius is important since the size of the time step is limited by the spectral radius of the global SBP operator,
i.e. the operator that is created by combining the contributions from all of the individual elements and their SATs.
Therefore, global operators with smaller Frobenius norm have a smaller spectral radius and thus a larger time step
can be used, which reduces the computational cost. Using the Frobenius norm as an objective function instead of the
spectral radius directly is advantageous since the former is differentiable, which makes its minimization easier. It is
the spectral radius of the global operator that is important, but it is infeasible to optimize the free parameters using
the global operator since it becomes problem dependent and the global operator can also be very large. Instead, the
Frobenius norm of the matrix A is minimized, which is defined as

AllF = VTr(ATA) =

A =D, +R’BR. (25)

The matrix A combines the element derivative operator D, and also a contribution from the SATs. It will be shown
in Section 5.4 that the minimization of the Frobenius norm of A is preferable over simply the minimization of the
Frobenius norm of D;.

5.2. Test cases

Test cases are used to investigate the optimization of free parameters and to compare different optimized operators
with respect to the error in the solution. A linear convection test case is presented in Section 5.2.1 that is used
for the triangular and tetrahedral operators. Section 5.2.2 then presents two different test cases for the two- and
three-dimensional operators based on the Euler equations governing inviscid compressible fluid flow. For the two-
dimensional test cases, a mesh with quadrilaterals is first created and each element is then divided into two triangles.
For the three-dimensional test cases, a mesh with hexahedral elements is created and each element is then divided into
six tetrahedra. The meshes are then curved according to the mesh transformation presented in Section 5.2.3. Periodic
boundary conditions are used for all the test cases.

SBP operators provide provable stability for linear problems such as the linear convection equation. Provable
nonlinear stability with SBP operators is achieved by using entropy stable fluxes [28]. While entropy stable fluxes
were not used for the test cases considered in this paper, the numerical solutions were nonetheless found to be stable
for the nonlinear test case considered based on the Euler equations.

For all of the test cases upwind SATs and the fourth-order Runge-Kutta method are used. The time step is set to

At = M (26)

Vchar



12 A. L. Marchildon, D. W. Zingg / Journal of Computational Physics (2020)

where vehae 1S the characteristic speed, which is problem dependent, CFL is the Courant-Friedrichs-Lewy number,
and Ax is the length of one quadrilateral or hexahedral element before the mesh curvature. All of the quadrilateral or
hexahedral elements are squares and cubes, respectively, and thus the use of Ay or Az instead of Ax would provide
the same result. Unless indicated otherwise in the figure captions, the CFL number is set to 0.01 and 0.05 for the
two- and three-dimensional test cases, respectively. These small CFL numbers ensure that the error from the temporal
discretization is negligible relative to the error from the spatial discretization.

The solution error for the test cases is quantified using the broken-H norm, which is defined as

K
i = A > il 27)
i=1

where H, is the global SBP norm matrix and K is the number of elements in the mesh. It is important to note that
the matrix H for each element needs to be scaled by the appropriate mapping Jacobian since elements are typically of
different sizes.

The discrete energy of the system is given by uTng. As such, the change in the discrete energy of the system is
calculated as

T T
AE = uyHguo —u’ Heu. (28)
5.2.1. Linear convection test cases
The three-dimensional linear convection equation is

oU  Oa,U 0o, U  da,U
— + + +
ot ox ay 0z

=0, 29)

where a is the constant velocity in the direction indicated by the subscript. The domain Q c R is discretized into K
non-overlapping elements Q = UkK: S and Q;NQ; = 0,Yi # j. Each element is then mapped to computational space

-1 Oa;U  OayU  Oa;U
03 U | oaetl  da | dat_,

ot & an o, 30)

where 7 is the metric Jacobian of the transformation, az = J (&, + & + &), ay; = T (e + 1y + 1),
a =4 1+ gy + {2), &, represents g—i and similarly for the other terms of this form. The initial solution for the test
case is

2+ 2+2

Up = exp (— 752

where o = 0.1 and the Cartesian domain is [0, 1] X [0, 1] X [0, 1]. The test case is stopped once the wave returns to its
initial position. The velocities are set to a, = a, = a, = 0.5, which is the characteristic speed and it means the final
time is # = 2. The two-dimensional test case is recovered by dropping all the terms that contain z or {.

5.2.2. Euler equations test cases
The two-dimensional isentropic vortex test case from [26] is used with a Cartesian domain [0, 20] X [-5, 5] with
a uniform mesh (before it is curved) and an analytical solution given by

1
-1

1 (=1 (Be=r=)’ )

= , 32
P 16772 (32)
p=p, (33)

B!y~ o)

=] - - 34

u o (34)
,Bel"(’"’)2 (x—x0—1)
V= , (35)

2r
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Fig. 6. Curved two-dimensional mesh with 30 x 30 x 2 = 1800 triangular elements.

where xp =5,y = 0,8 =5and r(x,t) = \/ (x — x9 — )% + (y — ¥0)?. The characteristic speed that is used to calculate
the time step in Eq. (26) is the speed at which the vortex moves across the domain, which is unity. The vortex travels
from (xo, yo) = (5,0) to (15,0).

For the three-dimensional test case, source terms are selected such that a manufactured solution that is infinitely
differentiable and smooth satisfies the equations. The manufactured solution is

sin2a(x + y + z — 21))

=2
p=2+ 0 ) (36)
u=v=w=1, 37
e=25, (38)
where the characteristic speed is thus unity and the source terms are

5p = 7§r cos(2r(x + y + z — 21)), (39)

3y-5
Spu = Spv = Spw = _ﬂ()ll—()) cosa(x +y+z —21)), 40)

-1
5, = _%o) cos2n(x + y + z — 20)). (1)

5.2.3. Curvilinear mesh
The mesh is constructed on the Cartesian domain [0, 1] % [0, 1] X [0, 1] and then curved according to the following
transformation

X'« x+acos(m(x —0.5)) cos (n(y — 0.5)) cos (7(z — 0.5)),
Yy « y+acos(n(x —0.5))cos (n(y — 0.5)) cos (n(z — 0.5)),
7« z+acos(n(x — 0.5)) cos (n(y — 0.5)) cos (m(z — 0.5)),

where @ = 1/10 and a = 1/20 for the two- and three-dimensional problems, respectively. For the two-dimensional
problems, the terms with z are dropped. An example of a curved mesh is shown in Fig. 6.

The metric invariants for SBP operators are only exactly satisfied if the degree of the mapping is less than or equal
top+1and [gJ + 1 in two and three dimensions, respectively [28]. As such, the metric invariants for curvilinear
meshes with p = 1 operators are only satisfied exactly if the degree of the curvature is limited to two and one for two-
and three-dimensional operators, respectively. For three-dimensional operators, it is possible to solve an optimization
problem to have a polynomial mapping of degree p+ 1 [28]. However, this was not utilized. As such, the degree of the
polynomial mapping for p = 1 and p = 2 operators is limited to two and one for two- and three-dimensional operators,
respectively. This means that for triangular elements the location of the vertices and mid-edges are set according to the
mesh curvature and the rest of the element is curved according to a second-order polynomial mapping. For tetrahedral
operators, only the vertices are set according to the mesh curvature and the rest of the operator is found with a linear
mapping. The meshes are isoparametric, i.e. the degrees of the operators and of the polynomial mapping of the
meshes are equal, for the p = 2 operators in two dimensions and the p = 1 operators in three dimensions.
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5.3. Optimizing free parameters in the cubature rule

Simple operators with one and two free parameters in the cubature rule are investigated to determine which
objective function should be used to optimize these free parameters. Two- and three-dimensional examples will be
provided to demonstrate that the same conclusions can be drawn for triangular and tetrahedral operators.

5.3.1. Operator with p = 1 and n = Ny,

The simplest multidimensional operator that can be considered has p = 1 withn = Ny, = 3. The symmetry group
Sc-vert 18 used, which has two DOF in the cubature rule as indicated in Table 1. One DOF is used to enforce the
minimum cubature rule degree of 2p — 1 = 1 and the SBP operators on a triangle are

[ 1-¢ 1-t -
T] Tl =1 26+V3+1  26—V3+1
S = |2t 1-4 R, =| 3 61 61y

o) 3 3 | 1 =1 2n=V3+1  3n+V3+1 |’
I 241 3t 61 6t
L 73 3 i ! !
M1 1 1
6 (1) 0 yo 0

H = 0 6 0 . Df = —a ? 0 . (42)

1

_0 0 5 ~u 0

where ¢ is a free parameter for the nodal locations, and —1/2 < #; < 1 ensures that the element nodes are within
the reference element, as shown in Fig. 7a. Similarly, the s.yer Symmetry group can be used to construct a p = 1
tetrahedral operator with poyp =2p—-1=1,n=N ;‘!3 = 4 and one free parameter for the cubature rule, which must be
in the range —1/3 < #; < 1 to ensure all the nodes are within the element, as shown by Fig. 7c.

Figs. 7b and 7d show the solution errors, which are calculated using Eq. (27), and the values of various objective
functions as the free parameter #; is varied for the two- and three-dimensional operators, respectively. From Figs.
7b and 7d, it is evident that the solution error is minimized for both the triangular and tetrahedral operators when
€elem-int 1S Zero, which indicates a cubature rule of degree 2p = 2. There is a large gap in the solution when #; is
near zero, which is the value at which all of the element nodes are collocated at the centroid. The gap in the solution
error indicates that the operator is not stable for the size of the time step used. This coincides with high values of the
Frobenius norm of A, indicating that the Frobenius norm of A is a good indicator of the spectral radius of the global
operator matrix. The objective function egerivative 1S minimized as #; approaches zero, which is where the solution is
unstable. Therefore, the leading truncation error is a poor objective function to use to optimize the free parameters in
the cubature rule. This test was replicated with a coarser mesh and different CFL numbers and the results led to the

same observations.

5.3.2. Operator with p = 1 andn = Ny, + 1

To further demonstrate the benefit of using the free parameters in the cubature rule to increase the degree of the
cubature rule, consider an operator with one S._ye;; Symmetry group as well as the scep sSymmetry group. The operators
for the triangular element with pyp, =2p — 1 =1 are

1 1
lgtl létl e Y 204V3+1 _r o 24-V3+1 |
S~=1,3 3 R =|' 3 3 611 3 611 3
Q= |l 1oy | Do, msl o 20=VBel _on 20434l |’
EA N "l 3 T3 o1 3 61y 3 )
3 3
- -1 1
Bwo9 0 0 0 , ; 0
0 wi 0 0 _ 3wyt -1 ri—1 6w +r—1 3wi+r—1
— 2 — wit 3wyt 3wyt 3wt
H= 0 (2) LI Df - 3w1+;11—1 _6w71-1+r11—1 _ rll—l _3w1-1H11—1 ’ (43)
O 0 (2) wi wity 3W]1t1 3‘1'\11[1 3wt
2 0 “i " 0

where w is the weight on the s ye Symmetry group. The tetrahedral operators with the same symmetry group have a
similar format. There are two free parameters in the cubature rule and one in the interpolation/extrapolation operator
Ri. In order to investigate only the impact of the free parameters in the cubature rule, r| is set to zero, which means
that the element centroid does not contribute to the interpolation/extrapolation of the solution to the facet nodes. Fig.
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Fig. 7. Nodal locations and solution error for p = 1 triangular and tetrahedral element operators with one sc.yert Symmetry group for the
linear convection problem.

8 shows the solution error for the linear convection test case for the two- and three-dimensional operators with 50
different values of #; and w; for a total of 2500 test cases.

Once again, the solution error is minimized when the degree of the cubature rule is increased to 2p = 2, which is
the solution shown by the red line in Fig. 8. Since increasing the degree of the cubature rule significantly reduces the
solution error, all of the free parameters in the cubature rules of SBP operators are subsequently used to increase the
cubature rule’s degree. The white space in the plots indicates operators that are not stable for the size of the time step
used. These white areas coincide with the areas in Figs. 8b and 8d that have a higher value for the Frobenius norm of
A for the triangular and tetrahedral operators, respectively. This once again indicates that the Frobenius norm of A is
a good indicator of the spectral radius of the global operator matrix.

5.4. Optimizing free parameters in R,

To investigate the impact of the free parameter in R;, the operator given in Eq. (43) will be used but with
wy =1/ (12t%), which sets the degree of the cubature rule to 2p = 2. The two-dimensional results from the oper-
ators constructed with varying values of #; and r| are shown in Fig. 9. The dissipation of the energy, which is shown
in Fig. 9b, matches the contour for the solution error in Fig. 9a. The matrix R; is used to interpolate/extrapolate the
solution to the facet nodes, which is needed to apply the SATs. Since upwind SATs are used, which provide some dis-
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Fig. 8. Solution error for the linear convection problem and Frobenius norm of A for p = 1 triangular and tetrahedral element operators
with the Scent and one sc.yert Symmetry group with r; = 0 from Eq. (43); the red line indicates a cubature rule of degree two.

sipation, it is logical to see that the free parameters in R; have an impact on the amount of dissipation being produced.
The free parameters in R; can therefore be used to influence the amount of dissipation being produced.

Figs. 9c and 9d show the Frobenius norms of D, and A, respectively. Comparing both of these figures to Fig. 9a it
is clear that the contours of the Frobenius norm of A match more closely the area for which the operators are stable,
particularly on the left edge of the plots where the weight on the s..ye;x nodes is zero. The matrix A contains the term
H-! RTBR; to approximate the contributions of the SATs to the global SBP operator. For a diagonal norm matrix in
the form H = diag(hy, ha, ..., hy), its inverse is H- = diag(1/hy, 1/hy, ..., 1/h,). Consequently, when the weight on
one or several nodes are very small, entries in H™! become very large, thus increasing the Frobenius norm of A.

The red lines in the sub-figures of Fig. 9 show for the range of ¢; considered, r; = 1/4 when R; is calculated using
the Moore-Penrose pseudoinverse. The red line on Fig. 9d is near the minimum Frobenius norm of A for all values
of t;. Furthermore, the red line in Fig. 9a is also outside of the area where the solution error is maximized for most
values of #;. Therefore, the use of the Moore-Penrose pseudoinverse to calculate R; provides a good compromise
between minimizing the Frobenius norm of A, and thus the spectral radius, and returning an operator that minimizes
the solution error. The results for the tetrahedral operator with the Sceq and one s¢ye;y Symmetry group are analogous.

The results for the tetrahedral operator with the symmetry groups Sc.verr and Scene and with peyy = 2p = 2 are
shown in Fig. 10 and are nearly identical to the results in Fig. 9. The Moore-Penrose pseudoinverse solution once
again provides an operator with a nearly minimized Frobenius norm of A and a low solution error for most of the
range of #; considered. Therefore, in all future operators that are created, R, is calculated using the modified Moore-
Penrose pseudoinverse equations in Appendix C. These modified equations ensure that R; is created such that it has
symmetrical contributions across all symmetry lines and planes.
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Fig. 9. Results for the p = 1 triangular operator with four element nodes (the Scept and one Sc.yert Symmetry groups) and peyp, = 2, where
the red line indicates the value of | found using the Moore-Penrose pseudoinverse to calculate R;.

5.5. Optimizing free parameters in S
From Section 4.3 it was shown that an operator must have at least N; 4 2 element nodes for there to be any free

parameters in S¢. The simplest triangular operator that has at least one free parameter in S is the p = 1 R” operator
with the LG facet quadrature rule, which has six element nodes. There are no free parameters in either the cubature
rule or in R; since all of the element nodes are collocated with facet nodes. There are three free parameters in S, one
of which is set to zero in order to be able to vary the other two and plot the results on a two-dimensional surface plot.
The normalized solution error along with two objective functions are shown in Fig. 11. The solution error in Fig. 11a
indicates that the free parameters in S; have very little impact on the solution error, but they have a significant impact
on the CFL number that can be used. When the CFL number is increased from 0.01 in Fig. 11a to 0.1 in Fig. 11b,
the combination of values for s; and s, that give a stable operator for the time marching method used is significantly
reduced. The small area of stability when CFL = 0.1 matches with the minimum of the Frobenius norm of A in Fig.
11c. Additionally, the combination of s; and s, that minimizes egerivative, Which is shown in Fig. 11d, matches the area
where the Frobenius norm of A is also minimized. Therefore, if the free parameters in S, are used to minimize the
Frobenius norm of A, the operator will have a small spectral radius and a small truncation error as well.

There is a clear benefit to minimizing the Frobenius norm of A and this optimization problem is discussed in
Theorem 4, which is stated next.

Theorem 4. The minimization problem to satisfy the accuracy conditions Depy = p, Yk € {1,2,... ,N; 4 and to
minimize the Frobenius norm of A = D + H‘IRITBRl is a convex optimization problem.
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Fig. 10. Results for the p = 1 tetrahedral operator with five element nodes (Scent and one sc.yert Symmetry groups) and peyp = 2, where the
red line indicates the value of r| found using the Moore-Penrose pseudoinverse to calculate R;.

Proof: The linear constrains are presented in Appendix D. The matrix A is recast in the form

A =D +H'RIBR,
= H_ng + H_IR{BRl

1
=H"|S: + §E§+RITBR1 , (44)
N e’
G

where G is a symmetric matrix. To help identify the components of the matrix A, consider an operator with three
element nodes

A=H'S+G)
1/ 0 0 0 S12 0 S13| &1 812 &13
=10 1/ O =st2 0 s3|+|g12 &2 &3
0 0  1/h3|\|-s13 —-s23 O 813 823 &33
g1/l 812+ s12)/ha (g13+ 813)/h3
=|(g12 = s12)/I g22/hy (823 + $23)/h3|. (45)
(813 —s13)/l (823 — 523)h2 g3/
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Fig. 11. Normalized solution error for the linear convection problem and objective functions for the p = 1 triangular diagonal-E operator
with peyp = 1 and n = 6.

For a matrix A of arbitrary size its entries are

(8ij + sij)/hi i<
Aij=18i/hi i=j (46)
(8ij—sip)lhi P>
Eq. (24) indicates that the Frobenius norm of a matrix is simply the square of all of its entries. Therefore, the objective
function J for the minimization of the Frobenius norm of A is simply

n-1 n 2 n=1 n 2 n 2
_ 8ijt Sij 8i.j ~ Sij 8ii
e R )
i=1 j=i+l j=1i=j+1 i=1
To find the gradient of J, the single index notation k = (j —2)(j — 1)/2 +i,i < j is used. The case when i = j does
not need to be considered since these terms do not appear in the gradient of J. The gradient of J with respect to the
entries in S is

aJ 8kt Sk 8k — Sk
— =2 ===, 48
6sk ( /’li hj ) ( )
and the Hessian of J is
07 1 1
— =2—+ —|. 49
6S]% (hl h]) ( )
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Since all the diagonal entries in H are positive, all of the entries in the Hessian of J are also positive and thus, the
optimization problem is convex with linear constraints. This completes the proof. The same analysis can also be used
to show that the minimization of the Frobenius norm of the matrix D; is also convex.

5.6. Summary

Based on the results of this section, the following methodology can be followed to construct optimized SBP
operators:

1. Construct a cubature rule of degree 2p — 1 and with positive weights
e Use any free parameters to get pey, = 2p
2. Use the equations in Appendix C to construct R; and the equations in Appendix A.3 to permute R; to all of
the other facets
Construct E; using Eq. (5)
Construct S; with the convex optimization method from Section 5.5 to minimize the Frobenius norm of A
Use the properties from Definition 1 to construct Q; and D,
Permute all of the directional operators using Eq. (9)

oLk W

There may be free parameters in the cubature rule remaining even after the degree of the cubature rule is increased
from 2p — 1 to 2p. In the optimization of triangular and tetrahedral operators in Sections 6 and 7, respectively, any
remaining free parameters are used to obtain cubature rules of degree 2p + 1. Therefore, there are no free parameters
in the cubature rule after step 1 in the optimization procedure given above.

In the paper by Friedrich et al. [29], degree preserving SBP operators on non-conforming meshes were investi-
gated. It was shown that degree preserving operators could be constructed when the degree of the cubature rule is 2p
or greater. Therefore, increasing the degree of the cubature rule from 2p — 1 to 2p or higher is beneficial to reduce the
solution error and also to have degree preserving SBP operators on non-conforming meshes.

6. Optimized operators on triangular elements

Section 5 determined how the free parameters in the cubature rule, R; and S, should be used to optimize the SBP
operators. However, the cost benefit trade-off between the additional computational cost of having extra element nodes
versus the further optimization that can be done with the extra DOF was not considered. This section investigates this
cost benefit trade-off by comparing operators with different cubature rules with pey, = 2p — 1 t0 peup, = 2p + 1 for the
SBP RY, R*"! and R® families. All of the free parameters in the cubature rule, R; and S; are optimized according to
the results from Section 5. To compare the computational cost of the different operators, the CPU time is calculated
by multiplying the number of processors by the run time 2. Each operator is run on the same set of meshes that get
progressively finer. Some operators that are derived have the same cubature rule as previously derived SBP operators,
and when n = N[*,’ - the SBP operators are identical since there are no free parameters.

To compare the solution error of different operators it is important that they have the same computational cost.
Since operators with different number of element nodes are compared, the solution error needs to be interpolated to a
common computational cost in order to allow the results to be compared. The common computational cost is selected
as the least expensive run on the finest mesh. The difference in the solution error between an operator and a reference
operator is calculated as

eoai = 2% 5 100, (50)
€s ref
where e s is the solution error of the reference operator at the common computational cost and ey is the solution
error of the operator being compared also at the common computational cost. To also compare the number of element
nodes for an operator to a reference operator we use

N — Nyef
An% = ———

Nref

% 100, (51)

2The code that is utilized is optimized for flexibility rather than speed. Only the relative CPU time of the different operators is of interest.
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(a) Cubature rule #1 (b) Cubature rule #2

Fig. 12. Two cubature rules with » = 3 and pcyp = 2.
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Fig. 13. Solution error and computational cost for p = 1 R? operators on triangular elements.

where n.s is the number of element nodes for the reference operator. The reference operator is selected as the
operator with a previously used cubature rule with the fewest element nodes. The reference operator used for each
case is clearly identified.

6.1. R? operators

The operators in the R? family do not have any restrictions in terms of nodal locations, but they require n > N; y
and peyp = 2p — 1.

6.1.1. p =1 R? operators

Two operators in the R? family with n = Ni, = 3 and pap = 2p = 2 are derived and shown in Fig. 12.
The operator in Fig. 12b has the same cubature rule and is identical to an operator previously derived in [7]. Table 3
indicates that to have an R? operator with p.,, = 2p+1 = 3 three DOF are required. The combination of the symmetry
groups Sc.vert and Scene provides three DOF but the cubature rule that is created contains a negative weight, which is
not permitted for an SBP operator with a diagonal norm matrix. It is possible to create an operator with p,, = 3 and
positive weights with two Sc_yer Symmetry groups but this combination of symmetry groups has a sufficient number
of element nodes for a p = 2 operator, which is considered in the next subsection. The results for both test cases for
the p = 1 R? operators are shown in Fig. 13. Since both operators have the same number of element nodes, they have
the same computational cost for each mesh. However, the operator in Fig. 12b has a slightly lower solution error for
both test cases. Hence, the operator in Fig. 12b is the slightly more efficient p = 1 R¢ operator.
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Fig. 14. Solution error and computational cost for p = 2 R? operators on triangular elements.

Table 4: Properties of symmetry groups on a triangle with element nodes on the facets.

Element symmetry groups n ny n/ny DOF n/DOF
Svert 3 2 3/2 1 3
Sedge 6 2 3 2 3
Smid-edge 3 1 3 1 3

6.1.2. p =2 R? operators

A p = 2 operator with n = N, = 6 and peyp, = 2p = 4 is derived along with another operator with n = 7 and
Peub = 2p+ 1 = 5 in the R family. Fig. 14 shows the results for both test cases for these operators. For both test cases
and on all meshes, the operator with n = 6 has a lower computational cost, since it has fewer element nodes, and it
also has a lower solution error. Therefore, the operator with n = 6, which has the same cubature rule and is identical
to an operator previously derived in [7], is the preferred p = 2 R? operator.

6.2. R operators

In order for the interpolation/extrapolation of operators in the two-dimensional R*~! family to span only d — 1
dimensions, they require at least N/ , | = p + 1 element nodes on each of the facets. In order to minimize the number
of element nodes in the operator it is helpful for the element nodes that are on the facets to be on several facets.
For example, element nodes for triangular operators that are at the vertices are on two facets. Therefore, if each
facet requires two nodes, only three element nodes are required by placing them at the vertices. Alternatively, if the
element nodes are not placed at the vertices, a total of six element nodes are required instead. Another important
consideration when selecting which symmetry groups to have on the facets is the ratio of element nodes to DOF. As
Table 4 indicates, the ratio n/DOF is the same for each of the symmetry groups on a triangle. However, as will be
shown in Section 7.2, this is not the case for three-dimensional operators.

6.2.1. p=1R*" operators

A p = 1 R%! operator requires at least p + 1 = 2 element nodes on each of the facets. Table 4 indicates that the
Symmetry groups Syer; and Segge both have two element nodes on each of the facets. Fig. 15 shows the numerical errors
for the constructed p = 1 R%"! operators. The operator with n = 3 has the same cubature rule and is identical to a
previously derived operator in [6]. The operators with p.,, > 2p — 1 have a solution error that is significantly lower
than the operator with p.,, = 2p — 1 = 1. The exception to this is the operator with n = 6, which performed well for
the linear convection test case but poorly for the Euler test case. The operator with n = 4, which is the most efficient
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with facet nodes.

Table 5: Comparison of LG and LGL facet quadrature rules for triangular elements where ngym = [Bsqps scverts Misyen I» @nd 7 is the number of
element nodes for the triangular element.

p Quad rule  Facet quad degree Tsym ng n DOF »n/DOF

even LG 2p+1 [1L2,0] p+1 3(p+1) 1%2 %
LGL 2p+1 0,511 p+2 3p+1) 52 2

odd LG 2p+1 [1,25,01 p+1 3(p+1) 22 6
LGL 2p+1 (1,251 p+2 3p+1) 22 6

for both test cases, has a reduction in the solution error of e gir = —96% and e gig = —94% for the linear convection
and isentropic vortex test cases, respectively, compared to the previously published n = 3 operator.

6.2.2. p=2R¥! operators

The p = 2 R?"! operators must have at least p + 1 = 3 element nodes on each of the facets. Since this is an odd
number of nodes, the symmetry group s. .4 must be used along with either sye; Or Seqge. Fig. 16 shows the numerical
error for the operators constructed with both of these symmetry groups that have facet nodes. Unlike the previous
operators considered, the operator with the lowest solution error is not the same for both test cases. The operator
with n = 9 and p.,, = 2p = 4 has the lowest solution error for the linear convection test case, while the operator
with n = 12 and p.y, = 2p + 1 = 5 has the lowest solution error for the isentropic vortex test case. When both test
cases are considered, the operator with n = 12 is preferable since it has the second lowest solution error for the linear
convection test case and the lowest solution error for the isentropic vortex test case. The reduction in the solution
error for the operator with n = 12 compared to the n = 7 operator is esgir = —52% and e gig = —39% for the linear
convection and isentropic vortex test cases, respectively.

6.3. R? operators

The R operators are assembled by first constructing a facet cubature rule with pe, > 2p. For triangular operators,
the facets are simply lines and the LG and LGL quadrature rules are used. Table 5 indicates that while the LG
quadrature rule has one fewer node per facet than the LGL facet quadrature rule, they both contribute the same
number of element nodes since the LGL quadrature rule has element nodes on the vertices, which are thus on two
facets. Both quadrature rules also have the same ratio n/DOF.
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Fig. 16. Solution error and computational cost for p = 2 R?~! operators on triangular elements, where SGFN stands for symmetry groups
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Fig. 17. Solution error and computational cost for p = 1 R® operators on triangular elements, where FCR stands for facet cubature rule.

6.3.1. p =1RO operators

The numerical results for the p = 1 R family are shown in Fig. 17. The operator with n = 6 and the LG facet
quadrature rule and the operator with n = 7 and the LGL facet quadrature have the same cubature rules as operators
previously derived in [24] and [30], respectively. The operator with the lowest solution error for both test cases is the
one with n = 7 and the LGL facet quadrature rule. This operator has e gi = —97% and e, gir = —93% for the linear
convection and isentropic vortex test cases, respectively, compared to the n = 6 LG facet quadrature rule operator.

6.3.2. p =2 R operators

Fig. 18 shows the solution error for the constructed p = 2 R? operators. The operator with n = 10 and the
LG facet quadrature rule as well as the one with » = 12 and the LGL facet quadrature rule have the same cubature
rule as previously constructed operators in [24] and [30], respectively. The operator with n = 12 and the LGL facet
quadrature rule has the lowest solution error for both test cases and has esgir = —79% and esgir = —80% for the
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Fig. 18. Solution error and computational cost for p = 2 R? operators on triangular elements, where FCR stands for facet cubature rule.

Table 6: Summary of results for the triangular operators, where LCE stand for linear convection equation, FCR is facet cubature rule, and where
novel cub. refers to novel cubature rules used for SBP operators.

Family p ID Deub € diff Diff. inn  Novel cub.

LCE Eulereq. An An%

R4 1 n=3 2p=2 - - - - X [7]

n==6 2p=4 - - - - X [7]

Ré-1 1 n=3 2p-1=1 - - - - X [6]
n=4 2p =2 -96% -94% 1 33%

2 n=17 2p—1=3 - - - - X [6]
n=9 2p =4 -66% 29% 2 29%
n=12 2p+1=5 -52% -39% 5 7%

RO 1 n=6FCR:LG 2p—1=1 - - - - X [24]

n =7, FCR: LGL 2p+1=3 97% -93% 1 17% X [30]

2 n=10FCR: LG 2p—1=3 - - - - X [24]
n=10FCR:LGL 2p-1=3 -37% -24% 0 0%

n=12,FCR:LGL 2p=4 -79% -80% 2 20% X [30]

linear convection and isentropic vortex test cases, respectively, compared to the n = 10 operator with the LG facet
quadrature rule.

6.3.3. Summary of results

Table 6 provides a summary of the derived triangular operators with an indication of the reduction in solution error
as well as the number of element nodes compared to reference operators. In the comparison of the two-dimensional
operators, there is a clear benefit to increasing the degree of the cubature rule beyond 2p — 1. The operators with
Peub = 2p are generally the most efficient but there are a few exceptions. The operator that was found to be the most
efficient for the p = 2 R?"! family has p.s, = 2p + 1. However, no operator with the same facet symmetry groups
with peu, = 2p was derived. Similarly, the most efficient p = 1 R? operator has p., = 2p + 1 = 3, but there is no
operator that was derived with p.,, = 2p with the same facet quadrature rule. Thus, it appears that there is only a
benefit of increasing the degree of the cubature rule to 2p + 1 when an operator with p.;, = 2p cannot be derived
with the same facet symmetry groups. In all but one case, the operator with the lowest solution error for a given
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Fig. 19. Solution error and computational cost for p = 1 R operators on tetrahedral elements.

computational cost for one test case was also the best operator for the other test case as well. This is a good indication
that the operators that are found to be efficient for these two test cases are efficient for a large variety of test cases with
smooth solutions.

7. Optimized operators on tetrahedral elements

This section investigates different tetrahedral operators and it is formatted in the same way as Section 6. Once
again, the free parameters in the operators are optimized according to the results from Section 5.

7.1. R operators
The R? operators require n > N,3 = (p + 1)(p + 2)(p + 3)/6 element nodes and pcy, > 2p — 1.

7.1.1. p =1R? operators

The p = 1 R? operators require at leastn = N ;‘,3 =4 and pcyp > 2p—1 = 1. Operators with the s¢_yert and Sc_mid-edge
symmetry groups are both used to construct operators with peyp, = 2p. When the s.ep; element node is used along with
the previous two symmetry groups, the cubature rules that are found have negative weights; thus they cannot be used.
The solution errors for both three-dimensional test cases for these operators are shown in Fig. 19. The operator with
n = 4, which is identical to the operator previously derived in [30], has the lowest solution error in all cases, since it
has fewer element nodes, and it also has a lower solution error as well.

7.1.2. p =2 R4 operators

Operators with peyy, = 2p—1,2p and 2p + 1 are generated and their results are shown in Fig. 20. The operator with
n = 10 is identical to the one derived in [30] and it has the lowest solution error for both test cases. This is the first
comparison of the operators where an operator with p.,, = 2p — 1 has the lowest solution error. This deviation from
the trend is likely due to the free parameters present in R;. The R operators never have any free parameters in R; and
all of the generated R?~! operators have exactly N;, 41 €lement nodes on each of the facets, and thus they do not have

any free parameters in R, either. Meanwhile, the R? operators have free parameters in R; only when n > N; 4 Inall

the previous cases for the RY operators, in two and three dimensions, the most efficient operators have p.y, = 2p and
n =N ,, which means they do not have any free parameters in R;. In this case however, the operator with pew, = 2p
has n > N;’ e and thus, has free parameters in R;. As detailed in Section 5.4, the method used to optimize the free
parameters in Ry returns a solution with a low Frobenius norm of A but not necessarily the operator that provides the
solution with the lowest error.
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Fig. 20. Solution error and computational cost for p = 2 R? operators on tetrahedral elements.

Table 7: Properties of symmetry groups on a tetrahedron with element nodes on the facets.

Element symmetry groups n  ny n/ny DOF n/DOF

Svert 4 3 4/ 3 1 4
Sedge 12 6 2 2 6
Smid-edge 6 3 2 1 6
Sface-cent 4 1 4 1 4
Sc-face-vert 12 3 4 2 6
Sface 24 6 4 3 8

7.2. R operators

As indicated in Section 6.2, the ratios n/ny and n/DOF are both important for the R?! operators. Table 7 shows
these two ratios for all of the symmetry groups that have element nodes on the facets. The symmetry group sye; has
the best properties for both of these important ratios.

7.2.1. p =1R%! operators

The p = 1 R%! operators require at least N 1, = 3 element nodes on each of the facets, which can be provided by
the symmetry group sye. Fig. 21 shows the solution error for the generated operators on both test cases. The operator
with n = 5 and p.y, = 2p = 2 has the lowest solution error in both cases and e; gir = —94% and e, gir = —96% for the
linear and Euler test cases, respectively, relative to the n = 4 operator.

7.2.2. p =2 R4 operators

The p = 2 R%! operators require at least N;, = 6 element nodes on each of the facets. For all of the operators
the symmetry group sy is used since it has the most desirable properties, as indicated by Table 7. For the next three
nodes that are required, either the symmetry group Sc.face-vert OF Smid-cdge €an be used. The former symmetry group has
a lower n/n; ratio while the latter has a lower n/DOF ratio.

Operators are constructed with the combination of both of these symmetry groups, and their results are shown in
Fig. 22. The operator with n = 11 has the same cubature rule as a previously published operator in [6]. The operator
with n = 20, which has the lowest solution error for both test cases, has esgif = —73% and e, gir = —86% for the
linear convection and Euler test cases, respectively, compared to the n = 11 operator.
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7.3. RO operators

Just as was done for the triangular elements in Section 6.3, the tetrahedral R® operators are assembled by first
constructing a facet cubature rule with p.y, = 2p.

7.3.1. p=1R?operators

The facet cubature rules that are used for the tetrahedral p = 1 R? operators are the two p = 1 R operators, which
are shown in Fig. 12. Fig. 23 shows the solution error for both test cases for the generated operators. For the linear
convection test case, the operator with n = 13 and p.,, = 2p = 2, which has the same cubature rule as an operator
in [30], has the lowest solution error for a given computational cost. The operator with n = 7 and pey, = 2p = 2 has
close to the minimum solution error for the linear convection test case and the lowest solution error for the Euler test
case. The additional advantage of the p = 7 operator is that it has six fewer element nodes than the operator with
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Fig. 23. Solution error and computational cost for p = 1 R” operators on tetrahedral elements, where FCR stands for facet cubature rule,
where FCR stands for facet cubature rule.

Table 8: Possible combinations of symmetry groups for a facet cubature rule of degree four on a tetrahedral element.

ID  Element sym groups Facet (tri) sym groups n  Valid SBP cub rule
1 Stace-cent T Svert T Sc-face-vert Scent t Svert + Sc-vert 20 X

2 Sface-cent T Svert t Sedge Scent t Svert T Sc-vert 20 X

3 Sface-cent T Smid-edge + Sc-face-vert Scent + Smid-edge + Sc-vert 22

4 Sface-cent T Smid-edge + Sedge Scent + Smid-edge + Sedge 22 X

5 Svert + Smid-edge + Sc-face-vert Svert + Smid-edge + Sc-vert 22

6 Svert + Smid-edge + Sedge Svert + Smid-edge + Sedge 22 X

7 2 Sc-face-vert 2 Sc-vert 24

8 Sc-face-vert T Sedge Sc-vert T Sedge 24

9 2 Sedge 2 Sedge 24 X

n = 13. The difference in the solution error for the operator with n = 7 compared to the operator with n = 13 is
es diff = 68% and e gif = —39% for the linear convection and Euler test cases, respectively.

7.3.2. p =2 R’ operators

Table 3 indicates that a cubature rule with p., = 4 on a triangle, which is required for a p = 2 R? operator,
requires four DOF. Table 8 lists all of the combination of the symmetry groups that provide four DOF that could be
used to create a facet cubature rule. Fig. 24 then shows all of the cubature rules that were found with exclusively
positive weights. Fig. 25 shows the results for both test cases for all of the operators that were derived with 36 or
fewer nodes using the facet cubature rules in Fig. 24. The operator with n = 36 and p., = 2p = 4 has the same
cubature rule as the operator published in [30]. The operator with n = 26 and p., = 2p = 4 has the lowest solution
error for both test cases. The reduction in the solution error for the n = 26 operator relative to the operator with n = 36
is es gif = —44% and e gir = —68% for the linear convection and Euler test cases, respectively.

7.3.3. Summary of results

The tetrahedral operators with the lowest solution error, the fewest element nodes, and the ones used as a reference
are listed in Table 9. Once again, there is a clear benefit to increasing the degree of the cubature rule from 2p — 1 to
2p, but not any further. The best operators for the p = 1 and p = 2 R? family were both previously derived and have
n=Ng.. Novel R~ p = 1 and p = 2 operators were constructed with lower solution errors than the best previously
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(2)ID: 3 () ID: 5

(c)ID: 7

(d)ID: 8

Fig. 24. Cubature rules with pc,p, = 4 on triangles from Table 8 used for p = 2 R operators on tetrahedral elements.
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(b) Manufactured Euler solution test case

Fig. 25. Solution error and computational cost for p = 2 R operators on tetrahedral elements with CFL = 0.02, where FCR stands for
facet cubature rule, where FCR stands for facet cubature rule.

Table 9: Summary of results for the tetrahedral operators, where LCE stand for linear convection equation, FCR is facet cubature rule, and where
novel cub. refers to novel cubature rules used for SBP operators.

Family p 1D Peub €s diff Diff. inn Novel cub.

LCE Eulereqq An An%

R4 1 =4 2p=2 - - - - X [30]

10 2p-1=3 - - - - X [30]

Rd-1 1 n=4 2p-1=1 - - - - X [6]
n=>5 2p=2 -94% -96% 1 25%

2 n=11 2p-1=3 - - - - X [6]
n=20 2p=4 -73% -86% 9 82%

RO 1 n=13 2p=2 - - - - X [30]
n=6 2p-1=1 284% 80% -7 -54%
n= 2p=2 68% -39% -6 -46%

2 n=36 2p=4 - - - - X [30]
n=23 2p-1=3 114% 1130% -13 -36%
n=26 2p=4 -44% -68% -10 -28%
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published operators. For the R® family, new operators with fewer element nodes and with lower solution errors were
constructed. It is possible to construct novel R? operators with significantly fewer element nodes by having facet
cubature rules with element nodes on the edges and vertices, which allows each element node to be on several facets.

8. Conclusions

In the construction of SBP operators it was demonstrated that R; needs to be constructed such that the contribu-
tions of element nodes must be the same about symmetry lines and planes. This requirement is needed such that when
E, and E, are constructed by permuting E,, they still have the required decomposition that involves R;.

The optimization of free parameters in the cubature rule, in R; and in S; was investigated. It was determined that
increasing the degree of the cubature rule from 2p — 1 to 2p is beneficial, but there is no benefit to increasing peup
any further. Next, it was determined that solving R using a set of modified Moore-Penrose pseudoinverse equations
provides the required structure in R; and returns an operator with a nearly minimized spectral radius. Finally, it
was demonstrated that the optimization of free parameters in S; to minimize the Frobenius norm of A is a convex
optimization problem. The method used to optimize the p = 1 and p = 2 operators can be directly applied to higher
order operators. The only complication that arises is constructing cubature rules of higher degrees.

Novel multidimensional operators were constructed on triangular and tetrahedral elements. In all but one case,
the operator with the lowest solution error at the computational cost that was considered has py, > 2p — 1. In all
but a few cases, one operator has the lowest solution error for both test cases considered. This indicates that the best
operators provide a low solution error for a variety of problems. New tetrahedral operators for the R® family were
derived with fewer element nodes and with lower solution errors than the best previously published operators of the
same family and degree. For instance, a p = 2 R operator was derived with ten fewer element nodes and with a
solution error 44% to 68% lower than the best previously published operator of the same family and degree.

Appendix A. Permutation of the operators

Appendix A.l. Permutation matrices

When all the element and facet nodes are in symmetry groups, each node is mirrored to another node across
a symmetry line or plane for triangular and tetrahedral elements, respectively. If a node is on a symmetry line or
plane, then it mirrors itself. Permutation matrices can be created that relate nodes that are mirroring each other across
symmetry lines and planes. When a matrix is left multiplied by P, its rows are permuted while if it is right multiplied
by P, its columns are permuted. All permutation matrices are orthogonal and as such P~! = P

Given a node a, there exists a node b in the reference triangular element in Fig. 3a that satisfies the following
relations for each symmetry line

Sym #1: &, = np, Na = &b, (A.1)
Sym #2: &, = &, Na=1-& —m, (A.2)
Sym#3: &, =1—&, —1np, Na = M, (A.3)

where the symmetry line number comes from the number of the vertex and facet to which it is connected. Similarly,
given a node a, there exists a node b in the reference tetrahedral element in Fig. 3b that satisfies the following relations
for each symmetry plane

Sym #1: &q = &, Na = &b, Ca = Mb, (A4)
Sym #2: &4 = &, Na = Mb, Sa = &b, (A.5)
Sym #3: &4 = np, Ma = &b, Lo = &b, (A.6)
Sym #4: &, = &, Na = T, La=1=& =1 — s (A7)
Sym #5: &, = &, Na=1=& =1 — &, La = &ps (A.8)
Sym#6: & = 1 =& —np — &ps Na = Mbs Ca = &ps (A9)

where the symmetry plane number comes from the number of the edge it is connected to.
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Consider a triangular element with element nodes at the vertices numbered in the same order as the vertices in
Fig. 3a. The permutation matrix needs to permute element nodes two and three with each other and keep element
node one untouched. The permutation matrix across the first symmetry line is therefore

0
P.=[0 0
1

S O =
S~ O

where the subscript on the permutation matrix indicates for which symmetry line or plane it is for. Since the first
symmetry line for the triangle also coincides with the line £ = 7, the permutation matrix is also denoted as P._,. For
the reference tetrahedral element in Fig. 3a, the permutation matrices that coincide with the permutation of coordinates
are P,_, = P{,Pz_; = Py and P,_,, = P;. Permutation matrices that are created for symmetry lines and planes have
the additional property that if they are applied twice, they return the initial solution, i.e. P;P; = I. Therefore, these
permutation matrices are symmetric and P; = Pi". This relation does not hold for all permutation matrices.

Appendix A.2. Permuting directional operators

Section 4.1 introduced Theorem 1, which indicates that directional operators such as D,, can be created by per-
muting D;. The proof is provided here using the permutation matrices from Appendix A.1.

Proof: Let us begin by left-multiplying the accuracy conditions from Definition 1 by P,_,:

PeyDeV = Pey Ve
Pe yDe(Ps P!, )V = Pe_, Ve
(Pe_yDePe_y)(Pe_yV) = Pe_, Ve, (A.10)

where the property Péj_lﬂ = Ps_, was used. If the Vandermonde matrix V is created using monomial basis functions,

then we have V = &” and Ve = aé*'n’. Left-multiplying a matrix by P._, permutes the solution across the line
¢ = nand thus P,V = & and PepVe = an™ b = V,. From these relations and Eq. (A.10), it is clear that
D, = P¢,D¢Ps_,. This completes the proof. The proof for three-dimensional operators is analogous.

Appendix A.3. Permuting the interpolationfextrapolation operators R

Theorem 2 was presented in Section 4.1 and indicates that the interpolation/extrapolation operator for all the facets
can be found by permuting the operator for the first facet. This is now proven using the permutation matrices from
Appendix A.l.

Proof: We begin by considering the condition that R, must satisfy, which is analogous to the one for R;:

RaVg = Vg,
(RiPr1-2)Vgy = Vg, (A.11)

where P..;_, = PP3 from Theorem 2. The transformation to Vg caused by each permutation matrix is considered
individually. If Vg = ffn}l’, then P3Vgy = (1 - ¢ - nl)“r]’l’ (as per Eq. (A.3)) and P1P3Vg = (1 — 1y — fl)“{f’l’ (as per
Eq. (A.1)). The left multiplication of Vg by P;P3 has created the relations & = 1 — &, —n; and 1, = &. A reference
triangular element using & and 5, for the axes but &, and 7, for the vertex coordinates is shown in Fig. A.26. Where
previously there was facet i there is now facet ii with the arrow pointing from vertex /71 to vertex I, just like facet ii in
Fig. 3a. Therefore, the right multiplication of R; by P;P3 causes the solution to be interpolated/extrapolated to facet
ii, hence R, = R{PP3, which proves Theorem 2.

The proof to permute R from any other two facets for tetrahedral operators is analogous. The permutation matrices
that are used to permute R between two facets depends on the direction of evaluation on the facets and in three
dimensions it also depends on the starting vertex as well. The order of the evaluation used in two and three dimensions
is shown in Table A.10.



A. L. Marchildon, D. W. Zingg / Journal of Computational Physics (2020) 33

| m(E,1,)=(0.0)

Fig. A.26. Coordinates of reference triangular element permuted by P;P3.

Table A.10: Order of the vertices on each facet for the reference elements shown in Fig. 3.

Order of the vertices
Facet no. Triangle Tetrahedron

1 2 3 2 3 4
2 3 1 31 4
3 1 2 1 2 4
4 1 3 2

The permutation for R; to R; using the order of evaluation given in Table A.10 for a triangular element is given
by

P13 = P1Po, (A.12)

while the permutation of R; to all of the other facets for a tetrahedral operator is

Pr1-2 = P3P, (A.13)
Pr1-3 = P3Ps, (A.14)
Pri—4 = P2P4. (A.15)

Note that in general P.;_; # PrT:l._ P unlike P;_, for example.

Appendix B. The need for R; to be symmetric

In Section 4.2 Theorem 3 was presented and the proof is provided here.
Proof: For the stability proofs E, must also satisfy
Np
E,= ) mRIBR;, (B.1)
j=1
which can be rewritten using the permutation matrices into

Ny

Ey= > myj(RiPei ) Bj(RiPr )

J=1

Ni
= Znn,jPrT;l_j(RlTBle)me,. (B.2)
=1
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Table B.11: Directional normals on each facet for reference elements from Fig. 3 with cubature weights scaled to facets two and three for the
triangle and facets two, three and four for the tetrahedron.

Triangle Tetrahedron
Facet number (j) ng; n,; ng; n,; ngj
1 1 1 1 1 1
2 1 0 1 0 0
3 0 0 1 0
4 0 0 1

To have the term in parentheses in Eq. (B.2) be constant for each facet, the same facet cubature rule is used for each
facet and the scaling that is needed for the facet cubature rule to match the length or area of the facet is included in the
unit normal n,, ;. The unit normal for each of the facets for the triangular and tetrahedral reference elements in Fig. 3
is shown in Table B.11.

Substituting the unit normals from Table B.11 into Egs. (5) and (B.1) gives

E; = RBR; - P!, ,(RIBR/)P..i-2, (B.3)

E, = R{BR; — PL, 3(R{BR|)Pyi_3, (B4
where P.|_; is omitted since it is simply the identity matrix. The first terms in Eqgs. (B.3) and (B.4) are for facet i,
while the second terms are for facets ii and iii, respectively.

The operators E, that are constructed from the permutation of E; and from the construction of R; need to be
identical. Therefore, Eqs. (11) and (B.4) need to return the same solution. Equating these two solutions gives

Ey = PeyBePey
RIBR; — PL, 5(R{BR1)Py.1_3 = Py (R BR; = P, ,(R{BR)Pr12) Peyy- (B.5)
To facilitate the analysis, only the contributions for facet i are considered, which are the first terms on the LHS and
RHS of Eq. (B.5).
R'BR, = Pf_,](RlTBRl)P.f_,,
= (RiPz) B(RiP¢y), (B.6)
where the identity P._, = Pg—n was used. To identify the restriction on R; for Eq. (B.6) to be satisfied, the LHS and

RHS need to be decomposed into their individual terms. Let C, and Cg represent the LHS and RHS of Eq. (B.6),
respectively, which give

n/

Crli, j) = ) brkiri (B.7)
k=1
nf

Crlis ) = ) bt (B.8)
k=1

where ki = R](k, l), U= Rl Pf_,] and Ui = U(k, l)

So far, the proof has been applicable to E, for both a triangular and tetrahedral operator. The remainder of the
proof is specific to triangular elements, but the results are applicable to tetrahedral operators as well. Consider the
element in Fig. B.27, which contains all of its element and facet nodes in symmetry groups, some of which are on the
symmetry line ¢ = 7. For this operator, the matrices R; and U are

Va1 a2 Va3 Ug,1 Ugp Ug3
Ri=|m1 m2 3|, U=|u wo up3l.
rel rep re3 Ul Uep 27}
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Fig. B.27. Example of a triangular element with an element and facet cubature rule.

Since U is constructed from permuting R, their entries are related
ki = Uk, Tk = U3, Tk3 = Uk, Yk €fa,b,c}. (B.9)

Unfortunately, these relations are insufficient to ensure that C; = Cg. The set of equations that needs to be satisfied is

ny
Crli, /) = Crlis j) = Y bi(rire = et ) = 0, Vi, j€(1,2,...,n). (B.10)
k=1

Since all of the facet nodes are in symmetry groups, the facet cubature rule has the same weights for all of the nodes
in the same symmetry group. For an operator with a linear facet and its nodes numbered consecutively, such as the
one in Fig. B.27, the relations by = b_y, where by = B(k,k) and b_y = B(ny + 1 —k,ny+1-k)and -k =ny +1 -k
are used. This relation allows Eq. (B.10) to be rewritten in the form

Cr(, ) - Cr(i, j) = Z br ((rk,irk,j +r —k,ir—k,j) - (“k,iuk,j + “—k,i“—k,j))
k={a,c}

+ 3 bi(reim - ugi ) =0 Vi, je{1,2,...,n). (B.11)
k=(b}

The first summation term on the RHS of Eq. (B.11) is for the facet nodes in the symmetry group sc.yer, While the
second summation on the RHS is for the facet centroid s¢.,. To ensure that Eq. (B.11) is satisfied, each term in the
summations is set to zero and thus

(reiri + reir—ig) = (it + uogiur ) =0 Vi, j€{1,2,....n}.k € {a,c) (B.12)
reitey — it = 0 iy j€{1,2,...,n},k € {b). (B.13)

To satisfy Eq. (B.12), the following relations can be used:
Thi = U_ki, Topi=u; Yi={1,2,....n},ke€la,c}. (B.14)

When the relations from Eqgs. (B.14) and (B.9) are applied, this results in r,» = rc3, rc2 = ra3 and v, = r.1. These
results are shown in Fig. 4a. Meanwhile, to satisfy Eq. (B.13), the relations that are used are

r=ue Vie{l,2,...,n) ke (b (B.15)

The relations from Eqgs. (B.15) and (B.9) gives r,;, = r3}, which is shown in Fig. 4b. This completes the proof.
Appendix C provides modified equations that can be used to create the matrix R; with the required properties
such that when E,, and E, are created by permuting E,, they have the proper decomposition that involves R;.
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Appendix C. Equations to Create a Symmetric Ry

The use of Eq. (4) does not guarantee that the contributions of element nodes are symmetric about symmetry
lines and planes. The consequence of this is that if E; is permuted to calculate the other directional surface integrals,
E, and E, might not have the required decomposition into R;. The stability proofs presented in [7] require that the
directional surface integrals have a particular decomposition into R; to ensure that the energy is bounded. It may be
possible to prove stability without the decomposition of E, and the other directional surface integrals into Ry, but this
has not been demonstrated.

Appendix C.1. Triangular elements

In order to ensure that the interpolation/extrapolation of the solution from the element nodes to the facet centroid,
element node b in Fig. B.27, is symmetric when all of the element nodes are in symmetry groups, Eq. (4) is modified
to be in the form

I+P
2

The term (I + Pz_,,)/2 ensures that the contribution across the symmetry line ¢ = 7 is symmetric since it takes the
average of the solution given by Eq. (4) and the solution permuted across the symmetry line. When n = N;’ > there
are no free parameters in R; and therefore both Egs. (4) and (C.1) return the same solution. However, when n > N;, e
Egs. (4) and (C.1) are not guaranteed to return the same solution.

The interpolation/extrapolation solution for nodes a and ¢ in Fig. B.27 can be calculated for one node first and
then the solution can be permuted to the other node. For example, the solution for element node a can be found with

Ri(b,1) = ——=2Vz (b,)(Vg)' (C.1)

Ri(a,:) = Vg, (a,)(Vg)', (C2)
and then the solution for element node c is calculated with
Ri(c,:) = Ri(a, :)Pgy. (C.3)

Appendix C.2. Tetrahedral elements

In order to find the symmetric solution for the interpolation/extrapolation to the s facet node on a tetrahedral
element, node a in Fig. 5b, the following equation can be used:

I+ Pey + Peg(I + Pep) + Py (I + Pey)

Ri(a,:) = < Vi (a,)(Vg)', (C4)
The interpolation/extrapolation for node b, in Fig. 5b can be found from
|+ P’I‘[ ¥
Ri(b1.2) = —=—Vp, (b1.)(Va)'", (C5)
and the solutions for nodes b, and b5 are then calculated from
Ri(b2,:) = Ri(b1,)Psy, (C.6)
Ri(b3,:) = Ri(b1,)Ps . (C7

For the facet nodes in the symmetry group Sc.edge, such as node c; in Fig. 5b, the solution can be calculated as

Ri(e1,:) = Vg (c1, Vo), (C.8)
and for the other nodes in the symmetry group the solutions are calculated using the following equations:
Rl(cz’ :) = Rl(Cl, :)PT]—{’ (C9)
Ri(es, 1) = Riler, )Pe—¢Pey, (C.10)
Ri(cs,:) = Ri(er, )Py, (C.11)
Ri(cs, ) = Ri(cr, )Peyp, (C.12)

Ri(cs,:) = Ri(cr, HPe—¢. (C.13)
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Appendix D. System of linear equations for S

The equations that need to be satisfied for the accuracy conditions can be rewritten as a linear system of equations.
This system of equations can then be used along with the objective function in Section 5.5 to minimize the Frobenius
norm of A. The linear system of equations is in the form Cs,. = d, where the matrix C is of size NS,ind eq X NS,DOFs
the free parameters of S, are held in the vector syc., and d is a vector of length NS,ind eq-

In order to create the system of linear equations the DOF in S; need to be related to the entries in S, With a single
index notation, which is defined as k = (j — 2)(j — 1)/2 + i,i < j. For an operator with four element nodes we have

0 S12 0 S13 0 S14 0 s1 s 54
g, = |52 0 $23  Soa| _|=s1 0 s3 s
€7 =515 —s23 0 s34 =52 —s3 0 56
—S14 —$24 —s34 0 -s4 =85 —s5¢ O

(i,j) notation (k) notation

and the vector of DOF is $vec = [51, 52, .., sn(n_l)/z]T. The LHS and RHS of Eq. (18) are

LHS; = V'S,V, (D.1)
n i-1
LHS(a,b) = Z Z i i(ViaVib = ViaVib)s (D.2)
i=2 j=1
1
RHS, = -(vTva - V_ZHV), (D.3)

where the notation v;, = V(i,a) is used. The upper triangular section of S; contributes s; jv;,v;5, While the lower
triangular section contributes the term —s; jv;,v;; to the LHS. The LHS and RHS are rewritten as a system of linear
equations as follows:

Cim, k) = vigvip = ViaVip (D.4)
d(m) = RHS(a, b), (D.5)
where m is a single index notation in the form m = (@ — 2)(a — 1)/2 + b. The LHS and RHS of Eq. (17) are

LHS, = WTSfV, (D.6)

n i-1
LHS:(a,b) = D" 51 j(WiaVip = Wiavis), (D.7)

=2 j=1

1

RHS, = WTHV5 - EWTEfV. (D.8)

The equations from Eq. (17), which are only needed when n > N[*)’ > are added to the system of linear equations

Clma, k) = wiavip — Wiavip, (D.9)
d(my) = RHS;(a, b), (D.10)
where m, = (a — l)N; +b+ N* d(N; —1)/2. The contribution of N* d( —1)/2 is added since this is the number

of equations from Eq. (16). One solution to the system of linear equatlons 1s
Svec = Cd, (D.11)

where the Moore-Penrose pseudoinverse is indicated by (-)T. Alternatively, Section 5.5 presents a method to solve a
convex optimization problem to solve for the values of S; with the minimum Frobenius norm of A.
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